Chapter 6
Research on Statistics

Henry Braun

Since its founding in 1947, ETS has supported research in a variety of areas—a fact
attested to by the many different chapters comprising this volume. As a private,
nonprofit organization known primarily for its products and services related to stan-
dardized testing, it comes as no surprise that ETS conducted extensive research in
educational measurement and psychometrics, which together provide the scientific
foundations for the testing industry. This work is documented in the chapters in this
book. At the same time, a good part of educational measurement and perhaps most
of psychometrics can be thought of as drawing upon—and providing an impetus for
extending—work in theoretical and applied statistics. Indeed, many important
developments in statistics are to be found in the reports alluded to above.

One may ask, therefore, if there is a need for a separate chapter on statistics. The
short answer is yes. The long answer can be found in the rest of the chapter. A
review of the ETS Research Report (RR) series and other archival materials reveals
that a great deal of research in both theoretical and applied statistics was carried out
at ETS, both by regular staff members and by visitors. Some of the research was
motivated by longstanding problems in statistics, such as the Behrens-Fisher prob-
lem or the problem of simultaneous inference, and some by issues arising at ETS
during the course of business. Much of this work is distinguished by both its depth
and generality. Although a good deal of statistics-related research is treated in other
chapters, much is not.

The purpose of this chapter, then, is to tell a story of statistics research at ETS. It
is not the story, as it is not complete; rather, it is structured in terms of a number of
major domains and, within each domain, a roughly chronological narrative of key
highlights. As will be evident, the boundaries between domains are semipermeable
so that the various narratives sometimes intermix. Consequently, reference will also
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be made to topic coverage in other chapters. The writing of this chapter was made
more challenging by the fact that some important contributions made by ETS
researchers or by ETS visitors (supported by ETS) did not appear in the RR series
but in other technical report series and/or in the peer-reviewed literature. A good
faith effort was made to identify some of these contributions and include them as
appropriate.

The chapter begins with a treatment of classic linear models, followed by sec-
tions on latent regression, Bayesian methods, and causal inference. It then offers
shorter treatments of a number of topics, including missing data, complex samples,
and data displays. A final section offers some closing thoughts on the statistical
contributions of ETS researchers over the years.

6.1 Linear Models

Linear models, comprising such techniques as regression, analysis of variance, and
analysis of covariance, are the workhorses of applied statistics. Whether offering
convenient summaries of data patterns, modeling data to make predictions, or even
serving as the basis for inferring causal relationships, they are both familiar tools
and the source of endless questions and puzzles that have fascinated statisticians for
more than a century. Research on problems related to linear models goes back to
ETS’s earliest days and continues even today.

From the outset, researchers were interested in the strength of the relationship
between scores on admissions tests and school performance as measured by grades.
The best known example, of course, is the relationship between SAT® test scores and
performance in the first year of college. The strength of the relationship was evi-
dence of the predictive validity of the test, with predictive validity being one com-
ponent of the validity trinity.! From this simple question, many others arose: How
did the strength of the relationship change when other predictors (e.g., high school
grades) were included in the model? What was the impact of restriction of range on
the observed correlations, and to what extent was differential restriction of range the
cause of the variation in validity coefficients across schools? What could explain the
year-to-year volatility in validity coefficients for a given school, and how could it be
controlled? These and other questions that arose over the years provided the impe-
tus for a host of methodological developments that have had an impact on general
statistical practice. The work at ETS can be divided roughly into three categories:
computation, inference, and prediction.

'The validity trinity comprises content validity, criterion-related validity, and predictive validity.
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6.1.1 Computation

In his doctoral dissertation, Beaton (1964) developed the sweep operator, which was
one of the first computational algorithms to take full advantage of computer archi-
tecture to improve statistical calculations with respect to both speed and the size of
the problem that could be handled. After coming to ETS, Beaton and his colleagues
developed FASTAT, an expandable subroutine library to carry out statistical calcula-
tions that put ETS in the forefront of statistical computations. More on FASTAT can
be found in Beaton and Barone (Chap. 8, this volume). (It is worth noting that, over
the years, the FASTAT system has been expanded and updated to more current ver-
sions of FORTRAN and is still in use today.) Beaton et al. (1972) considered the
problem of computational accuracy in regression. Much later, Longford, in a series
of reports (Longford 1987a, b, 1993), addressed the problem of obtaining maximum
likelihood estimates in multilevel models with random effects. Again, accuracy and
speed were key concerns. (Other aspects of multilevel models are covered in Sect.
6.2.3). A contribution to robust estimation of regression models was authored by
Beaton and Tukey (1974).

6.1.2 Inference

The construction of confidence intervals with specific confidence coefficients is
another problem that appears throughout the RR series, with particular attention to
the setting of simultaneous confidence intervals when making inferences about mul-
tiple parameters, regression planes, and the like. One of the earliest contributions
was by Abelson (1953) extending the Neyman-Johnson technique for regression.
Aitkin (1973) made further developments. Another famous inference problem, the
Behrens-Fisher problem, attracted the attention of Potthoff (1963, 1965), who
devised Scheffé-type tests. Beaton (1981) used a type of permutation test approach
to offer a way to interpret the coefficients of a least squares fit in the absence of
random sampling. This was an important development, as many of the data sets
subjected to regression analysis do not have the required pedigree and, yet, standard
inferential procedures are applied nonetheless. A. A. von Davier (2003a) treated the
problem of comparing regression coefficients in large samples. Related work can be
found in Moses and Klockars (2009).

A special case of simultaneous inference arises in analysis of variance (ANOVA)
when comparisons among different levels of a factor are of interest and control of
the overall error rate is desired. This is known as the problem of multiple compari-
sons, and many procedures have been devised. Braun and Tukey (1983) proposed a
new procedure and evaluated its operating characteristics. Zwick (1993) provided a
comprehensive review of multiple comparison procedures. Braun (1994) edited
Volume VIII of The Collected Works of John W. Tukey, a volume dedicated to
Tukey’s work in the area of simultaneous inference. Especially noteworthy in this
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collection is that Braun, in collaboration with ETS colleagues Kaplan, Sheehan, and
Wang, prepared a corrected, complete version of the never-published manuscript
(1953) by Tukey titled The Problem of Multiple Comparisons (1994), which set the
stage for the modern treatment of simultaneous inference. A review of Tukey’s con-
tributions to simultaneous inference was presented in Benjamini and Braun (2003).

6.1.3 Prediction

Most of the standardized tests that ETS was and is known for are intended for use
in admissions to higher education. A necessary, if not sufficient, justification for
their utility is their predictive validity; that is, for example, that scores on the SAT
are strongly correlated with first year averages (FYA) in college and, more to the
point, that they possess explanatory power above and beyond that available with the
use of other quantitative measures, such as high school grades. Another important
consideration is that the use of the test does not inappropriately disadvantage
specific subpopulations. (A more general discussion of validity can be found in
Chap. 16 by Kane and Bridgeman, this volume. See also Kane 2013). Another
aspect of test fairness, differential prediction, is discussed in the chapter by Dorans
and Puhan (Chap. 4, this volume).

Consequently, the study of prediction equations and, more generally, prediction
systems has been a staple of ETS research. Most of the validity studies conducted at
ETS were done under the auspices of particular programs and the findings archived
in the report series of those programs. At the same time, ETS researchers were con-
tinually trying to improve the quality and utility of validity studies through develop-
ing new methodologies.

Saunders (1952) investigated the use of the analysis of covariance (ANCOVA) in
the study of differential prediction. Rock (1969) attacked a similar problem using
the notion of moderator variables. Browne (1969) published a monograph that pro-
posed measures of predictive accuracy, developed estimates of those measures, and
evaluated their operating characteristics.

Tucker established ETS’s test validity procedures and supervised their imple-
mentation until his departure to the University of Illinois. He published some of the
earliest ETS work in this area (1957, 1963). His first paper proposed a procedure to
simplify the prediction problem with many predictors by constructing a smaller
number of composite predictors. The latter paper, titled Formal Models for a Central
Prediction System, tackled a problem that bedeviled researchers in this area. The
problem can be simply stated: Colleges receive applications from students attending
many different high schools, each with its own grading standards. Thus, high school
grade point averages (HSGPA) are not comparable even when they are reported on
a common scale. Consequently, including HSGPA in a single prediction equation
without any adjustment necessarily introduces noise in the system and induces bias
in the estimated regression coefficients. Standardized test scores, such as the SAT,
are on a common scale—a fact that surely contributes to their strong correlation
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with FYA. Tucker’s monograph discusses three approaches to constructing compos-
ite predictors based on placing multiple high school grades on a common scale for
purposes of predicting college grades. This work, formally published in Tucker
(1963), led to further developments, which were reviewed by Linn (1966) and, later,
by Young and Barrett (1992). More recently, Zwick (2013) and Zwick and Himelfarb
(2011) conducted further analyses of HSGPA as a predictor of FYA, with a focus on
explaining why HSGPA tends to overpredict college performance for students from
some demographic subgroups.

Braun and Szatrowski (1984a, b) investigated a complementary prediction prob-
lem. When conducting a typical predictive validity study at an institution, the data
are drawn from those students who matriculate and obtain a FYA. For schools that
use the predictor in the admissions process, especially those that are at least moder-
ately selective, the consequence is a restriction of range for the predictor and an
attenuated correlation. Although there are standard corrections for restriction of
range, they rest on untestable assumptions. At the same time, unsuccessful appli-
cants to selective institutions likely attend other institutions and obtain FYAs at
those institutions. The difficulty is that FYAs from different institutions are not on a
common scale and cannot be used to carry out an ideal validity study for a single
institution in which the prediction equation is estimated on, for example, all
applicants.

Using data from the Law School Admissions Council, Braun and Szatrowski
(1984a, b) were able to link the FYA grade scales for different law schools to a
single, common scale and, hence, carry out institutional validity studies incorporat-
ing data from nearly all applicants. The resulting fitted regression planes differed
from the standard estimates in expected ways and were in accord with the fitted
planes obtained through an Empirical Bayes approach. During the 1980s, there was
considerable work on using Empirical Bayes methods to improve the accuracy and
stability of prediction equations. (These are discussed in the section on Bayes and
Empirical Bayes.)

A longstanding concern with predictive validity studies, especially in the context
of college admissions, is the nature of the criterion. In many colleges, freshmen
enroll in a wide variety of courses with very different grading standards.
Consequently, first year GPAs are rather heterogeneous, which has a complex
impact on the observed correlations with predictors. This difficulty was tackled by
Ramist et al. (1990). They investigated predictive validity when course-level grades
(rather than FYAs) were employed as the criterion. Using this more homogeneous
criterion yielded rather different results for the correlations with SAT alone, HSGPA
alone, and SAT with HSGPA. Patterns were examined by subject and course rigor,
as was variation across the 38 colleges in the study. This approach was further pur-
sued by Lewis et al. (1994) and by Bridgeman et al. (2008).

Over the years, Willingham maintained an interest in investigating the differ-
ences between grades and test scores, especially with respect to differential predic-
tive validity (Willingham et al. 2002). Related contributions include Lewis and
Willingham (1995) and Haberman (2006). The former showed how restriction of
range can affect estimates of gender bias in prediction and proposed some strategies
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for generating improved estimates. The latter was concerned with the bias in pre-
dicting multinomial responses and the use of different penalty functions in reducing
that bias.

Over the years, ETS researchers also published volumes that explored aspects of
test validity and test use, with some attention to methodological considerations.
Willingham (1988) considered issues in testing handicapped people (a term now
replaced by the term students with disabilities) for the SAT and GRE® programs.
The chapter in that book by Braun et al. (1988) studied the predictive validity for
those testing programs for students with different disabilities. Willingham and Cole
(1997) examined testing issues in gender-related fairness, with some attention to the
implications for predictive validity.

6.1.4 Latent Regression

Latent regression methods were introduced at ETS by Mislevy (1984) for use in the
National Assessment of Educational Progress (NAEP) and are further described in
Sheehan and Mislevy (1989), Mislevy (1991), and Mislevy et al. (1992). An over-
view of more recent developments is given in M. von Davier et al. (2006) and M.
von Davier and Sinharay (2013). Mislevy’s key insight was that NAEP was not
intended to, and indeed was prohibited from, reporting scores at the individual level.
Instead, scores were to be reported at various levels of aggregation, either by politi-
cal jurisdiction or by subpopulation of students. By virtue of the matrix sampling
design of NAEP, the amount of data available for an individual student is relatively
sparse. Consequently, the estimation bias in statistics of interest may be consider-
able, but can be reduced through application of latent regression techniques. With
latent regression models, background information on students is combined with
their responses to cognitive items to yield unbiased estimates of score distributions
at the subpopulation level—provided that the characteristics used to define the sub-
populations are included in the latent regression model. This topic is also dealt with
in the chapter by Beaton and Barone (Chap. 8, this volume), especially in Appendix
A; the chapter by Kirsch et al. (Chap. 9, this volume) describes assessments of lit-
eracy skills in adult populations that use essentially the same methodologies.

In NAEP, the fitting of a latent regression model results in a family of posterior
distributions. To generate plausible values, five members of the family are selected
at random, and from each a single random draw is made.? The plausible values are
used to produce estimates of the target population parameters and to estimate the
measurement error components of the total variance of the estimates. Note that
latent regression models are closely related to empirical Bayes models.

Latent regression models are very complex and, despite more than 25 years of
use, many questions remain. In particular, there are attempts to simplify the

2In the series of international surveys of adult skills, 10 PV are generated for each respondent.
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estimation procedure without increasing the bias. Comparisons of the ETS approach
with so-called direct estimation methods were carried out by M. von Davier (2003b).
ETS researchers continue to refine the models and the estimation techniques (Li and
Oranje 2007; Li et al. 2007; M. von Davier and Sinharay 2010). Goodness-of-fit
issues are addressed in Sinharay et al. (2009). In that paper, the authors apply a
strategy analogous to Bayesian posterior model checking to evaluate the quality of
the fit of a latent regression model and apply the technique to NAEP data.

6.2 Bayesian Methods

Bayesian inference comes in many different flavors, depending on the type of prob-
ability formalism that is employed. The main distinction between Bayesian infer-
ence and classical, frequentist inference (an amalgam of the approaches of Fisher
and Neyman) is that, in the former, distribution parameters of interest are treated as
random quantities, rather than as fixed quantities. The Bayesian procedure requires
specification of a so-called prior distribution, based on information available before
data collection. Once relevant data are collected, they can be combined with the
prior distribution to yield a so-called posterior distribution which represents current
belief about the likely values of the parameter. This approach can be directly applied
to evaluating competing hypotheses, so that one can speak of the posterior probabil-
ities associated with different hypotheses—these are the conditional probabilities of
the hypotheses, given prior beliefs and the data collected. As many teachers of ele-
mentary (and not so elementary) statistics are aware, these are the kinds of interpre-
tations that many ascribe (incorrectly) to the results of a frequentist analysis.

Over the last 50 years, the Bayesian approach to statistical inference has gained
more adherents, particularly as advances in computer hardware/software have made
Bayesian calculations more feasible. Both theoretical developments and successful
applications have moved Bayesian and quasi-Bayesian methods closer to normative
statistical practice. In this respect, a number of ETS researchers have made signifi-
cant contributions in advancing the Bayesian approach, as well as providing a
Bayesian perspective on important statistical issues. This section is organized into
three sections: Bayes for classical models, later Bayes, and empirical Bayes.

6.2.1 Bayes for Classical Models

Novick was an early proponent of Bayes methods and a prolific contributor to the
Bayesian analysis of classical statistical and psychometric models. Building on ear-
lier work by Bohrer (1964) and Lindley (1969b, ¢, 1970), Novick and colleagues
tackled estimation problems in multiple linear regression with particular attention to
applications to predictive validity (Novick et al. 1971, 1972; Novick and Thayer
1969). These studies demonstrated the superior properties of Bayesian regression
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estimates when many models were to be estimated. The advantage of borrowing
strength across multiple contexts anticipated later work by Rubin and others who
employed Empirical Bayes methods. Rubin and Stroud (1977) continued this work
by treating the problem of Bayesian estimation in unbalanced multivariate analysis
of variance (MANOVA) designs.

Birnbaum (1969) presented a Bayesian formulation of the logistic model for test
scores, which was followed by Lindley (1969a) and Novick and Thayer (1969), who
studied the Bayesian estimation of true scores. Novick et al. (1971) went on to
develop a comprehensive Bayesian analysis of the classical test theory model
addressing such topics as reliability, validity, and prediction.

During this same period, there were contributions of a more theoretical nature as
well. For example, Novick (1964) discussed the differences between the subjective
probability approach favored by Savage and the logical probability approach favored
by Jefferies, arguing for the relative advantages of the latter. Somewhat later, Rubin
(1975) offered an example of where Bayesian and standard frequentist inferences
can differ markedly. Rubin (1979a) provided a Bayesian analysis of the bootstrap
procedure proposed by Efron, which had already achieved some prominence. Rubin
showed that the bootstrap could be represented as a Bayesian procedure—but with
a somewhat unusual prior distribution.

6.2.2 Later Bayes

The development of graphical models and associated inference networks found
applications in intelligent tutoring systems. The Bayesian formulation is very natu-
ral, since prior probabilities on an individual’s proficiency profile could be obtained
from previous empirical work or simply based on plausible (but not necessarily
correct) assumptions about the individual. As the individual attempts problems, data
accumulates, the network is updated, and posterior probabilities are calculated.
These posterior probabilities can be used to select the next problem in order to opti-
mize some criterion or to maximize the information with respect to a subset of
proficiencies.

At ETS, early work on intelligent tutoring systems was carried out by Gitomer
and Mislevy under a US Air Force contract to develop a tutoring system for trouble-
shooting hydraulic systems on F-15s. The system, called HYDRIVE, was one of the
first to employ rigorous probability models in the analysis of sequential data. The
model is described in Mislevy and Gitomer (1995), building on previous work by
Mislevy (1994a, b). Further developments can be found in Almond et al. (2009).

Considerable work in the Bayesian domain concerns issues of either computa-
tional efficiency or model validation. Sinharay (2003a, b, 2006) has made contribu-
tions to both. In particular, the application of posterior predictive model checking to
Bayesian measurement models promises to be an important advance in refining
these models. At the same time, ETS researchers have developed Bayesian



6 Research on Statistics 187

formulations of hierarchical models (Johnson and Jenkins 2005) and extensions to
testlet theory (Wang et al. 2002).

6.2.3 Empirical Bayes

The term empirical Bayes (EB) actually refers to a number of different strategies to
eat the Bayesian omelet without breaking the Bayesian eggs; that is, EB is intended
to reap the benefits of a Bayesian analysis without initially fully specifying a
Bayesian prior. Braun (1988) described some of the different methods that fall
under this rubric. We have already noted fully Bayesian approaches to the estima-
tion of prediction equations. Subsequently, Rubin (1980d) proposed an EB strategy
to deal with a problem that arose from the use of standardized test scores and school
grades in predicting future performance; namely, the prediction equation for a par-
ticular institution (e.g., a law school) would often vary considerably from year to
year—a phenomenon that caused some concern among admissions officers.
Although the causes of this volatility, such as sampling variability and differential
restriction of range, were largely understood, they did not lead immediately to a
solution.

Rubin’s version of EB for estimating many multiple linear regression models (as
would be the case in a validity study of 100+ law schools) postulated a multivariate
normal prior distribution, but did not specify the parameters of the prior. These were
estimated through maximum likelihood along with estimates of the regression coef-
ficients for each institution. In this setting, the resulting EB estimate of the regres-
sion model for a particular institution can be represented as a weighted combination
of the ordinary least squares (OLS) estimate (based on the data from that institution
only) and an overall estimate of the regression (aggregating data across institutions),
with the weights proportional to the relative precisions of the two estimates. Rubin
showed that, in comparison to the OLS estimate, the EB estimates yielded better
prediction for the following year and much lower year-to-year volatility. This work
led to changes in the validity study services provided by ETS to client programs.

Braun et al. (1983) extended the EB method to the case where the OLS estimate
did not necessarily exist because of insufficient data. This problem can arise in pre-
diction bias studies when the focal group is small and widely scattered among insti-
tutions. Later, Braun and Zwick (1993) developed an EB approach to estimating
survival curves in a validity study in which the criterion was graduate degree attain-
ment. EB or shrinkage-type estimators are now quite commonly applied in various
contexts and are mathematically equivalent to the multilevel models that are used to
analyze nested data structures.
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6.3 Causal Inference

Causal inference in statistics is concerned with using data to elucidate the causal
relationships among different factors. Of course, causal inference holds an impor-
tant place in the history and philosophy of science. Early statistical contributions
centered on the role of randomization and the development of various experimental
designs to obtain the needed data most efficiently. In the social sciences, experi-
ments are often not feasible, and various alternative designs and analytic strategies
have been devised. The credibility of the causal inferences drawn from those designs
has been an area of active research. ETS researchers have made important contribu-
tions to both the theoretical and applied aspects of this domain.

With respect to theory, Rubin (1972, 1974b, c), building on earlier work by
Neyman, proposed a model for inference from randomized studies that utilized the
concept of potential outcomes. That is, in comparing two treatments, ordinarily an
individual can be exposed to only one of the treatments, so that only one of the two
potential outcomes can be observed. Thus, the treatment effect on an individual is
inestimable. However, if individuals are randomly allocated to treatments, an unbi-
ased estimate of the average treatment effect can be obtained. He also made explicit
the conditions under which causal inferences could be justified.

Later, Rubin (1978a) tackled the role of randomization in Bayesian inference for
causality. This was an important development because, until then, many Bayesians
argued that randomization was irrelevant to the Bayesian approach. Rubin’s argu-
ment (in part) was that with a randomized design, Bayesian procedures were not
only simpler, but also less sensitive to specification of the prior distribution. He also
further explicated the crucial role of the stable unit treatment value assumption
(SUTVA) in causal inference. This assumption asserts that the outcome of exposing
a unit (e.g., an individual) to a particular treatment does not depend on which other
units are exposed to that treatment. Although the SUTVA may be unobjectionable
in some settings (e.g., agricultural or industrial experiments), in educational settings
it is less plausible and argues for caution in interpreting the results.

Holland and Rubin (1980, 1987) clarified the statistical approach to causal infer-
ence. In particular, they emphasized the importance of manipulability; that is, the
putative causal agent should have at least two possible states. Thus, the investiga-
tion of the differential effectiveness of various instructional techniques is a reason-
able undertaking since, in principle, students could be exposed to any one of the
techniques. On the other hand, an individual characteristic like gender or race can-
not be treated as a causal agent, since ordinarily it is not subject to manipulation.
(On this point, see also Holland, 2003). They go on to consider these issues in the
context of retrospective studies, with consideration of estimating causal effects in
various subpopulations defined in different ways.

Lord (1967) posed a problem involving two statisticians who drew radically dif-
ferent conclusions from the same set of data. The essential problem lies in attempt-
ing to draw causal conclusions from an analysis of covariance applied to
nonexperimental data. The resulting longstanding conundrum, usually known as
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Lord’s Paradox, engendered much confusion. Holland and Rubin (1983) again
teamed up to resolve the paradox, illustrating the power of the application of the
Neyman-Rubin model, with careful consideration of the assumptions underlying
different causal inferences.

In a much-cited paper, Holland (1986) reviewed the philosophical and epistemo-
logical foundations of causal inference and related them to the various statistical
approaches that had been proposed to analyze experimental or quasi-experimental
data, as well as the related literature on causal modeling. An invitational conference
that touched on many of these issues was held at ETS, with the proceedings pub-
lished in Wainer (1986). Holland (1987) represents a continuation of his work on
the foundations of causal inference with a call for the measurement of effects rather
than the deduction of causes. Holland (1988) explored the use of path analysis and
recursive structural equations in causal inference, while Holland (1993) considered
Suppes’ theory of causality and related it to the statistical approach based on
randomization.

As noted above, observational studies are much more common in the social sci-
ences than are randomized experimental designs. In a typical observational study,
units are exposed to treatments through some nonrandom mechanism that is often
denoted by the term self-selection (whether or not the units actually exercised any
discretion in the process). The lack of randomization means that the ordinary esti-
mates of average treatment effects may be biased due to the initial nonequivalence
of the groups. If the treatment groups are predetermined, one bias-reducing strategy
involves matching units in different treatment groups on a number of observed
covariates, with the hope that the resulting matched groups are approximately
equivalent on all relevant factors except for the treatments under study. Were that the
case, the observed average differences between the matched treatment groups would
be approximately unbiased estimates of the treatment effects. Sometimes, an analy-
sis of covariance is conducted instead of matching and, occasionally, both are car-
ried out. These strategies raise some obvious questions. Among the most important
are: What are the best ways to implement the matching and how well do they work?
ETS researchers have made key contributions to answering both questions.

Rubin (1974b, ¢, 1980a) investigated various approaches to matching simultane-
ously on multiple covariates and, later, he considered combined strategies of match-
ing and regression adjustment (1979b). Subsequently, Rosenbaum and Rubin
(1985a) investigated the bias due to incomplete matching and suggested strategies
for minimizing the number of unmatched treatment cases. Rosenbaum and Rubin
(1983b) published a seminal paper on matching using propensity scores. Propensity
scores facilitate multifactor matching through construction of a scalar index such
that matching on this index typically yields samples that are well-matched on all the
factors contributing to the index. Further developments and explications can be
found in Rosenbaum and Rubin (1984, 1985b), as well as the now substantial litera-
ture that has followed. In 1986, the previously mentioned ETS-sponsored confer-
ence (Wainer 1986) examined the topic of inference from self-selected samples. The
focus was a presentation by James Heckman on his model-based approach to the
problem, with comments and critiques by a number of statisticians. A particular
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concern was the sensitivity of the findings to an untestable assumption about the
value of a correlation parameter.

More generally, with respect to the question of how well a particular strategy
works, one approach is to vary the assumptions and determine (either analytically
or through simulation) how much the estimated treatment effects change as a result.
In many situations, such sensitivity analyses can yield very useful information.
Rosenbaum and Rubin (1983a) pioneered an empirical approach that involved
assuming the existence of an unobserved binary covariate that accounts for the
residual selection bias and incorporating this variable into the statistical model used
for adjustment. By varying the parameters associated with this variable, it is possi-
ble to generate a response surface that depicts the sensitivity of the estimated treat-
ment effect as a function of these parameters. The shape of the surface near the
naive estimate offers a qualitative sense of the confidence to be placed in its magni-
tude and direction.

This approach was extended by Montgomery et al. (1986) in the context of lon-
gitudinal designs. They showed that if there are multiple observations on the out-
come, then under certain stability assumptions it is possible to obtain estimates of
the parameters governing the unobserved binary variable and, hence, obtain a point
estimate of the treatment effect in the expanded model.

More recently, education policy makers have seized on using indicators derived
from student test scores as a basis for holding schools and teachers accountable.
Under No Child Left Behind, the principal indicator is the percent of students meet-
ing a state-determined proficiency standard. Because of the many technical prob-
lems with such status-based indicators, interest has shifted to indicators related to
student progress. Among the most popular are the so-called value-added models
(VAM) that attempt to isolate the specific contributions that schools and teachers
make to their students’ learning. Because neither students nor teachers are randomly
allocated to schools (or to each other), this is a problem of causal inference (i.e.,
attribution of responsibility) from an observational study with a high degree of self-
selection. The technical and policy issues were explicated in Braun (2005a, b) and
in Braun and Wainer (2007). A comparison of the results of applying different
VAMs to the same data was considered in Braun, Qu, and Trapani (2008).

6.4 Missing Data

The problem of missing data is ubiquitous in applied statistics. In a longitudinal
study of student achievement, for example, data can be missing because the indi-
vidual was not present at the administration of a particular assessment. In other
cases, relevant data may not have been recorded, recorded but lost, and so on.
Obviously, the existence of missing data complicates both the computational and
inferential aspects of analysis. Adjusting calculation routines to properly take
account of missing values can be challenging. Simple methods, such as deleting
cases with missing data or filling in the missing values with some sort of average,
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can be wasteful, bias-inducing, or both. Standard inferences can also be suspect
when there are missing values if they do not take account of how the data came to
be missing. Thus, characterizing the process by which the missingness occurs is key
to making credible inferences, as well as appropriate uses of the results. Despite the
fact that ETS’s testing programs and other activities generate oceans of data, prob-
lems of missing data are common, and ETS researchers have made fundamental
contributions to addressing these problems.

Both Lord (1955) and Gulliksen (1956) tackled specific estimation problems in
the presence of missing data. This tradition was continued by Rubin (1974a, 1976b,
¢). In this last report, concerned with fitting regression models, he considered how
patterns of missingness of different potential predictors, along with multiple corre-
lations, can be used to guide the selection of a prediction model. This line of research
culminated in the celebrated paper by Dempster et al. (1977) that introduced, and
elaborated on, the expectation-maximization (EM) algorithm for obtaining maxi-
mum likelihood estimates in the presence of missing data. The EM algorithm is an
iterative estimation procedure that converges to the maximum likelihood estimate(s)
of model parameters under broad conditions. Since that publication, the EM algo-
rithm has become the tool of choice for a wide range of problems, with many
researchers developing further refinements and modifications over the years. An
ETS contribution is due to M. von Davier and Sinharay (2007), in which they
develop a stochastic EM algorithm that is applied to latent regression problems.

Of course, examples of applications of EM abound. One particular genre involves
embedding a complete data problem (for which obtaining maximum likelihood esti-
mates is difficult or computationally intractable) in a larger missing data problem to
which EM can be readily applied. Rubin and Szatrowski (1982) employed this strat-
egy to obtain estimates in the case of multivariate normal distributions with pat-
terned covariance matrices. Rubin and Thayer (1982) applied the EM algorithm to
estimation problems in factor analysis. A more expository account of the EM algo-
rithm and its applications can be found in Little and Rubin (1983).

With respect to inference, Rubin (1973, 1976b) investigated the conditions under
which estimation in the presence of missing data would yield unbiased parameter
estimates. The concept of missing at random was defined and its implications inves-
tigated in both the frequentist and Bayesian traditions. Further work on ignorable
nonresponse was conducted in the context of sample surveys (see the next
section).

6.5 Complex Samples

The problem of missing data, usually termed nonresponse, is particularly acute in
sample surveys and is the cause of much concern with respect to estimation bias—
both of the parameters of interest and their variances. Nonresponse can take many
forms, from the complete absence of data to having missing values for certain vari-
ables (which may vary from individual to individual). Rubin (1978b) represents an
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early contribution using a Bayesian approach to address a prediction problem in
which all units had substantial background data recorded but more than a quarter
had no data on the dependent variables of interest. The method yields a pseudo-
confidence interval for the population average.

Subsequently, Rubin (1980b, c) developed the multiple imputations methodol-
ogy for dealing with nonresponse. This approach relies on generating posterior dis-
tributions for the missing values, based on prior knowledge (if available) and
relevant auxiliary data (if available). Random draws from the posterior distribution
are then used to obtain estimates of population quantities, as well as estimates of the
component of error due to the added uncertainty contributed by the missing data.
This work ultimately led to two publications that have had a great impact on the
field (Rubin 1987; Rubin et al. 1983). Note that the multiple imputations methodol-
ogy, combined with latent regression, is central to the estimation strategy in NAEP
(Beaton and Barone, Chap. 8, this volume).

A related missing data problem arises in NAEP as the result of differences among
states in the proportions of sampled students, either with disabilities or who are
English-language learners, who are exempted from sitting for the assessment. Since
these differences can be quite substantial, McLaughlin (2000) pointed out that these
gaps likely result in biased comparisons between states on NAEP achievement. The
suggested solution was to obtain so-called full-population estimates based on model
assumptions regarding the performance of the excluded students. Braun et al. (2010)
attacked the problem by investigating whether the observed differences in exemp-
tion rates could be explained by relevant differences in the focal subpopulations.
Concluding that was not the case, they devised a new approach to obtaining full-
population estimates and developed an agenda to guide further research and policy.
Since then, the National Assessment Governing Board has imposed stricter limits
on exemption rates.

Of course, missing data is a perennial problem in all surveys. ETS has been
involved in a number of international large-scale assessment surveys, including
those sponsored by the Organization for Economic Cooperation and Development
(e.g., Program for International Student Assessment—PISA, International Adult
Literacy Survey — IALS, Program for the International Assessment of Adult
Competencies—PIAAC) and by the International Association for the Evaluation of
Educational Achievement (e.g., Trends in International Mathematics and Science
Study—TIMSS, Progress in International Reading Literacy Study—PIRLS).
Different strategies for dealing with missing (or omitted) data have been advanced,
especially for the cognitive items. An interesting and informative comparison of
different approaches was presented by Rose et al. (2010). In particular, they com-
pared deterministic rules with model-based rules using different item response the-
ory (IRT) models.
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6.6 Data Displays

An important tool in the applied statistician’s kit is the use of graphical displays, a
precept strongly promoted by Tukey in his work on exploratory data analysis.
Plotting data in different ways can reveal patterns that are not evident in the usual
summaries generated by standard statistical software. Moreover, good displays not
only can suggest directions for model improvement, but also may uncover possible
data errors.

No one at ETS took this advice more seriously than Wainer. An early effort in
this direction can be found in Wainer and Thissen (1981). In subsequent years, he
wrote a series of short articles in The American Statistician and Chance addressing
both what to do—and what not to do—in displaying data. See, for example, Wainer
(1984, 1993, 1996). During and subsequent to his tenure at ETS, Wainer also was
successful in reaching a broader audience through his authorship of a number of
well-received books on data display (1997, 2005, 2009).

6.7 Conclusion

This chapter is the result of an attempt to span the range of statistical research con-
ducted at ETS over nearly 70 years, with the proviso that much of that research is
covered in other chapters sponsored by this initiative. In the absence of those chap-
ters, this one would have been much, much longer. To cite but one example, Holland
and Thayer (1987, 2000) introduced a new approach to smoothing empirical score
distributions based on employing a particular class of log-linear models. This inno-
vation was motivated by problems arising in equipercentile equating and led to
methods that were much superior to the ones used previously—superior with respect
to accuracy, quantification of uncertainty, and asymptotic consistency. This work is
described in more detail in Dorans and Puhan (Chap. 4, this volume). In short, only
a perusal of many other reports can fully reflect the body of statistical research at
ETS.

From ETS’s founding, research has been a cornerstone of the organization. In
particular, it has always offered a rich environment for statisticians and other quan-
titatively minded individuals. Its programs and activities generate enormous
amounts of data that must be organized, described, and analyzed. Equally impor-
tant, the various uses proposed for the data often raise challenging issues in compu-
tational efficiency, methodology, causality, and even philosophy. To address these
issues, ETS has been fortunate to attract and retain (at least for a time) many excep-
tional individuals, well-trained in statistics and allied disciplines, eager to apply
their skills to a wide range of problems, and effective collaborators. That tradition
continues with attendant benefits to both ETS and the research community at large.
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