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Abstract. Biological research is increasingly dependent on analyzing
vast amounts of microscopy datasets. Technologies such as Fiji/ImageJ2
and KNIME support knowledge extraction from biological data by pro-
viding a large set of configurable algorithms and an intuitive pipeline
creation and execution interface. The increasing complexity of required
analysis pipelines and the growing amounts of data to be processed nur-
ture the desire to run existing pipelines on HPC (High Performance
Computing) systems. Here, we propose a solution to this challenge by
presenting a new HPC integration method for KNIME (Konstanz Infor-
mation Miner) using the UNICORE middleware (Uniform Interface to
Computing Resources) and its automated data processing feature. We
designed the integration to be efficient in processing large data workloads
on the server side. On the client side it is seamless and lightweight to
only minimally increase the complexity for the users. We describe our
novel approach and evaluate it using an image processing pipeline that
could previously not be executed on an HPC system. The evaluation
includes a performance study of the induced overhead of the submission
process and of the integrated image processing pipeline based on a large
amount of data. This demonstrates how our solution enables scientists
to transparently benefit from vast HPC resources without the need to
migrate existing algorithms and pipelines.

Keywords: KNIME - UNICORE - High Performance Computing -
Integration

1 Introduction

Biolmage Computing is central for many biological research projects [3,4,11],
and many such projects share two common problems: (i) Data is large and
analyzing it is time consuming, and (i#¢) both, data as well as the required data
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analysis chain, changes in response to progress in ongoing research projects.
Therefore, automated or semi-automated solutions are aiming at minimizing
manual user intervention and overall runtime in order to solve these problems.

Dynamic research environments require short execution times of automated
analysis pipelines and constant revisions of these pipelines to meet the projects
needs. This poses a challenge for smaller research groups or institutes that simply
cannot effort to employ dedicated HPC experts. It is desirable therefore to find
solutions where the same person who implemented the initial analysis pipeline
can also deploy it to available cluster hardware.

As delimitation to previous methods that enable the execution of KNIME
workflows on HPC systems, the following methods are mentioned. One solution,
the KNIME Cluster Execution module [13], is limited as it is proprietary and only
enables access to cluster resources in conjunction with the Oracle Grid Engine.
Another solution that is generic in scope converts KNIME workflows to gUSE
workflows [5] to execute them on HPC resources. gUSE/WS-PGRADE [12] is
a framework to build advanced HPC-enabled science gateways such as MoS-
Grid [14]. Due to the technological requirements of such science gateways and
that KNIME is our target platform, this second alternative approach is also
unsuitable in our use case. KNIME is also capable of executing jobs via Hadoop-
like frameworks. Instead of our focus on arbitrary analysis workloads, this app-
roach focuses on sub-workflows with problem structures that needs to fit the
framework.

In this article we present a novel HPC access method that allows biolog-
ical researchers with no HPC infrastructure knowledge to deploy and execute
their analysis pipelines to a broad range of existing HPC systems. Users of the
proposed setup are not required to learn any new language or HPC concept -
they do, in fact, not even have to leave their local every day analysis environment
(ImageJ2/KNIME). Regarding the technical realization we base our distribution
method on UNICORE, which can be installed on any cluster or HPC resource.
We have extended UNICORE’s existing Data Oriented Processing [21] module
with a parameter sweep feature to be capable of starting multiple parameterized
jobs (see Sect. 2.3). This is utilized within the rule we designed that triggers the
KNIME workflow execution on the HPC resources (see Sect.2.3). For KNIME
we developed all necessary modules for receiving and interpreting parameters
for loading and fractionating the data (see Sect.2.1). We provide various conve-
nience functions that aim at making the entire process as intuitive and generic as
possible. In Sect. 3 we present an evaluation of our approach including a thorough
performance analysis.

2 Utilized Methods and Implementation

In this section we first describe the Biolmage tools Fiji/ImageJ2 and the KNIME
workflow application. Then, the UNICORE HPC middleware is described that
greatly facilitates the utilization of HPC systems. We conclude with a descrip-
tion of how we integrated KNIME with HPC resources via UNICORE. This
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integration enables applying scientists to easily and efficiently utilize vast HPC
resources from within their accustomed KNIME workflow application.

2.1 Fiji/ImageJ2 and KNIME

Image analysis tools in biological research are diverse and heterogeneous [3].
Although our proposed method is applicable for most if not for all available
tools, here we constrain us to examples using Fiji/ImageJ2 [17] and KNIME
(Konstanz Information Miner) [2]. While Fiji/ImageJ2 is the de-facto standard
for working with microscopic datasets in biological research [17,18,20], using
KNIME for image analysis applications is a more recent trend we believe to
become increasingly popular in the near future.

Fiji, by itself, is a distribution of plugins and features for ImageJ [20] and
ImageJ2. KNIME, initially a dedicated data mining and workflow management
system [2], also developed into a potent image processing tool [3]. The developers
of both systems, Fiji/ImageJ2 and KNIME, use a common image processing and
analysis library for storing and operating on image data, the ImgLib2 [15]. This
enables developers to write plugins that can be used in Fiji as well as in KNIME
without additional work or code. Today, a plethora of image analysis methods
via plugins are available.

The workflow we use throughout this paper is a data-preprocessing pipeline.
It loads microscope images sequences acquired using a microfluidic device called
‘Mother Machine’ [9,22]. Each image sequence contains multiple experimental
setups and the main task of the preprocessing is to enhance image quality and
automatically find all regions of interest for extracting each individual experi-
ment for further processing [10].

Parallelization of the overall computation is performed along two axes. Our
proposed system submits multiple jobs and assigns equal amounts of data to be
processed to each such job. Each image sequence contains multiple experimental
setups and the main task of the preprocessing is to enhance image quality and
automatically find all regions of interest for extracting each individual experi-
ment for further processing. On top of that, each job can make use of multiple
concurrently running threads to further split the data into smaller junks. The
latter is implemented directly from within the KNIME workflow by using the
‘Parallel Chunk Loop’ construction that is freely available in the ‘Virtual Nodes’
package on the KNIME update site. While a regular loop executes its body for
each dataset given, a ‘Parallel Chunk Loop’ performs for-loop-unrolling using a
thread pool of configurable size.

Like many tasks in Biolmage Computing, parallelization can be achieved by
independently operating on individual images of a given dataset. A system that
allows users, without previous exposure to cluster computing, to easily design
such a processing pipeline in Fiji/ImageJ2 or KNIME was never done before.
Our proposed system achieves this via the HPC middleware UNICORE. This
constitutes an important step in unleashing the huge potential of HPC in various
use cases in Biolmaging and beyond with many potential users.
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2.2 HPC Middleware UNICORE

UNICORE (Uniform Interface to Computing Resources) [1] is a middleware
for building federated computing solutions. It focuses on providing seamless
and secure access to heterogeneous resources such as high-performance comput-
ers and compute clusters, remote data storage and file systems. UNICORE is
deployed and used in a variety of settings, from small projects to large, multi-site
infrastructures involving HPC resources of the highest category. The latter cate-
gory includes the European PRACE research infrastructure [16], the US XSEDE
research infrastructure [23] and the EU flagship Human Brain Project [7].

UNICORE comprises the full middleware software stack from clients to vari-
ous server components for accessing compute or data resources. Its basic princi-
ples are abstraction of resource-specific details, openness, interoperability, oper-
ating system independence, security, and autonomy of resource providers. In
addition, it is easy to install, configure, administrate and available under a free
and open source BSD license.

UNICORE offers services such as job submission and job management, data
access and file transfer, metadata management and workflows. It abstracts the
details of job submission, batch system commands, heterogeneous cluster prop-
erties and much more, allowing for a much simpler user interaction with HPC
and data resources. Users typically use one of the UNICORE or custom clients to
interact with the system to create and submit jobs. For the present use case, a dif-
ferent, data-driven way of interaction with UNICORE is employed and extended,
which is described in detail in the next section.

2.3 Workflow Integration on a Cluster

We performed the integration of KNIME along the workflow that is introduced
in Sect.2.1. We encapsulate the workflow logic for preprocessing the ‘Mother
Machine’ procedure in a meta-Node called ‘Workflow Logic’. We have then
loaded another Meta-Node called ‘Data Setup’ (see Fig.1). This node serves
as a generic data loading and filtering module. The only input required from

Data Setup Workflow Logic
s -
o> D
CONFIGURE ME MotherMachine
preprocessing
pipeline

Fig. 1. Submission of a KNIME workflow. After the pipeline is assembled by the user
he might choose to hide it in a so called Meta-Node, here called ‘Workflow Logic’. After
adding the predefined node ‘Data Setup’, the workflow is cluster ready in two simple
steps: (1) the location of the data must be configured, and (2) the workflow must be
exported to the submission directory via the standard KNIME export graphical dialog.
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the user is the location of the data to be processed. In order to start the work-
flow on the cluster at hand it suffices to export it to the designated submission
folder. This folder is exported from the cluster filesystem and mounted locally
on the workstation of the user. The authentication of the user is done transpar-
ently by re-using the authentication already done during the local mounting of
the network folder. Subsequently, UNICORE executes the user workflows on the
cluster under the login of the specific user who submitted the workflow. Below
we describe in detail how such a folder is to be configured.

Submitting and running Fiji/ImageJ2 workflows is achieved by very similar
means. As mentioned in Sect.2.1, every ImgeJ2 plugin is also a KNIME node.
Therefore one can assemble a sequence of Fiji plugin calls from within KNIME
and use the same procedure as described above. This possibility does, of course,
not exist for all available tools and functions. Still, as long as the tool of choice
is capable of storing a full processing pipeline for later execution our proposed
UNICORE method applies.

To enable such easy job submissions and interact with the HPC cluster,
the UNICORE feature called “Data Oriented Processing” [21] was used and
extended for efficient parameter sweeps to enable the execution of multiple jobs
per rule evaluation instead of just one. Here, the UNICORE server is set up to
periodically scan a user’s specific directory according to a set of user-defined
rules. When new files are detected, the UNICORE server executes any matching
rules, which lead to the automatic creation and submission of the HPC jobs. The
rules are stored in a file in the submission folder. Here, we allow for two possi-
ble scenarios. The users themselves provide a rule for the execution of a given
workflow. Otherwise, a system administrator provides a rule using specifications
how to execute the workflow and how data handling and job creation needs to
be performed by UNICORE.

During configuration of the rule, two opposing option have to be balanced.
The first is to highly optimize the rule to get the best performance for a specific
workflow. Such an optimization might to negatively impact the performance of
other workflows and also decreases the usability as one optimized rule for every
workflow has to be provided. The second option is find one or a few reasonable
rule configurations that fit many workflows at once. This way the complexity for
the user is minimized while a large performance increase by using HPC resources
can be expected as compared to local workflow executions.

The code Listing 1.1 shows the unique part of such a UNICORE rule that
is stored in a file named . UNICORE _Rules. The action within the rule is exe-
cuted when a workflow in compressed form recognized by UNICORE. In our
case the action defines a KNIME job with the workflow as import and parame-
ters to steer the execution. The parameter k (line 14) defines that parameter
sweep. In this example the job is created ten times (k from 0 to 9). The input
dataset (parameter [ in line 13) is preprocessed by ten KNIME instances process-
ing independently one of the given chunks. Parameter n (line 15) declares how
many instances are executed, whereas w (line 16) denotes the location of the
imported input workflow from within the specific UNICORE job. Parameter
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tr (line 18) is the path and name of the workflow that triggered the action.
Within the Resources (lines 19-22) section the specific job requirements are
defined. According to these, UNICORE automatically requests fitting resources
from the batch system. For the measurements in Sect.3.4 up to 100 of such
actions (lines 6-23) are activated to trigger KNIME instances.

Listing 1.1. The central section of the UNICORE rule is shown which, among other
things, governs how an action is defined and triggered.

{ 1
DirectoryScan: { IncludeDirs: [”.”], ”Interval”: 7307, }, 2
Rules: [ { 3
Name: BioHPCMeasurements_2880_1, 4
Match: 7 .x.zip”, 5
Action: { Type: BATCH, Job: { 6
Name: knime_headless, 7
Imports: [{ From: ”file://${UC_FILEPATH}”, 8
To: workflow.zip },], 9
ApplicationName: knime, 10
ApplicationVersion: 2.11.3 _headless, 11
Parameters: { 12
l1: 7/lustre/ssd/grunzke/2880_1", 13

k: { From: 0, To: 9, Step: 1 }, 14

n: 7107, 15

w: 7../workflow.zip”, 16

t: 787, 17
tr: "${UCFILE.PATH}” ,}, 18
Resources: { 19
Memory: 20664M, CPUs: 8, 20
Runtime: 1h, Queue: haswell , 21
CPUsPerNode: 8,}},}, 22
| I 23

As mentioned, the workflow is exported graphically from within KNIME to
a given network folder from where it is picked up by the UNICORE submis-
sion system. All HPC resources that are attached via UNICORE are available.
Depending on the rule, either workflows are submitted to a specific HPC sys-
tem or UNICORE submits to an arbitrary HPC system that fits the workflow
requirements configured in the rule file. In the code Listing 1.1, no specific system
is configured otherwise the “Site” option would be defined. All this is transpar-
ent to KNIME. Following a specific rule defined in the submission folder, a large
number of computing jobs can be seamlessly distributed over the cluster utilizing
the batch system transparently.

3 Results

In the following we present the results of our research. First, we discuss how
our approach is integrated from a user- and cluster-centric perspective. Second,
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the number of cores that can be efficiently utilized is identified. Then, the over-
head induced be the UNICORE middleware is evaluated. Finally, the number of
concurrently processed data is scaled up and evaluated.

3.1 Seamlessness Cluster Integration

A major motivation of our research is to enable the use of large computing
infrastructures from within the workflow application KNIME. In the following,
we discuss how we have achieved this from two different perspectives.

From a user-centric perspective, we achieved mainly two goals: (i) setting
up a KNIME workflow submission system, which can be directly used from
within KNIME, and (i%) the user does not require deeper knowledge of the
HPC system at hand. Users are not obliged to use a specific job scheduling
system or have to adopt to a different one used with the HPC infrastructure at
hand. Support for various scheduling systems and arbitrary HPC infrastructure
is an integral part of UNICORE. When a KNIME user finishes the design of
a Biolmage pipeline, the workflow can be run on a single workstation, but can
now also easily be extended for cluster execution via our generic data handling
node (see Fig. 1).

From a cluster-centric perspective, the UNICORE middleware monitors
a directory for new submissions. The specified rule defines that when a valid
KNIME workflows arrives, the submission and execution is automatically trig-
gered. The rule defines the computing task that executes the KNIME workflow
on the HPC resources. KNIME is required to be installed on the HPC system
and configured in order to be executed in headless mode without graphical user
interface. For a specific workflow representation the rule has to be written and
tested just once. This enables users to continuously submit workflows for differ-
ent input data sets to HPC systems and from within their working environment.

3.2 Evaluation of Job Scaling

In order to determine good parameters for the creation of individual jobs on the
cluster the number of worker threads for the KNIME workflow is varied. The
user can specify the location of the input images to be reconstructed and the
number of threads to be used by the KNIME workflow engine.

As discussed in the previous Sect. 2.1, the user can graphically adjust the
number of worker threads and therefore the degree of parallelization of individual
jobs. The measurements for the runtime estimation use the dataset (2,880 input
images and 70,000 output images with a total of 17 GB), a varying the number
of worker threads and the overall job runtime was recorded. The HPC nodes
used for this estimation are equipped with two Intel Xeon CPUs (E5-2680) with
12 cores each and a local SSD-based filesystem was used during measurements.

From the total run time, the mean processing time per image was calculated
and is shown in Fig. 2 on the left side. As can be seen in the figure, the workflow
can make use of additional worker threads in the reconstruction and can be
reduced to slightly over one second per image (within statistical errors). Starting
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the given workflow with a larger number of worker threads does not further
decrease the mean reconstruction time per image and a value of 8 worker threads
seems to be a good trade-off value for minimal runtime per job and efficiency.

Figure 2 on the right side shows the speedup based on the runtime behavior
shown on the left side. Also shown is the theoretical linear speedup with respect
to the runtime (red line). In general the workload on the system induced by the
workflow is rather I/O intense. Therefore, some deviation from the theoretical
linear behavior is to be expected. To lower this impact we used local SSD-
based storage at the compute node to minimize the I/O effect. As discussed, the
increase in the number of threads for computation does not improve the runtime
behaviour for values larger than 8 threads, and for the next measurement series
we chose this value as default for this particular workflow.
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Fig. 2. Evaluation of the number of individual number of threads. The left plot displays
the mean processing time per image for a given subset of image data with varying num-
bers of threads for the Fiji/ImageJ2 KNIME workflow including error bars. The right
plot shows the calculated speedup including error bars of the Fiji/ImageJ2 KNIME
workflow with a varying number of worker threads per job. The red line displays the
theoretical linear speedup. (Color figure online)

3.3 Middleware Induced Overhead

The utilization of UNICORE with its triggering feature induces an overhead in
the overall process. We estimate this overhead by measuring the time from which
a workflow submission to the corresponding job submission time to the scheduler.
One part of the overhead is the time needed for the middleware to register the
new workflow in the directory. To reduce unnecessary communication overhead,
a time interval for update checks is set to 30s, which defines the maximum
period for the middleware to recognize an new workflow. The second part of the
overhead is the time period required by the middleware to execute methods to
create compute jobs based on the workflow rule and to send those jobs to the
scheduler. The first time measurement was triggered by exporting the workflow
to the submission folder. Via the scontrol command the relevant submission time
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was obtained from the SLURM scheduler. The additional middleware overhead
was therefore assessed by the difference between these two times. To estimate the
variation in the process, the measurement was repeated ten times and in average
a time of 27.2s is the mean additional overhead induced by the UNICORE
middleware.

3.4 Runtimes for Increasingly Large Datasets

This measurement series determines how our approach along the previously
introduced Biolmaging pipeline behaves at a large scale. The number of input
and output files is scaled up to 7.488 million files with a total data emergence of
up to 1.76 TB. The following table lists the configuration of the individual mea-
surements which were repeated five times each. The size is the combined input
and output data size. The second column displays the number of input and
output files that are handled by the KNIME workflows during a measurement,
whereas the third column denotes the number of datasets that are processed. Col-
umn four contains the number of chunks by which each dataset is partitioned for
processing. The last column signifies that 800 cores in total are utilized, meaning
8 cores for every of the 100 KNIME instances (Table 1).

Table 1. Four measurement configurations with varying sizes and number of files,
datasets, currently processed chunks per dataset, and utilized cores.

Size Files Datasets | Chunks | Cores
0.17 TB|0.7488 M | 10 10 800
0.35 TB | 1.4976 M | 20 5 800
0.88 TB|3.744 M | 50 2 800
1.76 TB | 7.488 M | 100 1 800

In our evaluation the number of concurrent KNIME instances is limited to
100. Beyond that, the error rate starts to significantly increase as KNIME is
currently not built to handle a high number of parallel instances due to synchro-
nization issues and relying on shared temporary files. A number of issues were
solved by switching off OSGI locking and increasing the synchronization interval
in knimi.ini'. As determined in Sect. 3.2, 8 cores are utilized as this is a sound
number for this workflow. In these measurements, HPC nodes (each with two
Intel Xeon CPUs (E5-2680) with 12 cores each) were utilized. A local SSD-based
filesystem was used for providing the input data and storing the resulting data.

Figure 3 shows that the measurements with up to 1.76 TB of data have a
runtime of 1259, 1955, 4318, and 7154 s respectively while utilizing 800 cores
in each setting. The error bars show a significant standard deviation. This is
due to the fact that the KNIME instances are scheduled as jobs by the HPC

!« Dosgi.locking =none”, “-Djava.util.prefs.syncInterval = 2000000 .
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batchsystem at varying points in time due to varying utilization levels of the
HPC system. The measurements show that our approach can either process one
dataset in parallel with many individual chunks, or it can process many datasets
in parallel. Processing the datasets of the largest measurements (1.76 TB) on a
local workstation with 4 cores would take about 17 days of continuous process-
ing. With our easy-to-use and HPC-enabled approach the processing time is
significantly reduced to just 2h.
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Fig. 3. Measurement results for concurrent processing of increasing number of datasets
with an overall data size of up to 1.76 TB in 7.488 M files. The mean runtimes are 1259,
1955, 4318, and 7154 s respectively including error bars. These constitute a significant
decrease in runtime compared to local processing on a workstation which would take
about 17 days as compared to 2h on the HPC system.

4 Conclusion

The presented work constitutes a novel approach to easily enable the use of large
scale computing resources in the KNIME workflow application suite. Previously,
KNIME users were very limited in using large computing infrastructures. Now,
every major cluster scheduler is supported via the mature and widely used UNI-
CORE HPC middleware. Enabling a high usability, users just need to graphically
export a suitable KNIME workflow into a pre-configured directory and gets exe-
cuted in parallel on the HPC cluster. To enable this, we extended the UNICORE
middleware to support parameter sweeps via its data oriented processing feature,
developed KNIME methods for interpreting parameters and fractionating input
data, described how suitable workflows are created, and implemented it as a com-
plete and generic approach along a concrete Biolmaging use case. Performance
measurements with up to 1.76 TB in 7.488 million files are presented that show
highly favorable characteristics of our method. Trade-offs are required to either
configure the method for high efficiency in a specific use case or for reasonable
efficiency for multiple use cases. Alternatively, multiple directories can be config-
ured for different use case scenarios offering more flexibility. Our approach can
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process either individual datasets in many parallel chunks, or many datasets in
parallel, or a combination thereof. Now, large datasets in the range of terabytes
can be processed in a matter of hours instead of weeks that were needed before.

5 Outlook

The preprocessing pipeline used throughout this work is a first example. We and
our collaborators work on multiple other use-cases that perfectly fit our imple-
mented system. As a rule of thumb, as soon as chunking the input in smaller
pieces is a valid parallelization scheme, our method can be applied. We are plan-
ning to apply our method on even more ‘data-hungry’ tasks such as automated
tracking pipelines for developing tissues (e.g. in C. elegans), or the segmentation,
classification, and sorting of labeled neurons in the Drosophila fly brain. Other
modes of operation are also feasible to enable novice users to use HPC resources.
Currently, we work on fully automating an existing pre-processing pipeline [19]
by utilizing the UNICORE data oriented processing approach and adding the
advantage of enabling easy research data management via an integration with
the KIT Data Manager [8] via the MASi project [6]. We also work on a method
to offload individual KNIME workflow nodes to HPC resources.
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