Adaptive Card Design Ul Implementation
for an Augmented Reality Museum Application

Joao M.F. Rodrigues!®), Jodao A.R. Pereira', Jodo D.P. Sardo?,
Marco A.G. de Freitas?, Pedro J.S. Cardoso', Miguel Gomes?®, and Paulo Bica?

! LARSyS (ISR-Lisbon) & ISE, University of the Algarve, 8005-139 Faro, Portugal
{jrodrig,pcardoso}@ualg.pt, jandrepereira00@gmail.com
2 Institute of Engineering, University of the Algarve, 8005-139 Faro, Portugal
joao_dps@outlook.com, marcogfreitas@gmail.com
3 SPIC - Creative Solutions, Loulé, Portugal

Abstract. Museums are great places where visitors can see, hear, touch,
feel and experience interesting things. The visit is even better when
visitors can select what they want to see and have ways to enhance
their experience. Many museums have a huge amount of collections and
objects, selecting which ones to see is sometimes difficult. A system that
adapts on the fly to the user’s preferences, suggesting objects that he
might want to see, paths he would like to follow in their visit, as well
as the complementary information he needs about each object, will be
of fundamental importance. Smartphones, with their Apps are the best
solution to help enhance the museum experience, nevertheless, most of
the time they fail, because their user interface (UI) does not adapt to
the user’s preferences. This paper presents: (a) an initial framework for a
museum application where augmented reality and gamification are con-
nected with an adaptive UI, (b) an adaptive card implementation to
realize the UI, and (c) an initial fast object recognition implementation
for the markers used for the augmented reality.

Keywords: Apps - Adaptative Ul - Marker-based AR - HCI

1 Introduction

M5SAR (Mobile Five Senses Augmented Reality System for Museums) project
aims at the development of an Augmented Reality (AR) system, which consists
of an application (App) platform and a device (“gadget” - hardware), to be
connected to mobile devices, in order to explore the 5 human senses (sight,
hearing, touch, smell and taste). The system is to be a guide in cultural, historical
and museum events, complementing or replacing the traditional orientation given
by tour guides, directional signs, or maps.

The number of mobile Apps, including the ones that use AR, are increasing
due to the popularity of built-in cameras and global positioning systems. The
massive availability of Internet connections on mobile devices also enables, the
construction of personal context-aware cultural experiences [11].

© Springer International Publishing AG 2017
M. Antona and C. Stephanidis (Eds.): UAHCI 2017, Part I, LNCS 10277, pp. 433-443, 2017.
DOI: 10.1007/978-3-319-58706-6_35



434 J.M.F. Rodrigues et al.

In the present and in the future, User Interfaces (UI) is a fundamental
research area, where at least four (sub-)areas interconnect: Human-Computer
Interaction (HCI), Artificial Intelligence (AI), User Modeling (UM) and Inter-
action Design (IxD). The core of the investigation in the near future should fall,
most probably, in the usually called Intelligent User Interfaces (IUI) or Adap-
tive User Interfaces (AUI) and on the Automatic-Generation of Interfaces (AGI),
connected with the best practices of IxD, user experience (UX) and Emotional
UI (EUI). AUI should be enhanced with accessibility features, and can also be
enhanced with AR and Gamification features.

The Uls traditionally follow a one-size-fits-all model, ignoring the needs, abil-
ities and preferences of individual users. However, research indicated that visual-
ization performance could be improved by adapting aspects of the visualization
to the individual user [15]. As Conati et al. [8] stated, intelligent user-adaptive
interfaces and/or visualizations, that can adapt on the fly to the specific needs
and abilities of each individual user, is a long-term research goal. This is due
to two main reasons: (a) the difficulty of extracting information about the users
needs and abilities, and (b) the implementation of the UI that can adapt/change
“itself” on the fly. Cortes et al. [3] define TUI as a sub-field of HCT with the goal
of improving the HCI by the use of new technologies and interaction devices,
including the use of Al techniques that allow adaptive or intelligent behavior.
Akiki et al. [2] presented a study about adaptive model-driven UI development
systems. Gajos and Weld [9] proposed an automatic system for generating UT,
i.e., solution based on treating interface adaptation as an optimization problem.

Reinecke and Bernstein [12] refer that a modular UI, that allows a flexible
composition from various interface elements, increases the number of variations
of the interface to the power of the number of adaptable elements. Thus, instead
of designing each interface from scratch, a modular user interface approach is a
possible good solution, since it allows achieving many more versions with less
design and implementation effort. Equally important is to adapt the UI to users
with different visual, auditory, or motor impairments. Unfortunately, because of
the great variety of individual incapabilities among such users, manual modular
designing interfaces for each one of them is impractical and not scalable [10,13].
However, the modular and/or adaptive generation of UT offers the promise of pro-
viding personalized interfaces on the fly, but this does not mean that the user
will be satisfied with his/her personalized App. According to Zhao et al. [20],
the psychological process behind satisfaction is highly complex and requires a
differentiation between transaction-specific satisfaction and cumulative satisfac-
tion. Nevertheless, mobile Apps should move towards completely personalized
experiences. These experiences usually are built from the aggregation of many
individual pieces of content.

Having all the above in mind, at least three main challenges arise in the Ul
design and implementation: (a) how to harvest the necessary information about
each user preferences and skills (without asking them to fill any form). (b) From the
acquired information/data, how to give “intelligence” to the UI to adapt on the fly
to the users changes (e.g., to the user mood). (c) How to develop this adaptive UI,



Adaptive Card Design UI Implementation for an AR Museum Application 435

even a modular UI, without being necessary to develop a huge amount of different
(sub-)modules, and at the same time still optimize the user experience (UX) and
the main principles of interaction design (IxD), i.e., how to implement Automatic-
Generation of Interfaces. One way these challenges can be addressed is as cards [1,
5] based UI. Card-based interaction model is not new and is now spreading pretty
widely in most of the recent Apps.

This paper also focus in the implementation of AR App. The present solution
is an AR marker-based method, often also called image-based [7]. AR markers-
based allow adding preset signals (e.g., paintings, statues) easily detectable in
the environment and use techniques of computer vision to sense them. The use of
AR in museums is not new, including the implementation of head-worn displays
(HWD) [17]. Other AR solutions are also available see e.g. [13]. There are many
commercial AR toolkits (SDK) such as Vuforia [18] and AR content management
systems, e.g. Catchoom [6], including open source SDKs, probably the most know
is ARToolKit [4]. Each of the above solutions has pros and cons, some are quite
expensive, others consume to much memory (it is important to stress, that our
application will have many markers, at least one for each museum piece), others
take too much time to load in mobile devices, etc. Here, we also focus on the
initial development of an image marker detector, which will be based on the
ORB binary descriptor [14].

The main contribution of this paper is a framework for the adaptive on the fly
card-based UI construction, where the development of the cards has a modular
architecture. In addition, an initial patch-based marker architecture for fast AR
is also presented.

2 Adaptive Card Implementation

One of the objectives of this work is to develop a methodology to Uls that can
adapt on the fly to each user. In particular, this section presents the architecture
to create the card-based UI on run-time.

To have a full adaptive UI, we could have (at the limit) a different layout
and content for each Ul view and user. Nevertheless, different users could have
the same layout or at least partial similarly layouts. The same layout and struc-
ture can also be used in multiple views (e.g., when showing information about
different paintings to the same user), usually, in this case, the only thing that
could change are the contents to display to the user. Of course, even when the
layout is the same for different users the content could be different.

In this context, and with the principle of adapting the Ul on the fly, makes
no sense in terms of App memory and CPU optimization, to build each layout
(or partial layout) from scratch every time it is required. If a layout (or partial
layout) is created once, and expected to be used more than one time, this should
be kept in memory instead of creating it when needed (it is important to stress
that the methodology presented here was tested and developed using Unity [16]
development platform).

To achieve this, we decided to separate a view in (A) structure/layouts and
(B) contents. This means that, the application will no longer create views but



436 J.M.F. Rodrigues et al.

will instead make card-layouts and place different contents on the (same) card-
layout at different execution points, since the (different) layouts and structures
are used multiple times.

To build the structure/layout (A), an engine was created to assemble the
card-layout data structure. The engine uses as input a “layout-tree” data struc-
ture, where the basic layout units, called content format, are joined together in
cells, which could be joined (again) as templates. Both cells and templates are
joined together until a card-layout is formed. Thus, each card-layout is com-
posed by one or several cells, plus zero to several templates, that can be used
in different card-layouts of the same App (the template has one or several cells,
and each cell has one or several content format).

In more detail, the card-layouts are assembled in a tree structure since they
represent a parent-child relationship. Figure 1a sketches the disassembled view of
a card layout data structure, and the corresponding block diagram in Fig. 1b. In
the figure every box represents a node, and the number in the top right corner
its identifier. A tree node can be from one of three categories: (a) a content
format, (b) a cell or (c) a template. Common to both the content format and
the cell categories are some properties, like the dimensions of the node and its
responsiveness behavior.

A content format (a) represents the formatting of a content (the basic unit
of the card-layout), be it a text, an image, etc. Each specific content has its
own properties. For example, a text content format (represented as T in Fig. 1b)
has properties that define the font, the line spacing, the text color, etc. They
also define the location where the content will appear. An image content format
is represented by an I, and a button content format by a B in the same figure.
A cell (b), or stack layout [19], is a node that, unlike the content formats, does not
convey any information to the user, as each cell is used to organize the contents.
A cell divides the children into a single line that can be oriented horizontally or
vertically and gives the appropriate spacing between them. A cell child can be
any of the categories aforementioned.

A template node (c), is a special node that integrates another preexisting
template, i.e. a group of already structured cells and contents. This node is
useful in situations where a determined structure is repeated several times, like
for example the menu template shown on Fig. la and used in Fig. 2 (highlighted
in blue). Each template can be used in any card-layouts of the App.

In the construction of the card-layout (see Fig. 2), inside the tree terminology,
two terms are important: the root node (the node of the tree from which all other
nodes - children - descend) and the leaf node (a node that has no children). Two
rules were established and must be followed while creating a layout tree: (i) the
root node (“view”) must always be a cell; (ii) a leaf node must be a content or a
template. Regarding (i), the root node can not be a template node, because this
would mean that the new tree would be a copy of the referenced template. The
root node also can not be a content format, since each template and the final
card-layout should be an agglomerate of multiple contents that are organized in
some shape or form. Concerning (ii), a leaf node cannot be a cell node, because



Adaptive Card Design UI Implementation for an AR Museum Application 437

50— P—(F
= Museum O\®Z> MUSEUM W/
N o0 @

(a) Disassembled view. ) Block dmgram

Fig. 1. Menu tree diagram.

its (cell) purpose is to arrange its children (if it has no child then it makes no
sense to have it since it would be to add excessive information that needs to be
sent and processed). Finally, it is important to stress the specificity of the button
content format, the button itself only represents the click action and requires a
child to provide visual elements to the user. These elements can be any of the
categories mentioned before.

When assembling the card-layout we opted for a depth-first approach. With
this approach, the card layout build engine was implemented to work in a recur-
sive manner: (1) create the node and set its properties; (2) processes each child
node (step 1) and, (3) establish the parent-child relationships (we stress again
that this process was tested and developed using Unity platform [16]).

When a view, a card-layout with contents is needed, the application simply
adds to the card-layout already instantiated the contents (B). If another view
requires the same template it uses the same card-layout in memory and just
changes the contents.

Figure 2 illustrates the build process of a card-layout. In this case, the root
node of the tree is a cell that is divided vertically and whose children are repre-
sented by the dashed lines. The first child of this view is the Menu template as
displayed in Fig. 1, but with different contents. The Menu template is assembled
as follows (see Fig.1): start by instantiating the root cell horizontally divided
(node 1) and define its properties like the horizontal alignment. Next create the
button content format (represented by B on node 2), followed by its child image
(I on node 3). At this point the relationships are established, node 3 defines
its parent as node 2, and node 2 its parent as node 1. Next, moving to the 2nd
child of the Menu template root node, which in this case is a text content format
(node 4), create it, specify its attributes and then set its parent as node 1. Lastly,
nodes 5 and 6 are processed in a similar fashion to nodes 2 and 3. This template
is now ready to be used at any time. The next node of the card-layout is a new
cell node that contains an image and a text content format. The next two nodes
both contain a Field template. This Field template is a simple template that
includes two text content format arranged vertically. Finally, there is a button
whose child is a cell that has a text and an image. Each of these cells follow the
building principles, which were early explained.



438 J.M.F. Rodrigues et al.

OBJECT

: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris
sapien magna, rutrum tincidunt quam id, consectetur convallis

I eros. Mauris cursus, odio in lobortis mollis, quam libero vulputate

| enim, in cursus nisl sem et mi. Pellentesque vitae facilisis velit, et

I tincidunt enim. Proin gravida orci dolor, quis fermentum nunc con-

|

|

|

dimentum vel. Vestibulum rhoncus lorem ac massa malesuada
dictum. Donec congue accumsan gravida. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed
eget orci at massa varius condimentum. Aliquam erat volutpat.
Aenean laoreet velit augue, quis rutrum lectus tristique sed.

|

I Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris

| sapien magna, rutrum tincidunt quam id, consectetur convallis

| eros. Mauris cursus, odio in lobortis mollis, quam libero vulputate

I enim, in cursus nisl sem et mi. Pellentesque vitae facilisis velit, et
tincidunt enim. Proin gravida orci dolor, quis fermentum nunc con-

| _dimentum vel. Vestibulum rhoncus lorem ac massa malesuada

Fig. 2. Example of a museum object view.

It is very important to stress the function of the database (DB) as a funda-
mental component of this system, since it is where (“harvested”) user informa-
tion/specifications are kept, that are then converted (not presented or discussed
in this paper) to the correspondent specifications for each user card-layout and
card-contents (also stored in the DB). In this paper we only focus on the part of
the DB related to the card-layout. The database for the card-layout implemen-
tation follows the exact same tree architecture and it can be subdivided in three
major layers: (a) components, (b) formats and (c¢) structure.

The components layer (a) is the simplest one, where we define basic properties
like colors, fonts, shadows, outlines and backgrounds. The formats layer (b) is
where we indicate the type of content to be used in a child node and where we
store the information related to that specific type of content, whether it is an
image, a text or a button, using previously created sets of component properties.
Here we can also override a particular property if needed. Then, there is the
structure layer (c), where the parent-child relationships of our tree architecture
are defined, node by node. It is also used to save data regarding layouts and cells,
like orientation and spacing. All this information can be aggregated by templates,
therefore they may be reused later, optimizing the process of creating new views.



Adaptive Card Design UI Implementation for an AR Museum Application 439

w| JSON
,L ~| generation
&9 &
I~ Templates > JS.ON > JSON > ul .
[ retrieval generation
Server Mobile

Fig. 3. Ul generation overview.

When a new view has been added to the database, we need to convert it
to a JSON format and store it, so that it can be requested by the application
installed in the mobile device (see Fig.3). For the JSON generation process we
are running a script on the server side that receives the new template index and
then connects to the database to build up the entire tree. It navigates from table
to table, node by node, in the same manner that it was described for Fig. 1b. At
the end of the process, the script saves the file in the DB with a time stamp, this
way the App can determine whether or not that is the most recent version for
that template, and if it is not, it can simply download the new JSON document.
The simplified block diagram for the UI generation can be seen in Fig. 3.

3 Fast Mobile Object Detection and Tracking

In the present App a huge number of cards, the ones that describe museum
objects (e.g. paintings or statues) only appear in the presence of the object, i.e.,
when the camera is pointed to the object. Here, we focus on object detection,
recognition and tracking, with the purpose to call the respective card view.

There are many solutions (see Sect. 1) to detect a museum object and deploy
the AR respective “card”. Those solutions use what is called “markers” [4], which
in a simplified way, are photographs (one or more) from the original object, that
work as a template (see below). By using Computer Vision algorithms, they are
compared with the frames captured by the mobile camera and trigger (when
recognized) the identifier for the object as well as its position on the mobile
screen. Here, we focus on a solution, with three goals: (a) speedup the process
of downloading the markers into the mobile device, (b) do all the recognizing
process in the mobile, reducing the server requirements, and (c) try to minimize
power and memory consumption when doing the recognition.

Before applying our mobile object detection algorithm, museum objects were
photographed and stored in a server using high quality Full HD images. Those are
called image templates for the object. While for paintings a single photograph
was used, for statues several photographs were used to represent the object.
For the marker recognition implementation, it is required a reliable and fast
descriptor since we aim to compute it on a mobile device. For that reason, we
have opted to use the ORB descriptor [14] for object recognition.

Before we start to explain the algorithm, we define patch as a section of
the original image, of size N x M pixels (px); see Fig.4 top-right row. The



440 J.M.F. Rodrigues et al.

e
P¥ulR
EZEPERE
I [ IS
F el ] |
oo be 2P

Fig. 4. Marker template and its patches extracted, and a marker template matched.
Top to bottom, left to right: marker template (low res.), original image divided in
patches, 3 most relevant patches from the full-size image, the 1/2 and from 1/4 size
image. Bottom-right, object matched.

algorithm works as follows: (i) Over the template. (i.1) Compute ORB descriptor
[14]; (i.2) Divide the template in patches, and extract patches with keypoints and
respective descriptors; (i.3) Sort the patches by keypoint/descriptor importance,
and select the K most relevant extracted patches - those are to be used as marker
patches; (1.4) repeat steps (i.1) to (i.3), now with the image size divided by 2
and by 4 (3 scales). (i.5) Group and sort the patches from the different scales,
with total number of marker patches per template, v < 3 x K (“</=", depends
on the original size of the template).

(ii) On the object recognition and tracking: (ii.1) Acquire a frame from the
mobile camera and apply the ORB descriptor; (ii.2) Test the frame using the
most relevant marker patch from the 3 scales grouping for each of the available
templates (see step 1.5); (ii.3) Select the template based on best classification;
(ii.4) Test the object recognition using all () patches from the correspondent
template, matching “template-frame”; (ii.5) Object is recognized, when ratio
validation threshold is verified; (ii.6) Flag if object found. After this point the
object is only tracked (not tested for recognition). (ii.7) Track object based only
on a valid marker patch from selected template; (ii.8) Restart the recognition
process again if tracking time threshold is met.



Adaptive Card Design UI Implementation for an AR Museum Application 441

As mentioned, in the initial step (i.1) for each object and its respective tem-
plate(s), the ORB descriptor is applied for each of the 3 template scales (Full HD,
1/2 and 1/4 size). (i.2) Then, starting from the middle of the template image,
each template is divided in patches (best results were obtained for N = M = 200
px); see Fig.4 top-right row. The reason for starting the template division in
patches from the centre, is because there is a higher probability it will have
richer keypoints regions. If necessary, border regions from the template image
are ignored. (i.3-4) The extracted patches are then sorted by the number of
keypoints in each patch, in descending order, until K = 5 patches are stored per
scale. This is repeated for the template with 1/2 and 1/4 of the size. This process
allows farther and shorter validation distances when targeting the mobile camera
onto an object. (i.5) All marker patches () from the 3 scales are then grouped in
descending order based on the keypoints count and stored on a object template
dataset. On the mobile device, each time a frame is captured by the mobile cam-
era (ii.1) ORB descriptor is applied, after which is matched against the object
template dataset, that contains all (y) marker patches grouped. The classifier
matches the frame with the most relevant patch of each marker, (ii.2) to get the
match count of similar keypoint descriptor. The marker template which has the
highest match count is validated against the threshold of minimum match count
(Tme = 1) required (ii.3) for advancing to the following stage.

(ii.4) After 1 marker descriptor patch validated, all patches from the selected
marker template are matched, (ii.5) and a ratio is calculated between the number
of patches validated (M P,) and the total length (v), i.e., r = M P, /. (ii.6) On
ratio validation threshold validated, T;., = 0.1, the object is recognized. After
the object being recognized, and while it is in the field of view of the camera,
we only need to tack it. This is a process less CPU demanding than recognition.
Now, for each frame acquired, (ii.7) we only match the frame with a single valid
marker patch. This steps continues until the object disappears from the field-of-
view for more than 7T; = 1 s of the camera. If this occurs then the tracking step
stops (ii.8) and the recognition process starts again (steps ii.1 to ii.6).

4 Conclusions

In this paper we present an initial framework for the development of an archi-
tecture capable of producing an adaptive UI (for a museum application), the
focus was on the creation process of a card-based UI, where the development
of the cards has a modular architecture. In addition, it was also presented a
patch-based marker architecture for mobile object recognition with application
in the realm of AR.

Despite both systems being still in an initial stage of development, both
present satisfactory results. For future developments, we will focus on how to har-
vest the necessary information about each user preferences and skills, and from
the acquired information/data, how to give “intelligence” to the Ul to adapt on
the fly to the users changes. In the case of the mobile object recognition system,
it can at the moment achieve real time recognition of 50 different objects, being
the goal in the future to achieve at least 100 objects recognition in real time.



442 J.M.F. Rodrigues et al.

Acknowledgements. This work was supported by the Portuguese Foundation for
Science and Technology (FCT), project LARSyS (UID/EEA/50009/2013), CIAC, and
project M5SAR 1&DT nr. 3322 financed by CRESC ALGARVE2020, PORTUGAL2020
and FEDER. We also thank Faro Municipal Museum and our project leader SPIC -
Creative Solutions [www.spic.pt].

References

1. Adobe. XD Essentials: Card-based user interfaces (2016). https://goo.gl/gg8qUM.
Accessed 16 Nov 2016

2. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface develop-
ment systems. ACM Comput. Surv. 47(1), 9:1-9:33 (2015)

3. Alvarez-Cortes, V., Zayas, B.E., Uresti, J.A.R., Zarate, V.H.: Current Challenges
and Applications for Adaptive User Interfaces. INTECH Open Access Publisher,
Rijeka (2009)

4. Artoolkit. Artoolkit, the world’s most widely used tracking library for augmented
reality (2016). http://artoolkit.org/. Accessed 16 Nov 2016

5. Babich, N.: Designing card-based user interfaces, smashing magazine (2016).
https://goo.gl/AM46gT. Accessed 18 Nov 2016

6. Catchoom. Catchoom (2016). http://catchoom.com/. Accessed 16 Nov 2016

7. Cheng, K.-H., Tsai, C.-C.: Affordances of augmented reality in science learning:
suggestions for future research. J. Sci. Educ. Technol. 22(4), 449-462 (2013)

8. Conati, C., Carenini, G., Toker, D., Lallé, S:. Towards user-adaptive information
visualization. In: AAAI, pp. 4100-4106 (2015)

9. Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: Pro-
ceedings of International Conference on Intelligent User Interfaces, pp. 93—-100.
ACM (2004)

10. Gajos, K.Z., Wobbrock, J.O., Weld, D.S.: Improving the performance of motor-
impaired users with automatically-generated, ability-based interfaces. In: Proceed-
ings of SIGCHI Conference on Human Factors in Computing Systems, pp. 1257—
1266. ACM (2008)

11. Jung, T., Chung, N., Leue, M.C.: The determinants of recommendations to use
augmented reality technologies: the case of a Korean theme park. Tourism Manag.
49, 75-86 (2015)

12. Reinecke, K., Bernstein, A.: Knowing what a user likes: a design science approach
to interfaces that automatically adapt to culture. MIS Q. 37(2), 427-453 (2013)

13. Rodrigues, J.M.F., Lessa, J., Gregrio, M., Ramos, C., Cardoso, P.J.S.: An initial
framework for a museum application for senior citizens. In: Proceedings of 7th
International Conference on Software Development and Technologies for Enhancing
Accessibility and Fighting Info-exclusion (2016)

14. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to
SIFT or SURF. In: Proceedings of International Conference on Computer Vision,
pp. 2564-2571. IEEE (2011)

15. Steichen, B., Conati, C., Carenini, G.: Inferring visualization task properties, user
performance, and user cognitive abilities from eye gaze data. ACM Trans. Interact.
Intell. Syst. 4(2), 11 (2014)

16. Unity. Unity 3D (2014). https://unity3d.com/pt. Accessed 10 Nov 2014

17. Vainstein, N., Kuflik, T., Lanir, J.: Towards using mobile, head-worn displays in
cultural heritage: user requirements and a research agenda. In: Proceedings of 21st
International Conference on Intelligent User Interfaces, pp. 327-331. ACM (2016)


www.spic.pt
https://goo.gl/gg8qUM
http://artoolkit.org/
https://goo.gl/AM46gT
http://catchoom.com/
https://unity3d.com/pt

Adaptive Card Design UI Implementation for an AR Museum Application 443

18. Vuforia. Vuforia (2016). https://www.vuforia.com/. Accessed 16 Nov 2016

19. Xamarin. Stack layout - Xamarin (2016). https://goo.gl/iTLhG9. Accessed 18 Nov
2016

20. Zhao, L., Yaobin, L., Zhang, L., Chau, P.Y.K.: Assessing the effects of service
quality and justice on customer satisfaction and the continuance intention of mobile
value-added services: an empirical test of a multidimensional model. Decis. Support
Syst. 52(3), 645-656 (2012)


https://www.vuforia.com/
https://goo.gl/i7LhG9

	Adaptive Card Design UI Implementation for an Augmented Reality Museum Application
	1 Introduction
	2 Adaptive Card Implementation
	3 Fast Mobile Object Detection and Tracking
	4 Conclusions
	References


