
Eye Contact Detection via
Deep Neural Networks

Viral Parekh, Ramanathan Subramanian(B), and C.V. Jawahar

International Institute of Information Technology, Hyderabad, India
parekh.viral@research.iiit.ac.in, {s.ramanathan,jawahar}@iiit.ac.in

Abstract. With the presence of ubiquitous devices in our daily lives,
effectively capturing and managing user attention becomes a critical
device requirement. While gaze-tracking is typically employed to deter-
mine the user’s focus of attention, gaze-lock detection to sense eye-
contact with a device is proposed in [16]. This work proposes eye contact
detection using deep neural networks, and makes the following contri-
butions: (1) With a convolutional neural network (CNN) architecture, we
achieve superior eye-contact detection performance as compared to [16]
with minimal data pre-processing ; our algorithm is furthermore validated
on multiple datasets, (2) Gaze-lock detection is improved by combining
head pose and eye-gaze information consistent with social attention lit-
erature, and (3) We demonstrate gaze-locking on an Android mobile
platform via CNN model compression.

Keywords: Eye contact detection · Human-Computer Interaction ·
Convolutional neural networks

1 Introduction

The importance of eye-contact in non-verbal human communication cannot
be understated. Right from infanthood, humans use eye-contact as a means
for attracting and acknowledging attention, and can effortlessly sense others’
eye-gaze direction [5]. In today’s ubiquitous computing environment, it becomes
critical for devices to effectively attract and manage users’ attention for proactive
communication and information rendering. Therefore, HCI would greatly benefit
from devices that can sense user attention via eye-contact– a phenomenon termed
gaze locking in [16].

Gaze locking is a sub-problem of gaze-tracking, where the objective is to
determine where the user is looking. Gaze tracking has been extensively studied
by the HCI [11,12], psychology [14,20], medical [7] and the multimedia/computer
vision communities [10,19]. Gaze-tracking techniques (with the exception of few
such as [8]) have inferred the point-of-gaze using eye-based cues even though
social attention literature has identified that other cues such as head orientation
contribute significantly to this end [9].

c© Springer International Publishing AG 2017
C. Stephanidis (Ed.): HCII Posters 2017, Part I, CCIS 713, pp. 366–374, 2017.
DOI: 10.1007/978-3-319-58750-9 51



Eye Contact Detection via Deep Neural Networks 367

This paper proposes gaze-locking using deep convolutional neural networks
(CNNs), which have recently become popular for solving visual recognition prob-
lems as they obviate the need for hand-crafted features (e.g., expressly modeling
head pose). Specifically, our work makes the following research contributions:

(1) Even though the gaze-locking methodology outlined in [16] detects eye-
contact from distant faces, it requires an elaborate processing pipeline which
includes: eye region rectification for head pose compensation, eye mask
extraction, compression of a high-dimensional eye appearance feature vector
via dimensionality reduction and a classifier for gaze-lock detection. Differ-
ently, we leverage the learning power of CNNs for gaze-locking with minimal
data pre-processing. We validate our model on three datasets, and obtain
over 90% detection accuracy on the Columbia Gaze (CG) [16] test set. In
comparison, [16] reports 92% accuracy on the CG training set.

(2) Different from [16] and most gaze-tracking methods, we use facial appear-
ance, which implicitly conveys face pose, in addition to eye appearance. As
seen in Fig. 1, face orientation crucially determines if the user is gaze-locked
with a (reference) camera or not. The eyes in the left and right images have
very similar appearance; however, eye-contact is clearly made only in the
right instance when one infers gazing direction as the eye orientation relative
to head pose. Combining face and eye cues achieves superior gaze locking
than either of the two as demonstrated in prior works [17].

(3) CNNs are implemented on CPU/GPU clusters given their huge computa-
tion and memory requirements; their implementation on mobile platforms is
precluded by the limited by the computation and energy resources in these
environments. We demonstrate gaze-locking on an Android mobile platform
via CNN compression using ideas from the dark knowledge concept [6].

Fig. 1. Left image is non-gaze-locked, while right image is gaze-locked. Their eye
crops however look very similar.

2 Methodology

Figure 2 presents our proposed system and the convolutional neural network
(CNN) architecture. CNNs automatically learn problem-specific features, obvi-
ating the need for devising hand-crafted descriptors like HoG [3]. Furthermore,
replacing the largely independent feature extraction and feature learning mod-
ules by an end-to-end framework allows for efficient handling of classification
errors. System components are described below.



368 V. Parekh et al.

Fig. 2. Overview of our gaze-lock detector. Inputs include 64 × 64 left eye, right eye
and face images, and the detector outputs a binary label assigned as either gaze-locked
or non-gaze-locked. CNN architecture has three parallel networks each comprising four
convolutional layer blocks (denoted as filter size/number of filters): CONV-L1: 3 ×
3/64, CONV-L2: 3 × 3/128, CONV-L3: 3 × 3/256, and CONV-L4: 3 × 3/128, and
three fully-connected layers denoted as FC1 (of size 2048 inputs × 128 outputs), FC2:
384 × 128 and FC3: 128 × 2. (Color figure online)

2.1 Image Pre-processing

We essentially use the face and eye appearance to detect eye-contact, and pre-
processing is limited to extraction of these regions. A state-of-the art facial
landmark detector [1] is used to obtain 64 × 64 left and right eye patches.
Since face pose serves as an additional cue, a 64 × 64 face patch obtained using
the Viola-Jones detector [18] is also fed to the CNN. The red, green and blue
channels for each patch are z-normalized prior to input.

2.2 CNN Architecture

Our system comprises three parallel networks (one each for face, left eye and right
eye) with a VGGnet [15]-like configuration. CNNs are stacked with convolutional
(Conv) layers composed of groups of neurons (or filters), which automatically
compute locally salient features (or activations) from input data. Conv layers
are interleaved with max pooling layers, which isolate the main activations on
small data blocks and allow later layers to work on a ‘zoomed out’ version of
previous outputs facilitating parameter reduction. Convolutions are also usually
followed by a non-linear operation (called rectified linear unit or ReLU [13]) to
make the CNN more expressive and powerful. Finally, in a fully-connected (FC)
layer, neurons have access to all activations from a previous layer as against a
Conv layer whose neurons only access local activations.

Each of our three networks have four blocks, with each block including two
Conv layers, a ReLU and a max-pooling layer (only Conv layers are shown



Eye Contact Detection via Deep Neural Networks 369

in Fig. 2). Similar activations are enforced for the left and right eye networks
by constraining their neurons to learn identical/shared weights. The filter size
or spatial extent of activations input to a Conv layer neuron is 3 × 3 for all
blocks, and there are 64, 128, 256 and 128 neurons respectively in the four
blocks. A stride length of 1 is used while convolving (computing dot product
of) the filter with the input patches. The Conv-L4 outputs are vectorized to a
2048 dimensional vector, which is input to the FC1 layer with 128 outputs. FC1
outputs from the three networks are combined and fed to FC2 followed by FC3,
which assigns the input label as either gaze-locked or non-gaze-locked. The CNN
model was implemented on Torch [2], and trained over 250 epochs with a batch
size of 100. An initial learning rate of 0.001 was reduced by 5.0% after every
epoch. To avoid overfitting, a dropout technique was used to randomly remove
40% of the FC layer neurons during training. Interested readers may refer to [15]
for further details.

3 Experiments and Results

3.1 Datasets

To expressly address eye-contact detection, authors of [16] compiled the
Columbia Gaze (CG) dataset which comprises 5880 images of 56 persons view-
ing over 21 different gaze directions and 5 different head poses. Of these, 280
are gaze-locked, while 5600 are non-gaze-locked– sample CG images are shown in
Fig. 3 (left). The CG dataset is compiled in a controlled environment, and con-
tains little variation in terms of illumination and background. The limited size
of the CG dataset makes it unsuitable for training CNNs, and we therefore used
two large datasets to train our CNN, namely, (1) MPIIGaze [21] comprising
213,659 images compiled from 15 subjects during everyday laptop use. As shown
in Fig. 3 (center-top), MPIIGaze images vary with respect to illumination, face
size and background. However, only cropped eye images (center-bottom) are
publicly available for MPIIGaze; (2) The Eyediap dataset [4] (Fig. 3 (right))
contains 19 HD videos with more than 3000 images each captured from 16 par-
ticipants. We ignore the depth information available for this dataset, and only
use the raw video frames for our purpose.

Fig. 3. (left) Sample images from the CG dataset. (center-top) Original exemplars and
(center-bottom) publicly available eye-only images from MPIIGaze. (right) Sample
images from Eyediap.



370 V. Parekh et al.

3.2 Data Synthesis and Labeling

As only 280 gaze-locked images exist in the CG dataset, we generated 2280
gaze-locked and 5900 non-gaze-locked samples by scaling and randomly perturb-
ing original images as described in [16]. On the contrary, we downsampled the
number of images for the MPIIGaze and Eyediap datasets. MPIIGaze comprises
images with continuous gaze direction from 0◦ to −20◦ pitch (vertical head rota-
tion) and −20◦ to 20◦ yaw (horizontal rotation). The 3D gaze direction (x, y, z)
is converted to 2D angles (θ,φ) as θ = arcsin(−y), φ = arctan(−x,−z). Then,
gaze-locking implies (θ, φ) = (0, 0). This way, we obtained 6892 gaze-locked and
12000 non gaze-locked images from MPIIGaze. Likewise, Eyediap images show
users making eye-contact with various screen regions on a 24′′ PC monitor. We
labeled images with the target looking straight ahead (around screen center) as
gaze-locked, and others as non gaze-locked. Table 1 presents the training and test
sets statistics for the three datasets. We now discuss gaze-locking results with
different train and test sets.

Table 1. Training and test set details for the various datasets.

Attribute CG MPIIGaze EYEDIAP

Total images 5880 214076 125000

Synthesized 8180 18892 24575

Training set 7000 15000 19660

Test set 1180 3892 4915

Experiment 1 (Ex1). To begin with, we used only the CG dataset for model
training1. Specifically, we trained our detector with (a) images of only one eye;
(b) images from both eyes; (c) only face images, and (d) face-plus-eye images as
in Fig. 2.

Experiment 2 (Ex2). Here, we repeated Ex1(a) and (b)2, but first pre-
trained the CNN with MPIIGaze and fine-tuned the same using CG. Fine-tuning
involved modifying only the FC layer weights by re-training with CG images,
assuming that the learned Conv-L4 activations were relevant for both MPIIGaze
and CG.

Experiment 3 (Ex3). We repeated Ex1(a–d), but pre-trained the CNN with
Eyediap followed by fine-tuning on CG.
1 The CNN was trained and validated with a 80:20 split of the training set in all

experiments.
2 Since MPIIGaze does not contain face images, we could not repeat Ex1(c) and (d).



Eye Contact Detection via Deep Neural Networks 371

Table 2. Detection performance for Ex1(a)–3(d) and comparison with [16]. Model
tested on CG in all cases. [16] reports results only on the training set.

1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 3(a) 3(b) 3(c) 3(d) Smith et
al. [16]

Acc (%) 70.8 70.6 68.4 64.4 86.1 90.8 85.5 90.2 88.4 92.7 92.00

MCC 0.69 0.72 0.67 0.36 0.74 0.81 0.74 0.80 0.78 0.83 0.83

Experiment 4 (Ex4). To examine the effect of our framework on datasets
other than CG, we repeated Ex1(a–d) with a CNN trained on CG and fine-
tuned with Eyediap.

3.3 Results and Discussion

Gaze-locking results are tabulated in Tables 2 and 3. Detection performance is
evaluated in terms of accuracy, and the Mathews correlation coefficent (MCC).
MCC is useful while evaluating binary classifier performance on unbalanced dat-
sets, as with our case where the number of gaze-locked instances are far less than
non-gaze-locked ones. In Ex1, accuracy and MCC decrease as more information
is input to the CNN (e.g., face = plus-eyes vs eyes/face only), contrary to our
expectation. This reduction is attributable to overfitting due to the small CG
dataset size in comparison to the number of CNN parameters.

However, the benefit of using additional information for gaze-lock detection
is evident from Ex2, Ex3 and Ex4 (Ex2 and Ex3 involve pre-training of the CNN
model with larger and visually richer datasets). Using two-eye information as
against one-eye in Ex2 improves accuracy and MCC by 4.7 and 7% respectively.
Ex3 and Ex4 results are consistent with social attention literature. They confirm
that while gaze direction is more critical than head pose for inferring eye contact,
combining head and eye orientation cues is optimal for gaze-locking. Our system
achieves a best accuracy of 93% and MCC of 0.83 on the CG dataset. Table 2
also compares our results with the state-of-the-art [16]. [16] reports detection
results on the training set, while our results are achieved on an independent
test set. With minimal data pre-processing, our model performs similar to [16]
using only eye appearance, and outperforms [16] with face-plus-eye informa-
tion. Finally, while the results for Ex4 again confirm the insufficiency of the
CG dataset for training the CNN, the gaze-locking performance significantly
improves on incorporating facial and binocular information.

Table 3. Detection results for Ex4. Model trained on CG and fine-tuned/tested on
Eyediap.

Input One eye Both eyes Face only Face & eyes

Acc 62.9 65.6 64.5 66.9

MCC 0.57 0.58 0.57 0.61



372 V. Parekh et al.

3.4 Visualizing CNN Activations

Figure 4 illustrates four neuronal activations learned in the Conv-L1 layer of our
CNN model for the input eye and face images. Conv-L1 activations are informa-
tive as ReLU network activations are dense in the early layers, and progressively
become sparse and localized. As eye gaze direction is given by the pupil ori-
entation, the eye activations capture edges and textures relating to the pupil.
Similarly, the face network activations encode face shape and structural details
for pose inference.

Fig. 4. Exemplar Conv-L1 neuron outputs for input eye (top) and face (bottom)
images.

4 CNN Implementation on Android

While our CNN based gaze-lock detector requires minimal pre-processing, the
end-to-end framework obviates need for heuristics as with the eye mask extrac-
tion phase in [16]. Our system achieves 15 fps throughput on an Intel Core
I7 2.6 GHz, 16 GB RAM PC with GeForce GTX 960M GPU. However, CNNs
require large computational and memory resources which precludes their imple-
mentation on mobile devices with limited computation and energy capacity.

Fig. 5. Compressed version of our model working on an Android (Quad-core, 2.3 GHz,
3GB RAM) phone. Green rectangle denotes gaze-locking, while red denotes non-gaze-
locking. (Color figure online)

This problem can be circumvented by compressing knowledge in a large,
complex model to train a simpler model with minimal accuracy loss using the



Eye Contact Detection via Deep Neural Networks 373

dark-knowledge concept [6]. Figure 5 shows our gaze-lock detector on an Android
platform, which has a throughput of 1 fps. A more efficient implementation
described in [8] can achieve upto 15 fps throughput.

5 Conclusion

This work exploits the power of deep CNNs to perform passive eye-contact
detection with minimal data pre-processing. Combining facial appearance with
eye information improves gaze-locking performance. Our system can also run
on an Android mobile device with limited throughput. Our end-to-end system
with minimal heuristics can be leveraged by today’s smart devices for captur-
ing and managing user attention (e.g., a smart selfie application), as well as in
image/video retrieval (detecting shots where a certain character is facing the
camera). Future work involves implementation of a seamless, real-time vision-
voice system for assistive applications such as photo-capturing for the blind.

References

1. Baltrusaitis, T., Robinson, P., Morency, L.P.: Constrained local neural fields for
robust facial landmark detection in the wild. In: International Conference on Com-
puter Vision Workshops, pp. 354–361 (2013)

2. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop (2011)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR, pp. 886–893. IEEE Computer Society, Washington, DC (2005)

4. Funes Mora, K.A., Monay, F., Odobez, J.M.: EYEDIAP: a database for the devel-
opment and evaluation of gaze estimation algorithms from RGB and RGB-D cam-
eras. In: Eye Tracking Research and Applications, pp. 255–258. ACM, New York
(2014)

5. Hains, S.M., Muir, D.W.: Infant sensitivity to adult eye direction. Child Dev. 67,
1940–1951 (1996)

6. Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network.
CoRR, March 2015

7. Holzman, P.S., Proctor, L.R., Levy, D.L., Yasillo, N.J., Meltzer, H.Y., Hurt, S.W.:
Eye-tracking dysfunctions in schizophrenic patients and their relatives. Arch. Gen.
Psychiatry 31(2), 143–151 (1974)

8. Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W.,
Torralba, A.: Eye tracking for everyone. In: CVPR (2016)

9. Langton, S.R.: Do the eyes have it? Cues to the direction of social attention. Trends
Cogn. Sci. 4(2), 50–59 (2000)

10. Li, R., Shi, P., Haake, A.R.: Image understanding from experts’ eyes by modeling
perceptual skill of diagnostic reasoning processes. In: CVPR, pp. 2187–2194 (2013)

11. Majaranta, P., Bulling, A.: Eye tracking and eye-based human–computer interac-
tion. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing.
HIS, pp. 39–65. Springer, London (2014). doi:10.1007/978-1-4471-6392-3 3

12. Morimoto, C.H., Mimica, M.R.: Eye gaze tracking techniques for interactive appli-
cations. CVIU 98(1), 4–24 (2005)

http://dx.doi.org/10.1007/978-1-4471-6392-3_3


374 V. Parekh et al.

13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: ICML, pp. 807–814 (2010)

14. Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychol. Bull. 124, 372–422 (1998)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

16. Smith, B.A., Yin, Q., Feiner, S.K., Nayar, S.K.: Gaze locking: passive eye contact
detection for human-object interaction. In: User Interface Software and Technology,
pp. 271–280. ACM (2013)

17. Subramanian, R., Staiano, J., Kalimeri, K., Sebe, N., Pianesi, F.: Putting the pieces
together: multimodal analysis of social attention in meetings. In: ACM Interna-
tional Conference on Multimedia, pp. 659–662. ACM (2010)

18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: CVPR, vol. 1, pp. 1–511. IEEE (2001)

19. Volokitin, A., Gygli, M., Boix, X.: Predicting when saliency maps are accurate and
eye fixations consistent. In: CVPR, pp. 544–552 (2016)

20. Vrânceanu, R., Florea, C., Florea, L., Vertan, C.: NLP EAC recognition by com-
ponent separation in the eye region. In: Wilson, R., Hancock, E., Bors, A., Smith,
W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 225–232. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40246-3 28

21. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation
in the wild. In: CVPR, pp. 4511–4520. IEEE Computer Society (2015)

http://dx.doi.org/10.1007/978-3-642-40246-3_28

	Eye Contact Detection via Deep Neural Networks
	1 Introduction
	2 Methodology
	2.1 Image Pre-processing
	2.2 CNN Architecture

	3 Experiments and Results
	3.1 Datasets
	3.2 Data Synthesis and Labeling
	3.3 Results and Discussion
	3.4 Visualizing CNN Activations

	4 CNN Implementation on Android
	5 Conclusion
	References


