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Abstract. A two-dimensional code is defined as a set of rectangular
pictures over an alphabet Σ such that any picture over Σ is tilable in at
most one way with pictures in X. It is in general undecidable whether
a set of pictures is a code, even in the finite case. Recently, finite strong
prefix codes were introduced in [3] as a family of decidable picture codes.
In this paper we study infinite strong prefix codes and give a character-
ization for the maximal ones based on iterated extensions. Moreover, we
prove some properties regarding the measure of these codes.
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1 Introduction

Extending the theory of formal (string) languages to two dimensions is a very
interesting and challenging task. Our motivations are mainly theoretical but, as
formal language theory had very significant impact in several applications, we
expect that results on two-dimensional languages will be exploited in practical
fields like image processing, pattern recognition and matching.

A two dimensional word, or picture, is a rectangular array of symbols taken
from a finite alphabet Σ; a two-dimensional language is thus a subset of Σ∗∗. The
notion of finite state recognizability can be transferred into a two-dimensional
(2D) world in different ways (e.g. [10,15,17,19,22–24]). A crucial difference with
the string language theory is that in two dimensions many problems become
undecidable and even for finite-state recognizability we loose the equivalence
between determinism and non-determinism [2,6,17].
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In the theoretical study of formal string languages, string codes have been
always a relevant subject of research, also because of their applications to prac-
tical problems (see [14] for complete references). An important and easy-to-
construct class of string codes are prefix codes. Recall that a set S of strings
is called prefix if inside S no word is (left-)prefix of another one. It holds that
any prefix set of words is also a code, referred to as a prefix code. The notion
of code can be intuitively and naturally transposed to two-dimensional objects
by exploiting the notion of unique tiling decomposition. Several attempts of
developing a formal theory of two-dimensional codes have been done by using
polyominoes (connected two-dimensional figures, not necessarily rectangular).
Unfortunately, most of the published results show that in the 2D context we
loose important properties. In [13] D. Beauquier and M. Nivat proved that the
problem whether a finite set of polyominoes is a code is undecidable, and that
the same result holds also for dominoes. Codes of other variants of polyomi-
noes including bricks (i.e. labelled polyominoes) and pictures are also studied in
[1,16,18,20,21] and further undecidability results are proved.

In [4,7], a new definition of picture code was introduced by referring to the
operation of tiling star as defined in [24]; the tiling star of a set X is the set X∗∗ of
all pictures that are tilable (in the polyominoes style) by elements of X. Then, X
is a code if any picture in X∗∗ is tilable in a unique way. Unfortunately, it is again
not decidable whether a finite language of pictures is a code. The aim was finding
decidable subclasses of picture codes. For this, two definitions of prefix code of
pictures have been proposed by associating to the pictures a preferred scanning
direction from top-left corner towards the bottom-right one. Note that, moving
to the 2D setting, the main concern is that if we delete a “prefix” from a picture
(i.e. delete a rectangular portion starting at top-left corner) the remaining part
is not in general a picture itself. As consequence, the proof techniques for string
codes fail when transposed to two dimensions. Further generalizations to 2D of
classes of string codes are presented in [8,11,12].

A first definition of two-dimensional prefix code is proposed in [4,7]. It is
based on some special kind of polyominoes that have straight top border. A
smaller class, referred to as the class of strong prefix sets, was then proposed in
[3,9]; it is defined in a simpler way, it is easier to manage and more robust, while
it preserves all positive features of the first definition. In order to prevent to start
decoding a picture message in two different ways, no prefix-overlapping pictures
are admitted in a strong prefix set. More precisely, any two pictures in the set
cannot coincide in their common top-left part. Finite strong prefix sets are a
decidable family of picture codes with a simple polynomial decoding algorithm.
The results in [5,9], show a recursive procedure to construct all finite maximal
strong prefix codes of pictures, starting from the “singleton” pictures containing
only one alphabet symbol. The construction extends the literal representation of
prefix codes of strings (cf. [14]). It is the starting point for most considerations
in this paper.

All the mentioned results on two-dimensional codes regard finite codes, unless
for some first examples of infinite codes of pictures in [8], in the framework of
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the deciphering delay. Here, the attention is devoted to the infinite strong prefix
codes. We present a recursive definition of a family of languages based on the
iterated extensions. We prove that all languages defined by iterated extensions are
maximal strong prefix codes. Moreover, we show that, vice versa, any maximal
strong prefix code can be obtained by iterated extensions. We investigate also the
measure of such codes by associating a probability to each letter of the alphabet.
We prove that, as in the string case, the measure of a two-dimensional strong
prefix code is less than or equal to one. Nevertheless, we show that there exist
infinite maximal strong prefix codes whose measure is strictly less than one and
discuss the reason of this difference with the string case.

2 Preliminaries

We recall some definitions about two-dimensional languages (see [17]). A picture
over a finite alphabet Σ is a two-dimensional rectangular array of elements of
Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns,
respectively, while size(p) = (|p|row, |p|col) and area(p) = |p|row × |p|col denote
the picture size and area, respectively. We also consider all the empty pictures
that correspond to all pictures of size (m, 0) or (0, n). The set of all pictures
over Σ of fixed size (m,n) is denoted by Σm,n. The set of all pictures over Σ
is denoted by Σ∗∗ while Σ++ refers to the set Σ∗∗ without the empty pictures.
A two-dimensional language (or picture language) over Σ is a subset of Σ∗∗. Any
string on Σ can be viewed as a one-row picture in Σ∗∗. With a little abuse of
notation, in the sequel, Σ will sometimes denote Σ1,1, and a the corresponding
picture in Σ1,1.

In order to locate a position in a picture, it is necessary to put the pic-
ture in a reference system. The set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col} is referred to as the domain of a picture p. We let p(i, j) denote
the symbol in p at coordinates (i, j). We assume the top-left corner of the pic-
ture to be at position (1, 1), and fix the scanning direction for a picture from the
top-left corner toward the bottom right one.

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col. Prefixes
of pictures are special subpictures. Given pictures x, p, with |x|row ≤ |p|row and
|x|col ≤ |p|col, picture x is a prefix of p, denoted x � p, if x is a subpicture of p
corresponding to its top-left portion, i.e. if x = p[(1, 1), (|x|row, |x|col)].

Dealing with pictures, two concatenation products are classically defined.
Let p, q ∈ Σ∗∗ be pictures of size (m,n) and (m′, n′), respectively. The column
and the row concatenation of p and q are defined by horizontally and vertically
juxtaposing p and q. They are partial operations, defined only if m = m′ and
if n = n′, respectively. These operations can be extended to define row- and
column- concatenations, and row- and column- stars on languages. We consider
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another interesting star operation for picture languages, as introduced by D.
Simplot in [24], the tiling star. The idea is to compose pictures in some way to
cover a rectangular area as, for example, in the following figures.

The tiling star of X, denoted by X∗∗, is the set that contains all the empty
pictures together with all the non-empty pictures p whose domain can be parti-
tioned in disjoint subdomains {d1, d2, . . . , dk} such that any subpicture ph of p
associated with the subdomain dh belongs to X, for all h = 1, ..., k.

Then X++ denotes the set X∗∗ without the empty pictures. In the sequel, if
p ∈ X++, we say that p is tilable in X while the partition t = {d1, d2, . . . , dk}
of dom(p), together with the corresponding pictures {p1, p2, . . . , pk}, is called a
tiling decomposition of p in X.

3 Two-Dimensional Codes

Let us recall the definitions of codes and strong prefix codes of pictures given in
[3,4,7,9], together with some examples. Let Σ be a finite alphabet. X ⊆ Σ++

is a code iff any p ∈ Σ++ has at most one tiling decomposition in X.

Example 1. Let Σ = {a, b} be the alphabet and let X =
{

a b ,
a
b

,
a a
a a

}
.

It is easy to see that X is a code. Any picture p ∈ X++ can be decomposed
starting at top-left-corner and checking the subpicture p[(1, 1), (2, 2)]; it can be
univocally decomposed in X. Then, proceed similarly for the next contiguous
subpictures of size (2, 2).

Example 2. Let X =
{

a b , b a ,
a
a

}
. Notice that no picture in X is prefix of

another picture in X (see definition in Sect. 2). Nevertheless, X is not a code.

Indeed, picture
a b a
a b a

has the two following different tiling decompositions in X:

t1 =
a b a
a b a

and t2 =
a b a
a b a

.

Taking inspiration from the very remarkable family of prefix codes of strings,
let us introduce strong prefix codes, defined in [3,9]. The idea is that, given a
strong prefix set of pictures X ⊂ Σ++, each picture in Σ++ can “start” with at
most one of the pictures in X.

Definition 3. Let p, q ∈ Σ++. Pictures p and q prefix-overlap if for any (i, j) ∈
dom(p) ∩ dom(q), p(i, j) = q(i, j). Moreover pictures p and q strictly prefix-
overlap if they prefix-overlap, but neither p � q nor q � p.
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For example, in the following figure, picture p and q strictly prefix-overlap:

a b
a a

a b a a
a b a a
a a

p q p and q prefix-overlap

Definition 4. Let X ⊆ Σ++. X is strong prefix if for any pictures p, q in X
with p �= q, p and q do not prefix-overlap.

Example 5. The following language X is strong prefix; no two pictures in X
prefix-overlap.

X =
{

a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,
b b
a b

}
.

Definition 6. A strong prefix set X ⊆ Σ++ is maximal strong prefix over Σ
if it is not properly contained in any other strong prefix set over Σ; that is,
X ⊆ Y ⊆ Σ++ and Y strong prefix imply X = Y .

The results in [5,9] prove that finite strong prefix codes have a recursive
structure and describe an effective procedure to construct all (maximal) finite
strong prefix codes of pictures, starting from the “singleton” pictures containing
only one alphabet symbol. The construction in some sense extends the literal
representation of prefix codes of strings and is based on the notion of extensions
of a picture. The set of extensions of a picture p to some bigger size (m,n), is
the set of all pictures of fixed size (m,n), obtained by adding some columns to
the right and some rows to the bottom of p filled with all possible combinations
of alphabet symbols.

Let us fix an order between pairs of integers. We write (m,n) < (m′, n′) if
m ≤ m′, n ≤ n′ and m �= m′ or n �= n′.

Definition 7. Let Σ be an alphabet, p ∈ Σ++, m,n ≥ 0 be positive integers
with size(p) < (m,n). The set of extensions of p to size (m,n) is E(m,n)(p) =
{q ∈ Σm,n | q[(1, 1), (|p|row, |p|col)] = p}.
In [9] the finite maximal strong prefix codes are characterized as follows.

Proposition 8. X ⊆ Σ++ is a finite maximal strong prefix code if and only if
there exists a finite sequence of picture languages over Σ, X1,X2, . . . , Xk, such
that X1 = Σ, X = Xk, and for i = 1, . . . , k−1, Xi+1 = (Xi\{pi})∪E(mi,ni)(pi),
for some pi ∈ Xi, mi, ni ≥ 0.
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4 Infinite Strong Prefix Codes

In this section we consider the strong prefix codes introduced in [3,9] and recalled
in the previous Sect. 3. We define a construction for infinite maximal strong prefix
codes that provides an interesting inside view of their structure.

We first observe that, as in the one-dimensional case, any strong prefix code of
pictures can be embedded into a maximal one. This result allows to concentrate
our attention on the infinite strong prefix codes that are maximal.

Proposition 9. Any strong prefix code X ⊆ Σ++ is contained in some maximal
strong prefix code over Σ.

The proof is similar to the corresponding one in the one dimensional case
(Proposition 1.5 in [14]). It considers, given a strong prefix code X, a chain of
strong prefix codes containing X, ordered by set inclusion, and uses the remark
that, in view of Zorn’s lemma, this chain admits a least upper bound. We omit
here all the details.

The following is a simple example of an infinite picture language that is a
strong prefix code.

Example 10. Let X be the language of square pictures over Σ = {a, b} that
contains b in all positions apart for the bottom-right corner where symbol a
occurs.

X =

⎧⎪⎪⎨
⎪⎪⎩

a ,
b b
b a

,
b b b
b b b
b b a

,

b b b b
b b b b
b b b b
b b b a

, , . . .

⎫⎪⎪⎬
⎪⎪⎭

X is an infinite strong prefix code. Furthermore, X is not maximal strong prefix.

Indeed, consider, for example, the picture p =
b b a
b b a
a a a

; it is easy to see that X∪{p}

is still strong prefix.
Note that X can be viewed as a generalization to 2D of the well known

infinite code of strings S = {bna, n ≥ 0}.

The following example provides a maximal strong prefix code.

Example 11. The language X∞ contains all square pictures over Σ = {a, b} such
that if p has size (n, n), its prefix of size (n − 1, n − 1) contains only b’s while
there should be at least one a in the bottom row or in the rightmost column.
Then,

X∞ =

⎧⎨
⎩a ,

b a
a a

,
b a
a b

,
b a
b a

,
b a
b b

,
b b
a a

,
b b
a b

,
b b
b a

,
b b a
b b a
a a a

,
b b b
b b a
a a a

,
b b b
b b b
a a a

, . . .

⎫⎬
⎭ .
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The language X∞ is an infinite maximal strong prefix code. It is immediate to
see that it is strong prefix. Indeed, by definition, no picture in X∞ is prefix of
another picture in X∞ and this implies, since they are all square pictures, that
no pair of pictures in X∞ can prefix-overlap.

To prove the maximality, consider a picture p ∈ Σ++ \ X∞. It cannot be
p(1, 1) = a otherwise a ∈ X∞ is a prefix of p. Assume therefore that p(1, 1) = b.
Two cases arise: either p ∈ {b}++ or not. In the first case p is a prefix of an
infinite number of pictures of X∞. In the second case, let bk,k be the prefix of
p with maximal k, and k < |p|row, |p|col. Then there exists a picture q ∈ X∞ of
size (k + 1, k + 1), that is a prefix of p. In both cases X∞ ∪ {p} is not strong
prefix.

Note that the language X∞ of the previous example contains the language
X of the Example 10 (as already noted, X was not maximal strong prefix).

The language X∞ can be viewed inside a more general family that is obtained
by means of iterated extensions; the definition takes as starting point the con-
struction of finite maximal strong prefix codes recalled in Proposition 8.

We use the notion of extension of a picture (see Definition 7) to define infinite
languages that will result to be maximal strong prefix codes. We give first an
informal description. The idea is to construct a language X as infinite union of
sets Xk. We start from the initial set Y0 = Σ of all pictures of size (1, 1). Then
we partition Y0 = X1 ∪ A0 where X1 is added to X, while the pictures in A0

will be extended to get a set of pictures of bigger size. Let Y1 be the union of all
possible extensions of pictures p ∈ A0 to a size (m(p), n(p)) that depends on p.
Again we partition Y1 = X2∪A1 and again we add X2 to X and take all pictures
in A1 for new extensions to produce the set Y2. And so on. A further condition
ensures that whenever a picture p ∈ Yk is not chosen to belong to Xk+1 (i.e. p
stays in Ak to be extended and put in Yk+1), then in some future step, one of
its extensions will be surely added to some Xi. Such condition will be crucial in
the proof of maximality of Proposition 15. Here below is the formal definition.

Definition 12. Let Σ be a finite alphabet. A language X ⊆ Σ++ is generated
by iterated extensions on Σ if X = ∪k≥1Xk where, for any k ≥ 0,

(1) Y0 = Σ
(2) Ak ⊆ Yk, Xk+1 = Yk \ Ak

(3) Yk+1 =
⋃

p∈Ak
E(m(p),n(p))(p), for some (m(p), n(p)) > size(p)

(4) for any p ∈ Ak, there exist h > k and some extension q of p, with q ∈ Xh.
The family of all languages generated by iterated extensions on Σ will be
denoted by I(±), or simply I, when no ambiguity is possible.

Example 13. The language X∞ introduced in Example 11 is in I. In fact, X∞ =
∪k≥1Xk, where Y0 = Σ, A0 = {b}, and for any k ≥ 1, Xk = Yk−1 \ Ak−1, with
Ak−1 = {pk} where pk is the picture of size (k, k) composed of all b’s, and
Yk−1 = E(k,k)(pk−1).

Many different and involved languages can be defined by using Definition
12. The matter is to fix the rule to “extract” the set Xk+1 from Yk and the
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criterion to choose the size of the extensions of the pictures in Ak. Consider as
an example, the following language.

Example 14. Use iterated extensions on Y0 = {a, b} and take X1 = {a} (A0 =
{b}) and Y1 = E(2,2)(b). For any k ≥ 1, put in Xk+1 those pictures of Yk that
have the first column equal to the last one. The remaining pictures p ∈ Yk

(actually pictures of the set Ak) are extended in two different ways. If the last
row of p contains an even number of a, add a row to p; if it contains an odd
number of a, add a column. This will generate the next set Yk+1 containing
pictures of many different sizes. Here below, we calculate some of the pictures.

X =

⎧⎨
⎩a ,

b b
a a

,
b b
b b

,
b a b
a b a

,
b b b
a b a

,
b b b
b a b

,
b a b
a a a
b b b

,
b b b
a a a
b b b

, . . .

⎫⎬
⎭ .

Note that in Definition 12 if, for some k ≥ 0, Ak = ∅, then Yk+1,Xk+1 = ∅
and the language X is finite. This is the unique case where X can be finite.
Otherwise, if for any k ≥ 0, Ak �= ∅, then condition (4) in Definition 12 guaran-
tees that the language is infinite. Moreover, we will see in the next proposition,
that condition (4) will be crucial also in proving the maximality of the obtained
language.

On the other hand, observe that for some k ≥ 0, it can hold that Ak = Yk,
that is Xk+1 = ∅ (without forcing the finiteness of the language).

Next proposition shows that any language generated by iterated extensions
is a maximal strong prefix code.

Proposition 15. Any set X ∈ I(Σ) is a maximal strong prefix code over Σ.

Proof. Let X ∈ I(Σ). First of all, let us show by induction that, for any h ≥ 1,( ⋃
i=1...h Xi

) ∪ Ah−1 is a finite maximal strong prefix code. In the base case,
h = 1, we have X1 ∪ A0 = {a, b} and this is a maximal strong prefix code.
Inductively, suppose that the set Z =

⋃
i=1...h−1 Xi ∪ Ah−2 is a maximal strong

prefix code. Note that the set
⋃

i=1...h Xi ∪ Ah−1 can be obtained from Z, by
replacing any p ∈ Ah−2 ⊆ Z with the set of all its extensions to some bigger
size. Hence, it is a finite maximal strong prefix code (see the characterization in
Proposition 8).

To show that X is a strong prefix code consider two pictures p, q ∈ X
and suppose p ∈ Xh, q ∈ Xk and h ≥ k. Then p, q ∈ ⋃

i=1...h Xi and, since⋃
i=1...h Xi ∪ Ah−1 is a strong prefix code, p and q cannot prefix-overlap.

Now, let us show that X is a maximal strong prefix code. Suppose by contra-
diction that there exists a picture p ∈ Σ∗∗ \X such that X ∪{p} is strong prefix.
Let size(p) = (m,n) and set K = max{k | ∀x ∈ ⋃

i=1...k Xi, |x|row ≤ m and
|x|col ≤ n}. Consider the set T =

⋃
i=1...K Xi ∪ AK−1. We have p /∈ ⋃

i=1...k Xi

(since p /∈ X) and p /∈ AK−1 (since, if p ∈ AK−1, then, by condition 4) there
exists an extension of p in X, against X ∪ {p} strong prefix). Therefore, p /∈ T .
Let us show that T ∪ {p} is a strong prefix code, against the maximality of T .
Note that p cannot prefix-overlap a picture in

⋃
i=1...K Xi, since X∪{p} is strong

prefix. Furthermore, p cannot strictly prefix-overlap a picture in AK−1. Indeed,
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any q ∈ AK−1 has a size less than size(p); hence, p and q could strictly prefix-
overlap only if q is a prefix of p. This would imply that, there exist some K ′ > K
and some p′ ∈ XK′ ⊆ X, p′ extension of q, such that p′ and p prefix-overlap,
against X ∪ {p} strong prefix. We can conclude that T ∪ {p} is a strong prefix
code against the maximality of T . �


We now show the reverse of Proposition 15, i.e. that any maximal infinite
strong prefix code can be obtained by iterated extensions.

Proposition 16. If X is a maximal strong prefix code over Σ then X ∈ I(Σ).

Proof (Sketch). Let Y0 = Σ, X1 = X ∩ Σ and A0 = Y0 \ X1. The proof is
sketched only in the case Σ = {a, b} and X1 = {b}; a similar proof can be used
in the other cases. Let us show how to construct the sets X2, X3, . . ., and so on.

Denote ra = min{|p|row | p ∈ X and a � p} and ca =min{|p|col | p ∈ X
and a � p}. Clearly (ra, ca) �= (1, 1). Set Y1 = E(ra,ca)(a) and X2 = X ∩ Y1;
then A1 = Y1 \ X2. Note that it could be X2 = ∅. Observe that the pictures
in X \ (X1 ∪ X2) must be the extensions of some pictures in A1. Indeed, they
cannot have a size smaller than the elements in A1 (for the choice of ra and ca);
moreover, A1 contains all pictures in Σra,ca , except those pictures that are in
X1∪X2 (whose extensions cannot be in X, since it is strong prefix). Subsequently,
for any t1 ∈ A1, at least one extension of t1 is in X, otherwise the set X ∪ {t1}
would be strong prefix, against the maximality of X.

For any q ∈ A1, let rq =min{|p|row | p ∈ X and q�p} and cq =min{|p|col | p ∈
X and q � p}. Clearly, rq > |q|row or cq > |q|col. Set Y2 =

⋃
q∈A1

E(rq,cq)(q),
X3 = X ∩ Y2 and A2 = Y2 \ X3. Again, for any t2 ∈ A2, at least one extension
of t2 is in X, otherwise the set X ∪ {t2} would be strong prefix. Iterating this
scheme, one obtains all the subsequent Xk such that X = ∪k≥1Xk. �

The results in the two previous propositions can be summarized in the follow-
ing theorem which gives a characterization of maximal strong prefix codes of
pictures. It holds both for finite and infinite codes.

Theorem 17. Let X ⊆ Σ++. X is a maximal strong prefix code over Σ if and
only if X ∈ I(Σ).

5 Measure of Two-Dimensional Languages and Codes

Some important results on codes of strings deal with the notion of measure
(cf. [14]). A probability is assigned to each symbol of the alphabet and, for a
given string, one multiplies the probability of each letter. Then, the measure of a
language is simply the sum of the probability of its strings. A major result states
that the measure of a string code is always less than or equal to 1, whereas a thin
string code is maximal if and only if its measure is 1. Roughly speaking, a set of
strings is not a code if there are “too many too short strings”. In this section,
we consider the measure of infinite strong prefix codes of pictures as introduced
in [5].
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Definition 18. Let Σ be an alphabet and π be a probability distribution
on Σ. The probability of a picture p ∈ Σ++ is defined as π(p) =∏

1≤i≤m,1≤j≤n π(p(i, j)). The measure of a language X ⊆ Σ++ relative to π
is μπ(X) =

∑
p∈X π(p).

Particular interest is devoted to the uniform distribution, which associates to
every symbol a in the alphabet Σ of cardinality k, the probability πu(a) = 1

k .
Then, the uniform probability of a picture p ∈ Σ++ is πu(p) = 1

karea(p) . The
uniform measure of a language X ⊆ Σ++, is μu(X) =

∑
p∈X πu(p).

Example 19. Let Σ = {a, b} and consider language X =
{

b b ,
a
b

,
a a
a a

,
a a
a b

}

on Σ. Its uniform measure is μu(X) = 5/8 < 1. In general for any probability
distribution π(a) = p, π(b) = 1 − p, 0 < p < 1, then μπ(X) = p3 − p + 1 < 1.
Note that X is a code.

A main result in [5] shows that for any finite strong prefix code X ⊆ Σ++

and measure μ, we have that μ(X) ≤ 1. Moreover μ(X) = 1 if and only if X is a
finite maximal strong prefix code. We show that without the finiteness hypotesis
the scenario is different. Coherently with the intuitive relation between code and
measure, we prove first the following result.

Theorem 20. Let X ⊆ Σ++ be a maximal strong prefix code and μ be a mea-
sure. Then μ(X) ≤ 1.

Proof. By Theorem 17, and following the notation of Definition 12, X is the
union of some languages Xi, for i ≥ 1. Since the languages Xi’s are pairwise
disjoint, taking sn =

∑n
i=1 μ(Xi), we can write μ(X) = limn→∞ sn. Consider

now, for any n ≥ 1, the sets Zn =
⋃

i=1...n Xi ∪ An−1. For any n ≥ 1, Zn is a
finite maximal strong prefix code (as shown in the proof of Proposition 15) and
therefore μ(Zn) = 1. Hence, sn ≤ μ(Zn) = 1. Finally, μ(X) = lim sn ≤ 1. �

The measure of infinite maximal strong prefix codes does not behave as the
measure of the finite ones. To show this, we propose another example.

Example 21. Consider the language Z∞ over Σ = {a, b} that contains the size
(1, 1) picture with a and all square pictures p that have symbol b in the top-left
position and in all positions of the bottom row and of the rightmost column.
Moreover all square prefixes of p should have at least one a in their bottom row
or last column.

Z∞ =

⎧⎪⎪⎨
⎪⎪⎩

a ,
b b
b b

,
b a b
a a b
b b b

,
b b b
a a b
b b b

,
b a b
b a b
b b b

, . . . ,

b a a b
a a a b
a a a b
b b b b

,

b a b b
a a a b
a a a b
b b b b

,

b b b b
a a a b
a a a b
b b b b

, . . .

⎫⎪⎪⎬
⎪⎪⎭

.

The language Z∞ can be obtained following Definition 12. Z∞ = ∪i≥1Xi, where
Y0 = Σ, A0 = {b}, and for any i ≥ 1, Xi = Yi−1 \Ai−1, with Ai−1 = {p ∈ Σi,i| p
has at least one a’s in the last row or column}, and Yi−1 =

⋃
p∈Ai−2

E(i,i)(p).
Then, by Theorem 17, Z∞ is a maximal strong prefix code.
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Proposition 22. There exist maximal strong prefix codes whose measure is
strictly less than 1.

Proof. Consider the language Z∞ together with the languages Xi, Yi−1, Ai−1

resulting by the associated iterated extensions as defined in Example 21. Let
us calculate the uniform measure of Z∞. Since the languages Xi’s are pairwise
disjoint, μ(Z∞) =

∑
i≥1 μ(Xi). We have:

– μ(X1) = 1/2,
– μ(X2) = 1/24, and
– μ(Xi) = (23−1)(25−1)···(22(i−1)−1−1)

21+3+5+···+(2i−1) , for any i ≥ 3.

Recall that Xi ⊆ Σi,i and 1 + 3 + 5 + · · · + (2i − 1) = i2. Then, for any i ≥ 3,
μ(Xi) ≤ 2325···22(i−1)−1

21+3+5+···+(2i−1) = 1
21+(2i−1) = 1

22i = 1
4i .

Hence, μ(Z∞) ≤ 1/2 + 1/24 +
∑∞

i=3
1
4i = 1/2 +

∑∞
i=2(

1
4 )i = 1/2 +

∑∞
i=0(

1
4 )i −

1 − 1/4 = 4/3 − 3/4 = 7/12. This shows that μ(Z∞) < 1. �

The next Proposition characterizes the maximal strong prefix codes which have
measure equal to 1, in terms of the measure of the languages involved in its
construction by iterated extensions.

Proposition 23. Let X ∈ I(Σ) and let An, for any n ≥ 0, be the corresponding
languages. The measure of X is equal to 1 if and only if limn→∞ μ(An) = 0.

Proof. Let Xi, Yi−1, Ai−1, for any i ≥ 1, be the languages involved in the iterated
extensions for X as in Definition 12.

Since the languages Xi’s are pairwise disjoint, μ(X) = limn→∞ sn, where
sn =

∑n
i=1 μ(Xi). Observe that, for any i ≥ 1, μ(Xi) = μ(Yi−1) − μ(Ai−1) and

μ(Yi) = μ(Ai−1), since Yi contains all the extensions of all the pictures in Ai−1.
Therefore, sn = (μ(Y0) − μ(A0)) + (μ(Y1) − μ(A1)) + · · · + (μ(Yn) − μ(An)) =
μ(Y0) − μ(An) = 1 − μ(An). Finally, μ(X) = limn→∞ sn = 1 − limn→∞ μ(An).
Hence, μ(X) = 1 if and only if limn→∞ μ(An) = 0. �


As an application of the previous proposition we prove the following.

Proposition 24. There exist maximal strong prefix codes whose measure is
exactly 1.

Proof. We consider the language X∞ as in Example 13 and we show that the
uniform measure μ(X∞) = 1. Following the construction by iterated extensions,
each set An contains a single picture p of size (n + 1, n + 1) then the measure
μ(An) = 1/2(n+1)2 and limn→∞ 1/2(n+1)2 = 0. By applying Proposition 23 we
complete the proof. �

We conclude the paper by observing that the proofs of Propositions 22 and 24
are based on two languages X∞ and Z∞ that have somehow complementary
structure with respect to the definition by iterated extensions. Starting from
Y0 = {a, b}, for both languages we take X1 = {a} and Y1 = E(2,2)(b). At each
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step i we use the same criterion to partition the respective current sets Yi (in
one side, the only picture with all b’s in the bottom row and in the rightmost
column and in the other side, all the remaining ones). Nevertheless, for X∞ such
single picture is put in the set Ai to be extended, while for Z∞ such picture is
the only one which is kept in the code. The difference in the cardinality of the
two sides of the partition makes the substantial discrepancy in the calculation
of the measure.
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