
Speed-Up Computational Finance Simulations
with OpenCL on Intel Xeon Phi

Michail Papadimitriou1, Joris Cramwinckel2, and Ana Lucia Varbanescu3(B)

1 Delft University of Technology, Delft, The Netherlands
m.papadimitriou@student.tudelft.nl

2 Ortec Finance, Rotterdam, The Netherlands
joris.cramwinckel@ortec-finance.com

3 University of Amsterdam, Amsterdam, The Netherlands
a.l.varbanescu@uva.nl

Abstract. Computational finance is a domain where performance is in
high demand. In this work, we investigate the suitability of Intel Xeon
Phi for computational finance simulations. Specifically, we use a scenario
based ALM (Asset Liability Management) model and propose a novel
OpenCL implementation for Xeon Phi. To further improve the perfor-
mance of the application, we apply several optimization techniques (data
layout and data locality improvement, loop unrolling) and study their
effects. Our results show that the optimized OpenCL code deployed on
the Phi can run up to 135x faster than the original scalar code running
on an Intel i7 GPP. Furthermore, we also show that choosing the optimal
work-item/work-group distribution has a compelling effect on massively
parallel and heavily-branching code. Overall, these results are significant
for the computational finance specialists, as they enable a major increase
in model accuracy, because 10x more simulations can be performed in
less than a 10th of the original time.

Keywords: OpenCL · Computing · Accelerated architectures · Intel
Xeon Phi · MIC · GPGPU · Parallel computing · Asset Liability Man-
agement

1 Introduction

Modern applications targeting the finance industry become popular candidates
for using high performance computing (HPC) platforms and techniques. Almost
10% of the TOP500 supercomputers, are dedicated for computational finance
purposes [5]. This trend occurs because of the nature of applications that the
financial sector has to offer and the increasing amount of data related to these
applications. Examples of such applications are stock market data streaming,
option pricing, high frequency trading, or risk management. They are loosely
clustered in the fast-growing field of computational finance.

A computational finance instrument is the OPAL platform offered by Ortec-
Finance, which provides goal based financial planning for private investors. The
c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 199–208, 2017.
DOI: 10.1007/978-3-319-58943-5 16



200 M. Papadimitriou et al.

feasibility of potential goals is estimated based on high-quality scenario projec-
tions. These projections are influenced by investment decisions, market changes,
clients financial situation and future goals [15]. Therefore, being able to increase
efficiently the number of projections of the future can result into a more accu-
rate investment plan. For this work, we have extracted from OPAL a test case
of Asset Liability Management (ALM), to investigate the potential performance
and/or accuracy increase when utilizing HPC platforms such as Intel Xeon Phi.
ALM was chosen because it can have several applications within the finance
industry such as risk management and it’s need to comply with regulations.
Typical regulations are Solvency II1 and MiFID2.

In general, the vast majority of accelerated applications from computational
finance are using GPUs [2,6,11] and highly parallelizable (Monte Carlo and
PDEs) methods [4,17]. Because of the prevalence of GPUs, some areas of com-
putational finance, such as risk management, are less likely to be accelerated, as
they contain extensive branching.

To address performance, OpenCL solution of the extracted test case was
implemented. Then, a series of optimizations were applied for increasing its
potential performance. As this model works with several conditional statements,
GPU implementation approach can be very challenging. Therefore, Intel Xeon
Phi due to it’s CPU like behaviour, was chosen as the implementation platform.
The performance on the Intel Xeon Phi was evaluated, as well as the individual
effect for each of the optimization. In addition, solutions scalability was studied
to determine the correlation between the effective speed-up and the number of
future projections (scenarios).

Our results show that there is an great improve in performance which varied
from x17 to x135 depending on the number of future projections. In addition, we
studied the optimizations that lead to these speed-ups and their contributions
to this performance.

The main contributions of our work are as follows:

• We chose a case study extracted from the financial sector industry, where
improve in performance is in high demand.

• We propose a novel OpenCL implementation of the chosen case study.
• We applied various optimizations on the OpenCL implementation.
• We evaluate its performance on Intel Xeon Phi co-processor and the effect of

the individual optimizations.

The rest of the paper is organized as follows: Sect. 2 provides the neces-
sary background information on the test case model, programming language
and development platform. Section 3 introduces the model, the OpenCL imple-
mentation and the different optimizations techniques used. Section 4, presents
the obtained results on the Intel Xeon Phi along with the individual effect of
each optimization. Finally, conclusion and future work is featured in Sect. 5.

1 Solvency II is a new regulatory framework for insurance companies.
2 MiFID is a directive that ensures investors protection in financial instruments, such

as bonds, shares and derivatives.



Speed-Up Computational Finance Simulations with OpenCL 201

2 Background

This section contains a brief introduction to Scenario based ALM case used,
the OpenCL programming language and the Intel Xeon Phi which is proposed
implementation platform.

2.1 Scenario Based ALM

The private investor has to make a decision about investments and chose an
optimum investment strategy. The investment strategy usually lies between the
balance of risk and reward. It is a plan of attack based on individual goals,
risk tolerance, future capital needs and potential hazards [12]. In addition, these
investments strategies taking in account asset allocation, buy and sell guidelines
and risk guidelines. Therefore, the combination of this factors leads to changes
in the chosen investment strategy.

An analysis using various different economic scenarios is crucial to get an
accurate insight in risk and return. Thus, simulation techniques are clearly
favored above analytical formulas here, because simulation can take into account
a multitude of different variables, such as deposits, withdrawals, taxes, inflation,
etc., and do so across a range of investment strategies and portfolios. There-
fore, scenario based analysis instead of predicting the economic future, tries to
assemble as realistic as possible projections of it.

Consider, for example, a typical pension fund case where 10,000 real world
scenarios with a horizon of 64 years (monthly frequency), then 768000 evalua-
tions are required in total. Assuming that this computation is the most compu-
tational intensive part of a larger process pipeline (scenario generation, pattern
extraction etc.), it can take up to several minutes for completion. Therefore,
the number of scenarios is the primary constraint for future development of the
model and its accuracy.

2.2 The OpenCL Programing Lanaguage

OpenCL (Open Computing Language) is a framework which allows the com-
position of programs aiming for heterogeneous platforms. These platforms can
consist of CPUs, GPUs, FPGAs, DSPs and other hardware such as co-processors
(Intel Xeon Phi, Cell) [7].

In the early stages of development, OpenCL was initially a side project of
Apple Inc. Later, Khronos Compute Working Group consisting of CPU, GPU,
embedded-processor and other vendors. Therefore, in the OpenCL Ecosystem
hardware (IBM, AMD, Intel, ARM, NVIDIA, ALTERA, XILINX) and software
(codeplay, Sony, vmware, Adobe) dedicated members can be found. Finally, in
2008 an approved technical specification was released [7].

Figure 1 represents an overview of the OpenCL architecture. There is a host
device which is able to control more than one of Compute Devices. For instance,
these Compute devices can be either CPUs or GPUs. Each of these devices



202 M. Papadimitriou et al.

Fig. 1. Opencl architecture overview [7]

contains several Compute Units such as cores. Eventually, every Processing Unit
contains several Processing Elements which execute the OpenCL kernels.

One of the greatest advantages of OpenCL is portability. Although, even
with the code to be highly portable, the performance is not working in the
same manner. Therefore, with OpenCL code which is cross-platform executable,
unique optimizations need to performed for each platform.

2.3 Intel Xeon Phi Co-processor

The Intel Xeon Phi co-processor [9,10], is equipped with 60 general purposed
cores. These cores are connected with a high speed bidirectional ring. Also, the
cores are based on an updated Intel Pentium architecture (P54C), enhanced with
64-bit instructions and 512-bit vector instructions. These instructions are able
to perform 16 single-precision operations or 8 double precision operations per
instruction. In addition, the co-processor contains two levels of cache memory.
The cache structure corresponds to a 32KB L1 for data, 32KB L1 for instructions
and a 512KB L2 cache for every core [3]. The co-processor is able to provide 1.1
Tflops and 2.1 TFlops, peak performance for double and single precision oper-
ations, respectively. Additional features of the co-processor are the PCI express
system interface, the 16 memory channels that it offers and it’s Linux based
micro OS. Also, The it offers two main modes, where applications can run on
either native or offload mode. This allows application to run independently on
the device or offloading highly computational and parallel parts from the CPU.

In terms of programming, Intel Xeon Phi offers a broad range of tools and
programming tools, very similar to the ones available for a regular CPU [18]. In
more detail, OpenCL [20], OpenMP [14], Intel Cilk Plus [16], Pthreads [13] and
specialized math libraries like Intel Math Kernel Library [1] are available.

3 OpenCL Implementation

In this section, the Scenario based ALM, extracted from OPAL, is presented.
Also, the proposed OpenCL implementation is outlined, along with the individ-
ual optimizations that applied.



Speed-Up Computational Finance Simulations with OpenCL 203

Fig. 2. Intel Xeon Phi architecture

3.1 Scenario Based ALM

The Scenario based ALM kernel, is a part of a larger process pipeline (scenario gen-
eration, statistical interpretation etc.), but still the most computationally expen-
sive one. As it can be seen from Algorithm 1, the given application allows a level of
parallelism among the different scenarios. Each scenario, has zero inference with
the rest and therefore provide us with an initial degree of parallelization freedom.

Each scenario performs a number of computations for a given portfolio. Each
portfolio can contain several assets (up to 20). Usually, these assets represent
cash, bonds, stocks and equities from different regions (UK, US, JPN). Also, as
each scenario needs to comply with real world financial needs such as taxation
and rebalancing of the capital between the assets, extensive branching is present
in that kernel. Eventually, the value of each asset of each portfolio and the level
of taxes needs to be recorded at every iteration of every scenario.

PortfolioV alue =
n∑

i=1

= scenAssetweight(i) ∗ currentAssetV alue(i) (1)

Equation 1, represents how the total value of each portfolio is calculated. The
value of each is multiplied by a weight correspond to the current iteration of the
current scenario. Therefore, it contributes on increasing significantly the number
of accesses to global memory. Each weight is different for each scenario as it is
related to a different projection of the economy and a different financial decision.

3.2 OpenCL Implementation

The Scenario based ALM model, presented in Sect. 3.1 is implemented as a sin-
gle kernel. Each individual scenario is simulated by a work item, in 1D work
groups. OpenCL allows the compilation of kernels to take place during the exe-
cution time. Therefore, a very large part of the parameters can be passed as
preprocessed constants and save resources from parameter passing. Under this



204 M. Papadimitriou et al.

Input: Scenarios, Years, Months, portA, portB, portC, portD
Output: totalValue, valueA, valueB, cvalueC, valueD, valueTax
for Number of Scenarios do

for Number of Years do
for Twelve Months do

for each Portfolio do
for each Asset do

Calculate new value;
end
Sum of Assets value;

end
if Month is December then

Calculate amount of taxes;
end
Store Current Value of each Portfolio and each Asset;
Store Tax Value;
Store Total Value of Portfolios;

end

end

end
return totalValue, valueA, valueB, cvalueC, valueD, valueTax

Algorithm 1. Abstract representation of Scenario based ALM

structure all of the required constants by the model can be passed at a mini-
mum cost. For this first OpenCL implementation, we tried to keep as simple as
possible, without utilizing specific hardware or OpenCL features.

3.3 Optimizations

For increasing the performance of the proposed OpenCL implementation, a selec-
tion of four different optimizations were applied. By experimenting with this
optimization space, some key observations were made regarding the effect and
the possible improvement in terms of performance.

Workgroup Configuration. For any OpenCL kernel, the recommend work
group size should be equal to the SIMD width. Therefore, for Intel Xeon Phi
and float data type, the kernel width should be in multiplies of 16. This struc-
ture exploits the auto vectorization module in an optimum way while for non
multiplies of 16, the items are packaged in a traditional scalar way [21].

Compiler Optimizations. In most GPGPU architectures, several hardware
specific optimizations are available by the compiler. These optimizations may
have the form of specific “expensive” mathematical functions such as square
roots. In the same manner OpenCL allows a certain number of such flags for
allowing better exploitation of the hardware. The optimizations chosen relevant
to the nature of the model where -cl-fast-relaxed-math, -cl-no-signed-zeros and
-cl-denorms-are-zero.



Speed-Up Computational Finance Simulations with OpenCL 205

Data Layout. Data layout can have significant impact in an applications per-
formance. Memory access patterns of the kernel can be converted from array of
structures (AoS) to structure of arrays (SoA). This conversion results to a more
cache friendly layout which can be benefited by the vectorization module. [22]
Thus, the resulted performance can be improved with the used of a more SIMD
friendly layout like the SoA [19]. The vectorization module transforms scalar
data type operations on adjacent work-items into an equivalent vector opera-
tion. If vector operations already exist in the kernel source code, the module
scalarizes (breaks into component operations) and revectorizes them.

Constant Memory. The use of constant memory can allow all compute units of
the device to have access on the same data. Any constant memory element can be
accessible on the same time by all work-items. Although, use of constant memory
is strongly relative to the nature of the problem and work-group dimensions.
Moreover, constant memory is expected to effect performance only for small
problem sizes, where data can fit in the small constant memory.

4 Results

In this section, the results obtained after applying various optimizations will be
presented. All the experiments performed in an Intel i7 GPP and Intel Xeon Phi
co-processor.

4.1 Performance Impact of the Optimizations

In Table 1, the individual and relevant impact of each optimization are presented.
The final performance yield a speed-up in magnitude of 109 times compared with
our initial scalar implementation.

Initially, a naive OpenCL implementation was tested on the Phi. The out of
the box performance was x21 faster than the original scalar code. This extend of
improvement in performance was satisfying, but still not any specific architecture
or programming features were exploit.

Further results demonstrate that while choosing the optimum workgroup con-
figuration, the impact in performance can be significant. By tuning the applica-
tion for a global size of 10240 over 1D range, demonstrate an extensive effect in
performance. For the optimum work-group/work-item arrangement (128× 80),
the overall speed-up increases to x80.1, while the relative speed-up compared to
the naive OpenCL solution increases by a factor of x3.8.

Enabling the compiler flags mentioned in Sect. 3.2, increase the relative speed-
up by just x1.06. On the other hand, converting the data access patterns to
structure of arrays (SoA) gives almost 20 times faster performance in comparison
with the original version. In addition, using constant memory intead of global for
the different work-items to have access to independent scenario weights, gives an
additional x1.05 speed-up. Although, for larger number of scenarios (more than
10240), data cannot fit in constant memory.



206 M. Papadimitriou et al.

Table 1. Single precision OpenCL implementation: speed-up and relative speed-up for
various optimizations and input of 10240 scenarios

Version Time [s] Speed-up rSpeed-up

Scalar 3.1245 1 -

Naive 0.1500 20.8 1

Workgroup dim 0.0390 80.1 3.8

Compiler flags 0.0368 85 1.06

SoA 0.0304 103 1.21

Constant memory 0.0287 109 1.05

4.2 Speed-Up Scalability

After evaluating the peak performance under a specific knob of optimizations, we
evaluate the scalability of these results under different number of scenarios. For
each number of scenarios, the optimum work group configuration was determined
and used.

In Table 2, the results obtained from our novel OpenCL implementation com-
pared to the scalar baseline are presented. These results provide us with enough
information to evaluate the potential benefits of using Intel Xeon Phi. Firstly,
we note that in 2/3 of the simulation time for 1024 scenarios, we were able to
simulate 80 times more scenarios. In addition, we shown that for very large num-
ber of scenarios, we were able to achieve speed-ups, up to x135 compared to our
scalar implementation running on a GPP.

Finally, we verified that for larger scenario inputs, we achieved the best per-
formance while using work groups in multiplies of 16 [8]. This behaviour was due
to the fact that SIMD, deploys the work-group items in groups of 16. On the
other hand, for very small group scenarios, the work-group parallelism couldn’t
exploited in it’s fullest potential and thus, smaller speed-ups were achieved.

Table 2. Single precision execution time results: Intel Xeon Phi vs Intel i7-5600U

Scenarios Execution time (s) Speed-up

Intel i7-5600U Intel Xeon Phi

1024 0.2853 0.01719 x17

4096 1.1381 0.01339 x85

8192 2.1431 0.02547 x86

10240 3.1245 0.02873 x109

40960 9.8645 0.09031 x112

81920 26.06165 0.19205 x135



Speed-Up Computational Finance Simulations with OpenCL 207

5 Conclusion and Future Work

Due to the continuous need for faster and more accurate models, the financial
sector offers a broad range of applications in need for acceleration. Therefore, we
chose a scenario based ALM application, where speed and increase in accuracy
are in particular needs. We proposed a novel OpenCL implementation of the
Scenario based ALM and we tested on Intel Xeon Phi co-processor. We evaluate
its out of the box performance and the effects of different optimizations.

In general, we proved that utilizing Intel Xeon Phi and OpenCL for scenario
based ALM simulations, can yield to significant improvements in performance
(up to x135). Also, we clarify that for application in which extensive branching
is present, Intel Xeon Phi expected to offer a more efficient solution compared
to a GPU. In addition, we shown that when optimizations are applied, the out
of the box performance can be increased up to four times.

In terms of future, work we are working on investigating the performance
portability for our OpenCL scenario based ALM solution. This investigation
will focus on the OpenCL portability among different platforms, as well as the
individual effects of different optimizations in every platform. This study will
aim to find a minimum set of optimization knobs, for which a certain level of
performance can be kept among different platforms.

References

1. Intel Math Kernel Library: Reference Manual. Intel Corporation, Santa Clara
(2009). ISBN 630813-054US

2. Cramwinckel, J., Singor, S., Varbanescu, A.L.: FiNS: a framework for accelerating
nested simulations on heterogeneous platforms. In: Hunold, S., et al. (eds.) Euro-
Par 2015. LNCS, vol. 9523, pp. 246–257. Springer, Cham (2015). doi:10.1007/
978-3-319-27308-2 21

3. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving
intel xeon phi. In: Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering, ICPE 2014, pp. 137–148. ACM, New York (2014).
http://doi.acm.org/10.1145/2568088.2576799

4. Gaikwad, A., Toke, I.M.: Parallel iterative linear solvers on GPU: a financial engi-
neering case. In: 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, pp. 607–614, February 2010

5. Giles, M.: From CFD to computational finance and back again, November 2009.
https://people.maths.ox.ac.uk/gilesm/talks/princeton.pdf

6. Giles, M., Lszl, E., Reguly, I., Appleyard, J., Demouth, J.: GPU implementation
of finite difference solvers. In: 2014 Seventh Workshop on High Performance Com-
putational Finance (WHPCF), pp. 1–8, November 2014

7. group, K.: The open standard for parallel programming of heterogeneous systems,
January 2016. https://www.khronos.org/opencl/

8. Intel: Work-group size considerations for intel xeon phi coprocessors (2015).
https://software.intel.com/en-us/node/540512

9. Intel: Intel xeon phi co-processor. April 2016. http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html

http://dx.doi.org/10.1007/978-3-319-27308-2_21
http://dx.doi.org/10.1007/978-3-319-27308-2_21
http://doi.acm.org/10.1145/2568088.2576799
https://people.maths.ox.ac.uk/gilesm/talks/princeton.pdf
https://www.khronos.org/opencl/
https://software.intel.com/en-us/node/540512
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html


208 M. Papadimitriou et al.

10. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

11. Liu, R.S., Tsai, Y.C., Yang, C.L.: Parallelization and characterization of garch
option pricing on GPUS. In: 2010 IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–10, December 2010

12. Dempster, M.A.H., Medova, E.A..: Asset liability management for individual
households. Br. Actuar. J. 405–439 (2011)

13. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly & Asso-
ciates Inc., Sebastopol (1996)

14. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 3.0, May 2008. http://www.openmp.org/mp-documents/spec30.pdf

15. Ortec-Finance: Goal-based financial planning, April 2016. http://www.ortec-
finance.com/Private-Wealth/Online-Financial-Services.aspx

16. Robison, A.D.: Composable parallel patterns with intel cilk plus. Comput. Sci.
Eng. 15(2), 66–71 (2013)

17. Rocki, K., Suda, R.: Large-scale parallel monte carlo tree search on GPU. In: 2011
IEEE International Symposium on Parallel and Distributed Processing Workshops
and Ph.D. Forum (IPDPSW), pp. 2034–2037, May 2011

18. Heinecke, A., Pflüger, D., Budnikov, D., Klemm, M., Narkis, A., Shevtsov, M.,
Zaks, A., Lyalin, S.: Demonstrating performance portability of a custom opencl
data mining application to the intel r xeon phi (2013). http://dx.doi.org/10.13140/
2.1.4212.6084

19. Smelyanskiy, M., Sewall, J., Kalamkar, D.D., Satish, N., Dubey, P., Astafiev,
N., Burylov, I., Nikolaev, A., Maidanov, S., Li, S., Kulkarni, S., Finan, C.H.,
Gonina, E.: Analysis and optimization of financial analytics benchmark on mod-
ern multi- and many-core IA-based architectures. In: 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pp. 1154–1162 (2012).
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495921

20. Stone, J.E., Gohara, D., Shi, G.: Opencl a parallel programming standard
for heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (2010).
http://dx.doi.org/10.1109/MCSE.2010.69

21. Tian, X., Saito, H., Preis, S.V., Garcia, E.N., Kozhukhov, S.S., Masten, M.,
Cherkasov, A.G., Panchenko, N.: Practical SIMD vectorization techniques for
intel R© xeon phi coprocessors. In: Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum,
IPDPSW 2013, pp. 1149–1158 (2013). http://dx.doi.org/10.1109/IPDPSW.2013.
245

22. Zhang, Y., Sinclair, M., Chien, A.A.: Improving performance portability in
OpenCL programs. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 136–150. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38750-0 11

http://www.openmp.org/mp-documents/spec30.pdf
http://www.ortec-finance.com/Private-Wealth/Online-Financial-Services.aspx
http://www.ortec-finance.com/Private-Wealth/Online-Financial-Services.aspx
http://dx.doi.org/10.13140/2.1.4212.6084
http://dx.doi.org/10.13140/2.1.4212.6084
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495921
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/IPDPSW.2013.245
http://dx.doi.org/10.1109/IPDPSW.2013.245
http://dx.doi.org/10.1007/978-3-642-38750-0_11
http://dx.doi.org/10.1007/978-3-642-38750-0_11

	Speed-Up Computational Finance Simulations with OpenCL on Intel Xeon Phi
	1 Introduction
	2 Background
	2.1 Scenario Based ALM
	2.2 The OpenCL Programing Lanaguage
	2.3 Intel Xeon Phi Co-processor

	3 OpenCL Implementation
	3.1 Scenario Based ALM
	3.2 OpenCL Implementation
	3.3 Optimizations

	4 Results
	4.1 Performance Impact of the Optimizations
	4.2 Speed-Up Scalability

	5 Conclusion and Future Work
	References


