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Abstract. Transfer learning (TL) has gained significant interests recently in
brain computer interface (BCI) as a key approach to design robust predictors for
cross-subject and cross-experiment prediction of the brain activities in response
to cognitive events. We carried out in this.aper the first comprehensive inves-
tigation of the transferability of deep convolutional neural network (CNN) for
cross-subject and cross-experiment prediction of image Rapid Serial Visual
Presentation (RSVP) events. We show that for both cross-subject and
cross-experiment predictions, all convolutional layers and fully connected layers
contain both general and subject/experiment-specific features and transfer
learning with weights fine-tuning can improve the prediction performance over
that without transfer. However, for cross-subject prediction, the convolutional
layers capture more subject-specific features, whereas for cross-experiment
prediction, the convolutional layers capture more general features across
experiment. Our study provides important information that will guide the design
of more sophisticated deep transfer learning algorithms for EEG based classi-
fications in BCI applications.
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1 Introduction

Rapid Serial Visual Presentation (RSVP) is a widely used EEG-based brain computer
interface (BCI) paradigm designed to study human brain response to time-lock rare
target stimuli [1]. RSVP has also found many applications including BCI keyboard,
smart learning, etc. Like in most BCI systems, designing robust classifier for accurate
prediction of RSVP target event from EEG measurements is a crucial component and it
has benefited from the advancement in machine learning and signal processing. While
the XDAWN filter [2] and Bayesian linear discriminant algorithm (BLDA) [3]
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represent two state-of-the-art shallow algorithms for RSVP target event classification,
deep learning has also gained much interest for this classification recently. To this end,
we have conducted comprehensive investigations of convolutional neural network
(CNN) models and showed that the spatial-temporal CNN (STCNN) model can achieve
considerable performance improvement over both XDAWN and BLDA in predicting
RSVP events, [4] demonstrating the ability of deep learning to learn robust and
complex EEG discriminate features.

To achieve this improved performance, deep learning requires a large amount of
training data. However, collecting large training data for a single user is expensive and
laborious. Prolonged BCI training time can also induce fatigue, thus deteriorating user
performance. It is therefore desirable to integrate data from other subjects performing
the same or similar BCI experiments. However, it is well known that there is a large
variation in individual brain responses to the same stimuli and brute-force combing
data from different subjects might degrade rather than improve the performance.
Instead, transfer learning [5–7] provides a principle paradigm for identifying and
adapting discriminate information in data across different subjects or experiments to
help improve subject-specific classification performance. However, developing deep
learning based transfer learning algorithms for RSVP event prediction and general
EEG-based classification is still an open topic, yet to be investigated.

Because of the nature of deep learning algorithm and architecture, transfer deep
learning models can be easily implemented through its fine tune process. However,
fine-tuning does not always lead to improved performance and an important investi-
gation of feature transferability of CNN models for image recognition [11] has showed
that the transferability decreases with layers, where the lower convolution layers tend to
learn general features more transferable and higher fully connected layers are more
likely to learn less transferable, task-specific features. This result has inspired new deep
transfer learning algorithms such as deep adaptive network that optimize the trans-
ferable features in CNN.

However, the extent to which the STCNN (as a deep convolutional neural network)
layers can be transferred and if the transferability result for image recognition still holds
for RSVP event prediction and general EEG-based classification are unclear. To answer
this very important question, in this work, we investigate how transferable the layers of
STCNN are. Specifically, we determine if the features learned in each layer of the
STCNN are general to different subjects or experiments or subject-/experiment specific
in the case of RSVP event prediction. We investigated both cross-subject and
cross-experiment predictions and interestingly, we showed that the fully connected
layer features are specific features and cannot be transferred. On the other hand, the
convolution layer features are extracting some general features but are not completely
general. In addition, transferring the features from source domain to target domain and
performing fine-tuning result in the best classification in target domain.

The rest of this paper is organized as follows. In Sect. 2, we introduce the datasets
used for this investigation. In Sect. 3, we explain the STCNN architecture for RSVP
event classification. In Sect. 4, we discuss the procedures of our investigation of feature
transferability in different layers of the STCNN and demonstrate the results for both
cross-subject and cross-experiment predictions. Concluding remarks are provided in
Sect. 5.
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2 Description of Data

In this work, we used EEG data from three RSVP experiments to study STCNN feature
transferability for both cross-subject and cross-experiment event prediction. In an
RSVP experiment, subjects are asked to identify a target image from a continuous burst
of image clips presented at a high rate. The target image can be predefined or decided
by certain rules. Subjects EEG signals are recorded during this process. The patterns in
EEG signals are different when the subject is presented with target or non-target
images. Three different RSVP data sets used in this work are CT2WS [19], Static
Motion [20] and Expertise RSVP [24]. In the CT2WS RSVP experiment, short
grayscale video clips as target and non-target stimuli (targets are moving people or
vehicles, and non-targets are plants or buildings) are presented at 2 Hz (every 500 ms).
The experiment included 15 subjects, where each subject participated in a 15-min.
session, where EEG data were recorded by Biosemi device with 64 channels, at
sampling rate of 512 Hz. In the Static motion RSVP experiment, target and non-target
images static images presented at speed of 2 Hz. 16 subjects have taken part, where
each subject participated in a 15-min. session, and EEG data were collected with a
Biosemi headset with 64 electrodes at a sampling rate 512 Hz. The Expertise RSVP
experiment consists of a 5-Hz presentation of color images of indoor and outdoor
scenes, where the target images come from one of following five categories: stair,
container, poster, chair, and door [25]. The experiment consists of 10 subjects, where
each subject participated in 5 sessions of 60-min. presentation. EEG data were
collected with Biosemi EEG headsets with 256 electrodes at a sampling rate of 512 Hz.
The data from all three datasets were first band-pass filtered with a bandwidth of
0.1–55 Hz to remove DC and electrical noise and then down-sampled to 128 Hz to
reduce feature dimension and cover the whole frequency band after filtering. For
Expertise RSVP, only 64 channels (based on the 10–20 system) were selected. Fol-
lowing the procedure described in [17], one-second epochs of the EEG samples
time-locked to each target/non-target onset were extracted for all subjects, where the
size of each EEG epoch is 64 � 128. For cross-subject prediction, we used Exper-
tise RSVP. Specifically, we called samples from subject 1 to 5 including 65831 epochs
as dataset A and those from subject 6 to 10 including 62553 epochs as dataset B. For
cross-experiment prediction, we combined the EEG epochs from CT2WS and Static
Motion data sets which contain 21680 EEG epochs and we call this C data set.

3 Spatial-Temporal CNN for RSVP Event Prediction

In this section we provide the explanation for STCNN architecture and also how the
transfer learning can be performed by STCNN.

3.1 Architecture of Spatial-Temporal CNN

We discuss next the architecture of spatial-temporal convolutional neural network
(STCNN), a deep learning model for classification of the RSVP EEG data sets [7–13].
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STCNN is a CNN model, specially designed in order to extract spatial correlations and
local temporal correlations of the EEG signals. STCNN similar to regular CNNs
structure includes convolutional layers as feature extractors and fully connected layers
(FC) on top of the neural network as classifier. Let v 2 RM�1 denote an input vector
with M ¼ C � T , where both C (channel size) and T (time samples) are 64 in this case.
Also, let Wpq

ct represent the cth and tth weight of the pth feature map for hidden layer k
and qth feature map for hidden layer k � 1, where c ¼ 1; . . .; c0, t ¼ 1; . . .; t0 with
c0 � t0 as the kernel size and p = 1,…,P, q = 1,…,Q, where P, Q are feature map sizes
(FMS) as hyper-parameters to be learned. Then, the pth FM at the output of the
convolutional layer is:

convolution vð Þpct¼ ReLU
XQ

q¼1

Wpq
ct � vct þ bp

 !
ð1Þ

where vct is input element corresponding to the EEG measurement from channel c at
time t, ReLU represents the rectified linear function [19, 20] f xð Þ ¼ maxð0; xÞ. Asterisk
sign is convolution operation as Wpq

ct � vct ¼ Rc0
u¼�c0R

t0
v¼�t0W

pq
ct vc�u;t�v and bp is the bias

parameter for pth feature map. We can see from (1) that the kernel filters for all channels
at time t form a spatial filter. After the convolutional layer, an MLP is added to combine
all FMs for prediction of target/non-target events. In current design which is specific for
EEG signals STCNN contains two convolution layers to capture both spatial and
temporal correlations in EEG signals. In the first convolutional layer, kernels of size
64 � Conv1W (c0 ¼ 64; t0 ¼ Conv1W) is applied to sub-epochs, where each kernel
slides in the whole epoch from the start to the end to generate a
1 � (128-Conv1W + 1) feature map [21–23]. Figure 1 shows the structure of the
STCNN.

Fig. 1. STCNN architecture. A. The designed CNN architecture. There are N convolution layers
and blue boxes are convolution operations, where the texts inside represent [kernel shape]=MP
width � feature map size. “FM” denotes feature map. B. The detailed architecture of the DNN
Module in A. The gray ovals are hidden units. (Color figure online)
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3.2 Transfer Learning with Spatial-Temporal CNN

Suppose that we have two datasets, generated from the same experiment but for dif-
ferent subjects or from two similar experiments (e.g. two RSVP experiments). Par-
ticularly, we call them as source and target domain datasets separately. We further
assume that a STCNN has been trained by using the source domain dataset. The goal of
transfer learning is to train another STCNN by using the target domain dataset and by
transferring the architecture and common features from source domain STCNN.
Common features between source and target domain refers to the features learned by
STCNNs that are general across these two domains. To perform transfer learning with
STCNN, we consider in the paper simple weight transfer and fine-tuning, i.e., we copy
the weights of the source domain STCNN to the target domain STCNN and then
perform fine tuning. The weight transfer can be carried out by layers. The investigation
of transferability of a layer is to study if the source domain weights in this layer contain
general or task-specific features. We investigate two approaches. In the first approach,
we transfer the weights of a certain layer and fix them in target domain model, which
means that the transferred weights will not change and no fine-tuning will be performed
on them when the target domain STCNN is trained. We call the first approach “Frozen
(fixed) transferred layer approach”. For the second approach, we can transfer the
weights of a layer from source domain STCNN to target domain model and then that
transferred layer gets fine-tuned while the target domain STCNN is being trained. We
called the second approach the “fine-tuned transferred layer approach”.

4 Results

In this section, we show the results on the transferability of STCNN for both
cross-subject and cross-experiment predictions. We used area under the curve
(AUC) as a measurement of the prediction performance. To obtain an AUC for an
algorithm, a 10-fold cross validation (CV) was performed, where for each CV, the data
were randomly separated into 10 equal sized parts with one part used for validation and
the remaining 9 parts used for the trained the model. This is done 10 times and the
average performance is considered as classification performance of the model. In fol-
lowing sections, we first show the baseline performance of STCNN and other
state-of-the-art shallow algorithms and then present the results on the transferability of
STCNN for both cross-subject and cross-experiment predictions.

4.1 Baseline Performance of STCNN

We first evaluated the baseline performances of STCNN in dataset A, B and C,
respectively, and compared with the state-of-the-art shallow learning algorithms
including Bagging, XDAWN-LDA (XLDA) and LDA. Figures 2, 3 and 4 show the
classification AUC performances for dataset A, B and C, respectively. They show that
STCNN outperforms all three tested shallow machine learning algorithms in all three
datasets. STCNN has the highest gain in dataset B, where it achieved *8%
improvement.
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4.2 Investigation of STCNN Transferability for Cross-subject Prediction

In this section, we investigate how transferable are the weights learned in different
layers of the STCNN for cross-subject prediction. In this case, we first train a STCNN
model using a source domain dataset and our goal is to transfer this model to a target
data set. Apparently in cross-subject prediction the source domain contains the EEG
epochs of the subjects, which are not seen in target domain and source domain and
target domain contain completely different subjects. In order to study the transfer
learning for cross subject prediction, we alternate dataset A and B as source and target
datasets.
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Fig. 2. AUC classification performances for dataset A.
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Fig. 4. AUC classification performances for dataset C.
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In the following, we used AnB(+) and BnA(+) to represent how the transfer
learning is being performed, where AnB means that A is the source domain, B is the
target domain, there are n transferred layers and If “+” is also included, then the
transferred layers are also fined-tuned. Figure 5 depicts the results for transferring from
A to B. The green dot (Base B) is the baseline classification performance of the
STCNN trained only using dataset B. The blue dots which are named AnB show
the performance of the frozen transferred layer approach and the red dots AnB+ show
the performances of the fine-tuned transferred layer approach. We can see that AnB
performance drops continuously from the convolutional layers to the fully connected
layer, comparing with the baseline performance, where the drops in convolutional
layers are higher than in fully connected layers. This suggests that all the layers contain
subject-specific features, where convolutional layers seem to capture most of these
subject-specific features as performances of frozen fully connected layers does not
induce too much drop anymore. The fact that the largest performance drop is about 5%
also suggests that all layers also contain a significant amount of general information.
This is confirmed by the results of the fine-tuned transferred layer approach (AnB+),
where fine-tuning after weights transfer significantly improves the performance and the
improvement is pronounced particularly for the convolutional layers. Moreover, when
all the layers are transferred and fine-tuned, the highest classification performance
73.28% is achieved, which is 2.69% higher than the baseline performance.

Figure 6 shows the results of transferring from B to A. Very similar results can be
seen in this case. In addition, fine-tuning of all transferred layers results in the highest
classification performance 72.42%. Taken together, the results show that for
cross-subject predictions, both convolutional and fully connected layers in STCNN
contain both general features that can be transferred and subject specific information
that cannot be transferred. It is notable that fine-tuning of all the transferred layers using
the target domain data achieves the best performance and improves the baseline
performance.

Fig. 5. AUC classification performance of the target domain B when the features transferred
from source domain A. (Color figure online)
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4.3 Experimental Results for Cross-experiment Transferability Study

In this section, we study the cross-experiment transferability with STCNN. In this case,
we consider dataset C as the source domain and A and B are considered two individual
target domain datasets. Figures 7 and 8 depict the transferability from C to A and B,
respectively. Once again, the green dot is baseline performance trained with only the
target domain data. The blue dots named CnA and CnB show the results for the frozen
transferred layer approach and the red dots in CnA+ and CnB+ show the results for the
fine-tuned transferred layer approach. From CnA and CnB we observe again that the

Fig. 6. AUC classification performance of the target domain A when the features transferred
from source domain B.

Fig. 7. AUC classification performance of the target domain A when the features transferred
from source domain C. (Color figure online)
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performance drops with layers, suggesting that all layers learn experimental-specific
feature. However, this time there is a lot less amount of drop in convolutional layer;
there is almost no significant drop in convolutional layers for C to A. This suggests that
the convolutional layers capture a significant portion of features that are general across
two different RSVP experiments. In contrast, the fully connected layers contain more
experiment-specific features. Since both convolutional and fully connected layers
contain experimental specific features, as expected fine-tuning improves the perfor-
mance and once again fine-tuning of all layers obtains the highest performance 77.24%
and 74.38% for transferring from C to A and B respectively.

5 Conclusion

In this work, we studied the transferability of STCNN layers in performing for
cross-subject and cross-experiment classification of RSVP target and non-target events
using EEG data. We showed that for both cases, all convolutional layers and fully
connected layers contain both general and subject/experiment-specific features. For
cross-subject prediction, the convolutional layers capture more subject-specific fea-
tures, whereas for cross-experiment prediction, the convolutional layers capture more
general features across experiment. This suggests that the convolutional layers are more
likely transferable for cross-experiment predictions. Previously, it has been shown for
image recognition that convolutional layers contain general features that can be
transferred. Apparently, for EEG based BCI classification, the characteristics of
transferability is more complicated. Nevertheless, we show that fine-tuning can
improve the baseline performance, which suggests that transfer learning with STCNN
has the ability to transfer general features from source domain to improve the per-
formance in the target domain for EEG based classification. This study represents the

Fig. 8. AUC classification performance of the target domain B when the features transferred
from source domain C. (Color figure online)
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first comprehensive investigation of CNN transferability for EEG based classification
and our results provide important information that will guide the design of more
sophisticated deep transfer learning algorithms for EEG based classifications in BCI
applications.
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