
Some Syntax-Only Text Feature Extraction
and Analysis Methods for Social Media Data

Monte Hancock1, Charles Li2, Shakeel Rajwani3(&), Payton Brown3,
Olivia Hancock3, Corinne Lee3, Yaniv Savir3, Nicolas Nuon3,

and Francesca Michaels3

1 4Digital Inc., Webster University, Melbourne, FL, USA
2 Mercy College, Dobbs Ferry, NY, USA
3 Sirius 17B Team, Melbourne, FL, USA
Shakeel.Rajwani@gmail.com

Abstract. Automated characterization of online social behavior is becoming
increasingly important as day-to-day human interaction migrates from expensive
“real world” encounters to less expensive virtual interactions over computing
networks. The effective automated characterization of human interaction in
social media has important political, economic, social applications.
New analytic concepts are presented for the extraction and enhancement of

salient numeric features from unstructured text. These concepts employ rela-
tively simple syntactic metrics for characterizing and distinguishing human and
automated social media posting behaviors. The concepts are domain agnostic,
and are empirically demonstrated using posted text from a particular social
medium (Twitter).
An innovation uses a feature-imputation regression method to perform feature

sensitivity analysis.

Keywords: Twitter � Text processing � Social media � Feature selection

1 Background

The characterization of text threads in social media can be done using either or both of
syntactic methods (e.g., “bag-of-words”), and semantic methods (e.g., Latent Semantic
Indexing). Syntactic methods are much more mature and usually much less complex
than semantic methods. For the purposes of this work, syntactic methods will refer to
fundamentally distributional techniques that do not rely on semantic mapping. Syn-
tactic methods will be those that do not require parsing, resolution of pronominal
reference, geotagging, dictionary lookups, etc., but derive their results from term
statistics.

Note: A “social medium” is defined here as any venue supporting public-access
pseudo-anonymous self-initiated asynchronous data sharing.

© Springer International Publishing AG 2017
D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC 2017, Part I, LNAI 10284, pp. 499–509, 2017.
DOI: 10.1007/978-3-319-58628-1_37

2 The Venue: Twitter

The empirical demonstrations done during this research focuses on the characterization
of user-generated content on Twitter, one of the simpler social media domains.

Twitter users submit (“post”) time-ordered sequences of text (called “tweets”,
maximum of 140 text characters) through a simple text-window interface. These are
made available to other Twitter users in several ways (e.g., “friending”, “following”).

The term thread refers to a time-ordered sequence of tweets posted by a particular
user. Aggregation is facilitated by each user’s unique User Id number (a 1 to 17 digit
positive integer) and a tweet time-stamp (epoch time). Tweets are not point-to-point
communications; they generally function as personal status updates, but also frequently
contain opinions about social issues, and items of general cultural interest (movies,
sports, politics, world events, etc.) Twitter does not filter tweets for content (e.g.,
vulgarisms, hate speech).

The simplicity and lack of content constraints also makes Twitter an attractive
venue for advertising, subscription services (e.g., weather/traffic reports, alerts), and
other automated content. Tweets can contain any combination of free text, emoticons,
chat-speak, hash tags, and URL’s. Because Tweets can contain URL’s, they can be
malware vectors.

3 Types of Natural Language Text

Depending upon the type and amount of embedded structure used to present text, it is
said to fall into two broad categories:

Structured text is text data that is organized into labeled units. The units are often
referred to as “fields”. The labels are referred to as “metadata”, and give contextual
information about the field (e.g., what data the field contains, its metric units and
ranges, what the data “mean”, etc.)

Unstructured text is text data that is not organized into labeled units. In particular,
unstructured text has relatively little embedded metadata. The content must provide its
own context.

4 The Data Source

Twitter maintains a website for servicing data requests posted by those holding Twitter
Developer credentials. Developers obtain these credentials through an online applica-
tion process.

Credentialed developers may request information for Twitter user accounts by
posting requests to the Twitter API (application program interface) at a URL (uniform
resource locator) provided by Twitter. Requests can be made for specific accounts
based upon their User Identification Numbers. Requests can also be made for random
samples of accounts selected by Twitter. Requested data are returned as a hierarchical
data structure called JSON (JavaScript Object Notation).

500 M. Hancock et al.

5 Data Form

Data for this work consist of the threads for 8,845 users, each having at least one tweet,
and no more than 200 tweets. The users were randomly selected by Twitter from its
international user base. Most, but not all, tweets used are in English.

6 Text Data Ground Truth Tagging

Tweet text for 101 user threads was evaluated manually by a team of English-speaking
readers, all experienced users of social media. Because the intention is to model the
perceptions of human content consumers, readers were instructed not to collaborate,
and to use their personal intuition to decide which of the threads they reviewed were
likely the result of human posting behaviors, and which were likely the result of
automated posting (BOT’s). Ten readers participated, with each of the threads evalu-
ated by at least 2 readers.

Sixty-five of the 101 threads were tagged as either “human generated” or “BOT
generated” by majority vote of the readers of that thread. That experienced readers
could not agree on the tagging of 36 out of 101 threads illustrates the difficulty of
ground-truth assignment in this domain.

7 Extrapolation of Ground Truth Tags

The BOT-NotBOT tags from the 65 manually tagged threads were extrapolated to the
larger corpus of 8,845 threads using a population-weighted N-Nearest Neighbor
Classifier having the 65-thread set as the standard. N was allowed to vary from 1 to 20;
the tagging for N = 5 was chosen for the extrapolation, because it best matched the
class proportions of the 65-thread standard.

Following Hancock et al. [4], several angles-only metrics were used to project each
feature vector into a low (nominally 4–8) dimensional Euclidean space for visualization
and analysis.

8 The Content Data Elements and Their Encoding

The text constituting each of the 8,845 user threads was rolled up into a normalized
23-dimensional numeric feature vector quantifying certain low-level syntactic user
posting behaviors the user (more complete description below).

Below are linguistic attributes that our team felt would be useful for discriminating
automated posting behaviors from human posting behaviors. These attributes provide
the rationale for the features that were encoded from the twitter text. The resulting
features were used to generate mathematical “signatures” for online behaviors. In this
way, they augment account-level demographic features (e.g., user time-zone, user
language) to create a rich, high-fidelity information space for behavior mining and
modeling.

Some Syntax-Only Text Feature Extraction and Analysis Methods 501

1. The relative size and diversity of the account vocabulary
Content generated by automated means tends to reuse complex terms, while nat-
urally generated content has a more varied vocabulary, and terms reused are
generally simpler.

2. The word length mean and variance
Naturally generated content tends to use shorter but more varied language than
automatically generated content.

3. The presence/percentage of chatspeak
Casual, social users often employ simple, easy to generate graphical icons, called
emoticons. Sophisticated non-social users tend to avoid these unsophisticated
graphical icons.

4. The presence and frequency of hashtags
Hash tags are essentially topic words. Several hash tags taken together amount to a
tweet “gist”. A table of these could be used for automated topic/content identifi-
cation and categorization.

5. The number of misspelled words
It is assumed that sophisticated content generators, such as major retailers, will
have a very low incidence of misspellings relative to casual users who are typing
on a small device like a phone or tablet.

6. The presence of vulgarity
Major retailers are assumed to be unlikely to embed vulgarity in their content.

7. The use of hot-button words and phrases (“act now”, “enter to win”, etc.)
Marketing “code words” are regularly used to communicate complex ideas to
potential customers in just a few words. Such phrases are useful precisely because
they are hackneyed.

8. The use of words rarely used by other accounts (e.g., Tf.Idf scores) [1]
Marketing campaigns often create words around their products. These created
words occur nowhere else, and so will have high Tf.Idf scores.

9. The presence of URLs
To make a direct sale through a tweet, the customer must be engaged and directed
to a location where a sale can be made. This is most easily accomplished by
supplying a URL. URL’s, even tiny URL’s, can be automatically followed to
facilitate screen scraping for identification/characterization.

10. The generation of redundant content (same tweets repeated multiple times)
It is costly and difficult to generate unique content for each of thousands of online
recipients. Therefore, automated content (e.g., advertising) tends to have a rela-
tively small number of stylized units of content that they use over and over.

A vector of text features is derived for each user. This is accomplished by deriving
text features for each of the user’s tweets, then rolling them up. Therefore, one content
feature vector is derived for each user from all of that user’s tweets, as follows:

1. Collect the user’s most recent (up to 200) tweet strings into a single set (a thread).
2. Convert the thread text to upper case for term matching.
3. Scan the thread for the presence of emoticons, chat-speak, hash tags, URL’s, and

vulgarisms, setting bits to indicate the presence/absence of each.

502 M. Hancock et al.

4. Remove special characters from the thread to facilitate term matching
(a) Create a frequency histograms for the thread. Vocabulary word from a twitter

word list. The bins represent the 5,000 most frequently used Twitter words,
arranged in order of decreasing Twitter frequency.

5. Create a Redundancy Score for the Thread. This is done by computing and rolling
up (sum and normalize) the pairwise similarities of the tweet strings within the
thread using six metrics: Euclidean Distance, RMS-Distance, L1 Distance,
L-Infinity Distance, Cosine Distance, and the norm-weighted average of the five
distances.

6. The thread text feature vector then contains as vector components the emoticon flag,
the chat-speak flag, the hash tag flag, he URL flag, the vulgarity flag, the Redun-
dancy score, and the selected term histogram (Fig. 1).

9 Experiment 1: Feature Selection by Brute Force

Direct blind-evaluation of all 223 = 8,388,608 possible feature sets was performed to
provide definitive feature evaluation.

When many columns of data are available, choosing the “right” ones to use is hard,
for a number of reasons:

1. Having many columns means many “dimensions” when viewed geometrically
2. The data consist of columns that can interact in complicated ways. For example,

two “weak” pieces of evidence together sometimes provide more information than
one “strong” piece of evidence alone.

3. There are a huge number of possible combinations in which columns could be
chosen/rejected as features for a data mining project, so it is time-consuming to
check them all. For example, if there are 20 columns, there are 220 − 1 > 1,000,000
ways to choose which subset of features to use.

Fig. 1. For the sake of definiteness and intuition building, the figure above shows actual tweet
threads for two Twitter users.

Some Syntax-Only Text Feature Extraction and Analysis Methods 503

The information assessment begins by reading in the data to be analyzed, and
computing the means and standard deviations for each of the ground truth classes. That
is, the means and standard deviations are computed for each column for all the rows
that are in ground truth class 1, giving the “center” and “variability” of the class 1 data;
then, for class 2 rows, and so on.

To determine which columns contain information useful for classification of the
data into its ground truth classes, all possible subsets of the available columns are
tested; the subsets giving the best results with a weighted nearest-neighbor classifier are
cataloged. The process proceeds as follows:

Step 1: Read in the data file containing the numericized feature data
Step 2: Segment the data file in calibration, training and validation files
Step 3: Compute the centroids, feature standard deviations calibration data
Step 4: Select a subset of the columns to test (a “clique”)
Step 5: Use the centers and standard deviations computed in Phase A for the clique to

assign each data point in the training segment to a class as depicted in Fig. 2.

Repeat steps 4 and 5 for all possible feature cliques. With 23 features, this is
223 = 8,388,608 unique feature representations of the data. The features in the “best”
clique (had the highest accuracy score on the test set) are the ones that, as a group, have
the most useful information for classification of those tested. This “winning team”
comprises our selected feature set.

To create a numeric measure of the classification power of a subset of the available
features, this very fast weighted nearest-neighbor classifier is run repeatedly on a
calibration set with various sets of features, and the best collection is remembered.
Also, if the same feature appears in many high-performing feature sets, it is reasonable
to conclude that it is probably “good”. In this way, the clustering algorithm described
here is used to “game” feature sets in a “Monte Carlo” fashion.

The spreadsheet below shows the classification power of various feature sets. In the
table below, “1” means that columns feature was present in that set, while “0” means it
was not. In this experiment, only the 2,500 highest blind-accuracy feature sets were
cataloged. This output gives the performance measures for all of them so the user can
see the value of including/excluding the various feature combinations (Fig. 3).

Each feature clique is a row; a “0” means that feature was not used in that clique,
excluded, and a “1” means that feature was used in that clique. Performance for each
clique is in columns 2 and 3. The bottom row shows the proportion of the top 2,500
cliques that used the feature in the corresponding column. For example, the feature
indicating the use of adjectives was used in 72.7% of the 2,500 best feature sets. This
provides a relative ranking of features with respect to how they contribute in
context.

504 M. Hancock et al.

10 Experiment 2: Sensitivity Testing by Feature Imputation

An “intra/inter-vector” feature imputation scheme is now described that uses a refer-
ence data set to determine the most likely fill values for the features of a feature vector
(this is called “feature imputation”). For example, if a vector has all features present
except one, the existing features and the reference set are used to make a best estimate
of the missing feature. This is equivalent to asking, “What feature value should be
placed here, given the values of the other features in the vector?”

The imputation software ingests a feature vector file, and infers, in this way, a new
value for *every* feature of *every* vector in the whole file, using patterns from a
reference feature vector file as the standard.

Fig. 2. Classification by nearest class centroid

Fig. 3. Feature sets and their effectiveness

Some Syntax-Only Text Feature Extraction and Analysis Methods 505

11 The Imputation Algorithm

A simple inter-vector imputation method just replaces missing values with their pop-
ulation means, a O(n) process. This naïve approach is simple, but ignores feature
context within the vector. For numeric data, a more sophisticated method is the nearest
neighbor normalization technique. This can be applied efficiently even to large data sets
having many dimensions (in a brute force approach this is a O(n2) process). This
technique proceeds in the following manner for each missing feature in a given vector,
V1:

1. From the reference set of feature vectors, find the one, V2, which:
(a) Shares a sufficient number of populated fields with the vector to be imputed

(this is to increase the likelihood that the nearest vector is representative of the
vector being processed).

(b) Has a value for the missing feature, Fm.
(c) Is nearest the vector to be imputed (possibly weighted).

2. Compute the weighted norms of the vector being imputed, V1, and the matching
vector found in step 1, V2, in just those features present in both.

3. Form the normalization ratio Rn = |V1|/|V2|.
4. Create a preliminary fill value P = Rn * Fm.
5. Apply a clipping (or other) consistency test to P to obtain F’m, the final, sanity

checked fill value.
6. Fill the gap in V1 with the value F’m.

This method was used to perform a feature sensitivity analysis with respect to the
ground truth in the following way:

The 8,845 thread set described above was divided into two sets by inferred ground
truth: Those tagged as BOT were placed in one file, and those tagged as non_BOTS in
another.

The 8,845 thread set was divided into two sets by inferred ground truth: Those
tagged as BOT were placed in one file, and those tagged as non_BOTS in another.

The imputation scheme was then used to impute the non-BOT feature vectors using
the BOT file as the reference set. Comparing the before and after imputation versions of
the non-BOT file addresses Question A:

“Which features must be altered, in what ways, by how much, to make a non-BOT
resemble a BOT?”

This process was repeated, this time using the Intra/Inter-Vector Regression scheme
to impute the BOT feature vectors using the non-BOT file as the reference set. Com-
paring the before and after imputation versions of the BOT file addresses Question B:

“Which features must be altered, in what ways, and by how much, to make a BOT
resemble a non-BOT?”

These are important and interesting questions that, among other things, provide
objective insight into how BOT-characterization is seen in each feature. They also
provide insight into how to disguise a BOT as a non-BOT. It is interesting to note that
the changes required to make a BOT look like a non-BOT are the reverse of the
changes required to make a non-BOT look like a BOT (Figs. 4 and 5).

506 M. Hancock et al.

The following is a tabulation of some “before imputation” and “after imputation”
statistics for each of the 23 features. The first two columns give the feature number and
name, respectively. Columns 3 and 4 are the feature means of the BOT data before and
after imputation from the non-BOT data. Column 5 is column 4 minus column 3 (the
change in the means due to imputation). Columns 6 and 7 are the feature standard
deviations of the BOT data before and after imputation from the non-BOT data.
Column 8 is column 7 minus column 6 (the change in the standard deviations due to
imputation) (Fig. 6).

Columns 9 and 10 are the feature means of the non-BOT data before and after
imputation from the BOT data. Column 11 is column 10 minus column 9 (the change
in the means due to imputation). Columns 12 and 13 are the feature standard deviations
of the non-BOT data before and after imputation from the BOT data. Column 14 is
column 13 minus column 12 (the change in the standard deviations due to imputation).

Fig. 4. The figure immediately above shows the “before” and “after” feature means for BOT
data imputed from Non-BOT data. The light colored line is the z-weighted delta between the
“before” and “after” representations.

Fig. 5. The “before” and “after” feature means for the non-BOT data imputed from the BOT
data. The light colored line is the z-weighted delta between “before” and “after” featuress.

Some Syntax-Only Text Feature Extraction and Analysis Methods 507

Notice that imputation from non-BOTs to BOTS moves the means in the direction
opposite the direction of imputation from BOTs to non-BOTs, as would be expected.

To verify the effectiveness of imputation in “nudging” vectors from one class to
another, a classifier that discriminates between BOT and non-BOT data is applied to
the imputed data. If the imputation has been effective, the post-imputation BOTS will
be classified as non-BOTs, and the post imputation non-BOTs will be classified as
BOTS.

In fact, when the imputed data is classified by the original data using a nearest
neighbor classifier, the ground truth tags are reversed for 100% of the vectors, as
expected.

12 Future Work

This work describes a characterization method for content data. Future work will
leverage the factor analysis it provides, which previous work has shown [1] can be used
to determine which members of a forum are least committed to their clique, and exactly
what would be required to move them out of their current clique. This is a type of
“cultural terrain-forming”.

These observations suggest that opportunities for objective, quantitative proactive
social media psy-ops planning could use the imputation sensitivities to estimate the
following:

Fig. 6. Before and after imputation statistics

508 M. Hancock et al.

1. How each feature’s effect on BOT-non-BOT assignment is quantified
2. How to optimally impersonate a member
3. How to identify imposters/impersonators (psycho-anomaly detection)
4. Deriving posts that would tend to foment or mitigate conflict among cliques.

References

1. Hancock, M., et al.: Modeling of social media behaviors using only account metadata. In: 8th
International Conference on Applied Human Factors and Ergonomics, Orlando, Florida, July
2016

2. Hancock, M., et al: Multi-cultural empirical study of password strength vs. ergonomic utility.
In: 18th International Conference on Human Computer Interaction, Toronto, Canada, July
2016

3. Hancock, M., et al.: Field-theoretic modeling method for emotional context in social media:
theory and case study. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS
(LNAI), vol. 9183, pp. 418–425. Springer, Cham (2015). doi:10.1007/978-3-319-20816-9_40

4. Hancock, M., Sessions, C., Lo, C., Rajwani, S., Kresses, E., Bleasdale, C., Strohschein, D.:
Stability of a type of cross-cultural emotion modeling in social media. In: Schmorrow, D.D.,
Fidopiastis, C.M. (eds.) AC 2015. LNCS (LNAI), vol. 9183, pp. 410–417. Springer, Cham
(2015). doi:10.1007/978-3-319-20816-9_39

5. Hancock, M.: Novel methods for adjudicating multiple cognitive decision models. In: 2nd
International Augmented Cognition Conference, San Francisco, CA, October 2006

6. Hancock, M., Day, J.: Exploring human cognition by spectral decomposition of a Markov
random field. In: 1st International Augmented Cognition Conference, Las Vegas, NV, July
2005

7. Hancock, M.: A cognitive engineering methodology for building multi-level fusion
applications. In: Northrop Grumman Data Fusion Conference, Aurora, CO, November 2007

8. Hancock, M.: Automating the characterization of social media culture, social context, and
mood. In: Science of Multi-Intelligence Conference (SOMI), Chantilly, VA (2014)

9. Hancock, M.: Data mining: technology and practice in the real world. In: Tutorial Notes of the
SIAM International Data Mining Conference (SDM 2003) (2003)

Some Syntax-Only Text Feature Extraction and Analysis Methods 509

http://dx.doi.org/10.1007/978-3-319-20816-9_40
http://dx.doi.org/10.1007/978-3-319-20816-9_39

	Some Syntax-Only Text Feature Extraction and Analysis Methods for Social Media Data
	Abstract
	1 Background
	2 The Venue: Twitter
	3 Types of Natural Language Text
	4 The Data Source
	5 Data Form
	6 Text Data Ground Truth Tagging
	7 Extrapolation of Ground Truth Tags
	8 The Content Data Elements and Their Encoding
	9 Experiment 1: Feature Selection by Brute Force
	10 Experiment 2: Sensitivity Testing by Feature Imputation
	11 The Imputation Algorithm
	12 Future Work
	References

