
Ultra-Fast Detection of Higher-Order
Epistatic Interactions on GPUs

Daniel Jünger1, Christian Hundt1, Jorge González-Domı́nguez2(B),
and Bertil Schmidt1

1 Institut für Informatik, Johannes Gutenberg-Universität Mainz,
Mainz, Germany

djuenger@students.uni-mainz.de, {hundt,bertil.schmidt}@uni-mainz.de
2 Grupo de Arquitectura de Computadores,
Universidade da Coruña, A Coruña, Spain

jgonzalezd@udc.es

Abstract. Detecting higher-order epistatic interactions in Genome-
Wide Association Studies (GWAS) remains a challenging task in the
fields of genetic epidemiology and computer science. A number of algo-
rithms have recently been proposed for epistasis discovery. However,
they suffer from a high computational cost since statistical measures
have to be evaluated for each possible combination of markers. Hence,
many algorithms use additional filtering stages discarding potentially
non-interacting markers in order to reduce the overall number of com-
binations to be examined. Among others, Mutual Information Cluster-
ing (MIC) is a common pre-processing filter for grouping markers into
partitions using K-Means clustering. Potentially interacting candidates
for high-order epistasis are then examined exhaustively in a subsequent
phase. However, analyzing real-world datasets of moderate size can still
take several hours when performing analysis on a single CPU. In this
work we propose a massively parallel computation scheme for the MIC
algorithm targeting CUDA-enabled accelerators. Our implementation is
able to perform epistasis discovery using more than 500,000 markers in
just a couple of seconds in contrast to several hours when using the
sequential MIC implementation. This runtime reduction by two orders-
of-magnitude enables fast exploration of higher-order epistatic interac-
tions even in large-scale GWAS datasets.

Keywords: Bioinformatics · GWAS · Epistasis · High performance
computing · CUDA

1 Introduction

Discovering genotype-phenotype associations between genetic markers and cer-
tain diseases has become an increasing field of interest in recent years. Case-
control studies, such as Genome Wide Association Studies (GWAS), search for
genetic factors that influence common complex traits. Some of these studies have
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 421–432, 2017.
DOI: 10.1007/978-3-319-58943-5 34

422 D. Jünger et al.

explored single-locus associations between specific markers and a certain disease
[4,5]. However, most complex diseases are suspected to have more sophisticated
association patterns [1]. One cause of complex association patterns arises from
the existence of epistasis; i.e. interactions among k markers (k ≥ 2). A variety of
algorithms has been proposed using different approaches for finding such epista-
tic interactions in GWAS. Exhaustive search approaches [6,7,10,11] examine
every possible k-combination of markers. Hence, these approaches promise high
accuracy but often lack scalability, since the number of possible combinations
grows exponentially with the order of interaction k. Stochastic random sampling
methods [14] usually need to specify many parameters that heavily influence their
execution time. Machine learning algorithms [9,12] are often faster than exhaus-
tive approaches, but may only find local extrema instead of globally optimal
solutions.

Approaches for finding higher-order epistasis in GWAS use filter cascades
such as SNPHarvester [13] or MIC [8]. These approaches utilize filters to prune
unpromising markers that are unlikely to exhibit high interactions. Subsequently,
the markers that have survived the filtration stage are examined exhaustively for
k-locus interactions. The MIC algorithm uses K-Means clustering in combination
with mutual information as distance measure for the filtering to determine sets of
markers that are potentially interacting. Afterwards, the obtained candidates are
examined exhaustively. Using a CPU-only implementation of MIC, it is possible
to search for six-SNPs epistasis in the well-known Wellcome Trust Case-Control
Consortium (WTCCC) dataset with over 500,000 markers in a couple of hours.

The main contributions of this paper are the design of fine-grained paral-
lelization schemes for the sequential MIC algorithm targeting massively parallel
architectures and their implementation on CUDA-enabled accelerators providing
speedups of around two orders-of-magnitude in comparison to single-threaded
CPU code. Consequently, we are able to reduce the runtime of MIC drastically
from hours to seconds enabling researchers to perform exploratory analysis in
an interactive manner.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the sequential MIC algorithm. Section 3 describes our parallelization scheme.
Performance is evaluated in Sect. 4. Section 5 concludes the paper.

2 Background

Mutual Information Clustering (MIC) performs fast candidate selection for
higher-order epistatic interactions in GWAS. It consists of two stages for detect-
ing k-locus interactions. The first stage filters single-nucleotide polymorphisms
(SNPs) that are unlikely to interact using a variant of K-Means clustering that
determines a notion of similarity by the pairwise computation of mutual infor-
mation between the individual markers. After the clustering step a user-defined
number of m SNP candidates are selected from each cluster. These candidates
are examined to find the causative SNPs of k-locus interactions.

Based on [8], mutual information I is used as similarity measure of association
between genotypes and susceptibilities of diseases. Let X = {A1, A2, . . . , An} be

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 423

a partition of a set S, meaning that S = A1 ∪A2 ∪ . . .∪An and Ai ∩Aj = ∅ for
all distinct pairs of i and j. The entropy H(X) can be expressed as

H(X) = −
n∑

i=1

|Ai|
|S| · log

|Ai|
|S| (1)

where | · | denotes the number of elements in a set. Note that |Ai|
|S| can be

interpreted as the probability mass function of the partition X. An extension
of this definition to an arbitrary number of partitions is straightforward. Let
Xj = {A(j)

1 , A
(j)
2 , . . . , A

(j)
n } for j = 1, . . . , k be k partitions of a set S. Then the

joint entropy of k partitions H(X1,X2, . . . , Xk) is defined as

H(X1,X2, . . . , Xk) = −
n1∑

i1=1

n2∑

i2=1

· · ·
nk∑

ik=1

Pi1 i2···ik · logPi1 i2···ik

where Pi1 i2···ik =
|A(1)

i1
∩ A

(2)
i2

∩ . . . ∩ A
(k)
ik

|
|S| . (2)

The mutual information between the joined partition of X1,X2, . . . , Xk and
a partition Y can be expressed as:

I(X1,X2, . . . , Xk;Y) = H(Y) + H(X1,X2, . . . , Xk)
− H(X1,X2, . . . , Xk, Y) (3)

Let X1,X2, . . . , Xk be partitions for the set of samples induced by the geno-
types of SNP1,SNP2, . . . ,SNPk, respectively, and Y be the partition by dis-
ease state (case or control) then I(X1,X2, . . . , Xk;Y) represents the degree
of associations between genotypes of SNP1,SNP2, . . . ,SNPk and the disease
state. The objective is to find the set of k SNPs that maximizes the value
of I(X1,X2, . . . , Xk;Y). Examining every possible k-combination of n SNPs
is considered computational intractable for more than half a million SNPs in
GWAS for k ≥ 3 [6,7]. In order to reduce the number of SNPs to be considered
in the exhaustive step, MIC uses K-Means which scales linearly in the num-
ber of processed markers. The clustering procedure is a modification of Lloyd’s
algorithm:

1. Assignment step. The pair-wise distance dist(Xi,Xj) between two SNPs Xi

and Xj is defined as the mutual information I(Xi,Xj ;Y). This implies that
SNPs that are strongly interacting tend to be placed into different clusters.

2. Update step. The process of selecting the centroid of each cluster works as
follows. Each SNP generates a contingency table consisting of genotype fre-
quencies among samples. The average contingency table T

(j)
avg of a cluster j

is defined as follows: each entry of T (j)
avg is the average of the corresponding

entries of all contingency tables generated by the SNPs belonging to the clus-
ter j. A centroid cj of a cluster j is defined as the nearest neighbour of T (j)

avg

with respect to the sum of squared errors

cj = argmin
q

‖Tq − T (j)
avg‖2. (4)

424 D. Jünger et al.

After the clustering step, m candidates are selected from each cluster. A
candidate in a cluster is a SNP that is far apart (in terms of pairwise mutual
information) from SNPs in other clusters. MIC makes use of this similarity mea-
sure to define a score value for SNPs. Let x(i) be a SNP in the i-th cluster with
ci as the corresponding centroid then the score value is determined by:

score(x(i)) =
∑

j �=i

dist(x(i), cj)

= I(x(i), c1 ;Y) + . . . + I(x(i), ci−1;Y)

+ I(x(i), ci+1;Y) + . . . + I(x(i), ck;Y). (5)

From each cluster MIC selects the top m SNPs in terms of their scores as
candidates for further processing. Thus, a total of k · m candidates are chosen.
Among these candidates, MIC exhaustively searches the k-tuple with the highest
mutual information value I(X1,X2, . . . , Xk;Y). This implies that it only has to
probe

(
m·k
k

)
combinations instead of

(
n
k

)
, where m · k � n.

3 CUDA Implementation

In this section, we discuss the details of our parallel implementation of the
MIC algorithm using CUDA. Besides native CUDA, we also utilize the CUDA
Unbound (CUB) library [3] which provides a set of highly optimized parallel
primitives. We subdivide the MIC algorithm into the following four distinct
phases.

3.1 Data Preparation

Our implementation stores the genotype information in form of a C++ standard
library vector containing SNP elements. A SNP is represented by a struct con-
taining the genotype information for both cases and controls. SNPs are expressed
in three different genotypes for both cases and controls. Hence, the SNP-struct
has six sub-elements. Each of these sub-elements is a bit-array where the bit at
index i encodes whether the ith individual (case or control) has the particular
genotype. For simple enumeration we will label genotype AA as 0, AB as 1,
and BB as 2. Hence, we can refer to the genotype arrays of the SNP-struct as
case0, case1, case2, ctrl0, ctrl1, and ctrl2. For later use in the clustering step
we pre-compute the genotype frequencies of each SNP for cases and controls
respectively, by determining the population count of each bit array. This step
takes linear time. We refer to the structure of combinations of the six genotype
frequencies as the contingency table.

In order to use the genotype information on the GPU in an efficient manner,
we use six global bit-arrays on the CUDA device, each of which combines one
genotype case/control bit array from all SNPs one after another. Subsequently,
we transpose each bit-array, assuring coalesced access between CUDA threads in

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 425

a warp if threads are assigned to SNPs within the SNP set consecutively. Trans-
position is achieved using one CUDA-stream per array using a shared memory-
based out-of-place transposition algorithm. We compute the genotype frequency
of each SNP using the vectorization capabilities of the GPU along with coalesced
data access patterns.

3.2 Clustering

The modified K-Means algorithm can be split into three subroutines that are
parallelized separately using dedicated CUDA kernels.

First, the cluster assignment step compares each SNP with the set of centroids
cj and subsequently assigns the nearest neighbour. Since this can be determined
for each of the SNPs independently, we map individual SNPs to CUDA-threads
exploiting the optimized data alignment discussed in the previous subsection.
As a result, the cluster indices of each SNP are stored in an array residing in
the global memory of the GPU.

Second, the mean contingency table of each cluster is computed by point-
wise addition of all contingency tables of SNPs that are assigned to that cluster
and subsequent division by the number of SNPs in the cluster. The applied
reduction algorithm utilizes different memory spaces of the GPU. On the lowest
level each warp (consisting of 32 threads) computes its partial result using warp
intrinsics and stores the result in the shared memory of its block. Subsequently,
each block uses a tree-based reduction to accumulate partial sums and stores the
final result in global memory using atomic operations. We then divide the per-
cluster accumulated contingency table by the number of SNPs in each cluster in
parallel using the device-wide cub::DeviceHistogram primitive from the CUB
library on the cluster array in order to determine the cluster sizes.

The third subroutine determines the updated centroids for the next iteration
of Lloyd’s algorithm by computing the nearest neighbour SNP of each centroid in
terms of sum of squared errors to the mean contingency table of the correspond-
ing cluster. In order to update the centroids in parallel, we first compute the dis-
tance of each SNP to its corresponding cluster mean using one thread per SNP.
Subsequently, the obtained distance values are stored as 32-bit unsigned integer
into the lower half of a 64-bit unsigned integer and consecutively write the 8-bit
cluster identifier of a SNP into the upper half. This step is visualized in Fig. 1(a).
We can now define a lexicographical ordering over these elements with the clus-
ter identifier as major order and the distance value as minor order. Using this
relation, we sort this array using a device-wide call to cub::DeviceRadixSort.
A schematic overview of this step is illustrated in Fig. 1(b). Note that CUB pro-
vides the ability to run radix-sort only on a sub-set of bits of an integer. Hence,
we just consider the first 40 bits of an element for the sorting step. The SNP of
cluster cj with minimal distance to the mean contingency table is placed at index∑j−1

i=1 |ci|. We then use a cub::DeviceExclusiveSum primitive on the clustering
histogram to determine the starting indices of each cluster. Finally, we select the
first SNP of each cluster from the sorted array as the new centroid.

426 D. Jünger et al.

Fig. 1. Selection of centroids using lexicographical ordering. (a) Shows a 64-bit
unsigned integer which represents a SNP. The distance from the SNP to its centroid is
stored as a 32-bit unsigned integer in the lower half of the 64-bit datatype. The 8-bit
long identifiers of the corresponding cluster are stored consecutively. Overall the struct
holds 40 bits of information. (b) Shows the result of cub::DeviceRadixSort on an
array of the datatype depicted in (a). The new centroid elements are the first elements
of each cluster section (denoted by different color shading).

3.3 Candidate Selection

The score computation of each SNP can be performed independently by utiliz-
ing CUDA-threads. The candidates of each cluster are those m SNPs with the
highest scores. For this purpose, we use a slight modification of the major-minor
radix-sort approach as shown in Fig. 1. Different from our initial definition, we
now pack the score value of type float into the lower half of a 64-bit unsigned
integer together with the 8-bit cluster ID stored consecutively. Since we want
to sort the elements of this array ascending by the cluster ID (major ordering)
but descending by the score values (minor ordering), we negate the score values
before sorting the array. The selection step is analogous to Fig. 1(b): the first m
SNPs of each cluster are selected in the sorted array rather than just one. As a
result of this phase we have selected k ·m SNPs that are exhaustively examined
in the final phase.

3.4 Exhaustive Search

Algorithm 1 represents the implementation of Eq. 3. As a subtask of this calcu-
lation, we probe each of the 3k possible genotype combinations of the given SNP
combination in order to determine the joint entropies H(X1,X2, . . . , Xk) and
H(X1,X2, . . . , Xk, Y) as given in Eq. 2. For one of these genotype combinations

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 427

igeno ∈ {0, . . . , 3k − 1} the genotype gik ∈ {0, 1, 2} to choose for one SNP snpik
with ik ∈ {0, . . . , k − 1} of this SNP combination can be calculated by:

gik = 	 igeno
3ik

 mod 3 (6)

Using this extension we can now implement the k-locus mutual information
for one SNP combination as follows:

Algorithm 1. Mutual Information of k loci
1: procedure kMI
2: pCase← 0.0
3: pCtrl← 0.0
4: Hxy ← 0.0
5: Hx ← 0.0
6: Hy ← H(Y) � computation according to Eq. 1
7:
8: for igeno ∈ [0, 3k) do � 3k combinations of genotypes
9: f case←popc(snp0.cases[g0]∩snp1.cases[g1]∩ . . . ∩ snpk−1.cases[gk−1])

10: f ctrl←popc(snp0.ctrls[g0]∩snp1.ctrls[g1]∩ . . . ∩ snpk−1.ctrls[gk−1])
11:
12: pCase← f case/(|cases| + |ctrls|)
13: pCtrl← f ctrl/(|cases| + |ctrls|)
14:
15: Hx− = (pCase + pCtrl) · log (pCase + pCtrl) � computation according to

Eq. 2
16: Hxy− = pCase · log pCase + pCtrl · log pCtrl
17: end for
18: return Hy + Hx − Hxy � computation according to Eq. 3
19: end procedure

Note that the computation of the joint frequencies is performed efficiently by
using bitwise AND-operations followed by a CUDA-intrinsic population count on
the SNP bit-sets (see Lines 9 and 10 in Algorithm 1). The parallelization-scheme
for this task assigns each SNP combination to one CUDA-thread.

The task of computing the k-locus mutual information for each k-combination
is computationally demanding. We reduce the computational load per CUDA
core by pre-computing the SNP combinations of the given candidates as follows.

First, we need to find a mapping that associates each combination index
icomb ∈ {1, . . . ,

(
k·m
k

)} with a distinct k-combination from the set of k · m can-
didates. This can be implemented by decomposing binomial coefficients using
their recursive definition:

(I) :
(
n

n

)
=

(
n

0

)
;

(II) :
(
n + 1
k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
;

(7)

428 D. Jünger et al.

If we substitute n by (km − 1) and k b < (k − 1) we can rewrite (II) as
(
k · m
k

)
=

(
km − 1
k − 1

)
+

(
km − 1

k

)
(8)

Using this representation we can apply a recursive binary tree decomposition.
Each level of the tree represents one element of the set of km elements. Addition-
ally, each distinct path through the tree represents a distinct SNP combination.
Algorithm 2 computes one path given the index icomb of the combination to
be formed and returns the corresponding k-combination. We will execute this
algorithm on

(
k·m
k

)
CUDA-threads, each one processing a single combination.

Algorithm 2. Computation of k-combination
1: procedure getSNPCombination(icomb)
2: combination[]
3: index← icomb

4: local n← k · m
5: local k← k
6: j ← 0
7:
8: for i ∈ [0, km) do
9: lower← (local n−1

local k

)

10:
11: if index ≥ lower then
12: local k -= 1
13: combination[j]← i
14: j++
15: index -= lower
16: end if
17: local n -= 1
18: end for
19: return combination[]
20: end procedure

Algorithm 2 calls the binomial coefficient function k · m times per thread in
Line 9. To further reduce the workload of each CUDA-core, we pre-compute the
values of the binomial coefficients and cache them in a look-up table residing in
global memory. Finally, we determine the highest epistatic interaction candidate
using a device-wide key-value sort primitive form the CUB library.

4 Experimental Evaluation

In order to measure the time benefits of our CUDA-parallelized version of MIC
compared to the single- and multi-core CPU version, we use a real-world dataset
from WTCCC. The dataset consists of the genotype information of roughly

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 429

500,000 SNPs that were gathered from 3,000 controls drawn from the British
population and 2,000 cases which are all affected by inflammatory bowel disease.
The system configuration used for benchmarking is listed in Table 1.

Table 1. Benchmark system.

Host system CPU Intel Core i7-3970X, 64-bit, HT

CPU cores 6 cores @ 3.50 GHz (max. 4.0 GHz)

RAM 32 GB DDR3

OS Ubuntu 14.04.4 LTS, 64-bit

CUDA device Device NVIDIA GeForce GTX Titan X

GPU NVIDIA GM 200

GPU cores 3072 SPs @ 1GHz

DRAM 12 GB GDDR5

CC 5.2

Compilers Host g++ v4.8.4

Device nvcc v7.5.17

Compiler flags g++ -O3 -std=c++11 -fopenmp

nvcc -O3 –expt-relaxed-constexpr -use fast math

-std=c++11 -rdc true

-gencode=arch=compute 52,code=sm 52

In this work we focus on testing the performance improvement of our GPU-
based parallel implementation as the accuracy is the same as the original MIC
which has already been assessed in [8]. The MIC algorithm can be divided into
two major phases. The first phase represents the K-Means clustering step. This
step takes O(lkn) time, where l denotes the number of samples (cases/controls),
k the number of clusters, and n the number of SNPs to be examined. The
second phase performs exhaustive search and examines

(
k·m
k

)
k-combinations of

SNPs for epistasis. The computation of the mutual information of each k-SNP
combination and disease state takes linear time i.e. O(l). Thus, this phase takes
O(l(km)k) time. Since k occurs in the asymptotical runtime of both phases, we
choose k as the varying parameter for our benchmark. The value of n is given
by the WTCCC dataset and therefore fixed. We also set m = 5 throughout the
experiments.

Table 2 shows the benchmark results for varying values of k (from one to six).
As the original MIC implementation [8] is not publicly available, we developed a
CPU-based C implementation and parallelized it using Open Multi-Processing
(OpenMP or OMP)[2] for comparison purposes. We use the average of 50 exe-
cutions for the GPU implementation and 30 executions for the CPU implemen-
tations. However, sequential execution for the highest k takes more than two
hours and is not very stable at runtime. Hence, we were only able to measure
two executions for this configuration with the sequential implementation.

430 D. Jünger et al.

Table 2. Average runtimes in seconds and speedups of the CUDA implementation on
a GTX Titan X GPU over a single- and multi-core CPU-based version for m = 5.

k 2 3 4 5 6

Runtime tseq 11.39 26.97 183.75 386.58 7865.17

tomp 4.25 5.11 6.67 49.44 1926.42

tcuda 0.69 0.74 0.83 1.36 16.41

Speedup tseq/tomp 2.68 5.28 27.55 7.82 4.08

tseq/tcuda 37.85 36.41 221.66 285.00 479.30

tomp/tcuda 6.16 6.91 8.04 36.35 117.39

Fig. 2. Execution time proportions of K-Means and exhaustive step.

The benchmark results show that the speedups grow when k is increased. This
is due to the fact that the number of combinations in the exhaustive search step
grows exponential, as the asymptotic runtime is given by O(l(km)k). Figure 2
illustrates the proportions between the K-Means step and the exhaustive step
to the execution time when k is increased. We observe that K-Means holds the
largest share for k ≤ 5, whereas the exhaustive step, by far, holds the biggest
share for k > 5. Our CUDA-based approach obtains more benefit for experiments
where the exhaustive search has a significant impact on the total runtime.

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs 431

5 Conclusion

We have developed an efficient parallel implementation of the MIC algorithm for
finding higher-order epistasis in GWAS using CUDA-enabled accelerator cards.
Concretely, we have proposed a parallel GPU-only implementation of a modified
K-Means clustering algorithm. In addition to the clustering step, we also make
extensive use of the GPU for the remaining parts, leaving the host CPU only
for organizational purposes during execution.

Using our implementation it is possible to examine moderately-sized GWAS
datasets in just a few seconds on a modern consumer-grade workstation. Our
benchmark results indicate speedups of about two orders-of-magnitude compared
to the sequential solution. The benefits of our parallel implementation are more
significant when increasing the order of the interactions, i.e. when the exhaustive
phase has more impact on the total execution time.

As part of our future work, we are planning to further improve the CUDA-
implementation of the exhaustive search step. For now, this computation is done
by a so-called heavy kernel, where each thread has to compute a rather big
portion of the overall task. The CUDA architecture, however, is designed and
optimized for lightweight threads. Hence, we have to develop a parallelization-
scheme that implements the concept of lightweight threads by further split-
ting each computation into independent subtasks. A further possible direction
of future research is the design and comparison of novel lightweight candidate
selection algorithms on CUDA-enabled accelerators in order to robustly prune
non-interacting markers at even higher speed.

Acknowledgments. This study makes use of data generated by the Wellcome Trust
Case-Control Consortium. A full list of the investigators who contributed to the gen-
eration of the data is available from www.wtccc.org.uk. Funding for the project was
provided by the Wellcome Trust under award 076113 and 085475.

References

1. Cordell, H.J.: Detecting gene-gene interactions that underlie human diseases. Nat.
Rev. Genet. 10(6), 392–404 (2009)

2. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

3. Duane Merrill, N.C.: Cub documentation (2016). https://nvlabs.github.io/cub/
4. Easton, D.F., Pooley, K.A., et al.: Genome-wide association study identifies novel

breast cancer susceptibility loci. Nature 447(7148), 1087–1093 (2007)
5. Frayling, T.M., Timpson, N.J., et al.: A common variant in the FTO gene is associ-

ated with body mass index and predisposes to childhood and adult obesity. Science
316(5826), 889–894 (2007)

6. González-Domı́nguez, J., Schmidt, B.: GPU-accelerated exhaustive search for
third-order epistatic interactions in case-control studies. J. Comput. Sci. 8, 93–
100 (2015)

7. Kässens, J.C., Wienbrandt, L., González-Domı́nguez, J., Schmidt, B.,
Schimmler, M.: High-speed exhaustive 3-locus interaction epistasis analysis
on FPGAs. J. Comput. Sci. 9, 131–136 (2015)

www.wtccc.org.uk
https://nvlabs.github.io/cub/

432 D. Jünger et al.

8. Leem, S., Jeong, H.H., et al.: Fast detection of high-order epistatic interactions
in genome-wide association studies using information theoretic measure. Comput.
Biol. Chem. 50, 19–28 (2014)

9. Meng, Y.A., Yu, Y., et al.: Performance of random forest when SNPS are in linkage
disequilibrium. BMC Bioinf. 10(1), 1 (2009)

10. Nelson, M., Kardia, S., et al.: A combinatorial partitioning method to identify
multilocus genotypic partitions that predict quantitative trait variation. Genome
Res. 11(3), 458–470 (2001)

11. Wan, X., Yang, C., et al.: Boost: a fast approach to detecting gene-gene interactions
in genome-wide case-control studies. Am. J. Hum. Genet. 87(3), 325–340 (2010)

12. Wan, X., Yang, C., et al.: Predictive rule inference for epistatic interaction detection
in genome-wide association studies. Bioinformatics 26(1), 30–37 (2010)

13. Yang, C., He, Z., et al.: SNPHarvester: a filtering-based approach for detecting
epistatic interactions in genome-wide association studies. Bioinformatics 25(4),
504–511 (2009)

14. Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control
studies. Nature Genet. 39(9), 1167–1173 (2007)

	Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs
	1 Introduction
	2 Background
	3 CUDA Implementation
	3.1 Data Preparation
	3.2 Clustering
	3.3 Candidate Selection
	3.4 Exhaustive Search

	4 Experimental Evaluation
	5 Conclusion
	References

