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Chapter 3
Psychometric Contributions: Focus  
on Test Scores

Tim Moses

This chapter is an overview of ETS psychometric contributions focused on test 
scores, in which issues about items and examinees are described to the extent that 
they inform research about test scores. Comprising this overview are Sect. 3.1 Test 
Scores as Measurements and Sect. 3.2 Test Scores as Predictors in Correlational and 
Regression Relationships. The discussions in these sections show that these two 
areas are not completely independent. As a consequence, additional contributions 
are the focus in Sect. 3.3 Integrating Developments About Test Scores as 
Measurements and Test Scores as Predictors. For each of these sections, some of the 
most important historical developments that predate and provide context for the 
contributions of ETS researchers are described.

3.1  �Test Scores as Measurements

3.1.1  �Foundational Developments for the Use of Test Scores 
as Measurements, Pre-ETS

By the time ETS officially began in 1947, the fundamental concepts of the classical 
theory of test scores had already been established. These original developments are 
usually traced to Charles Spearman’s work in the early 1900s (Gulliksen 1950; 
Mislevy 1993), though Edgeworth’s work in the late 1800s is one noteworthy pre-
decessor (Holland 2008). Historical reviews describe how the major ideas of 
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classical test theory, such as conceptions of test score averages and errors, were bor-
rowed from nineteenth century astronomers and were probably even informed by 
Galileo’s work in the seventeenth century (Traub 1997).

To summarize, the fundamental concepts of classical test theory are that an 
observed test score for examinee p on a particular form produced for test X, X′p, can 
be viewed as the sum of two independent components: the examinee’s true score 
that is assumed to be stable across all parallel forms of X, TXp, and a random error 
that is a function of the examinee and is specific to test form X′, EX′p,

	
X T Ep Xp X p

′
′= +

	
(3.1)

Classical test theory traditionally deals with the hypothetical scenario where 
examinee p takes an infinite number of parallel test forms (i.e., forms composed of 
different items but constructed to have identical measurement properties, X′, X″, X‴, 
… ). As the examinee takes the infinite number of test administrations, the examinee 
is assumed to never tire from the repeated testing, does not remember any of the 
content in the test forms, and does not remember prior performances on the hypo-
thetical test administrations. Under this scenario, classical test theory asserts that 
means of observed scores and errors for examinee p across all the X′, X″, X‴… 
forms are

	
µ µX T and Ep Xp X p

′( ) = ( ) =′ 0,
	

(3.2)

and the conditional variance for examinee p across the forms is

	
σ σX T Ep Xp Xp

|
2 2=

	
(3.3)

The variance of the observed score turns out to be the sum of the true score vari-
ance and the error variance,

	
σ σ σX T EX X

2 2 2= + ′ 	
(3.4)

where the covariance of the true scores and errors, σT EX X,
2
, is assumed to be zero. 

Research involving classical test theory often focuses on σTX

2  and σ EX

2 , meaning 
that considerable efforts have been devoted to developing approaches for estimating 
these quantities. The reliability of a test score can be summarized as a ratio of those 
variances,
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(3.5)

Reliability indicates the measurement precision of a test form for the previously 
described hypothetical situation involving administrations of an infinite number of 
parallel forms given to an examinee group.
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3.1.2  �Overview of ETS Contributions

Viewed in terms of the historical developments summarized in the previous section, 
many psychometric contributions at ETS can be described as increasingly refined 
extensions of classical test theory. The subsections in Sect. 3.1 summarize some of 
the ETS contributions that add sophistication to classical test theory concepts. The 
summarized contributions have themselves been well captured in other ETS contri-
butions that provide culminating and progressively more rigorous formalizations of 
classical test theory, including Gulliksen’s (1950) Theory of Mental Tests, Lord and 
Novick’s (1968) Statistical Theories of Mental Test Scores, and Novick’s (1965) 
The Axioms and Principal Results of Classical Test Theory. In addition to reviewing 
and making specific contributions to classical test theory, the culminating formal-
izations address other more general issues such as different conceptualizations of 
observed score, true score, and error relationships (Gulliksen 1950), derivations of 
classical test theory resulting from statistical concepts of sampling, replications and 
experimental units (Novick 1965), and latent, platonic, and other interpretations of 
true scores (Lord and Novick 1968). The following subsections of this paper sum-
marize ETS contributions about specific aspects of classical test theory. Applications 
of these contributions to improvements in the psychometric (measurement) quality 
of ETS tests are also described.

3.1.3  �ETS Contributions About σσE |TX XP

The finding that σ EX
 (i.e., the standard error of measurement) may not indicate the 

actual measurement error for all examinees across all TXp values is an important, yet 
often forgotten contribution of early ETS researchers. The belief that classical test 
theory assumes that σ E TX Xp

|
2

 is constant for all TXp values has been described as a 
common misconception (Haertel 2006), and appears to have informed misleading 
statements about the disadvantages of classical test theory relative to item response 
theory (e.g., Embretson and Reise 2000, p. 16).

In fact, the variability of the size of tests’ conditional standard errors has been the 
focus of empirical study where actual tests were divided into two halves of equiva-
lent difficulty and length (i.e., tau equivalent, described in Sect. 3.1.5.1), the stan-
dard deviation of the differences between the half test scores of examinees grouped 
by their total scores were computed, and a polynomial regression was fit to the 
estimated conditional standard errors on the total test scores and graphed (Mollenkopf 
1949). By relating the coefficients of the polynomial regression to empirical test 
score distributions, Mollenkopf showed that conditional standard errors are usually 
larger near the center of the score distribution than at the tail and may only be 
expected to be constant for normally distributed and symmetric test-score 
distributions.

3  Psychometric Contributions: Focus on Test Scores
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Another contribution to conditional standard error estimation involves assuming 
a binomial error model for number-correct scores (Lord 1955b, 1957a). If a test is 
regarded as a random sample of n dichotomously scored items, then the total score 
for an examinee with a particular true score, Txp, may be modeled as the sum of n 
draws from a binomial distribution with the probability of success on each draw 
equal to the average of their scores on the n items. The variance of the number-
correct score under this model is binomial,
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(3.6)

The sample estimate of the conditional standard error can be computed by sub-
stituting observed scores for true scores and incorporating a correction for the use 
of the sample estimate of error variance,

	

X n X

n

p p−( )
−1

.
	

(3.7)

It is an estimator of the variance expected across hypothetical repeated measure-
ments for each separate examinee where each measurement employs an indepen-
dent sample of n items from an infinite population of such items. As such, it is 
appropriate for absolute or score-focused interpretations for each examinee.

An adjustment to Lord’s (1955b, 1957a) conditional standard error for making 
relative interpretations of examinees’ scores in relation to other examinees rather 
than with respect to absolute true score values was provided by Keats (1957). Noting 

that averaging Lord’s 
X n X

n

p p−( )
−1

 quantity produces the square of the overall 

standard error of measurement for the Kuder-Richardson Formula 21, 
σ Xp rel X2

211− ( )   (described in Sect. 3.1.5.2), Keats proposed a correction that 
utilizes the Kuder-Richardson Formula 21 reliability, rel21(X), and any other reli-
ability estimate of interest, 



rel X( ) . The conditional standard error estimate based 
on Keats’ correction,
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(3.8)

produces a single standard error estimate for each observed score that is appropriate 
for tests consisting of equally weighted, dichotomously scored items.
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3.1.4  �Intervals for True Score Inference

One application of interest of standard errors of measurement in Sect. 3.1.3 is to 
true-score estimation, such as in creating confidence intervals for estimates of the 
true scores of examinees. Tolerance intervals around estimated true scores are 
attempts to locate the true score at a specified percentage of confidence (Gulliksen 
1950). The confidence intervals around true scores formed from overall or condi-
tional standard errors would be most accurate when errors are normally distributed 
(Gulliksen 1950, p. 17). These relatively early applications of error estimates to true 
score estimation are questionable, due in part to empirical investigations that sug-
gest that measurement errors are more likely to be binomially distributed rather than 
normally distributed (Lord 1958a).

For number-correct or proportion-correct scores, two models that do not invoke 
normality assumptions are the beta-binomial strong true-score model (Lord 1965) 
and the four-parameter beta model (Keats and Lord 1962). The beta-binomial model 
builds on the binomial error model described in Sect. 3.1.3. If the observed test 
score of examinee p is obtained by a random sample of n items from some item 
domain, the mean item score is the probability of a correct response to each such 
randomly chosen item. This fact implies the binomial error model, that the observed 
score of examinee p follows a binomial distribution for the sum of n tries with the 
probability related to the mean for each trial (i.e., the average item score). The four-
parameter beta-binomial model is a more general extension of the binomial error 
model, modeling the true-score distribution as a beta distribution linearly rescaled 
from the (0,1) interval to the (a,b) interval, 0 ≤  a  <  b ≤  1. Estimation for two-
parameter and four-parameter beta-binomial models can be accomplished by the 
method of moments (Hanson 1991; Keats and Lord 1962, 1968, Chapter 23). The 
beta-binomial and four-parameter beta models have had widespread applicability, 
including not only the construction of tolerance intervals of specified percentages 
for the true scores of an examinee group (Haertel 2006; Lord and Stocking 1976), 
but also providing regression-based estimates of true scores (Lord and Novick 
1968), and providing estimates of consistency and accuracy when examinees are 
classified at specific scores on a test (Livingston and Lewis 1995).

3.1.5  �Studying Test Score Measurement Properties 
With Respect to Multiple Test Forms and Measures

3.1.5.1  �Alternative Classical Test Theory Models

When the measurement properties of the scores of multiple tests are studied, 
approaches based on the classical test theory model and variations of this model 
typically begin by invoking assumptions that aspects of the test scores are identical. 
Strictly parallel test forms have four properties: They are built from identical test 
specifications, their observed score distributions are identical when administered to 
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any (indefinitely large) population of examinees, they have equal covariances with 
one another (if there are more than two tests), and they have identical covariances 
with any other measure of the same or a different construct. Situations with multiple 
tests that have similar measurement properties but are not necessarily strictly paral-
lel have been defined, and the definitions have been traced to ETS authors (Haertel 
2006). In particular, Lord and Novick (1968, p. 48) developed a stronger definition 
of strictly parallel tests by adding to the requirement of equal covariances that the 
equality must hold for every subpopulation for which the test is to be used (also in 
Novick 1965). Test forms can be tau equivalent when each examinee’s true score is 
constant across the forms while the error variances are unequal (Lord and Novick, 
p. 50). Test forms can be essentially tau equivalent when an examinee’s true scores 
on the forms differ by an additive constant (Lord and Novick, p. 50). Finally, Haertel 
credits Jöreskog (1971b) for defining a weaker form of parallelism by dropping the 
requirement of equal true-score variances (i.e., congeneric test forms). That is, con-
generic test forms have true scores that are perfectly and linearly related but with 
possibly unequal means and variances. Although Jöreskog is credited for the official 
definition of congeneric test form, Angoff (1953) and Kristof (1971) were clearly 
aware of this model when developing their reliability estimates summarized below.

3.1.5.2  �Reliability Estimation

The interest in reliability estimation is often in assessing the measurement precision 
of a single test form. This estimation is traditionally accomplished by invoking clas-
sical test theory assumptions about two or more measures related to the form in 
question. The scenario in which reliability is interpreted as a measure of score preci-
sion when an infinite number of parallel test forms are administered to the same 
examinees under equivalent administration conditions (see Sect. 3.2.1) is mostly 
regarded as a hypothetical thought experiment rather than a way to estimate reli-
ability empirically. In practice, reliability estimates are most often obtained as inter-
nal consistency estimates. This means the only form administered is the one for 
which reliability is evaluated and variances and covariances of multiple parts con-
structed from the individual items or half tests on the administered form are obtained 
while invoking classical test theory assumptions that these submeasures are parallel, 
tau equivalent, or congeneric.

Many of the popular reliability measures obtained as internal consistency esti-
mates were derived by non-ETS researchers. One of these measures is the Spearman-
Brown estimate for a test (X) divided into two strictly parallel halves (X1 and X2),
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where ρ
σ
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,=  is the correlation of X1 and X2 (Brown 1910; Spearman 

1910). Coefficient alpha (Cronbach 1951) can be calculated by dividing a test into 
i = 1, 2, …, n parts assumed to be parallel,
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(3.10)

Coefficient alpha is known to be a general reliability estimate that produces previ-
ously proposed reliability estimates in special cases. For n parts that are all dichoto-
mously scored items, coefficient alpha can be expressed as the Kuder-Richardson 
Formula 20 reliability (Kuder and Richardson 1937) in terms of the proportion of 
correct responses on the ith part, μ(Xi),
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(3.11)

The Kuder-Richardson Formula 21 (rel21 (X)) from Eq. 3.8 in Sect. 3.1.2) can be 
obtained as a simplification of Eq. 3.11, by replacing each μ(Xi) for the dichoto-
mously scored items with the mean score on all the items, μ(X), resulting in

	

n

n

X n X

n X−
−

( ) − ( ) 









1

1
2

µ µ

σ
.

	

(3.12)

Some ETS contributions to reliability estimation have been made in interpretive 
analyses of the above reliability approaches. The two Kuder-Richardson formulas 
have been compared and shown to give close results in practice (Lord 1959b), with 
the Kuder-Richardson Formula 21 estimate shown by Ledyard R Tucker (1949) 
always to be less than or equal to the Kuder-Richardson Formula 20 estimate. 
Cronbach (1951) described his coefficient alpha measure as equal to the mean of all 
possible split-half reliability estimates, and this feature has been pointed out as 
eliminating a source of error associated with the arbitrary choice of the split (Lord 
1956). Lord (1955b) pointed out that the Kuder-Richardson Formula 21 reliability 
estimate requires an assumption that all item intercorrelations are equal and went on 
to show that an average of his binomial estimate of the squared standard errors of 

measurement can be used in the 1
2

2
−
σ

σ
E

X

X  reliability estimate in Eq. 3.5 to produce 

the Kuder-Richardson Formula 21 reliability estimate (i.e., the squared values in 
Eq. 3.7 can be averaged over examinees to estimate σ EX

2 . Other ETS researchers 
have pointed out that if the part tests are not essentially tau equivalent, then coeffi-

)
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cient alpha is a lower bound to the internal consistency reliability (Novick and 
Lewis 1967). The worry that internal consistency reliability estimates depend on 
how closely the parts are to parallel has prompted recommendations for construct-
ing the parts, such as by grouping a test form’s items based on their percent-correct 
score and biserial item-test correlations (Gulliksen 1950). Statistical sampling the-
ory for coefficient alpha was developed by Kristof (1963b; and independently by 
Feldt 1965). If the coefficient alpha reliability is calculated for a test divided into n 
strictly parallel parts using a sample of N examinees, then a statistic based on coef-
ficient alpha is distributed as a central F with N − 1 and (n − 1)(N − 1) degrees of 
freedom. This result is exact only under the assumption that part-test scores follow 
a multivariate normal distribution with equal variances and with equal covariances 
(the compound symmetry assumption). Kristof (1970) presented a method for test-
ing the significance of point estimates and for constructing confidence intervals for 
alpha calculated from the division of a test into n = 2 parts with unequal variances, 
under the assumption that the two part-test scores follow a bivariate normal 
distribution.

The ETS contributions to conditional error variance estimation from Sect. 3.1.2 
have been cited as contributors to generalizability (G) theory. G theory uses analysis 
of variance concepts of experimental design and variance components to reproduce 
reliability estimates, such as coefficient alpha, and to extend these reliability esti-
mates to address multiple sources of error variance and reliability estimates for 
specific administration situations (Brennan 1997; Cronbach et al. 1972). A descrip-
tion of the discussion of relative and absolute error variance and of applications of 
Lord’s (1955b, 1957a) binomial error model results (see Sect. 3.1.2) suggested that 
these ETS contributions were progenitors to G theory:

The issues Lord was grappling with had a clear influence on the development of G theory. 
According to Cronbach (personal communication, 1996), about 1957, Lord visited the 
Cronbach team in Urbana. Their discussions suggested that the error in Lord’s formulation 
of the binomial error model (which treated one person at a time—that is, a completely 
nested design) could not be the same error as that in classical theory for a crossed design 
(Lord basically acknowledges this in his 1962 article.) This insight was eventually captured 
in the distinction between relative and absolute error in G theory, and it illustrated that 
errors of measurement are influenced by the choice of design. Lord’s binomial error model 
is probably best known as a simple way to estimate conditional SEMs and as an important 
precursor to strong true score theory, but it is also associated with important insights that 
became an integral part of G theory. (Brennan 1997, p. 16)

Other ETS contributions have been made by deriving internal consistency reli-
ability estimates based on scores from a test’s parts that are not strictly parallel. This 
situation would seem advantageous because some of the more stringent assump-
tions required to achieve strictly parallel test forms can be relaxed. However, situa-
tions in which the part tests are not strictly parallel pose additional estimation 
challenges in that the two-part tests, which are likely to differ in difficulty, length, 
and so on, result in four unknown variances (the true score and error variances of the 
two parts) that must be estimated from three pieces of information (the variances 
and the covariance of the part scores). Angoff (1953; also Feldt 1975) addressed this 
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challenge of reliability estimation by assuming that the part tests follow a congeneric 
model, so that even though the respective lengths of the part tests (i.e., true-score 
coefficients) cannot be directly estimated, the relative true-score variances and rela-
tive error variances of the parts can be estimated as functions of the difference in the 
effective test lengths of the parts. That is, if one part is longer or shorter than the 
other part by factor j, the proportional true scores of the first and second part differ 
by j, the proportional true-score variances differ by j2, and the proportional error 
variances differ by j. These results suggest the following reliability coefficient 
referred to as the Angoff-Feldt coefficient (see Haertel 2006),
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Angoff also used his results to produce reliability estimates for a whole test, X, 
and an internal part, X1,
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and for a whole test X, and an external part not contained in X, Y,
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(3.15)

The same assumptions later used by Angoff and Feldt were employed in an ear-
lier work by Horst (1951a) to generalize the Spearman-Brown split-half formula to 
produce a reliability estimate for part tests of unequal but known lengths. Reviews 
of alternative approaches to reliability estimation when the two-part test lengths are 
unknown have recommended the Angoff-Feldt estimate in most cases (Feldt 2002).

Kristof made additional contributions to reliability estimation by applying clas-
sical test theory models and assumptions (see Sect. 3.1.5.1) to tests divided into 
more than two parts. He demonstrated that improved statistical precision in reliabil-
ity estimates could be obtained from dividing a test into more than two tau-equivalent 
parts (Kristof 1963b). By formulating test length as a parameter in a model for a 
population covariance matrix of two or more tests, Kristof (1971) described the 
estimation of test length and showed how to formulate confidence intervals for the 
relative test lengths. Finally, Kristof (1974) provided a solution to the problem of 
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three congeneric parts of unknown length, where the reliability estimation problem 
is considered to be just identified, in that there are exactly as many variances and 
covariances as parameters to be estimated. Kristof’s solution was shown to be at 
least as accurate as coefficient alpha and also gives stable results across alternative 
partitions. Kristof also addressed the problem of dividing a test into more than three 
parts of unknown effective test length where the solution is over-determined. 
Kristof’s solution is obtained via maximum-likelihood and numerical methods.

3.1.5.3  Factor Analysis

Some well-known approaches to assessing the measurement properties of multiple 
tests are those based on factor-analysis models. Factor-analysis models are concep-
tually like multivariate versions of the classical test theory results in Sect. 3.1.1. Let 
X denote a q-by-1 column vector with the scores of q tests, μ denote the q-by-1 
vector of means for the q test forms in X, Θ denote a k-by-1 element vector of scores 
on k common factors, k < q, λ denote a q-by-k matrix of constants called factor load-
ings, and finally, let v denote a q-by-1 row vector of unique factors corresponding to 
the elements of X. With these definitions, the factor-analytic model can be expressed 
as.

	 X = + +µµ λλΘΘ νν , 	 (3.16)

and the covariance matrix of X, Σ, can be decomposed into a sum of q-by-q covari-
ance matrices attributable to the common factors (λΨλ′, where Ψ is a k-by-k covari-
ance matrix of the common factors, Θ) and D2 is a diagonal covariance matrix 
among the uncorrelated unique factors, v,

	 ΣΣ λλΨΨλλ= +′ D2 . 	 (3.17)

The overall goal of factor analyses described in Eqs. 3.16 and 3.17 is to meaning-
fully explain the relationships among multiple test forms and other variables with a 
small number of common factors (i.e., k < < q, meaning “k much less than q”). Since 
Spearman’s (1904a) original factor analysis, motivations have been expressed for 
factor-analysis models that account for observed variables’ intercorrelations using 
one, or very few, common factors. Spearman’s conclusions from his factor analysis 
of scores from tests of abilities in a range of educational subjects (classics, French, 
English, Math, music, and musical pitch discrimination) and other scores from mea-
sures of sensory discrimination to light, sound, and weight were an important basis 
for describing a range of intellectual abilities in terms of a single, common, general 
factor:

We reach the profoundly important conclusion that there really exists a something that we 
may provisionally term “General Sensory Discrimination” and similarly a “General 
Intelligence,” and further that the functional correspondence between these two is not 
appreciably less than absolute. (Spearman 1904a, p. 272)
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The predominant view regarding factor analysis is as a tool for describing the 
measurement properties of one or more tests in terms of factors hypothesized to 
underlie observed variables that comprise the test(s) (Cudeck and MacCallum 2007; 
Harman 1967; Lord and Novick 1968). Factor analysis models can be viewed as 
multivariate variations of the classical test theory model described in Sect. 3.1. In 
this sense, factor analysis informs a “psychometric school” of inquiry, which views 
a “…battery of tests as a selection from a large domain of tests that could be devel-
oped for the same psychological phenomenon and focused on the factors in this 
domain” (Jöreskog 2007, p. 47). Similar to the classical test theory assumptions, the 
means of v are assumed to be zero, and the variables’ covariance matrix, D2, is 
diagonal, meaning that the unique factors are assumed to be uncorrelated. Somewhat 
different from the classical test theory model, the unique factors in v are not exactly 
error variables, but instead are the sum of the error factors and specific factors of the 
q variables. That is, the v factors are understood to reflect unreliability (error fac-
tors) as well as actual measurement differences (specific factors). The assumption 
that the v factors are uncorrelated implies that the observed covariances between the 
observed variables are attributable to common factors and loadings, λΘ. The com-
mon factors are also somewhat different from the true scores of the variables because 
the factor-analysis model implies that the true scores reflect common factors as well 
as specific factors in v.

Many developments in factor analysis are attempts to formulate subjective 
aspects of model selection into mathematical, statistical, and computational solu-
tions. ETS researchers have contributed several solutions pertaining to these inter-
ests, which are reviewed in Harman (1967) and in Lord and Novick (1968). In 
particular, iterative methods have been contrasted and developed for approximating 
the factor analysis model in observed data by Browne (1969) and Jöreskog (1965, 
1967, 1969a; Jöreskog and Lawley 1968), including maximum likelihood, image 
factor analysis, and alpha factor analysis. An initially obtained factor solution is not 
uniquely defined, but can be transformed (i.e., rotated) in ways that result in differ-
ent interpretations of how the factors relate to the observed variables and reproduce 
the variables’ intercorrelations. Contributions by ETS scientists such as Pinzka, 
Saunders, and Jennrich include the development of different rotation methods that 
either allow the common factors to be correlated (oblique) or force the factors to 
remain orthogonal (Browne 1967, 1972a, b; Green 1952; Pinzka and Saunders 
1954; Saunders 1953a). The most popular rules for selecting the appropriate num-
ber of common factors, k, are based on the values and graphical patterns of factors’ 
eigenvalues, rules that have been evaluated and supported by simulation studies 
(Browne 1968; Linn 1968; Tucker et al. 1969). Methods for estimating statistical 
standard errors of estimated factor loadings have been derived (Jennrich 1973; 
Jennrich and Thayer 1973). Other noteworthy ETS contributions include mathemat-
ical or objective formalizations of interpretability in factor analysis (i.e., Thurstone’s 
simple structure, Tucker 1955; Tucker and Finkbeiner 1981), correlation-like mea-
sures of the congruence or strength of association among common factors (Tucker 
1951), and methods for postulating and simulating data that reflect a factor analysis 
model in terms of the variables common (major) factors and that also depart from 
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the factor analysis model in terms of several intercorrelated unique (minor) factors 
(Tucker et al. 1969).

An especially important ETS contribution is the development and naming of 
confirmatory factor analysis, a method now used throughout the social sciences to 
address a range of research problems. This method involves fitting and comparing 
factor-analysis models with factorial structures, constraints, and values specified a 
priori and estimated using maximum-likelihood methods (Jöreskog 1969b; Jöreskog 
and Lawley 1968). Confirmatory factor analysis contrasts with the exploratory 
factor-analysis approaches described in the preceding paragraphs in that confirma-
tory factor-analysis models are understood to have been specified a priori with 
respect to the data. In addition, the investigator has much more control over the 
models and factorial structures that can be considered in confirmatory factor analy-
sis than in exploratory factor analysis. Example applications of confirmatory factor 
analyses are investigations of the invariance of a factor-analysis solution across sub-
groups (Jöreskog 1971a) and evaluating test scores with respect to psychometric 
models (Jöreskog 1969a). These developments expanded factor analyses towards 
structural-equation modeling, where factors of the observed variables are not only 
estimated but are themselves used as predictors and outcomes in further analyses 
(Jöreskog 2007). The LISREL computer program, initially produced by Jöreskog at 
ETS, was one of the first programs made available to investigators for implementing 
maximum-likelihood estimation algorithms for confirmatory factor analysis and 
structural equation models (Jöreskog and van Thillo 1972).

3.1.6  �Applications to Psychometric Test Assembly 
and Interpretation

The ETS contributions to the study of measurement properties of test scores 
reviewed in the previous sections can be described as relatively general contribu-
tions to classical test theory models and related factor-analysis models. Another set 
of developments has been more focused on applications of measurement theory 
concepts to the development, use, and evaluation of psychometric tests. These 
application developments are primarily concerned with building test forms with 
high measurement precision (i.e., high reliability and low standard errors of 
measurement).

The basic idea that longer tests are more reliable than shorter tests had been 
established before ETS (Brown 1910, Spearman 1910; described in Gulliksen 1950 
and Mislevy 1993, 1997). ETS researchers developed more refined statements about 
test length, measurement precision, and scoring systems that maximize reliability. 
One example of these efforts was establishing that, like reliability, a test’s overall 
standard error of measurement is also directly related to test length, both in theoreti-
cal predictions (Lord 1957a) and also in empirical verifications (Lord 1959b). Other 
research utilized factor-analysis methods to show how reliability for a test of 
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dichotomous items can be maximized by weighting those items by their standard-
ized component loadings on the first principal component (Lord 1958) and how the 
reliability of a composite can be maximized by weighting the scores for the com-
posite’s test battery according to the first principal axis of the correlations and reli-
abilities of the tests (Green 1950). Finally, conditions for maximizing the reliability 
of a composite were established, allowing for the battery of tests to have variable 
lengths and showing that summing the tests after they have been scaled to have 
equal standard errors of measurement would maximize composite reliability 
(Woodbury and Lord 1956).

An important limitation of many reliability estimation methods is that they per-
tain to overall or average score precision. Livingston and Lewis (1995) developed a 
method for score-specific reliability estimates rather than overall reliability, as 
score-specific reliability would be of interest for evaluating precision at one or more 
cut scores. The Livingston and Lewis method is based on taking a test with items 
not necessarily equally weighted or dichotomously scored and replacing this test 
with an idealized test consistent with some number of identical dichotomous items. 
An effective test length of the idealized test is calculated from the mean, variance, 
and reliability of the original test to produce equal reliability in the idealized test. 
Scores on the original test are linearly transformed to proportion-correct scores on 
the idealized test, and the four parameter beta-binomial model described previously 
is applied. The resulting analyses produce estimates of classification consistency 
when the same cut scores are used to classify examinees on a hypothetically admin-
istered alternate form and estimates of classification accuracy to describe the preci-
sion of the cut-score classifications in terms of the assumed true-score distribution.

Statistical procedures have been a longstanding interest for assessing whether 
two or more test forms are parallel or identical in some aspect of their measurement 
(i.e., the models in Sect. 3.1.5.1). The statistical procedures are based on evaluating 
the extent to which two or more test forms satisfy different measurement models 
when accounting for the estimation error due to inferring from the examinee sample 
at hand to a hypothetical population of examinees (e.g., Gulliksen 1950, Chapter 14; 
Jöreskog 2007). ETS researchers have proposed and developed several statistical 
procedures to assess multiple tests’ measurement properties. Kristof (1969) pre-
sented iteratively computed maximum-likelihood estimation versions of the proce-
dures described in Gulliksen for assessing whether tests are strictly parallel to also 
assess if tests are essentially tau equivalent. Procedures for assessing the equiva-
lence of the true scores of tests based on whether their estimated true-score correla-
tion equals 1 have been derived as a likelihood ratio significance test (Lord 1957b) 
and as F-ratio tests (Kristof 1973). Another F test was developed to assess if two 
tests differ only with respect to measurement errors, units, and origins of measure-
ment (Lord 1973). A likelihood ratio test was derived for comparing two or more 
coefficient alpha estimates obtained from dividing two tests each into two part tests 
with equivalent error variances using a single sample of examinees (Kristof 1964). 
Different maximum likelihood and chi-square procedures have been developed for 
assessing whether tests have equivalent overall standard errors of measurement, 
assuming these tests are parallel (Green 1950), or that they are essentially tau equiv-
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alent (Kristof 1963a). Comprehensive likelihood ratio tests for evaluating the fit of 
different test theory models, including congeneric models, have been formulated 
within the framework of confirmatory factor-analysis models (Jöreskog 1969a).

3.2  �Test Scores as Predictors in Correlational and Regression 
Relationships

This section describes the ETS contributions to the psychometric study of test 
scores that are focused on scores’ correlations and regression-based predictions to 
criteria that are not necessarily parallel to the tests. The study of tests with respect 
to their relationships with criteria that are not necessarily alternate test forms means 
that test validity issues arise throughout this section and are treated primarily in 
methodological and psychometric terms. Although correlation and regression issues 
can be described as if they are parts of classical test theory (e.g., Traub 1997), they 
are treated as distinct from classical test theory’s measurement concepts here 
because (a) the criteria with which the tests are to be related are often focused on 
observed scores rather than on explicit measurement models and (b) classical mea-
surement concepts have specific implications for regression and correlation analy-
ses, which are addressed in the next section. Section 3.1.1 reviews the basic 
correlational and regression developments established prior to ETS. Section 3.2.2 
reviews ETS psychometric contributions involving correlation and regression 
analyses.

3.2.1  �Foundational Developments for the Use of Test Scores 
as Predictors, Pre-ETS

The simple correlation describes the relationship of variables X and Y in terms of the 

standardized covariance of these variables, ρ
σ
σ σX Y

X Y

X Y
,

,= , and has been traced to 

the late 1800s work of Galton, Edgeworth, and Pearson (Holland 2008; Traub 1997). 
The X,Y correlation plays a central role in linear regression, the major concepts of 
which have been credited to the early nineteenth century work of Legendre, Gauss, 
and Laplace (Holland 2007). The correlation and regression methods establish a 
predictive relationship of Y’s conditional mean to a linear function of X,
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(3.18)

The prediction error, ε, in Eq. 3.18 describes the imprecision of the linear regres-
sion function as well as an X,Y correlation that is imperfect (i.e., less than 1). 
Prediction error is different from the measurement errors of X and Y that reflect 
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unreliability, EX and EY, (Sect. 3.1). The linear regression function in Eq. 3.18 is 
based on least-squares estimation because using this method results in the smallest 
possible value of σ σ ρε

2 2 21= − Y X Y, . The multivariate version of Eq. 3.18 is based 
on predicting the conditional mean of Y from a combination of a set of q observable 
predictor variables,

	 Y = + = +Xβ ε ε


Y , 	 (3.19)

where Y is an N-by-1 column vector of the N Y values in the data, 


Y = Xβ  is an  
N-by-1 column vector of predicted values (



Y ), X is an N-by-q matrix of values on 
the predictor variables, β is a q-by-1 column vector of the regression slopes of the 
predictor variables (i.e., scaled semipartial correlations of Y and each X with the 
relationships to the other Xs partialed out of each X), and ε is an N-by-1 column 
vector of the prediction errors. The squared multiple correlation of Y and 



Y  pre-
dicted from the Xs in Eqs. 3.18 and 3.19 can be computed given the β parameters (or 
estimated using estimated parameters, 



ββ ) as,
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Early applications of correlation and regression concepts dealt with issues such 
as prediction in astronomy (Holland 2008; Traub 1997) and obtaining estimates of 
correlations that account for restrictions in the ranges and standard deviations of X 
and Y (Pearson 1903).

3.2.2  �ETS Contributions to the Methodology of Correlations 
and Regressions and Their Application to the Study 
of Test Scores as Predictors

The following two subsections summarize ETS contributions about the sample-
based aspects of estimated correlations and regressions. Important situations where 
relationships of tests to other tests and to criteria are of interest involve missing or 
incomplete data from subsamples of a single population and the feasibility of 
accounting for incomplete data of samples when those samples reflect distinct pop-
ulations with preexisting differences. The third subsection deals with ETS contribu-
tions that focus directly on detecting group differences in the relationships of tests 
and what these group differences imply about test validity. The final section 
describes contributions pertaining to test construction such as determining testing 
time, weighting subsections, scoring items, and test length so as to maximize test 
validity.
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3.2.2.1  �Relationships of Tests in a Population’s Subsamples 
With Partially Missing Data

Some contributions by ETS scientists, such as Gulliksen, Lord, Rubin, Thayer, 
Horst, and Moses, to test-score relationships have established the use of regressions 
for estimating test data and test correlations when subsamples in a dataset have 
partially missing data on the test(s) or the criterion. One situation of interest involves 
examinee subsamples, R and S, which are missing data on one of two tests, X and Y, 
but which have complete data on a third test, A. To address the missing data in this 
situation, regressions of each test onto test A can be used to estimate the means and 
standard deviations of X and Y for the subsamples with the missing data (Gulliksen 
1950; Lord 1955a, c). For example, if group P takes tests X and A and subsample S 
takes only A, the mean and variance of the missing X scores of S can be estimated 
by applying the A-to-X regression of subsample R to the A scores of S using the 
sample statistics in

	

µ µ ρ
σ
σ

µ µX S X R X A R
X R

A R
A R A S, , , ,

,

,
, , ,= − −( )

	
(3.21)
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For the more general situation involving a group of standard tests given to an 
examinee group and one of several new tests administered to random subsamples in 
the overall group, correlations among all the new and standard tests can be esti-
mated by establishing plausible values for the new tests’ partial correlations of the 
new and standard tests and then using the intercorrelations of the standard tests to 
“uncondition” the partial correlations and obtain the complete set of simple correla-
tions (Rubin and Thayer 1978, p. 5). Finally, for predicting an external criterion 
from a battery of tests, it is possible to identify the minimum correlation of an 
experimental test with the external criterion required to increase the multiple cor-
relation of the battery with that criterion by a specified amount without knowing the 
correlation of the experimental test with the criterion (Horst 1951c). The fundamen-
tal assumption for all of the above methods and situations is that subsamples are 
randomly selected from a common population, so that other subsamples’ correla-
tions of their missing test with other tests and criteria can serve as reasonable esti-
mates of the correlations for the subsamples with missing data.

Regressions and correlations have been regarded as optimal methods for address-
ing missing test score data in subsamples because under some assumed mathemati-
cal model (e.g., normally distributed bivariate or trivariate distributions), regression 
and correlation estimates maximize the fit of the complete and estimated missing 
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data with the assumed model (Lord 1955a, c; Rubin and Thayer 1978). Thus 
regressions and correlations can sometimes be special cases of more general 
maximum-likelihood estimation algorithms for addressing missing data (e.g., the 
EM algorithm; Dempster et al. 1977). Similar to Lord’s (1954b) establishment of 
linear regression estimates as maximum likelihood estimators for partially missing 
data, nonlinear regressions estimated with the usual regression methods have been 
shown to produce results nearly identical to those obtained by using the EM algo-
rithm to estimate the same nonlinear regression models (Moses et  al. 2011). It 
should be noted that the maximum-likelihood results apply to situations involving 
partially missing data and not necessarily to other situations where a regression 
equation estimated entirely in one subsample is applied to a completely different, 
second subsample that results in loss of prediction efficiency (i.e., a larger 

σ ε2 ( )  
for that second subsample; Lord 1950a).

3.2.2.2  �Using Test Scores to Adjust Groups for Preexisting Differences

In practice, correlations and regressions are often used to serve interests such as 
assessing tests taken by subsamples that are likely due to pre-existing population 
differences that may not be completely explained by X or by the study being con-
ducted. This situation can occur in quasi-experimental designs, observational stud-
ies, a testing program’s routine test administrations, and analyses of selected groups. 
The possibilities by which preexisting group differences can occur imply that 
research situations involving preexisting group differences are more likely than sub-
samples that are randomly drawn from the same population and that have partially 
missing data (the situation of interest in Sect. 3.2.2.1). The use of correlation and 
regression for studying test scores and criteria based on examinees with preexisting 
group differences that have been matched with respect to other test scores has 
prompted both methodological proposals and discussions about the adequacy of 
correlation and regression methods for addressing such situations by ETS scientists 
such as Linn, Charles Werts, Nancy Wright, Dorans, Holland, Rosenbaum, and 
O’Connor.

Some problems of assessing the relationships among tests taken by groups with 
preexisting group differences involve a restricted or selected group that has been 
chosen based either on their criterion performance (explicit selection) or on some 
third variable (incidental selection, Gulliksen 1950). Selected groups would exhibit 
performance on tests and criteria that have restricted ranges and standard deviations, 
thereby affecting these groups’ estimated correlations and regression equations. 
Gulliksen applied Pearson’s (1903) ideas to obtain a estimated correlation, predic-
tion error variance, or regression coefficients of the selected group after correcting 
these estimates for the range-restricted scores of the selected group on X and/or Y. 
These corrections for range restrictions are realized by using the X and/or Y standard 
deviations from an unselected group in place of those from the selected group.

Concerns have been raised about the adequacy of Gulliksen’s (1950) corrections 
for the statistics of self-selected groups. In particular, the corrections may be inac-
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curate if the assumed regression model is incorrect (i.e., is actually nonlinear or if 
the error variance, σ2(ε), is not constant), or if the corrections are based on a pur-
ported selection variable that is not the actual variable used to select the groups 
(Linn 1967; Lord and Novick 1968). Cautions have been expressed for using the 
corrections involving selected and unselected groups when those two groups have 
very different standard deviations (Lord and Novick 1968). The issue of accurately 
modeling the selection process used to establish the selected group is obviously 
relevant when trying to obtain accurate prediction estimates (Linn 1983; Linn and 
Werts 1971; Wright and Dorans 1993).

The use of regressions to predict criterion Y’s scores from groups matched on X 
is another area where questions have been raised about applications for groups with 
preexisting differences. In these covariance analyses (i.e., ANCOVAs), the 
covariance-adjusted means of the two groups on Y are compared, where the adjust-
ment is obtained by applying an X-to-Y regression using both groups’ data to esti-

mate the regression slope ( ρ
σ
σX Y R S

Y R S

X R S
, ,

,

,
+

+

+

) and each group’s means (μY , R, μY , S, μX , R 

and μX , S) in the estimation and comparison of the groups’ intercepts,
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The application of the covariance analyses of Eq. 3.23 to adjust the Y means for 
preexisting group differences by matching the groups on X has been criticized for 
producing results that can, under some circumstances, contradict analyses of aver-
age difference scores, μY , R − μY , S − (μX , R − μX , S), (Lord 1967). In addition, covariance 
analyses have been described as inadequate for providing an appropriate adjustment 
for the preexisting group differences that are confounded with the study groups and 
not completely due to X (Lord 1969). Attempts have been made to resolve the prob-
lems of covariance analysis for groups with preexisting differences. For instance, 
Novick (1983) elaborated on the importance of making appropriate assumptions 
about the subpopulation to which individuals are exchangeable members, Holland 
and Rubin (1983) advised investigators to make their untestable assumptions about 
causal inferences explicit, and Linn and Werts (1973) emphasized research designs 
that provide sufficient information about the measurement errors of the variables. 
Analysis strategies have also been recommended to account for and explain the 
preexisting group differences with more than one variable using multiple regression 
(O’Connor 1973), Mahalanobis distances (Rubin 1980), a combination of 
Mahalanobis distances and regression (Rubin 1979), and propensity-score matching 
methods (Rosenbaum and Rubin 1984, 1985).
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3.2.2.3  �Detecting Group Differences in Test and Criterion Regressions

Some ETS scientists such as Schultz, Wilks, Cleary, Frederiksen, and Melville have 
developed and applied statistical methods for comparing the regression functions of 
groups. Developments for statistically comparing regression lines of groups tend to 
be presented in terms of investigations in which the assessment of differences in 
regressions of groups is the primary focus. Although these developments can addi-
tionally be described as informing the developments in the previous section (e.g., 
establishing the most accurate regressions to match groups from the same popula-
tion or different populations), these developments tend to describe the applications 
of matching groups and adjusting test scores as secondary interests. To the extent 
that groups are found to differ with respect to X,Y correlations, the slopes and/or 
intercepts of their Y|X regressions and so on, other ETS developments interpret 
these differences as reflecting important psychometric characteristics of the test(s). 
Thus these developments are statistical, terminological, and applicative.

Several statistical strategies have been developed for an investigation with the 
primary focus of determining whether regressions differ by groups. Some statistical 
significance procedures are based on directly comparing aspects of groups’ regres-
sion functions to address sequential questions. For example, some strategies center 
on assessing differences in the regression slopes of two groups and, if the slope dif-
ferences are likely to be zero, assessing the intercept differences of the groups based 
on the groups’ parallel regression lines using a common slope (Schultz and Wilks 
1950). More expansive and general sequential tests involve likelihood ratio and 
F-ratio tests to sequentially test three hypotheses: first, whether the prediction error 
variances of the groups are equal; then, whether the regression slopes of the groups 
are equal (assuming equal error variances), and finally, whether the regression inter-
cepts of the groups are equal (assuming equal error variances and regression slopes; 
Gulliksen and Wilks 1950). Significance procedures have also been described to 
consider how the correlation from the estimated regression model in Eq. 3.18, based 
only on X, might be improved by incorporating a group membership variable, G, as 
a moderator (i.e., moderated multiple regression; Saunders 1953b),
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Other statistical procedures for assessing group differences include extensions of 
the Johnson-Neyman procedure for establishing regions of predictor-variable values 
in which groups significantly differ in their expected criterion scores (Potthoff 
1964) and iterative, exploratory procedures for allowing the regression weights of 
individuals to emerge in ways that maximize prediction accuracy (Cleary 1966a).

3  Psychometric Contributions: Focus on Test Scores



66

The previously described statistical procedures for assessing group differences in 
regressions have psychometric implications for the tests used as predictors in those 
regressions. These implications have sometimes been described in terms of test use 
in which differential predictability investigations have been encouraged that deter-
mine the subgroups for which a test is most highly correlated with a criterion and, 
therefore, most accurate as a predictor of it (Frederiksen and Melville 1954). Other 
investigators have made particularly enduring arguments that if subgroups are found 
for which the predictions of a test for a criterion in a total group’s regression are 
inaccurate, the use of that test as a predictor in the total group regression is biased 
for that subgroup (Cleary 1966b). The statistical techniques in this section, such as 
moderated multiple regression (Saunders 1953b) for assessing differential predict-
ability and Cleary’s test bias,1 help to define appropriate and valid uses for tests.

3.2.2.4  �Using Test Correlations and Regressions as Bases for Test 
Construction

Interest in test validity has prompted early ETS developments concerned with con-
structing, scoring, and administering tests in ways that maximized tests’ correla-
tions with an external criterion). In terms of test construction, ETS authors such as 
Gulliksen, Lord, Novick, Horst, Green, and Plumlee have proposed simple, 
mathematically tractable versions of the correlation between a test and criterion that 
might be maximized based on item selection (Gulliksen 1950; Horst 1936). 
Although the correlations to be maximized are different, the Gulliksen and Horst 
methods led to similar recommendations that maximum test validity can be approx-
imated by selecting items based on the ratio of correlations of items with the crite-
rion and with the total test (Green 1954). Another aspect of test construction 
addressed in terms of validity implications is the extent to which multiple-choice 
tests lead to validity reductions relative to open-ended tests (i.e., tests with items 
that do not present examinees with a set of correct and incorrect options) because of 
the probability of chance success in multiple-choice items (Plumlee 1954). Validity 
implications have also been described in terms of the decrement in validity that 
results when items are administered and scored as the sum of the correct responses 
of examinees rather than through formulas designed to discourage guessing and to 
correct examinee scores for random guessing (Lord 1963).

For situations in which a battery of tests are administered under fixed total testing 
time, several ETS contributions have considered how to determine the length of 

1 Although the summary of Cleary’s (1966b) work in this chapter uses the test bias phrase actually 
used by Cleary, it should be acknowledged that more current descriptions of Cleary’s regression 
applications favor different phrases such as prediction bias, overprediction, and underprediction 
(e.g., Bridgeman et al. 2008). The emphasis of current descriptions on prediction accuracy allows 
for distinctions to be made between tests that are not necessarily biased but that may be used in 
ways that result in biased predictions.
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each test in ways that maximize the multiple correlation of the battery with an exter-
nal criterion. These developments have origins in Horst (1951b), but have been 
extended to a more general and sophisticated solution by Woodbury and Novick 
(1968). Further extensions deal with computing the composite scores of the battery 
as the sum of the scores of the unweighted tests in the battery rather than based on 
the regression weights (Jackson and Novick 1970). These methods have been exten-
sively applied and compared to suggest situations in which validity gains might be 
worthwhile for composites formed from optimal lengths and regression weights 
(Novick and Thayer 1969).

3.3  �Integrating Developments About Test Scores 
as Measurements and Test Scores as Predictors

The focus of this section is on ETS contributions that integrate and simultaneously 
apply measurement developments in Sect. 3.1 and the correlational and regression 
developments in Sect. 3.2. As previously stated, describing measurement and cor-
relational concepts as if they are completely independent is an oversimplification. 
Some of the reliability estimates in Sect. 3.1 explicitly incorporate test correlations. 
In Sect. 3.2, a review of algorithms by Novick and colleagues for determining the 
lengths of tests in a battery that maximize validity utilize classical test theory 
assumptions and test reliabilities, but ultimately produce regression and multiple 
correlation results based on the observed test and criterion scores (Jackson and 
Novick 1970; Novick and Thayer 1969; Woodbury and Novick 1968). The results 
by Novick and his colleagues are consistent with other results that have shown that 
observed-score regressions such as Eq. 3.18 can serve as optimal predictors of the 
true scores of a criterion (Holland and Hoskens 2003). What distinguishes this sec-
tion’s developments is that measurement, correlational, and regression concepts are 
integrated in ways that lead to fundamentally unique results.

Integrations of measurement concepts into correlations and regressions build 
upon historical developments that predate ETS. Spearman’s (1904b, 1910) use of 
classical test theory assumptions to derive an X,Y correlation disattenuated for X and 
Y’s measurement errors (assumed to be independent) is one major influence,

	

ρX Y

rel X rel Y

, .
( ) ( )
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Kelley’s (1923, 1947) regression estimate of the true scores of a variable from its 
observed scores is another influence,
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Equations 3.25 and 3.26 suggest that some types of analyses that utilize observed 
scores to compute correlations and regressions can be inaccurate due to measure-
ment errors of Y, X, or the combination of Y, X, and additional predictor variables 
(Moses 2012). Examples of analyses that can be rendered inaccurate when X is 
unreliable are covariance analyses that match groups based on X (Linn and Werts 
1973) and differential prediction studies that evaluate X’s bias (Linn and Werts 
1971). Lord (1960a) developed an approach for addressing unreliable X scores in 
covariance analyses. In Lord’s formulations, the standard covariance analysis model 
described in Eq. 3.23 is altered to produce an estimate of the covariance results that 
might be obtained based on a perfectly reliable X,
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

	
(3.27)

where 


βTX
 is estimated as slope disattenuated for the unreliability of X based on the 

classical test theory assumption of X having measurement errors independent of 
measurement errors for Y,
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and the bracketed term in Eq. 3.28 is a correction for sampling bias. Large sample 
procedures are used to obtain a sample estimate of the slope in Eq. 3.28 and produce 
a statistical significance procedure for evaluating Eq. 3.27.

Another ETS contribution integrating measurement, correlation, and regression 
is in the study of change (Lord 1962a). Regression procedures are described as valu-
able for estimating the changes of individuals on a measure obtained in a second 
time period, Y, while controlling for the initial statuses of the individuals in a first 
time period, X, Y – X. Noting that measurement errors can both deflate and inflate 
regression coefficients with respect to true differences, Lord proposed a multiple 
regression application to estimate true change from the observed measures, making 
assumptions that the measurement errors of X and Y are independent and have the 
same distributions,

	

 
 

T T Y Y Y X X XY X Y X X Y− = ( ) + − ( )  − ( ) − − ( ) µ β µ µ β µ| | ,
	

(3.29)

where the regression coefficients incorporate disattenuation for the unreliabilities of 
X and Y,
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Lord also showed that the reliability of the observed change can be estimated as 
follows (related to the Lord-McNemar estimate of true change, Haertel 2006), 
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(3.32)

Another ETS contribution, by Shelby Haberman, considers the question of 
whether subscores should be reported. This question integrates correlational and 
measurement concepts to determine if the true scores of subscore X are better esti-
mated in regressions on the observed scores of the subscore (such as Eq. 3.26), the 
observed scores of total test Y, or a combination of the X and Y observed scores 
(Haberman 2008). Extending the results of Lord and Novick (1968) and Holland 
and Hoskens (2003), versions of the prediction error variance for an X-to-Y regres-
sion, σ σ ρε

2 2 21= − Y X Y, , are produced for the prediction in Eq. 3.26 of the sub-
score’s true score from its observed score,

	
rel X rel XX( ) − ( ) σ 2 1 ,

	
(3.33)

and for the prediction from the observed total score, Y,

	
rel X X T YX

( ) − σ ρ2 21 , 	
(3.34)

The prediction error variance for the regression of the true scores of X on both X 
and Y is obtained in extensions of Eqs. 3.33 and 3.34,

	
rel X rel XX Y T XX

( ) − ( )  − σ ρ2 21 1 , . 	
(3.35)

where ρY T XX, .  is the partial correlation of the true score of X and the observed score 
of Y given the observed score of X. Estimates of the correlations in Eqs. 3.34 and 
3.35 are obtained somewhat like the disattenuated correlation in Eq. 3.25, but with 
modifications to account for subscore X being contained within total score Y (i.e., 
violations of the classical test theory assumptions of X and Y having independent 
measurement errors).

Comparisons of the prediction error variances from Eqs. 3.33, 3.34, and 3.35 
produce an indication for when the observed subscore has value for reporting (i.e., 
when Eq. 3.33 is less than Eqs. 3.34 and 3.35, such as when the subscore has high 

3  Psychometric Contributions: Focus on Test Scores



70

reliability and a moderate correlation with the total test score). Comparisons of 
Eqs. 3.33, 3.34 and 3.35 can also suggest when the total test score is a more accurate 
reflection of the true subscore (i.e., when Eq. 3.34 is less than Eq. 3.33, such as 
when the subscore has low reliability and/or a high correlation with the total test 
score). Haberman’s (2008) applications to real data from testing programs sug-
gested that the use of the observed scores of the total test is generally more precise 
than the use of the observed scores of the subscore and also is usually not apprecia-
bly worse than the combination of the observed scores of the subscore and the total 
test.

The final ETS contributions summarized in this section involve true-score esti-
mation methods that are more complex than Kelley’s (1923, 1947) linear regression 
(Eq. 3.26). Some of these more complex true-score regression estimates are based 
on the tau equivalent classical test theory model, in which frequency distributions 
are obtained from two or more tests assumed to be tau equivalent and these tests’ 
distributions are used to infer several moments of the tests’ true-score and error 
distributions (i.e., means, variances, skewness, kurtosis, and conditional versions of 
these; Lord 1959a). Other true-score regression estimates are based on invoking 
binomial assumptions about a single test’s errors and beta distribution assumptions 
about that test’s true scores (Keats and Lord 1962; Lord 1965). These developments 
imply regressions of true scores on observed scores that are not necessarily linear, 
though linearity does result when the true scores follow a beta distribution and the 
observed scores follow a negative hypergeometric distribution. The regressions 
reflect relationships among true scores and errors that are more complex than 
assumed in classical test theory, in which the errors are not independent of the true 
scores and for which attention cannot be restricted only to means, variances, and 
covariances. Suggested applications for these developments include estimating 
classification consistency and accuracy (Livingston and Lewis 1995), smoothing 
observed test score distributions (Hanson and Brennan 1990; Kolen and Brennan 
2004), producing interval estimates for true scores (Lord and Novick 1968), predict-
ing test norms (Lord 1962b), and predicting the bivariate distribution of two tests 
assumed to be parallel (Lord and Novick 1968).

3.4  �Discussion

The purpose of this chapter was to summarize more than 60 years of ETS psycho-
metric contributions pertaining to test scores. These contributions were organized 
into a section about the measurement properties of tests and developments of clas-
sical test theory, another section about the use of tests as predictors in correlational 
and regression relationships, and a third section based on integrating and applying 
measurement theories and correlational and regression analyses to address test-
score issues. Work described in the third section on the integrations of measurement 
and correlational concepts and their consequent applications, is especially relevant 
to the operational work of psychometricians on ETS testing programs. Various 

T. Moses



71

integrations and applications are used when psychometricians assess a testing pro-
gram’s alternate test forms with respect to their measurement and prediction proper-
ties, equate alternate test forms (Angoff 1971; Kolen and Brennan 2004), and 
employ adaptations of Cleary’s (1966b) test bias2 approach to evaluate the invari-
ance of test equating functions (Dorans and Holland 2000; Myers 1975). Other 
applications are used to help testing programs face increasing demand for changes 
that might be supported with psychometric methods based on the fundamental mea-
surement and regression issues about test scores covered in this chapter.

One unfortunate aspect of this undertaking is the large number of ETS psycho-
metric contributions that were not covered. These contributions are difficult to 
describe in terms of having a clear and singular focus on scores or other issues, but 
they might be accurately described as studies of the interaction of items and test 
scores. The view of test scores as a sum of items suggests several ways in which an 
item’s characteristics influence test-score characteristics. Some ETS contributions 
treat item and score issues almost equally and interactively in describing their rela-
tionships, having origins in Gulliksen’s (1950) descriptions of how item statistics 
influence test score means, standard deviations, reliability, and validity. ETS 
researchers such as Swineford, Lord, and Novick have clarified Gulliksen’s descrip-
tions through empirically estimated regression functions that predict test score stan-
dard deviations and reliabilities from correlations of items and test scores, through 
item difficulty statistics (Swineford 1959), and through mathematical functions 
derived to describe the influence of items with given difficulty levels on the moments 
of test-score distributions (Lord 1960b; Lord and Novick 1968). Other mathemati-
cal functions describe the relationships of the common factor of the items to the 
discrimination, standard error of measurement, and expected scores of the test (Lord 
1950b). Using item response theory (IRT) methods that focus primarily on items 
rather than scores, ETS researchers (see the chapter on ETS contributions to IRT in 
this volume) have explained the implications of IRT item models for test-score char-
acteristics, showing how observed test score distributions can be estimated from 
IRT models (Lord and Wingersky 1984) and showing how classical test theory 
results can be directly obtained from some IRT models (Holland and Hoskens 
2003).

The above contributions are not the only ones dealing with interactions between 
scores, items, and/or fairness. Similarly, advances such as differential item function-
ing (DIF) can be potentially described with respect to items, examinees, and item-
examinee interactions. Developments such as IRT and its application to adaptive 
testing can be described in terms of items and using item parameters to estimate 
examinees’ abilities as the examinees interact with and respond to the items. ETS 

2 Although the summary of Cleary’s (1966b) work in this chapter uses the test bias phrase actually 
used by Cleary, it should be acknowledged that more current descriptions of Cleary’s regression 
applications favor different phrases such as prediction bias, overprediction, and underprediction 
(e.g., Bridgeman et al. 2008). The emphasis of current descriptions on prediction accuracy allows 
for distinctions to be made between tests that are not necessarily biased but that may be used in 
ways that result in biased predictions.
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contributions to DIF and to IRT are just two of several additional areas of psycho-
metrics summarized in other chapters (Carlson and von Davier, Chap. 5, this 
volume; Dorans, Chap. 7, this volume).
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