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Abstract. D-Mason framework is a parallel version of the Mason
library for writing and running Agent-based simulations – a class of mod-
els that, by simulating the behavior of multiple agents, aims to emulate
and/or predict complex phenomena. D-Mason has been conceived to
harness the amount of unused computing power available in common
installations like educational laboratory. Then the focus moved to dedi-
cated installation, such as massively parallel machines or supercomputing
centers. In this paper, D-Mason takes another step forward and now it
can be used on a cloud environment.

The goal of the paper is twofold. Firstly, we are going to present D-
Mason on the cloud – a D-Mason extension that, starting from an IaaS
(Infrastructure as a Service) abstraction, and exploiting Amazon Web
Services and StarCluster, provides a SIMulation-as-a-Service (SIMaaS)
abstraction that simplifies the process of setting up and running distrib-
uted simulations in the cloud. Secondly, an additional goal of the paper is
to assess computational and economic efficiency of running distributed
multi-agent simulations on the Amazon Web Services EC2 instances.
The computational speed and costs of an EC2 cluster will be compared
against an on-site HPC cluster.

Keywords: Agent-Based simulation Models · Cloud computing ·
D-Mason · Parallel computing · Distributed systems · High performance
computing

1 Introduction

Computational science is a rapidly growing novel field that uses advanced com-
puting in order to solve complex problems. This new discipline combines new
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technologies, modern computational methods and simulations to address prob-
lems too complex to be reliably predicted by theory and too dangerous or expen-
sive to be reproduced in the laboratory.

Many simulation paradigms have been proposed. Among them, Agent-Based
simulation Models (ABMs) are an increasingly popular tool in terms of expres-
siveness and easy to understand for the developer of simulation models [9].

Successes in computational sciences over the past ten years have caused
demand for supercomputing resources, to improve the performance of the sys-
tem and to allow the growth of the models, in terms of sizes and quality. From a
computer scientist’s perspective, it is natural to think to distribute the execution
of the simulations among multiple machines: it is well known that the speed of
single-processor computers is reaching some physical limits. For these reasons,
parallel computing has become the dominant paradigm for computational scien-
tists who need the latest development on computing resources in order to solve
their problems.

The cloud computing paradigm [1] is becoming very popular these days. With
cloud computing, the cloud vendors provide IT resources to users as a utility
like the electricity; the user accesses the IT resources easily and pays only for
the ones they consumed. Cloud providers offer managed infrastructures (IaaS -
Infrastructure as a Service) as well as managed platforms such as a key-value
storage or a relational database (PaaS - Platform as a Service). The offered IaaS
and PaaS services enable Cloud computing services that range from simple data
backup to the possibility of deploying entire computing clusters or data centers
in a remote environment.

The goal of cloud computing is to allow users to take benefit from IT
resources, without the need for deep knowledge about or expertise with each
one of them. Moreover, individual user or small groups do not need to provide
and maintain IT-infrastructure on their own, but instead rely on cloud services to
satisfy their needs. The flexibility, cost-efficiency, scalability, accessibility as well
as user-friendliness of cloud services make it also an attractive model to address
computational challenges in the scientific community. The design of ABMs is
usually done by domain experts who seldom are computer scientists and have
limited knowledge of managing a modern parallel infrastructure. In this context,
there is the need of tools that allow, in a transparent way, the use of cloud
resources to non-expert users [7,8].

In this paper, we introduce D-Mason on the cloud – a D-Mason extension
that provides a SIMulation-as-a-Service (SIMaaS) infrastructure that simpli-
fies the process of setting up and running distributed simulations in the cloud.
We will present a preliminary evaluation of the novel infrastructure in order to
assess computational and economic efficiency of running distributed multi-agent
simulations on the Amazon Web Services EC2 instances. The computational
speed and costs of an EC2 cluster will be compared against an on-site HPC
cluster.
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2 Background

2.1 D-Mason

D-Mason [3,4] is the distributed version of Mason [10,11], a discrete-event
simulation core and visualization library written in Java, designed to be used
for a wide range of ABMs. Mason is composed of two independent layers: the
simulation layer and the visualization layer. D-Mason adds a new layer named
D-simulation, which extends the Mason simulation layer. The new layer adds
some features that allow the simulation work distribution on multiple, even het-
erogeneous, Logical Processors (LPs). D-Mason has been designed to enable the
porting of existing applications to a distributed platform in a transparent and
easy way.

Fig. 1. D-Mason scheme.

D-Mason is based on a Master/Workers paradigm that exploits a space
partitioning approach: the master partitions the space to be simulated (i.e., the
field) into cells (see Fig. 1). Each cell, together with the agents it contains, is
assigned to an LP; then each LP is in charge of:

– simulating the agents that belong to the assigned cell;
– handling the migration of agents;
– managing the synchronization between neighboring cells (this information

exchange is required in order to let the simulation run consistently).
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D-Mason LPs communicate via a well-known mechanism, based on the Pub-
lish/Subscribe paradigm: a multicast channel is bound to each cell; LPs then
simply subscribe to the topics associated with the cells, which overlap with their
Area of Interest (AOI) in order to receive relevant message updates. Other topics
are also used for system management and visualization.

D-Mason has been conceived to harness the amount of unused computing
power available in common installations like educational labs, that is, a loosely
coupled environment with heterogeneous machines. To take advantage of this
environment, the former version of D-Mason used a centralized communication
mechanism (JMS), while the main emphasis was represented by load balancing
[6]. Indeed, when the number of LPs available is limited, a centralized communi-
cation is, at the same time, easy to develop/manage and efficient. Then the initial
design idea has spanned beyond this. The focus moved to dedicated installation,
such as massively parallel machines or supercomputing centers. These platforms
usually offer a large number of homogeneous machines that, on one hand, sim-
plify the issue of balancing the load among LPs, but, on the other hand, the
considerable computational power provided by the system weakens the efficiency
of the centralized communication server. For this reasons, a novel decentral-
ized communication mechanism, which realizes a Publish/Subscribe paradigm
through a layer based on the MPI standard, was implemented in D-MASON [5].

2.2 Amazon Web Services

Amazon Web Services (AWS) is a scalable and highly reliable cloud infrastruc-
ture for deploying applications on demand. The main idea is to let the user
building its services with minimal support and administration costs. AWS pro-
vides different services on the cloud. In this work, we are interested to the web
services that enable either the modeler or the developer to run their simulation
on the cloud. Amazon Elastic Compute Cloud (Amazon EC2) provides resizable
computing capacity in the cloud. In terms of abstraction layers, the Amazon
EC2 is an instance of the Infrastructure as a Service (IaaS) model, where the
Amazon infrastructure is seen as a complete virtual environment which allows
to execute different instances of virtual machines. Specifically, Amazon allows
bundling operating system, application software and configuration settings into
an Amazon Machine Image (AMI). Then each user can configure and deploy
a cluster of machines using a specific AMI instance to run distributed simula-
tions. Advanced users may also create their own AMIs and publish them on the
Amazon Marketplace Web Service (Amazon MWS).

In terms of business model, Amazon offers three different purchasing mech-
anisms: On-Demand Instances, Reserved Instances and Spot Instances. On-
Demand Instances have fixed price (per hour) and allow using the resources
immediately. With Reserved Instances, it is possible to reserve the utilization of
some instances for a predefined period (from 1 to 3 years) with lower payment.
Finally, when the timing is not crucial, with Spot Instances, it is also possible
to bid for unused resources in order to reduce drastically the costs.
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2.3 StarCluster

The main issue a user needs to solve in order to use an IaaS service, to run a
distributed application, is the configuration and management of each machine.
Even using a dedicated AMI, which bundle the basic software components,
there are still several parameters that have to be configured separately on each
machine. Moreover, the management of the machines is usually time-consuming
and requires repetitive tasks that need to be executed for each instance and
therefore should be automate to avoid human mistake. To face this issue, a
cluster-computing toolkit, StarCluster [15], released under the LGPL license,
has been deployed to configure and manage Amazon EC2 instances. StarClus-
ter enables users to easily setup a cluster computing environment in the cloud,
suited for distributed and parallel computing applications and systems.

StarCluster is useful to configure the network of the cluster, create user
accounts, enable password-less connections sharing the SSH password between
the cluster’s nodes, setup NFS shares and the queuing system for the jobs. Star-
Cluster is also customizable via plug-ins, which allow users to configure fur-
ther the cluster with their specific configuration. Plugins are written in Python
exploiting StarCluster API to interact with the nodes. The API supports exe-
cuting commands, copying files, and other OS-level operations on the nodes.
StarCluster supports also the use of Spot instances allowing the user to run
on-demand experiments in easy way and at affordable prices.

3 D-Mason on the Cloud

D-Mason on the cloud has been realized with the purpose to provide a
SIMulation-as-a-Service (SIMaaS) environment. The architecture of the system
is depicted in Fig. 2. D-Mason on the cloud is based on a modular approach,
which comprises three levels: The Infrastructure is given by Amazon EC2 which
provides a wide portfolio of instance types [13] designed to be adopted for differ-
ent use cases. Instance types vary by CPU performances, memory, storage (size
and performance), and networking capacity. The user is free to select an AWS
cell according to prices and availability or resources. Starting with a free avail-
able Amazon AMI (ami-52a0c53b) that includes a minimal software stack for
distributed and parallel computing [15], we realized an AMI specifically config-
ured for executing D-Mason on the cloud. The D-Mason AMI, public available
on Amazon Infrastructure, provides also Java 8, Maven, D-Mason 3.1. On top
of that, we developed a StarCluster plugin, which exploits all the functionality
provided by StarCluster in order to create automatically a runnable D-Mason
environment based on the D-Mason AMI. With more details, the StarCluster
plugin:

– configure the cluster network environment (users account, hostnames setting,
SSH key share, NFS setup);

– appoint one of the machines as a Master node;
– install and configure the D-Mason environment.
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Fig. 2. D-Mason on the cloud: architecture.

The master node runs the D-Mason Master application, the JMS message broker
(ActiveMQ) and the web system management server (see Sect. 3.1). The other
machines run the D-Mason Worker applications, which communicate using the
JMS message broker running on the Master node. Each D-Mason Worker appli-
cation provides a simulation slot for each core available on the machine. The
StarCluster D-Mason Plugin is freely available on GitHub D-Mason source
code repository [14].

The D-Mason tier did not require any particular change but, since now the
system will be executed on a cloud environment, a novel Web system manage-
ment interface has been developed in order to manage the system.

3.1 D-Mason Web System Management

The former version of D-Mason system management was introduced in [2].
Briefly, it is a console written in Java, using Java swing framework, for managing
and monitoring D-Mason simulations. In details, D-Mason system management
enables to:
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– configure a simulation (choose the simulation and its parameters, define the
partitioning and the communication strategies);

– select a set of workers to be used as LPs;
– manage the simulation execution (play/pause/stop);
– collect the simulations’ logs and the outputs.

The former version of D-Mason system management had two disadvantages:
First, it was not fully decoupled from the simulation part. Hence, adding new
features often requires complex interventions with a considerable waste of time.
Moreover, the system was designed for local interactions (that is assuming that
both the simulation and the management applications are reachable on several IP
ports). Unfortunately, this is not always the case, both NAT and firewall services
may result in unreachable ports. For the reasoning above, we decided to develop
a fully decoupled system management services easily available via web services.

Design. We decided to embed a portable web server into our architecture. After
a deep analysis of the open web servers available for Java, we decided to opt
for Jetty [18]. In order to develop an efficient and pleasant interface, we were
inspired by Google material design [16], the guidelines provided by Google for
the development of good design interfaces. Our interface is based on a useful
library named Polymer [17], which has been designed to create components for
the modern web, following the material design guideline.

Architecture. The novel web server components has been encapsulated into the
D-Mason Master application, which now comprises two communication compo-
nents:

– ActiveMQ, for communication between D-Mason applications (either
master-worker or worker-worker)

– Jetty, for communication between the user and the master application (via
web interface)

When the user starts the Master application, both the ActiveMQ and the Jetty
server will run on the host. In particular the Jetty server is reachable on a
TCP port (default is 8080) and the user can access the management console via
browser. Using this approach the user can manage and monitor its simulation,
provided that the port 8080 of the Master node is reachable on the Internet.

We posit that the load of the Jetty Server will have no impact on the overall
performances of the system. This is true especially when the number of users is
small and the user interaction is limited. Indeed, the load of the Jetty server is
only due to the activity of discovering and monitoring of LPs. In any case, when
this load increases (i.e., a huge number of users continuously interacting with
the master and/or the number of LPs to be monitored is large) the master node
can be configured to use an external ActiveMQ communication server.

A dedicated hand-shaking mechanism allows bonding the Master application
with the workers available. When a worker joins the system, it communicates
how many slots (LPs) it can afford. As soon as the master realizes that he has
enough LPs to start the simulation, the system enables the user to interact with
the simulation.
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The web system management enables also the user to monitor the resources
available on all connected workers (see Fig. 3). Using such information the user
is able to choose appropriately the workers to be engaged for future simulations.

The system management provides a library of preloaded simulation but at
the same time, it is possible to upload a novel simulation as a jar file. Once a
simulation has been chosen, the user has to select the simulation’s parameters
and submit it to the selected workers. The simulations page shows the list of all
the simulations running on the system; for each simulation, using the Simulation
Controller (see Fig. 4 (left)), the user can start, pause or stop the execution until
the end of the simulation. In order to monitor the evolution of a simulation, a
logging mechanism has been implemented. All the log files are available at run-
time on the Simulation Info panel (see Fig. 4 (right)). Moreover, a history page is
available in order to get all the information available about executed simulations.
The history page allows also downloading log files.

Fig. 3. Workers seen from master

Fig. 4. Simulation Controller (left) and Simulation Info (right)
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4 Performance and Cost Evaluation

We performed several benchmarks in order to evaluate the performance of
D-Mason on the cloud. All the tests have been performed on D-Flockers, which
is the distributed version of Flockers Mason model and represents an imple-
mentation of the Boids model [12]. Boids/Agents have been simulated on a 2D
geometric field having size 6400×6400. For each test we executed a reproducible
simulation with 1 million agents for 15 min. At the end of the simulation, we
computed the number of simulation steps performed. We used the novel system
management, to start and stop the simulation and to collect the log files.

Five 2D space partitioning strategies (2 × 2, 2 × 4, 3 × 4, 4 × 4, 4 × 5)
which generate respectively 4, 8, 12, 16 and 20 cells have been considered. All
the simulations have been performed with a number of LPs (cores) equal to

Table 1. Cost calculation for in-house hosting of a single server with 8 Xeon 2-cores
processors.

Cost factor Value Calculated cost

Hardware purchase $6500

Amortization - number of months 36

Monthly server hardware cost $200

Average number of hours in month 730

Server usage % 50%

Average number of effective hours in month 365 h

Hardware cost for effective hour $0.49$

Power consumption full load 500 W

Power consumption stand by 200 W

Power management unit (PMU) 2.5

Server usage % 50%

Average hourly consumption 350× 2.5 = 875 W

Electricity price per KWh $0.13

Electricity cost for effective hour $0.11

Rack space $30/month

UPS $20/month

Internet connection $20/month

Collocation effective hour $0.19

Human hardware maintenance $200/server×month

Managing per effective hour $0.55

Total effective costs per server hour $1.34

Number of CPUs 16

Total effective costs per CPU $0.08
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the number of cells described by the partitioning strategy on four instance type
(either cloud or HPC). Specifically we tested two cloud instances available on
Amazon EC2:

c3.large, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 2 vCPU, 3.75 GB
of memory and 2× 16 GB SSD storage (cost $0.105/h — or 0.019/h for spot
at the low price range);

c3.xlarge, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 4 vCPU, 7.5 GB
of memory and 2× 40 GB SSD storage. (cost $0.210/h — or 0.039/h for spot
at the low price range).

In order to compare the results against a dedicated on–site environment,
we performed the same tests on an HPC cluster. The HPC cluster consists of
16 nodes – each one equipped with 2 × Intel(R) Xeon(R) CPU E5-2430 with
12 vCPU, 16 GB of memory and 1 TB HDD storage – interconnected through a
Gigabit Ethernet. Each node is running Ubuntu 14.04 operating system with lat-
est updates. The (per node) cost of the considered HPC environment is reported
in Table 1.

We considered two different configurations. In the former one, named HPC1,
all the LPs are executed using a single node, while in the latter, named HPC∗,

Table 2. Performance and costs comparison.

Instance # of # of Partitioning Performed steps Overall cost Overall Cost (x step)

type instances LPs in 15min (Avg) cost EC2 spot $/1000

c3.large 2 4 2 × 2 110 $0.210/h $0.038/h 0.48

c3.large 4 8 2 × 4 271 $0.420/h $0.076/h 0.39

c3.large 6 12 3 × 4 408 $0.630/h $0.114/h 0.39

c3.large 8 16 4 × 4 601 $0.840/h $0.152/h 0.35

c3.large 10 20 4 × 5 846 $1.05/h $0.19/h 0.31

c3.xlarge 1 4 2 × 2 139 $0.210/h $0.038/h 0.38

c3.xlarge 2 8 2 × 4 325 $0.420/h $0.076/h 0.32

c3.xlarge 3 12 3 × 4 555 $0.630/h $0.114/h 0.28

c3.xlarge 4 16 4 × 4 598 $0.840/h $0.152/h 0.35

c3.xlarge 5 20 4 × 5 955 $1.05/h $0.19/h 0.27

HPC1 1 4 2 × 2 245 $1.34/h N/A 1.37

HPC1 1 8 2 × 4 336 $1.34/h N/A 1

HPC1 1 12 3 × 4 375 $1.34/h N/A 0.89

HPC1 1 16 4 × 4 387 $1.34/h N/A 0.87

HPC1 1 20 4 × 5 389 $1.34/h N/A 0.86

HPC∗ 2 4 2 × 2 326 $2.68/h N/A 2.05

HPC∗ 4 8 2 × 4 651 $5.36/h N/A 2.06

HPC∗ 6 12 3 × 4 966 $8.04/h N/A 2.08

HPC∗ 8 16 4 × 4 1293 $10.72/h N/A 2.07

HPC∗ 10 20 4 × 5 1591 $13.4/h N/A 2.11
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we executed exactly 2 LPs for each machine. Hence in this last configuration the
system uses up to 10 nodes.

We tested the four instances (c3.large, c3.xlarge, HPC1, HPC∗) with 5
partitioning configuration (20 tests overall). We notice that all the tests have
been executed on a reproducible deterministic simulation using the same JVM
(version 1.8.0 72). We executed each test 10 times. The results are compared
using means of simulation steps performed (we observed a minimum variance in
the cloud instance results, while on the HPC instances the variance was negligi-
ble). Results about performance and costs are reported in Table 2.

Analyzing the results from Table 2, we notice that D-Mason on the cloud
scales pretty well. In general, we provide the following observations. The HPC∗

instance provides the best performance. This result was expected and we believe
that it is mainly due to the quality of the dedicated interconnection network.
It should be highlighted, however, that the HPC∗ configuration is considerably
more expensive. On the other hand the cloud instances are much cheaper than
the HPC ones. Moreover, both the cloud instances scale better than the HPC1,
which have comparable costs. Finally, in order to measure the trade-off between
performances and cost, we computed the cost (per step) of each test setting
(see last column of Table 2). The results show that the cloud instances are much
cheaper than dedicated instances.

5 Conclusion

The performance results described in Sect. 4 show that the proposed
SIMulation-as-a-Service (SIMaaS) infrastructure provides a very attractive
price-performance ratio. As a future work, it would be interesting to analyze
the performance of other cloud instances also on much more demanding simula-
tions (both in terms of computation and communication requirements).
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