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Chapter 2
A Review of Developments and Applications  
in Item Analysis

Tim Moses

This chapter summarizes contributions ETS researchers have made concerning the 
applications of, refinements to, and developments in item analysis procedures. The 
focus is on dichotomously scored items, which allows for a simplified presentation 
that is consistent with the focus of the developments and which has straightforward 
applications to polytomously scored items. Item analysis procedures refer to a set of 
statistical measures used by testing experts to review and revise items, to estimate 
the characteristics of potential test forms, and to make judgments about the quality 
of items and assembled test forms. These procedures and statistical measures have 
been alternatively characterized as conventional item analysis (Lord 1961, 1965a, 
b), traditional item analysis (Wainer 1989), analyses associated with classical test 
theory (Embretson and Reise 2000; Hambleton 1989; Tucker 1987; Yen and 
Fitzpatrick 2006), and simply item analysis (Gulliksen 1950; Livingston and Dorans 
2004). This chapter summarizes key concepts of item analysis described in the 
sources cited. The first section describes item difficulty and discrimination indices. 
Subsequent sections review discussions about the relationships of item scores and 
test scores, visual displays of item analysis, and the additional roles item analysis 
methods have played in various psychometric contexts. The key concepts described 
in each section are summarized in Table 2.1.
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Table 2.1  Summary key item analysis concepts

Item analysis 
concept Motivation

Description of 
application to item 
analysis

Description of 
application(s) to other 
psychometric 
questions

Average item 
score ( xi ) and 
reference average 
item score ( xi,2 )

Index for summarizing item 
difficulty

Gulliksen (1950), 
Horst (1933), Lord 
and Novick (1968), 
Thurstone (1925), 
and Tucker (1987)

DIF (Dorans and 
Kulick 1986); item 
context/order (Dorans 
and Lawrence 1990; 
Moses et al. 2007)

Delta (Δi) and 
equated delta

 ˆ
,e i2 1∆( ) 

Index for summarizing item 
difficulty with reduced 
susceptibility to score 
compression due to mostly 
high scores or mostly low 
scores

Brigham (1932), 
Gulliksen (1950), 
Holland and 
Thayer (1985), and 
Tucker (1987)

DIF (Holland and 
Thayer 1988); IRT 
comparisons (L. L. 
Cook et al. 1988)

Point biserial 
correlation

r x yi



point biserial ,( )





Index for summarizing item 
discrimination

Swineford (1936), 
Gulliksen (1950), 
and Lord and 
Novick (1968)

Biserial correlation

r x yi



biserial ,( )





Index for summarizing item 
discrimination with reduced 
susceptibility to examinee 
group differences and to 
dichotomous scoring

Fan (1952), 
Pearson (1909), 
Tucker (1987), 
Turnbull (1946), 
and Lord and 
Novick (1968)

r-Polyreg 
correlation 

r x yi



polyreg ,( )





Index for summarizing item 
discrimination with reduced 
susceptibility to examinee 
group differences, 
dichotomous scoring, and 
the difficulties of estimating 
the biserial correlation

Lewis et al.  
(n.d.) and 
Livingston and 
Dorans (2004)

Conditional 
average item score 
xik( )  estimated 

from raw data

Obtain a detailed description 
of an item’s functional 
relationship (difficulty and 
discrimination) with the 
criterion (usually a total test)

Thurstone (1925), 
Lord (1965a, b, 
1970), and  
Wainer (1989)

DIF (Dorans and 
Holland 1993); IRT 
comparisons (Sinharay 
2006)

Conditional 
average item 
scores xik( )  
estimated from 
raw data on 
percentile 
groupings of the 
total test scores

Obtain a detailed 
description of an item’s 
functional relationship 
(difficulty and 
discrimination) for a total 
test with reduced 
susceptibility to sample 
fluctuations

Turnbull (1946), 
Tucker (1987), and 
Wainer (1989)

Conditional 
average item 
scores xik( )  
estimated with 
kernel or other 
smoothing

Obtain a detailed description 
of an item’s functional 
relationship (difficulty and 
discrimination) for a total  
test with reduced 
susceptibility to sample 
fluctuations

Ramsay (1991) 
and Livingston and 
Dorans (2004)

DIF (Moses et al. 
2010); IRT 
comparisons (Moses 
2016)

Note. DIF differential item functioning, IRT item response theory
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2.1  �Item Analysis Indices

In their discussions of item analysis, ETS researchers Lord and Novick (1968, 
p. 327) and, two decades later, Wainer (1989, p. 2) regarded items as the building 
blocks of a test form being assembled. The assembly of a high-quality test form 
depends on assuring that the individual building blocks are sound. Numerical indi-
ces can be used to summarize, evaluate, and compare a set of items, usually with 
respect to their difficulties and discriminations. Item difficulty and discrimination 
indices can also be used to check for potential flaws that may warrant item revision 
prior to item use in test form assembly. The most well-known and utilized difficulty 
and discrimination indices of item analysis were developed in the early twentieth 
century (W. W. Cook 1932; Guilford 1936; Horst 1933; Lentz et al. 1932; Long and 
Sandiford 1935; Pearson 1909; Symonds 1929; Thurstone 1925). Accounts of ETS 
scientists Tucker (1987, p. ii), Livingston and Dorans (2004) have described how 
historical item analysis indices have been applied and adapted at ETS from the mid-
1940s to the present day.

2.1.1  �Item Difficulty Indices

In their descriptions of item analyses, Gulliksen (1950) and Tucker (1987) listed 
two historical indices of item difficulty that have been the focus of several applica-
tions and adaptations at ETS. These item difficulty indices are defined using the 
following notation:

i is a subscript indexing the i = 1 to I items on Test Y,
j is a subscript indexing the j = 1 to N examinees taking Test Y,
xij indicates a score of 0 or 1 on the ith dichotomously scored Item i from examinee 

j (all N examinees have scores on all I items).

The most well-known item difficulty index is the average item score, or, for 
dichotomously scored items, the proportion of correct responses, the “p-value” or 
“P+” (Gulliksen 1950; Hambleton 1989; Livingston and Dorans 2004; Lord and 
Novick 1968; Symonds 1929; Thurstone 1925; Tucker 1987; Wainer 1989):

	
x

N
xi

j

N

ij= ∑1
.
	

(2.1)

Estimates of the quantity defined in Eq. 2.1 can be obtained with several alterna-
tive formulas.1 A more complex formula that is the basis of developments described 
in Sect. 2.2.1 can be obtained based on additional notation, where.

1 Alternative expressions to the average item score computations shown in Eq. 2.1 are available in 
other sources. Expressions involving summations with respect to examinees are shown in Gulliksen 
(1950) and Lord and Novick (1968). More elaborate versions of Eq. 2.1 that address polytomously 
scored items and tests composed of both dichotomously and polytomously scored items have also 
been developed (J. Carlson, personal communication, November 6, 2013).
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k   is a subscript indexing the k = 0 to I possible scores of Test Y (yk),
p̂k  is the observed proportion of examinees obtaining test score yk,
xik   is the average score on Item i for examinees obtaining test score yk.

With the preceding notation, the average item score as defined in Eq. 2.1 can be 
obtained as

	
x p xi

k
k ik=∑  .

	

Alternative item difficulty indices that use a transformation based on the inverse 
of the cumulative distribution function (CDF) of the normal distribution for the xi  
in Eq. 2.1 have been proposed by ETS scientists (Gulliksen 1950; Horst 1933) and 
others (Symonds 1929; Thurstone 1925). The transformation based on the inverse 
of the CDF of the normal distribution is used extensively at ETS is the delta index 
developed by Brolyer (Brigham 1932; Gulliksen 1950):

	
ˆ ,∆i ix= − ( )−13 4 1Φ

	 (2.2)

where Φ−1(p) represents the inverse of the standard normal cumulative distribution 
corresponding to the pth percentile. ETS scientists Gulliksen (1950, p. 368), Fan 
(1952, p. 1), Holland and Thayer (1985, p. 1), and Wainer (1989, p. 7) have described 
deltas as having features that differ from those of average item scores:

•	 The delta provides an increasing expression of an item’s difficulty (i.e., is nega-
tively associated with the average item score).

•	 The increments of the delta index are less compressed for very easy or very dif-
ficult items.

•	 The sets of deltas obtained for a test’s items from two different examinee groups 
are more likely to be linearly related than the corresponding sets of average item 
scores.

Variations of the item difficulty indices in Eqs. 2.1 and 2.2 have been adapted and 
used in item analyses at ETS to address examinee group influences on item diffi-
culty indices. These variations have been described both as actual item difficulty 
parameters (Gulliksen 1950, pp. 368–371) and as adjustments to existing item dif-
ficulty estimates (Tucker 1987, p. iii). One adjustment is the use of a linear function 
to transform the mean and standard deviation of a set of D̂i  values from one exam-
inee group to this set’s mean and standard deviation from the examinee group of 
interest (Gulliksen 1950; Thurstone 1925, 1947; Tucker 1987):

	

ˆ ˆ ˆˆ

ˆ
., .,

.,

., , .,e i i2 1 2
2

1 1 1∆ ∆∆
∆

∆
∆( ) = +

( )
( )

−( )σ
σ

	

(2.3)
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Equation 2.3 shows that the transformation of Group 1’s item deltas to the scale 
of Group 2’s deltas, ˆ ,e i2 1∆( ) , is obtained from the averages, D.,1  and D.,2 , and 
standard deviations, ˆ.,σ 1 ∆( )  and ˆ.,σ 2 ∆( ) , of the groups’ deltas. The “mean sigma” 
adjustment in Eq. 2.3 has been exclusively applied to deltas (i.e., “delta equating”; 
Gulliksen 1950; Tucker 1987, p. ii) due to the higher likelihood of item deltas to 
reflect linear relationships between the deltas obtained from two examinee groups 
on the same set of items. Another adjustment uses Eq. 2.1 to estimate the average 
item scores for an examinee group that did not respond to those items but has avail-
able scores and p̂k  estimates on a total test (e.g., Group 2). Using Group 2’s p̂k  
estimates and the conditional average item scores from Group 1, which actually did 
respond to the items and also has scores on the same test as Group 2 (Livingston 
and Dorans 2004; Tucker 1987), the estimated average item score for Item i in 
Group 2 is

	
x p xi

k
k ik, , , .2 2 1= ∑ 

	
(2.4)

The Group 2 adjusted or reference average item scores produced with Eq. 2.4 can 
be subsequently used with Eq. 2.2 to obtain delta estimates for Group 2.

Other measures have been considered as item difficulty indices in item analyses 
at ETS but have not been used as extensively as those in Eqs. 2.1, 2.2, 2.3, and 2.4. 
The motivation for considering the additional measures was to expand the focus of 
Eqs. 2.1, 2.2, and 2.3 beyond item difficulty to address the measurement heteroge-
neity that would presumably be reflected in relatively low correlations with other 
items, test scores, or assumed underlying traits (Gulliksen 1950, p.  369; Tucker 
1948, 1987, p. iii). Different ways to incorporate items’ biserial correlations 
(described in Sect. 2.1.2) have been considered, including the estimation of item–
test regressions to identify the test score that predicts an average item score of 
0.50 in an item (Gulliksen 1950). Other proposals to address items’ measurement 
heterogeneity were attempts to incorporate heterogeneity indices into difficulty 
indices, such as by conducting the delta equating of Eq. 2.3 after dividing the items’ 
deltas by the items’ biserial correlations (Tucker 1948) and creating alternative item 
difficulty indices from the parameter estimates of three-parameter item characteris-
tic curves (Tucker 1981). These additional measures did not replace delta equating 
in historical ETS practice, partly because of the computational and numerical diffi-
culties in estimating biserial correlations (described later and in Tucker 1987, p. iii), 
accuracy loss due to computational difficulties in estimating item characteristic 
curves (Tucker 1981), and interpretability challenges (Tucker 1987, p. vi). Variations 
of the delta statistic in Eq. 2.2 have been proposed based on logistic cumulative 
functions rather than normal ogives (Holland and Thayer 1985). The potential ben-
efits of logistic cumulative functions include a well-defined standard error estimate, 
odds ratio interpretations, and smoother and less biased estimation. These benefits 
have not been considered substantial enough to warrant a change to wide use of 
logistic cumulative functions, because the difference between the values of the 
logistic cumulative function and the normal ogive cumulative function is small 
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(Haley, cited in Birnbaum 1968, p.  399). In other ETS research by Olson, 
Scheuneman, and Grima (1989), proposals were made to study items’ difficulties 
after exploratory and confirmatory approaches are used to categorize items into sets 
based on their content, context, and/or task demands.

2.1.2  �Item Discrimination Indices

Indices of item discrimination summarize an item’s relationship with a trait of inter-
est. In item analysis, the total test score is almost always used as an approximation 
of the trait of interest. On the basis of the goals of item analysis to evaluate items, 
items that function well might be distinguished from those with flaws based on 
whether the item has a positive versus a low or negative association with the total 
score. One historical index of the item–test relationship applied in item analyses at 
ETS is the product moment correlation (Pearson 1895; see also Holland 2008; 
Traub 1997):

	

ˆ
ˆ

ˆ ˆ
,r x y

x y

x y
i

i

i

,
,

( ) = ( )
( ) ( )
σ

σ σ
	

(2.5)

where σ̂ x yi ,( ) , σ̂ xi( ) , and σ̂ y( )  denote the estimated covariance and standard 
deviations of the item scores and test scores. For the dichotomously scored items of 
interest in this chapter, Eq. 2.5 is referred to as a point biserial correlation, which 
may be computed as

	

r x y N
N x y x y

x x y
i

k k ik k i

i i





point biserial ,( ) =
−

−( ) ( )

∑1

1 σ
,

	

(2.6)

where N and Nk denote the sample sizes for the total examinee group and for the 
subgroup of examinees obtaining total score yk and xi  and y  are the means of Item 
i and the test for the total examinee group. As described in Sect. 2.2.1, the point 
biserial correlation is a useful item discrimination index due to its direct relationship 
with respect to test score characteristics.

In item analysis applications, ETS researcher Swineford (1936) described how 
the point biserial correlation can be a “considerably lowered” (p. 472) measure of 
item discrimination when the item has an extremely high or low difficulty value. 
The biserial correlation (Pearson 1909) addresses the lowered point biserial correla-
tion based on the assumptions that (a) the observed scores of Item i reflect an artifi-
cial dichotomization of a continuous and normally distributed trait (z), (b) y is 
normally distributed, and (c) the regression of y on z is linear. The biserial correla-
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tion can be estimated in terms of the point biserial correlation and is itself an esti-
mate of the product moment correlation of z and y:

	

ˆ ˆ ˆr x y r x y
x x

q
ri i

i i

i
zybiserial point biserial, ,( ) = ( )

−( )
( )

≈
1

ϕ 
,,

	
(2.7)

where ϕ qi








  is the density of the standard normal distribution at q̂i  and where q̂i  

is the assumed and estimated point that dichotomizes z into xi (Lord and Novick 
1968). Arguments have been made for favoring the biserial correlation estimate over 
the point biserial correlation as a discrimination index because the biserial correla-
tion is not restricted in range due to Item i’s dichotomization and because the bise-
rial correlation is considered to be more invariant with respect to examinee group 
differences (Lord and Novick 1968, p. 343; Swineford 1936).

Despite its apparent advantages over the point biserial correlation (described ear-
lier), ETS researchers and others have noted several drawbacks to the biserial cor-
relation. Some of the potential drawbacks pertain to the computational complexities 

the ϕ q̂i( )  in Eq. 2.7 presented for item analyses conducted prior to modern com-

puters (DuBois 1942; Tucker 1987). Theoretical and applied results revealed the 
additional problem that estimated biserial correlations could exceed 1 (and be lower 
than −1, for that matter) when the total test scores are not normally distributed (i.e., 
highly skewed or bimodal) and could also have high standard errors when the popu-
lation value is very high (Lord and Novick 1968; Tate 1955a, b; Tucker 1987).

Various attempts have been made to address the difficulties of computing the 
biserial correlation. Prior to modern computers, these attempts usually involved dif-
ferent uses of punch card equipment (DuBois 1942; Tucker 1987). ETS researcher 
Turnbull (1946) proposed the use of percentile categorizations of the total test 
scores and least squares regression estimates of the item scores on the categorized 
total test scores to approximate Eq. 2.7 and also avoid its computational challenges. 
In other ETS work, lookup tables were constructed using the average item scores of 
the examinee groups falling below the 27th percentile or above the 73rd percentile 
on the total test and invoking bivariate normality assumptions (Fan 1952). Attempts 
to normalize the total test scores resulted in partially improved biserial correlation 
estimates but did not resolve additional estimation problems due to the discreteness 
of the test scores (Tucker 1987, pp. ii–iii, v). With the use of modern computers, 
Lord (1961) used simulations to evaluate estimation alternatives to Eq. 2.7, such as 
those proposed by Brogden (1949) and Clemens (1958). Other correlations based 
on maximum likelihood, ad hoc, and two-step (i.e., combined maximum likelihood 
and ad hoc) estimation methods have also been proposed and shown to have accura-
cies similar to each other in simulation studies (Olsson, Drasgow, and Dorans 1982).

The biserial correlation estimate eventually developed and utilized at ETS is 
from Lewis, Thayer, and Livingston (n.d.; see also Livingston and Dorans 2004). 
Unlike the biserial estimate in Eq. 2.7, the Lewis et al. method can be used with 
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dichotomously or polytomously scored items, produces estimates that cannot 
exceed 1, and does not rely on bivariate normality assumptions. This correlation has 
been referred to as an r-polyreg correlation, an r-polyserial estimated by regression 
correlation (Livingston and Dorans 2004, p. 14), and an r-biserial correlation for 
dichotomously scored items. The correlation is based on the assumption that the 
item scores are determined by the examinee’s position on an underlying latent con-
tinuous variable z. The distribution of z for candidates with a given criterion score y 
is assumed to be normal with mean βiy and variance 1, implying the following probit 
regression model:

	
P x y P z y a yi i i i≤( ) = ≤( ) = −( )1 α ϕ β ,

	 (2.8)

where αi is the value of z corresponding to xi = 1, Φ is the standard normal cumula-
tive distribution function, and ai and βi are intercept and slope parameters. Using the 
maximum likelihood estimate of βi, the r-polyreg correlation can be computed as

	

ˆ
ˆ ˆ

ˆ ˆ
,r x yi

i y

i y

polyreg ,( ) =
+

β σ

β σ

2 2

2 2 1
	

(2.9)

where σ̂ y  is the standard deviation of scores on criterion variable y and is estimated 
in the same group of examinees for which the polyserial correlation is to be esti-
mated. In Olsson et al.’s (1982) terminology, the r̂ x yipolyreg ,( )  correlation might be 
described as a two-step estimator that uses a maximum likelihood estimate of βi and 
the traditional estimate of the standard deviation of y.

Other measures of item discrimination have been considered at ETS but have 
been less often used than those in Eqs. 2.5, 2.6, 2.7 and 2.9. In addition to describing 
relationships between total test scores and items’ correct/incorrect responses, ETS 
researcher Myers (1959) proposed the use of biserial correlations to describe rela-
tionships between total test scores and distracter responses and between total test 
scores and not-reached responses. Product moment correlations are also sometimes 
used to describe and evaluate an item’s relationships with other items (i.e., phi cor-
relations; Lord and Novick 1968). Alternatives to phi correlations have been devel-
oped to address the effects of both items’ dichotomizations (i.e., tetrachoric 
correlations; Lord and Novick 1968; Pearson 1909). Tetrachoric correlations have 
been used less extensively than phi correlations for item analysis at ETS, possibly 
due to their assumption of bivariate normality and their lack of invariance advan-
tages (Lord and Novick 1968, pp. 347–349). Like phi correlations, tetrachoric cor-
relations may also be infrequently used as item analysis measures because they 
describe the relationship of only two test items rather than an item and the total test.
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2.2  �Item and Test Score Relationships

Discussions of the relationships of item and test score characteristics typically arise 
in response to a perceived need to expand the focus of item indices. For example, in 
Sect. 2.1.2, item difficulty indices have been noted as failing to account for items’ 
measurement heterogeneity (see also Gulliksen 1950, p. 369). Early summaries and 
lists of item indices (W. W. Cook 1932; Guilford 1936; Lentz et al. 1932; Long and 
Sandiford 1935; Pearson 1909; Richardson 1936; Symonds 1929), and many of the 
refinements and developments of these item indices from ETS, can be described 
with little coverage of their implications for test score characteristics. Even when 
test score implications have been covered in historical discussions, this coverage 
has usually been limited to experiments about how item difficulties relate to one or 
two characteristics of test scores (Lentz et al. 1932; Richardson 1936) or to “arbi-
trary indices” (Gulliksen 1950, p. 363) and “arbitrarily defined” laws and proposi-
tions (Symonds 1929, p.  482). In reviewing the sources cited earlier, Gulliksen 
(1950) commented that “the striking characteristic of nearly all the methods 
described is that no theory is presented showing the relationship between the valid-
ity or reliability of the total test and the method of item analysis suggested” (p. 363).

Some ETS contributions to item analysis are based on describing the relation-
ships of item characteristics to test score characteristics. The focus on relationships 
of items and test score characteristics was a stated priority of Gulliksen’s (1950) 
review of item analysis: “In developing and investigating procedures of item analy-
sis, it would seem appropriate, first, to establish the relationship between certain 
item parameters and the parameters of the total test” (p.  364). Lord and Novick 
(1968) described similar priorities in their discussion of item analysis and indices: 
“In mental test theory, the basic requirement of an item parameter is that it have a 
definite (preferably a clear and simple) relationship to some interesting total-test-
score parameter” (p. 328). The focus of this section’s discussion is summarizing 
how the relationships of item indices and test form characteristics were described 
and studied by ETS researchers such as Green Jr. (1951), Gulliksen (1950), 
Livingston and Dorans (2004), Lord and Novick (1968), Sorum (1958), Swineford 
(1959), Tucker (1987), Turnbull (1946), and Wainer (1989).

2.2.1  �Relating Item Indices to Test Score Characteristics

A test with scores computed as the sum of I dichotomously scored items has four 
characteristics that directly relate to average item scores and point biserial correla-
tions of the items (Gulliksen 1950; Lord and Novick 1968). These characteristics 
include Test Y’s mean (Gulliksen 1950, p. 367, Eq. 5; Lord and Novick 1968, p. 328, 
Eq. 15.2.3),

	
y x

i
i= ∑ ,

	
(2.10)
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Test Y’s variance (Gulliksen 1950, p. 377, Equation 19; Lord and Novick 1968, 
p. 330, Equations 15.3.5 and 15.3.6),

	
ˆ ˆ ˆ ˆ ,σ σ σ2 1y r x y x x y x y

i
i i i

i
i( ) = ( ) −( ) ( ) = ( )∑ ∑point biserial , ,

	
(2.11)

Test Y’s alpha or KR-20 reliability (Cronbach 1951; Gulliksen 1950, pp. 378–
379, Eq. 21; Kuder and Richardson 1937; Lord and Novick 1968, p. 331, Eq. 15.3.8),

	

r̂ el y
I

I

x x

r x y x

i
i i

i
i i

( ) =
−







 −

−( )

( ) −

∑

∑
1

1
1

1

point biserial , xxi( )

































2
,

	

(2.12)

and Test Y’s validity as indicated by Y’s correlation with an external criterion, W 
(Gulliksen 1950, pp. 381–382, Eq. 24; Lord and Novick 1968, p. 332, Eq. 15.4.2),

	

ˆ
ˆ

ˆ
r

r x w x x

r x
wy

i
i i i

i
i

=
( ) −( )∑

∑

point biserial

point biserial

,

,

1

yy x xi i( ) −( )1
.

	

(2.13)

Equations 2.10–2.13 have several implications for the characteristics of an 
assembled test. The mean of an assembled test can be increased or reduced by 
including easier or more difficult items (Eq. 2.10). The variance and reliability of an 
assembled test can be increased or reduced by including items with higher or lower 
item–test correlations (Eqs.  2.11 and 2.12, assuming fixed item variances). The 
validity of an assembled test can be increased or reduced by including items with 
lower or higher item–test correlations (Eq. 2.13).

The test form assembly implications of Eqs. 2.10, 2.11, 2.12 and 2.13 have been 
the focus of additional research at ETS. Empirical evaluations of the predictions of 
test score variance and reliability from items’ variances and correlations with test 
scores suggest that items’ correlations with test scores have stronger influences than 
items’ variances on test score variance and reliability (Swineford 1959). Variations 
of Eq. 2.12 have been proposed that use an approximated linear relationship to pre-
dict test reliability from items’ biserial correlations with test scores (Fan, cited in 
Swineford 1959). The roles of item difficulty and discrimination have been described 
in further detail for differentiating examinees of average ability (Lord 1950) and for 
classifying examinees of different abilities (Sorum 1958). Finally, the correlation of 
a test and an external criterion shown in Eq. 2.13 has been used to develop methods 
of item selection and test form assembly based on maximizing test validity (Green 
1951; Gulliksen 1950; Horst 1936).

T. Moses



29

2.2.2  �Conditional Average Item Scores

In item analyses, the most detailed descriptions of relationships of items and test 
scores take the form of xik , the average item score conditional on the kth score of total 
test Y (i.e., the discussion immediately following Eq.  2.1). ETS researchers have 
described these conditional average item scores as response curves (Livingston and 
Dorans 2004, p. 1), functions (Wainer 1989, pp. 19–20), item–test regressions (Lord 
1965b, p. 373), and approximations to item characteristic curves (Tucker 1987, p. ii). 
Conditional average item scores tend to be regarded as one of the most fundamental 
and useful outputs of item analysis, because the xik  are useful as the basis to calcu-
late in item difficulty indices such as the overall average item score (the variation of 
Eq. 2.1), item difficulties estimated for alternative examinee groups (Eq. 2.4), and 
item discrimination indices such as the point biserial correlation (Eq. 2.6). Because 
the 1− xik  scores are also related to the difficulty and discrimination indices, the 
percentages of examinees choosing different incorrect (i.e., distracter) options or 
omitting the item making up the 1− xik  scores can provide even more information 
about the item. Item reviews based on conditional average item scores and condi-
tional proportions of examinees choosing distracters and omitting the item involve 
relatively detailed presentations of individual items rather than tabled listings of all 
items’ difficulty and discrimination indices for an entire test. The greater detail con-
veyed in conditional average item scores has prompted consideration of the best 
approaches to estimation and display of results.

The simplest and most direct approach to estimating and presenting xik  and 
1− xik  is based on the raw, unaltered conditional averages at each score of the total 
test. This approach has been considered in very early item analyses (Thurstone 
1925) and also in more current psychometric investigations by ETS researchers 
Dorans and Holland (1993), Dorans and Kulick (1986), and Moses et al. (2010). 
Practical applications usually reveal that raw conditional average item scores are 
erratic and difficult to interpret without reference to measures of sampling instabili-
ties (Livingston and Dorans 2004, p. 12).

Altered versions of xik  and 1− xik  have been considered and implemented in 
operational and research contexts at ETS. Operational applications favored group-
ing total test scores into five or six percentile categories, with equal or nearly equal 
numbers of examinees, and reporting conditional average item scores and percent-
ages of examinees choosing incorrect options across these categories (Tucker 1987; 
Turnbull 1946; Wainer 1989). Other, less practical alterations of the xik  were con-
sidered in research contexts based on very large samples (N  >  100,000), where, 
rather than categorizing the yk scores, the xik  values were only presented at total test 
scores with more than 50 examinees (Lord 1965b). Questions remained about how 
to present xik  and 1− xik  at the uncategorized scores of the total test while also con-
trolling for sampling variability (Wainer 1989, pp. 12–13).

Other research about item analysis has considered alterations of xik  and 1− xik  
(Livingston and Dorans 2004; Lord 1965a, b; Ramsay 1991). Most of these altera-
tions involved the application of models and smoothing methods to reveal trends 
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and eliminate irregularities due to sampling fluctuations in xik  and 1− xik . Relatively 
strong mathematical models such as normal ogive and logistic functions have been 
found to be undesirable in theoretical discussions (i.e., the average slope of all test 
items’ conditional average item scores does not reflect the normal ogive model; 
Lord 1965a) and in empirical investigations (Lord 1965b). Eventually,

the developers of the ETS system chose a more flexible approach—one that allows the 
estimated response curve to take the shape implied by the data. Nonmonotonic curves, such 
as those observed with distracters, can be easily fit by this approach. (Livingston and 
Dorans 2004, p. 2)

This approach utilizes a special version of kernel smoothing (Ramsay 1991) to 
replace each xik  or 1− xik  value with a weighted average of all k = 0 to I values:
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The wkl values of Eq. 2.14 are Gaussian weights used in the averaging,
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where exp denotes exponentiation, nl is the sample size at test score yl, and h is a 
kernel smoothing bandwidth parameter determining the extent of smoothing (usu-
ally set at 1.1N−0.2; Ramsay 1991). The rationale of the kernel smoothing procedure 
is to smooth out sampling irregularities by averaging adjacent xik  values, but also to 
track the general trends in xik  by giving the largest weights to the xik  values at y 
scores closest to yk and at y scores with relatively large conditional sample sizes, nl. 
As indicated in the preceding Livingston and Dorans (2004) quote, the kernel 
smoothing in Eqs. 2.14 and 2.15 is also applied to the conditional percentages of 
examinees omitting and choosing each distracter that contribute to 1− xik . Standard 
errors and confidence bands of the raw and kernel-smoothed versions of xik  values 
have been described and evaluated in Lewis and Livingston (2004) and Moses et al. 
(2010).

2.3  �Visual Displays of Item Analysis Results

Presentations of item analysis results have reflected increasingly refined integra-
tions of indices and conditional response information. In this section, the figures 
and discussions from the previously cited investigations are reviewed to trace the 
progression of item analysis displays from pre-ETS origins to current ETS 
practice.
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The original item analysis example is Thurstone’s (1925) scaling study for items 
of the Binet–Simon test, an early version of the Stanford–Binet test (Becker 2003; 
Binet and Simon 1905). The Binet–Simon and Stanford–Binet intelligence tests 
represent some of the earliest adaptive tests, where examiners use information they 
have about an examinee’s maturity level (i.e., mental age) to determine where to 
begin testing and then administer only those items that are of appropriate difficulty 
for that examinee. The use of multiple possible starting points, and subsets of items, 
results in limited test administration time and maximized information obtained 
from each item but also presents challenges in determining how items taken by dif-
ferent examinees translate into a coherent scale of score points and of mental age 
(Becker 2003).

Thurstone (1925) addressed questions about the Binet–Simon test scales by 
developing and applying the item analysis methods described in this chapter to 
Burt’s (1921) study sample of 2764 examinees’ Binet–Simon test and item scores. 
Some steps of these analyses involved creating graphs of each of the test’s 65 items’ 
proportions correct, xik , as a function of examinees’ chronological ages, y. Then 
each item’s “at par” (p. 444) age, yk, is found such that 50% of examinees answered 
the item correctly, xik = 0 5. . Results of these steps for a subsample of the items were 
presented and analyzed in terms of plotted xik  values (reprinted in Fig. 2.1).

Thurstone’s (1925) analyses included additional steps for mapping all 65 items’ 
at par ages to an item difficulty scale for 3.5-year-old examinees:

	1.	 First the proportions correct of the items taken by 3-year-old, 4-year-old, …, 
14-year-old examinees were converted into indices similar to the delta index 
shown in Eq.  2.2. That is, Thurstone’s deltas were computed as 
∆ Φ


ik ikx= − ( ) ( )−0 1 1 , where the i subscript references the item and the k sub-
script references the age group responding to the item.

Fig. 2.1  Thurstone’s (1925) Figure 5, which plots proportions of correct response (vertical axis) 
to selected items from the Binet–Simon test among children in successive age groups (horizontal 
axis)
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	2.	 For the sets of common items administered to two adjacent age groups (e.g., 
items administered to 8-year-old examinees and to 7-year-old examinees), the 
two sets of average item scores, xi7  and xi8 , were converted into deltas, D̂i7  and 
D̂i8

.
	3.	 The means and standard deviations of the two sets of deltas from the common 

items administered to two adjacent age groups (e.g., 7- and 8-year-old examin-
ees) were used with Eq. 2.3 to transform the difficulties of items administered to 
older examinees to the difficulty scale of items administered to the younger 
examinees,
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	4.	 Steps 1–3 were repeated for the two sets of items administered to adjacent age 
groups from ages 3 to 14 years, with the purpose of developing scale transforma-
tions for the item difficulties observed for each age group to the difficulty scale 
of 3.5-year-old examinees.

	5.	 The transformations obtained in Steps 1–4 for scaling the item difficulties at each 
age group to the difficulty scale of 3.5-year-old examinees were applied to items’ 
D̂ik

 and xik  estimates nearest to the items’ at par ages. For example, with items 
at an at par age of 7.9, two scale transformations would be averaged, one for 
converting the item difficulties of 7-year-old examinees to the difficulty scale of 
3.5-year-old examinees and another for converting the item difficulties of 8-year-
old examinees to the difficulty scale of 3.5-year-old examinees. For items with 
different at par ages, the scale transformations corresponding to those age groups 
would be averaged and used to convert to the difficulty scale of 3.5-year-old 
examinees.

Thurstone (1925) used Steps 1–5 to map all 65 of the Binet–Simon test items 
to a scale and to interpret items’ difficulties for 3.5-year-old examinees (Fig. 2.2). 
Items 1–7 are located to the left of the horizontal value of 0 in Fig. 2.2, indicating 
that these items are relatively easy (i.e., have xi3 5.  values greater than 0.5 for the 
average 3.5-year-old examinee). Items to the right of the horizontal value of 0 in 
Fig. 2.2 are relatively difficult (i.e., have xi3 5.  values less than 0.5 for the average 
3.5-year-old examinee). The items in Fig. 2.2 at horizontal values far above 0 
(i.e., greater than the mean item difficulty value of 0 for 3.5-year-old examinees 
by a given number of standard deviation units) are so difficult that they would not 
actually be administered to 3.5-year-old examinees. For example, Item 44 was 
actually administered to examinees 7 years old and older, but this item corresponds 
to a horizontal value of 5 in Fig. 2.2, implying that its proportion correct is esti-
mated as 0.5 for 3.5-year-old examinees who are 5 standard deviation units more 
intelligent than the average 3.5-year-old examinee. The presentation in Fig. 2.2 
provided empirical evidence that allowed Thurstone (1925) to describe the limi-
tations of assembled forms of Burt–Simon items for measuring the intelligence 
of examinees at different ability levels and ages: “…the questions are unduly 
bunched at certain ranges and rather scarce at other ranges” (p. 448). The methods 
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Thurstone (1925) developed, and displayed in Figs. 2.1 and 2.2, were adapted 
and applied in item analysis procedures used at ETS (Gulliksen 1950, p. 368; 
Tucker 1987, p. ii).

Turnbull’s (1946) presentation of item analysis results for an item from a 1946 
College Entrance Examination Board test features an integration of tabular and 
graphical results, includes difficulty and discrimination indices, and also shows the 
actual multiple-choice item being analyzed (Fig.  2.3). The graph and table in 
Fig. 2.3 convey the same information, illustrating the categorization of the total test 
score into six categories with similar numbers of examinees (nk = 81 or 82). Similar 
to Thurstone’s conditional average item scores (Fig. 2.1), Turnbull’s graphical pre-
sentation is based on a horizontal axis variable with few categories. The small num-
ber of categories limits sampling variability fluctuations in the conditional average 
item scores, but these categories are labeled in ways that conceal the actual total test 
scores corresponding to the conditional average item scores. In addition to present-
ing conditional average item scores, Turnbull’s presentation reports conditional per-
centages of examinees choosing the item’s four distracters. Wainer (1989, p. 10) 
pointed out that the item’s correct option is not directly indicated but must be 
inferred to be the option with conditional scores that monotonically increase with 
the criterion categories. The item’s overall average score (percentage choosing the 
right response) and biserial correlation, as well as initials of the staff who graphed 
and checked the results, are also included.

A successor of Turnbull’s (1946) item analysis is the ETS version shown in 
Fig. 2.4 for a 1981 item from the PSAT/NMSQT® test (Wainer 1989).2 The presenta-
tion in Fig. 2.4 is completely tabular, with the top table showing conditional sample 

2 In addition to the item analysis issues illustrated in Fig. 2.4 and in Wainer (1989), this particular 
item was the focus of additional research and discussion, which can be found in Wainer (1983).

Fig. 2.2  Thurstone’s (1925) Figure 6, which represents Binet–Simon test items’ average difficulty 
on an absolute scale

2  A Review of Developments and Applications in Item Analysis



34

sizes of examinees choosing the correct option, the distracters, and omitting the 
item, at five categories of the total test scores (Tucker 1987). The lower table in 
Fig. 2.4 shows additional overall statistics such as sample sizes and PSAT/NMSQT 
scores for the group of examinees choosing each option and the group omitting the 
item, overall average PSAT/NMSQT score for examinees reaching the item (MTOTAL), 
observed deltas (ΔO), deltas equated to a common scale using Eq. 2.3 (i.e., “equated 
deltas,” ΔE), percentage of examinees responding to the item (PTOTAL), percentage of 
examinees responding correctly to the item (P+), and the biserial correlation (rbis). 
The lower table also includes an asterisk with the number of examinees choosing 

Fig. 2.3  Turnbull’s (1946) Figure  1, which reports a multiple-choice item’s normalized graph 
(right) and table (left) for all of its response options for six groupings of the total test score
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Option C to indicate that Option C is the correct option. Wainer used Turnbull’s item 
presentation (Fig. 2.3) as a basis for critiquing the presentation of Fig. 2.4, suggest-
ing that Fig.  2.4 could be improved by replacing the tabular presentation with a 
graphical one and also by including the actual item next to the item analysis results.

The most recent versions of item analyses produced at ETS are presented in 
Livingston and Dorans (2004) and reprinted in Figs. 2.5–2.7. These analysis presen-
tations include graphical presentations of conditional percentages choosing the 
item’s correct option, distracters, omits, and not-reached responses at individual 
uncategorized criterion scores. The dashed vertical lines represent percentiles of the 
score distribution where the user can choose which percentiles to show (in this case, 
the 20th, 40th, 60th, 80th, and 90th percentiles). The figures’ presentations also 
incorporate numerical tables to present overall statistics for the item options and 
criterion scores as well as observed item difficulty indices, item difficulty indices 
equated using Eqs. 2.3 and 2.4 (labeled as Ref. in the figures), r-biserial correlations 
( r̂ x yipolyreg ,( ) ; Eq. 2.9), and percentages of examinees reaching the item. Livingston 
and Dorans provided instructive discussion of how the item analysis presentations 
in Figs.  2.5–2.7 can reveal the typical characteristics of relatively easy items 
(Fig. 2.5), items too difficult for the intended examinee population (Fig. 2.6), and 
items exhibiting other problems (Fig. 2.7).

The results of the easy item shown in Fig. 2.5 are distinguished from those of the 
more difficult items in Figs. 2.6 and 2.7 in that the percentages of examinees choos-
ing the correct option in Fig. 2.5 is 50% or greater for all examinees, and the per-
centages monotonically increase with the total test score. The items described in 
Figs. 2.6 and 2.7 exhibit percentages of examinees choosing the correct option that 
do not obviously rise for most criterion scores (Fig. 2.6) or do not rise more clearly 
than an intended incorrect option (Fig. 2.7). Livingston and Dorans (2004) inter-
preted Fig. 2.6 as indicative of an item that is too difficult for the examinees, where 
examinees do not clearly choose the correct option, Option E, at a higher rate than 
distracter C, except for the highest total test scores (i.e., the best performing exam-

Fig. 2.4  Wainer’s (1989) Exhibit 1, which illustrates a tabular display of classical item indices for 
a PSAT/NMSQT test’s multiple-choice item’s five responses and omitted responses from 1981
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Fig. 2.5  Livingston and Dorans’s (2004) Figure 1, which demonstrates classical item analysis 
results currently used at ETS, for a relatively easy item

Fig. 2.6  Livingston and Dorans’s (2004) Figure 5, which demonstrates classical item analysis 
results currently used at ETS, for a relatively difficult item
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inees). Figure 2.7 is interpreted as indicative of an item that functions differently 
from the skill measured by the test (Livingston and Dorans 2004), where the prob-
ability of answering the item correctly is low for examinees at all score levels, where 
it is impossible to identify the correct answer (D) from the examinee response data, 
and where the most popular response for most examinees is to omit the item. 
Figures 2.6 and 2.7 are printed with statistical flags that indicate their problematic 
results, where the “r” flags indicate r-biserial correlations that are very low and even 
negative and the “D” flags indicate that high-performing examinees obtaining high 
percentiles of the criterion scores are more likely to choose one or more incorrect 
options rather than the correct option.

2.4  �Roles of Item Analysis in Psychometric Contexts

2.4.1  �Differential Item Functioning, Item Response Theory, 
and Conditions of Administration

The methods of item analysis described in the previous sections have been used for 
purposes other than informing item reviews and test form assembly with dichoto-
mously scored multiple-choice items. In this section, ETS researchers’ applications 
of item analysis to psychometric contexts such as differential item functioning 

Fig. 2.7  Livingston and Dorans’s (2004) Figure 7, which demonstrates classical item analysis 
results currently used at ETS, for a problematic item
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(DIF), item response theory (IRT), and evaluations of item order and context effects 
are summarized. The applications of item analysis in these areas have produced 
results that are useful supplements to those produced by the alternative psychomet-
ric methods.

2.4.2  �Subgroup Comparisons in Differential Item Functioning

Item analysis methods have been applied to compare an item’s difficulty for differ-
ent examinee subgroups. These DIF investigations focus on “unexpected” perfor-
mance differences for examinee subgroups that are matched in terms of their overall 
ability or their performance on the total test (Dorans and Holland 1993, p. 37). One 
DIF procedure developed at ETS is based on evaluating whether two subgroups’ 
conditional average item scores differ from 0 (i.e., standardization; Dorans, and 
Kulick 1986):

	 x x k Iik ik, , , , , .1 2 0 0− ≠ = … 	 (2.16)

Another statistical procedure applied to DIF investigations is based on evaluating 
whether the odds ratios in subgroups for an item i differ from 1 (i.e., the Mantel–
Haenszel statistic; Holland and Thayer 1988; Mantel and Haenszel 1959):
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Most DIF research and investigations focus on averages of Eq. 2.16 with respect 
to one “standardization” subgroup’s total score distribution (Dorans and Holland 
1993, pp. 48–49) or averages of Eq. 2.17 with respect to the combined subgroups’ 
test score distributions (Holland and Thayer 1988, p. 134). Summary indices cre-
ated from Eqs. 2.16 and 2.17 can be interpreted as an item’s average difficulty dif-
ference for the two matched or standardized subgroups, expressed either in terms of 
the item’s original scale (like Eq. 2.1) or in terms of the delta scale (like Eq. 2.2; 
Dorans and Holland 1993).

DIF investigations based on averages of Eqs. 2.16 and 2.17 have also been sup-
plemented with more detailed evaluations, such as the subgroups’ average item 
score differences at each of the total test scores indicated in Eq. 2.16. For example, 
Dorans and Holland (1993) described how the conditional average item score differ-
ences in Eq. 2.16 can reveal more detailed aspects of an item’s differential function-
ing, especially when supplemented with conditional comparisons of matched 
subgroups’ percentages choosing the item’s distracters or of omitting the item. In 
ETS practice, conditional evaluations are implemented as comparisons of sub-
groups’ conditional xik  and 1− xik  values after these values have been estimated 
with kernel smoothing (Eqs. 2.14 and 2.15). Recent research has shown that evalu-
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ations of differences in subgroups’ conditional xik  values can be biased when esti-
mated with kernel smoothing and that more accurate subgroup comparisons of the 
conditional xik  values can be obtained when estimated with logistic regression or 
loglinear models (Moses et al. 2010).

2.4.3  �Comparisons and Uses of Item Analysis and Item 
Response Theory

Comparisons of item analysis and IRT with respect to methods, assumptions, and 
results have been an interest of early and contemporary psychometrics (Bock 1997; 
Embretson and Reise 2000; Hambleton 1989; Lord 1980; Lord and Novick 1968). 
These comparisons have also motivated considerations for updating and replacing 
item analysis procedures at ETS. In early years at ETS, potential IRT applications 
to item analysis were dismissed due to the computational complexities of IRT model 
estimation (Livingston and Dorans 2004) and also because of the estimation inac-
curacies resulting from historical attempts to address the computational complexi-
ties (Tucker 1981). Some differences in the approaches’ purposes initially slowed 
the adaptation of IRT to item analysis, as IRT methods were regarded as less ori-
ented to the item analysis goals of item review and revision (Tucker 1987, p. iv). 
IRT models have also been interpreted to be less flexible in terms of reflecting the 
shapes of item response curves implied by actual data (Haberman 2009, p.  15; 
Livingston and Dorans 2004, p. 2).

This section presents a review of ETS contributions describing how IRT com-
pares with item analysis. The contributions are reviewed with respect to the 
approaches’ similarities, the approaches’ invariance assumptions, and demonstra-
tions of how item analysis can be used to evaluate IRT model fit. To make the dis-
cussions more concrete, the reviews are presented in terms of the following 
two-parameter normal ogive IRT model:
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where the probability of a correct response to dichotomously scored Item i is mod-
eled as a function of an examinee’s latent ability, θ, Item i’s difficulty, bi, and dis-
crimination, ai (Lord 1980). Alternative IRT models are reviewed by ETS researchers 
Lord (1980), Yen and Fitzpatrick (2006), and others (Embretson and Reise 2000; 
Hambleton 1989).

2  A Review of Developments and Applications in Item Analysis



40

2.4.3.1  �Similarities of Item Response Theory and Item Analysis

Item analysis and IRT appear to have several conceptual similarities. Both approaches 
can be described as predominantly focused on items and on the implications of 
items’ statistics for assembling test forms with desirable measurement properties 
(Embretson and Reise 2000; Gulliksen 1950; Wainer 1989; Yen and Fitzpatrick 
2006). The approaches have similar historical origins, as the Thurstone (1925) item 
scaling study that influenced item analysis (Gulliksen 1950; Tucker 1987) has also 
been described as an antecedent of IRT methods (Bock 1997, pp. 21–23; Thissen and 
Orlando 2001, pp. 79–83). The kernel smoothing methods used to depict conditional 
average item scores in item analysis (Eqs. 2.14 and 2.15) were originally developed 
as an IRT method that is nonparametric with respect to the shapes of its item response 
functions (Ramsay 1991, 2000).

In Lord and Novick (1968) and Lord (1980), the item difficulty and discrimina-
tion parameters of IRT models and item analysis are systematically related, and one 
can be approximated by a transformation of the other. The following assumptions 
are made to show the mathematical relationships (though these assumptions are not 
requirements of IRT models):

•	 The two-parameter normal ogive model in Eq.  2.18 is correct (i.e., no 
guessing).

•	 The regression of xi on θ is linear with error variances that are normally distrib-
uted and homoscedastic.

•	 Variable θ follows a standard normal distribution.
•	 The reliability of total score y is high.
•	 Variable y is linearly related to θ.

With the preceding assumptions, the item discrimination parameter of the IRT 
model in Eq. 2.18 can be approximated from the item’s biserial correlation as
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With the preceding assumptions, the item difficulty parameter of the IRT model in 
Eq. 2.18 can be approximated as
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where lΔi is a linear transformation of the delta (Eq. 2.2). Although IRT does not 
require the assumptions listed earlier, the relationships in Eqs. 2.19 and 2.20 are 
used in some IRT estimation software to provide initial estimates in an iterative 
procedure to estimate aiand bi (Zimowski et al. 2003).
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2.4.3.2  �Comparisons and Contrasts in Assumptions of Invariance

One frequently described contrast of item analysis and IRT approaches is with 
respect to their apparent invariance properties (Embretson and Reise 2000; 
Hambleton 1989; Yen and Fitzpatrick 2006). A simplified statement of the question 
of interest is, When a set of items is administered to two not necessarily equal 
groups of examinees and then item difficulty parameters are estimated in the exam-
inee groups using item analysis and IRT approaches, which approach’s parameter 
estimates are more invariant to examinee group differences? ETS scientists Linda L. 
Cook, Daniel Eignor, and Hessy Taft (1988) compared the group sensitivities of 
item analysis deltas and IRT difficulty estimates after estimation and equating using 
achievement test data, sets of similar examinee groups, and other sets of dissimilar 
examinee groups. L. L. Cook et al.’s results indicate that equated deltas and IRT 
models’ equated difficulty parameters are similar with respect to their stabilities and 
their potential for group dependence problems. Both approaches produced inaccu-
rate estimates with very dissimilar examinee groups, results which are consistent 
with those of equating studies reviewed by ETS scientists L. L. Cook and Petersen 
(1987) and equating studies conducted by ETS scientists Lawrence and Dorans 
(1990), Livingston, Dorans, and Nancy Wright (1990), and Schmitt, Cook, Dorans, 
and Eignor (1990). The empirical results showing that difficulty estimates from 
item analysis and IRT can exhibit similar levels of group dependence tend to be 
underemphasized in psychometric discussions, which gives the impression that esti-
mated IRT parameters are more invariant than item analysis indices (Embretson and 
Reise 2000, pp. 24–25; Hambleton 1989, p. 147; Yen and Fitzpatrick 2006, p. 111).

2.4.3.3  �Uses of Item Analysis Fit Evaluations of Item Response Theory 
Models

Some ETS researchers have suggested the use of item analysis to evaluate IRT 
model fit (Livingston and Dorans 2004; Wainer 1989). The average item scores 
conditioned on the observed total test score, xik , of interest in item analysis has been 
used as a benchmark for considering whether the normal ogive or logistic functions 
assumed in IRT models can be observed in empirical test data (Lord 1965a, b, 
1970). One recent application by ETS scientist Sinharay (2006) utilized xik  to 
describe and evaluate the fit of IRT models by considering how well the IRT mod-
els’ posterior predictions of xik  fit the xik  values obtained from the raw data. Another 
recent investigation compared IRT models’ xik  values to those obtained from loglin-
ear models of test score distributions (Moses 2016).
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2.4.4  �Item Context and Order Effects

A basic assumption of some item analyses is that items’ statistical measures will be 
consistent if those items are administered in different contexts, locations, or posi-
tions (Lord and Novick 1968, p. 327). Although this assumption is necessary for 
supporting items’ administration in adaptive contexts (Wainer 1989), examples in 
large-scale testing indicate that it is not always tenable (Leary and Dorans 1985; 
Zwick 1991). Empirical investigations of order and context effects on item statistics 
have a history of empirical evaluations focused on the changes in IRT estimates 
across administrations (e.g., Kingston and Dorans 1984). Other evaluations by ETS 
researchers Dorans and Lawrence (1990) and Moses et al. (2007) have focused on 
the implications of changes in item statistics on the total test score distributions 
from randomly equivalent examinee groups. These investigations have a basis in 
Gulliksen’s (1950) attention to how item difficulty affects the distribution of the 
total test score (Eqs. 2.10 and 2.11). That is, the Dorans and Lawrence (1990) study 
focused on the changes in total test score means and variances that resulted from 
changes in the positions of items and intact sections of items. The Moses et  al. 
(2007) study focused on changes in entire test score distributions that resulted from 
changes in the positions of items and from changes in the positions of intact sets of 
items that followed written passages.

2.4.5  �Analyses of Alternate Item Types and Scores

At ETS, considerable discussion has been devoted to adapting and applying item 
analysis approaches to items that are not dichotomously scored. Indices of item dif-
ficulty and discrimination can be extended, modified, or generalized to account for 
examinees’ assumed guessing tendencies and omissions (Gulliksen 1950; Lord and 
Novick 1968; Myers 1959). Average item scores (Eq. 2.1), point biserial correla-
tions (Eq. 2.5), r-polyreg correlations (Eq. 2.9), and conditional average item scores 
have been adapted and applied in the analysis of polytomously scored items. 
Investigations of DIF based on comparing subgroups’ average item scores condi-
tioned on total test scores as in Eq. 2.16 have been considered for polytomously 
scored items by ETS researchers, including Dorans and Schmitt (1993), Moses 
et al. (2013), and Zwick et al. (1997). At the time of this writing, there is great inter-
est in developing more innovative items that utilize computer delivery and are more 
interactive in how they engage examinees. With appropriate applications and pos-
sible additional refinements, the item analysis methods described in this chapter 
should have relevance for reviews of innovative item types and for attending to these 
items’ potential adaptive administration contexts, IRT models, and the test forms 
that might be assembled from them.

Acknowledgments  This manuscript was significantly improved from earlier versions thanks to 
reviews and suggestions from Jim Carlson, Neil Dorans, Skip Livingston and Matthias von Davier, 
and editorial work from Kim Fryer.

T. Moses



43

References

Becker, K. A. (2003). History of the Stanford–Binet intelligence scales: Content and psychomet-
rics (Stanford–Binet intelligence scales, 5th Ed. Assessment Service Bulletin no. 1). Itasca: 
Riverside.

Binet, A., & Simon, T. (1905). Methodes nouvelles pour le diagnostic du nieveau intellectual 
anormoux [new methods for the diagnosis of levels of intellectual abnormality]. L'Année 
Psychologique, 11, 191–244. https://doi.org/10.3406/psy.1904.3675.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In 
F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 374–472). 
Reading: Addison-Wesley.

Bock, R. D. (1997). A brief history of item response theory. Educational Measurement: Issues and 
Practice, 16(4), 21–33. https://doi.org/10.1111/j.1745-3992.1997.tb00605.x.

Brigham, C. C. (1932). A study of error. New York: College Entrance Examination Board.
Brogden, H. E. (1949). A new coefficient: Application to biserial correlation and to estimation of 

selective efficiency. Psychometrika, 14, 169–182. https://doi.org/10.1007/BF02289151.
Burt, C. (1921). Mental and scholastic tests. London: King.
Clemens, W. V. (1958). An index of item-criterion relationship. Educational and Psychological 

Measurement, 18, 167–172. https://doi.org/10.1177/001316445801800118.
Cook, W. W. (1932). The measurement of general spelling ability involving controlled compari-

sons between techniques. Iowa City: University of Iowa Studies in Education.
Cook, L.  L., & Petersen, N.  S. (1987). Problems related to the use of conventional and item 

response theory equating methods in less than optimal circumstances. Applied Psychological 
Measurement, 11, 225–244. https://doi.org/10.1177/014662168701100302.

Cook, L. L., Eignor, D. R., & Taft, H. L. (1988). A comparative study of the effects of recency 
of instruction on the stability of IRT and conventional item parameter estimates. Journal of 
Educational Measurement, 25, 31–45. https://doi.org/10.1111/j.1745-3984.1988.tb00289.x.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 
297–334. https://doi.org/10.1007/BF02310555.

Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel–Haenszel and stan-
dardization. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 35–66). 
Hillsdale: Erlbaum.

Dorans, N. J., & Kulick, E. (1986). Demonstrating the utility of the standardization approach to 
assessing unexpected differential item performance on the scholastic aptitude test. Journal of 
Educational Measurement, 23, 355–368. https://doi.org/10.1111/j.1745-3984.1986.tb00255.x.

Dorans, N.  J., & Lawrence, I.  M. (1990). Checking the statistical equivalence of nearly iden-
tical test editions. Applied Measurement in Education, 3, 245–254. https://doi.org/10.1207/
s15324818ame0303_3.

Dorans, N. J., & Schmitt, A. P. (1993). Constructed response and differential item functioning: 
A pragmatic approach. In R. E. Bennett & W. C. Ward (Eds.), Construction versus choice in 
cognitive measurement (pp. 135–165). Hillsdale: Erlbaum.

DuBois, P. H. (1942). A note on the computation of biserial r in item validation. Psychometrika, 7, 
143–146. https://doi.org/10.1007/BF02288074.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Hillsdale: Erlbaum.
Fan, C.-T. (1952). Note on construction of an item analysis table for the high-low-27-per-cent 

group method (Research Bulletin no. RB-52-13). Princeton: Educational Testing Service. 
http://dx.doi.org/10.1002/j.2333-8504.1952.tb00227.x

Green, B. F., Jr. (1951). A note on item selection for maximum validity (Research Bulletin no. 
RB-51-17). Princeton: Educational Testing Service. http://dx.doi.org/10.1002/j.2333-8504.1951.
tb00217.x

Guilford, J. P. (1936). Psychometric methods. New York: McGraw-Hill.
Gulliksen, H. (1950). Theory of mental tests. New York: Wiley. https://doi.org/10.1037/13240-000.
Haberman, S. J. (2009). Use of generalized residuals to examine goodness of fit of item response 

models (Research Report No. RR-09-15). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2333-8504.2009.tb02172.x

2  A Review of Developments and Applications in Item Analysis

https://doi.org/10.3406/psy.1904.3675
https://doi.org/10.1111/j.1745-3992.1997.tb00605.x
https://doi.org/10.1007/BF02289151
https://doi.org/10.1177/001316445801800118
https://doi.org/10.1177/014662168701100302
https://doi.org/10.1111/j.1745-3984.1988.tb00289.x
https://doi.org/10.1007/BF02310555
https://doi.org/10.1111/j.1745-3984.1986.tb00255.x
https://doi.org/10.1207/s15324818ame0303_3
https://doi.org/10.1207/s15324818ame0303_3
https://doi.org/10.1007/BF02288074
https://doi.org/10.1002/j.2333-8504.1952.tb00227.x
https://doi.org/10.1002/j.2333-8504.1951.tb00217.x
https://doi.org/10.1002/j.2333-8504.1951.tb00217.x
https://doi.org/10.1037/13240-000
https://doi.org/10.1002/j.2333-8504.2009.tb02172.x
https://doi.org/10.1002/j.2333-8504.2009.tb02172.x


44

Hambleton, R. K. (1989). Principles and selected applications of item response theory. In R. L. 
Linn (Ed.), Educational measurement (3rd ed., pp.  147–200). Washington, DC: American 
Council on Education.

Holland, P. W. (2008, March). The first four generations of test theory. Paper presented at the ATP 
Innovations in Testing Conference, Dallas, TX.

Holland, P. W., & Thayer, D. T. (1985). An alternative definition of the ETS delta scale of item dif-
ficulty (Research Report No. RR-85-43). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2330-8516.1985.tb00128.x

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel–Haenszel 
procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 129–145). Hillsdale: Erlbaum.

Horst, P. (1933). The difficulty of a multiple choice test item. Journal of Educational Psychology, 
24, 229–232. https://doi.org/10.1037/h0073588.

Horst, P. (1936). Item selection by means of a maximizing function. Psychometrika, 1, 229–244. 
https://doi.org/10.1007/BF02287875.

Kingston, N.  M., & Dorans, N.  J. (1984). Item location effects and their implications for IRT 
equating and adaptive testing. Applied Psychological Measurement, 8, 147–154. https://doi.
org/10.1177/014662168400800202.

Kuder, G.  F., & Richardson, M.  W. (1937). The theory of the estimation of test reliability. 
Psychometrika, 2, 151–160. https://doi.org/10.1007/BF02288391.

Lawrence, I.  M., & Dorans, N.  J. (1990). Effect on equating results of matching samples on 
an anchor test. Applied Measurement in Education, 3, 19–36. https://doi.org/10.1207/
s15324818ame0301_3.

Leary, L.  F., & Dorans, N.  J. (1985). Implications for altering the context in which test items 
appear: A historical perspective on an immediate concern. Review of Educational Research, 55, 
387–413. https://doi.org/10.3102/00346543055003387.

Lentz, T. F., Hirshstein, B., & Finch, J. H. (1932). Evaluation of methods of evaluating test items. 
Journal of Educational Psychology, 23, 344–350. https://doi.org/10.1037/h0073805.

Lewis, C., & Livingston, S. A. (2004). Confidence bands for a response probability function esti-
mated by weighted moving average smoothing. Unpublished manuscript.

Lewis, C., Thayer, D., & Livingston, S. A. (n.d.). A regression-based polyserial correlation coef-
ficient. Unpublished manuscript.

Livingston, S.  A., & Dorans, N.  J. (2004). A graphical approach to item analysis 
(Research Report No. RR-04-10). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2333-8504.2004.tb01937.x

Livingston, S.  A., Dorans, N.  J., & Wright, N.  K. (1990). What combination of sampling and 
equating methods works best? Applied Measurement in Education, 3, 73–95. https://doi.
org/10.1207/s15324818ame0301_6.

Long, J. A., & Sandiford, P. (1935). The validation of test items. Bulletin of the Department of 
Educational Research, Ontario College of Education, 3, 1–126.

Lord, F.  M. (1950). Properties of test scores expressed as functions of the item parameters 
(Research Bulletin no. RB-50-56). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2333-8504.1950.tb00919.x

Lord, F. M. (1961). Biserial estimates of correlation (Research Bulletin no. RB-61-05). Princeton: 
Educational Testing Service. http://dx.doi.org/10.1002/j.2333-8504.1961.tb00105.x

Lord, F.M. (1965a). A note on the normal ogive or logistic curve in item analysis. Psychometrika, 
30, 371–372. https://doi.org/10.1007/BF02289500

Lord, F.M. (1965b). An empirical study of item-test regression. Psychometrika, 30, 373–376. 
https://doi.org/10.1007/BF02289501

Lord, F.M. (1970). Item characteristic curves estimated without knowledge of their mathematical 
form—a confrontation of Birnbaum’s logistic model. Psychometrika,  35, 43–50. https://doi.
org/10.1007/BF02290592

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale: 
Erlbaum.

T. Moses

https://doi.org/10.1002/j.2330-8516.1985.tb00128.x
https://doi.org/10.1002/j.2330-8516.1985.tb00128.x
https://doi.org/10.1037/h0073588
https://doi.org/10.1007/BF02287875
https://doi.org/10.1177/014662168400800202
https://doi.org/10.1177/014662168400800202
https://doi.org/10.1007/BF02288391
https://doi.org/10.1207/s15324818ame0301_3
https://doi.org/10.1207/s15324818ame0301_3
https://doi.org/10.3102/00346543055003387
https://doi.org/10.1037/h0073805
https://doi.org/10.1002/j.2333-8504.2004.tb01937.x
https://doi.org/10.1002/j.2333-8504.2004.tb01937.x
https://doi.org/10.1207/s15324818ame0301_6
https://doi.org/10.1207/s15324818ame0301_6
https://doi.org/10.1002/j.2333-8504.1950.tb00919.x
https://doi.org/10.1002/j.2333-8504.1950.tb00919.x
https://doi.org/10.1002/j.2333-8504.1961.tb00105.x
https://doi.org/10.1007/BF02289500
https://doi.org/10.1007/BF02289501
https://doi.org/10.1007/BF02290592
https://doi.org/10.1007/BF02290592


45

Lord, F.  M., & Novick, M.  R. (1968). Statistical theories of mental test scores. Reading: 
Addison-Wesley.

Mantel, N., & Haenszel, W. M. (1959). Statistical aspects of the analysis of data from retrospective 
studies of disease. Journal of the National Cancer Institute, 22, 719–748.

Moses, T. (2016). Estimating observed score distributions with loglinear models. In W. J. van der 
Linder & R. K. Hambleton (Eds.), Handbook of item response theory (2nd ed., pp. 71–85). 
Boca Raton: CRC Press.

Moses, T., Yang, W., & Wilson, C. (2007). Using kernel equating to check the statistical equiv-
alence of nearly identical test editions. Journal of Educational Measurement, 44, 157–178. 
https://doi.org/10.1111/j.1745-3984.2007.00032.x.

Moses, T., Miao, J., & Dorans, N.  J. (2010). A comparison of strategies for estimating condi-
tional DIF. Journal of Educational and Behavioral Statistics, 6, 726–743. https://doi.
org/10.3102/1076998610379135.

Moses, T., Liu, J., Tan, A., Deng, W., & Dorans, N. J. (2013). Constructed response DIF evalua-
tions for mixed format tests (Research Report No. RR-13-33) Princeton: Educational Testing 
Service. http://dx.doi.org/10.1002/j.2333-8504.2013.tb02340.x

Myers, C. T. (1959). An evaluation of the “not-reached” response as a pseudo-distracter (Research 
Memorandum No. RM-59-06). Princeton: Educational Testing Service.

Olson, J. F., Scheuneman, J., & Grima, A. (1989). Statistical approaches to the study of item dif-
ficulty (Research Report No. RR-89-21). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2330-8516.1989.tb00136.x

Olsson, U., Drasgow, F., & Dorans, N.  J. (1982). The polyserial correlation coefficient. 
Psychometrika, 47, 337–347. https://doi.org/10.1007/BF02294164.

Pearson, K. (1895). Contributions to the mathematical theory of evolution, II: Skew variation in 
homogeneous material. Philosophical Transactions of the Royal Society, 186, 343–414. https://
doi.org/10.1098/rsta.1895.0010.

Pearson, K. (1909). On a new method for determining the correlation between a measured charac-
ter a, and a character B. Biometrika, 7, 96–105. https://doi.org/10.1093/biomet/7.1-2.96.

Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve 
estimation. Psychometrika, 56, 611–630. https://doi.org/10.1007/BF02294494.

Ramsay, J. O. (2000). TESTGRAF: A program for the graphical analysis of multiple-choice test 
and questionnaire data [Computer software and manual]. Retrieved from http://www.psych.
mcgill.ca/faculty/ramsay/ramsay.html

Richardson, M.  W. (1936). Notes on the rationale of item analysis. Psychometrika, 1, 69–76. 
https://doi.org/10.1007/BF02287926.

Schmitt, A. P., Cook, L. L., Dorans, N. J., & Eignor, D. R. (1990). Sensitivity of equating results 
to different sampling strategies. Applied Measurement in Education, 3, 53–71. https://doi.
org/10.1207/s15324818ame0301_5.

Sinharay, S. (2006). Bayesian item fit analysis for unidimensional item response theory models. 
British Journal of Mathematical and Statistical Psychology, 59, 429–449. https://doi.org/10.1
348/000711005X66888.

Sorum, M. (1958). Optimum item difficulty for a multiple-choice test (Research memorandum no. 
RM-58-06). Princeton: Educational Testing Service.

Swineford, F. (1936). Biserial r versus Pearson r as measures of test-item validity. Journal of 
Educational Psychology, 27, 471–472. https://doi.org/10.1037/h0052118.

Swineford, F. (1959, February). Some relations between test scores and item statistics. Journal of 
Educational Psychology, 50(1), 26–30. https://doi.org/10.1037/h0046332.

Symonds, P. M. (1929). Choice of items for a test on the basis of difficulty. Journal of Educational 
Psychology, 20, 481–493. https://doi.org/10.1037/h0075650.

Tate, R. F. (1955a). Applications of correlation models for biserial data. Journal of the American 
Statistical Association, 50, 1078–1095. https://doi.org/10.1080/01621459.1955.10501293.

Tate, R.  F. (1955b). The theory of correlation between two continuous variables when one is 
dichotomized. Biometrika, 42, 205–216. https://doi.org/10.1093/biomet/42.1-2.205.

Thissen, D., & Orlando, M. (2001). Item response theory for items scored in two categories. In 
D. Thissen & H. Wainer (Eds.), Test scoring (pp. 73–140). Mahwah: Erlbaum.

2  A Review of Developments and Applications in Item Analysis

https://doi.org/10.1111/j.1745-3984.2007.00032.x
https://doi.org/10.3102/1076998610379135
https://doi.org/10.3102/1076998610379135
https://doi.org/10.1002/j.2333-8504.2013.tb02340.x
https://doi.org/10.1002/j.2330-8516.1989.tb00136.x
https://doi.org/10.1002/j.2330-8516.1989.tb00136.x
https://doi.org/10.1007/BF02294164
https://doi.org/10.1098/rsta.1895.0010
https://doi.org/10.1098/rsta.1895.0010
https://doi.org/10.1093/biomet/7.1-2.96
https://doi.org/10.1007/BF02294494
http://www.psych.mcgill.ca/faculty/ramsay/ramsay.html
http://www.psych.mcgill.ca/faculty/ramsay/ramsay.html
https://doi.org/10.1007/BF02287926
https://doi.org/10.1207/s15324818ame0301_5
https://doi.org/10.1207/s15324818ame0301_5
https://doi.org/10.1348/000711005X66888
https://doi.org/10.1348/000711005X66888
https://doi.org/10.1037/h0052118
https://doi.org/https://doi.org/10.1037/h0046332
https://doi.org/10.1037/h0075650
https://doi.org/10.1080/01621459.1955.10501293
https://doi.org/10.1093/biomet/42.1-2.205


46

Thurstone, L.  L. (1925). A method of scaling psychological and educational tests. Journal of 
Educational Psychology, 16, 433–451. https://doi.org/10.1037/h0073357.

Thurstone, L. L. (1947). The calibration of test items. American Psychologist, 3, 103–104. https://
doi.org/10.1037/h0057821.

Traub, R.  E. (1997). Classical test theory in historical perspective. Educational Measurement: 
Issues and Practice, 16(4), 8–14. https://doi.org/10.1111/j.1745-3992.1997.tb00603.x.

Tucker, L. R. (1948). A method for scaling ability test items taking item unreliability into account. 
American Psychologist, 3, 309–310.

Tucker, L.  R. (1981). A simulation–Monte Carlo study of item difficulty measures delta and 
D.6 (Research Report No. RR-81-06). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2333-8504.1981.tb01239.x

Tucker, L.  R. (1987). Developments in classical item analysis methods (Research Report No.  
RR-87-46). Princeton: Educational Testing Service. http://dx.doi.org/10.1002/j.2330-8516.1987.
tb00250.x

Turnbull, W. W. (1946). A normalized graphic method of item analysis. Journal of Educational 
Psychology, 37, 129–141. https://doi.org/10.1037/h0053589.

Wainer, H. (1983). Pyramid power: Searching for an error in test scoring with 830,000 helpers. 
American Statistician, 37, 87–91. https://doi.org/10.1080/00031305.1983.10483095.

Wainer, H. (1989, Summer). The future of item analysis. Journal of Educational Measurement, 
26, 191–208.

Yen, W. M., & Fitzpatrick, A. R. (2006). Item response theory. In R. L. Brennan (Ed.), Educational 
measurement (4th ed., pp. 111–153). Westport: American Council on Education and Praeger.

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2003). BILOG-MG [computer soft-
ware]. Lincolnwood: Scientific Software International.

Zwick, R. (1991). Effects of item order and context on estimation of NAEP Reading pro-
ficiency. Educational Measurement: Issues and Practice, 10, 10–16. https://doi.
org/10.1111/j.1745-3992.1991.tb00198.x.

Zwick, R., Thayer, D. T., & Mazzeo, J. (1997). Describing and categorizing DIF in polytomous 
items (Research Report No. RR-97-05). Princeton: Educational Testing Service. http://dx.doi.
org/10.1002/j.2333-8504.1997.tb01726.x

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), 
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

T. Moses

https://doi.org/10.1037/h0073357
https://doi.org/10.1037/h0057821
https://doi.org/10.1037/h0057821
https://doi.org/10.1111/j.1745-3992.1997.tb00603.x
https://doi.org/10.1002/j.2333-8504.1981.tb01239.x
https://doi.org/10.1002/j.2333-8504.1981.tb01239.x
https://doi.org/10.1002/j.2330-8516.1987.tb00250.x
https://doi.org/10.1002/j.2330-8516.1987.tb00250.x
https://doi.org/10.1037/h0053589
https://doi.org/10.1080/00031305.1983.10483095
https://doi.org/10.1111/j.1745-3992.1991.tb00198.x
https://doi.org/10.1111/j.1745-3992.1991.tb00198.x
https://doi.org/10.1002/j.2333-8504.1997.tb01726.x
https://doi.org/10.1002/j.2333-8504.1997.tb01726.x
http://creativecommons.org/licenses/by-nc/2.5/

	Chapter 2: A Review of Developments and Applications in Item Analysis
	2.1 Item Analysis Indices
	2.1.1 Item Difficulty Indices
	2.1.2 Item Discrimination Indices

	2.2 Item and Test Score Relationships
	2.2.1 Relating Item Indices to Test Score Characteristics
	2.2.2 Conditional Average Item Scores

	2.3 Visual Displays of Item Analysis Results
	2.4 Roles of Item Analysis in Psychometric Contexts
	2.4.1 Differential Item Functioning, Item Response Theory, and Conditions of Administration
	2.4.2 Subgroup Comparisons in Differential Item Functioning
	2.4.3 Comparisons and Uses of Item Analysis and Item Response Theory
	2.4.3.1 Similarities of Item Response Theory and Item Analysis
	2.4.3.2 Comparisons and Contrasts in Assumptions of Invariance
	2.4.3.3 Uses of Item Analysis Fit Evaluations of Item Response Theory Models

	2.4.4 Item Context and Order Effects
	2.4.5 Analyses of Alternate Item Types and Scores

	References


