
Investigating Eye Movements in Natural
Language and C++ Source Code - A

Replication Experiment

Patrick Peachock, Nicholas Iovino, and Bonita Sharif(B)

Youngstown State University, Youngstown, OH 44555, USA
{prpeachock,nriovino}@student.ysu.edu, bsharif@ysu.edu

Abstract. Natural language text and source code are very different in
their structure and semantics. Source code uses words from natural lan-
guage such as English mainly in comments and identifier names. Is there
an inherent difference in the way programmers read natural language
text compared to source code? Does expertise play a role in the reading
behavior of programmers? In order to start answering these questions,
we conduct a controlled experiment with novice and non-novice pro-
grammers while they read small short snippets of natural language text
and C++ source code. This study is a replication of an earlier study by
Busjahn et al. [1] but uses C++ instead of Java source code. The study
was conducted with 33 students, who were each given ten tasks: a set of
seven programs, and three natural language texts. They were asked one
of three random comprehension questions after each task. Using several
linearity metrics presented in an earlier study [1], we analyze the eye
movements on source code and natural language. The results indicate
that novices and non-novices both read source code less linearly than
natural language text. We did not find any differences between novices
and non-novices between natural language text and source code. We com-
pare our results to the Busjahn study and provide directions for future
work.

Keywords: Eye tracking study · C++ · Program comprehension ·
Natural language

1 Introduction

Programmers are required to not just write source code, but read and compre-
hend it as well. The better a programmer comprehends code, the better they
will be at debugging and finding faults. Programming is not as straightforward
as it may seem to the beginner programmer. While it may look linear in its
structure, source code is very different from natural text. It is not commonly
read and executed left to right, top to bottom. Rather, it skips up and down,
only using what part of the program is needed at the time that it is called i.e.
the control flow. Natural text such as English prose, on the other hand is read
from top to down and left to right.
c© Springer International Publishing AG 2017
D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC 2017, Part I, LNAI 10284, pp. 206–218, 2017.
DOI: 10.1007/978-3-319-58628-1 17



Investigating Eye Movements in Natural Language and C++ Source Code 207

We derive our inspiration from a study conducted by Busjahn et al. [1].
They compared eye movements of novice and expert programmers who were
asked to read and comprehend natural language text and Java programs. They
found that novices read source code less linearly than the natural language texts.
In addition, the experts were found to read code even less linearly than the
novices. In this paper, we replicate the Busjahn et al. study because we wanted
to determine if their results still hold for C++ on a different sample. We do
not label our participants as experts and we did not have any participants from
industry. Rather, we split our participants as novices and non-novices as detailed
in Sect. 3.

The motivation behind this replication is to add to the growing research that
is focused in the area of natural language and source code comparison. Current
research shows little to no proof that being a novice or expert programmer affects
the readability of source code. Since it is very likely that programmers start with
reading code written by others, code comprehension plays an important role in
programming. In this paper, we propose two different research questions.

– RQ1: Is there an inherent difference in the way novice and non-novice pro-
grammers read natural language text compared to source code?

– RQ2: Does expertise play a role in the reading behavior of programmers, in
particular, with respect to linear reading?

If we can begin to analyze these patterns and behaviors, it can help to better
our methods and practices of teaching and programming overall.

The paper is organized as follows. We discuss some related work in the area
in the next section. In Sect. 3, we introduce the study and discuss the results in
Sect. 4. Finally we present our conclusions and future work.

2 Related Work

Eye trackers are devices that are able to detect where on a screen a user is
looking. An eye tracker will typically record two different types of data, saccades
and fixations. A fixation is where an eye has come to rest on part of the screen
for a given amount of time. A saccade is the movement from that fixation, to
the next fixation. The time for these can vary but is frequently between 200 and
300 ms. Analysis programs will often mark fixations with a dot that grows the
longer a user focuses on a spot on the screen. These dots are connected by a line
called a scan path [2].

The area of investigation of our study falls under the general area of program
comprehension. A program is defined as a set of instructions that are written to
perform a specified task. Program comprehension can be defined as the under-
standing of these lines of code typically written in some language such as Java
or C++. There have been several different studies done in the field of program
comprehension, many focusing around fragments of code or beacons. While these
beacons still play a major part in program comprehension, it has been shown



208 P. Peachock et al.

that they are not often the same between all users. That is to say that different
programmers see code in different ways [3].

A more recent study took a look into the way that students can retain infor-
mation by reading in a less linear pattern. Raina et al. ran a study to see if
information presented in a segmented pattern as opposed to a linear pattern
would help students to better understand what was presented to them [4]. Using
an eye tracker they were able to look at reading scores and reading depth to
gather data. The study conducted used a group of 30 students (cut down to 19
due to inaccurate calibrations). Using a control group and a treatment group,
they were given the same module in C++. The control group had the module in
a linear format. The treatment group used a segmented format. Results showed
that when reading in segments, students had higher reading and depth scores.
They were able to not only focus on the information presented but understood
it better than those reading in a linear fashion.

To expand and study the way that users read programming code, a study was
done on the way that programmers read code with syntax highlighting [5]. The
study looked to find if it was beneficial to the student to have syntax highlight-
ing (colorization of specific keywords and constructs) from different software
development environments. The study included 31 participants using the C#
programming language and separated them into two groups: black and white
code and code with syntax highlighting. The program having no errors, and the
omitting of a time limit gave the programmers adequate time to go through the
program to determine its output. The data was recorded with several metrics
including fixations, regressions, and scan percentage. In conclusion, the study
showed that there was minimal difference between all three metrics. This sug-
gests that syntax highlighting, while possibly more pleasing to the eye, does not
make a significant difference in the reading patterns of a programmer. However,
in a different study, Sarkar found that highlighting did help with task completion
but the effect decreased as programming experience increases [6].

One of the first studies done on natural language versus computer language
led to a belief that natural language may be simpler than programming code.
Having only been studied on novice programmers, this left room to expand
research to include both novice, non-novice, and expert programmers [7]. Fol-
lowing on Crosby’s research into beacons [7], Fan’s study focused on beacons and
comments within programming code and the benefits they have on program com-
prehension. The study showed the same findings as Crosby in that beacons are
noticed differently by each programmer. It also did find that comments within
code helped improve code comprehension [8].

Focusing on a different area than natural language and code comprehension,
Sharif et al. turned to the comparison of programming languages. The study
used students that were studying programming, broken into groups based on
their knowledge of both Python and C++ programming languages. The C++
group did have more participants, this was directly related to the amount of
programming courses offered to the students. The students had three different
tasks that involved finding bugs as well as the overview of two different tasks.
Using accuracy, time, fixation counts, and fixation duration, the study showed



Investigating Eye Movements in Natural Language and C++ Source Code 209

that accuracy higher in C++, also that novices took longer overall in C++. This
group also had higher fixation counts than the Python group. The students doing
Python tasks took longer than those using C++. While these metrics showed
different, the final data analysis showed that there was no significant statistical
difference when comparing the two programming languages [9].

Sharif and Maletic took a look into using an eye tracker to gather data on
the different identifier styles i.e., underscores versus camel case [10]. The eye
tracker was an improvement on a previous study [11] that used response time
to get data between the two styles. Using the eye tracker, it was found that the
different naming styles had a different effect on time as well as effort to detect
identifiers within source code. It was shown that camel-casing affected speed
of novice programmers. The final data analysis revealed that there was a large
improvement when it came to speed and effort when underscores were used.

Focusing on a different aspect of code reading than styles or languages, a
group of programmers took a look directly at the reading of code reviewers.
Code reviewing has been used and proven to help improve already written code.
A study done in 2002 on code reviewing sought to find out if a different code
reading technique prevailed over others. They took a look at different metrics
such as duration, gazes, glances, line identification and line reading. A lot of
the software was developed in house so that the data the eye tracker recorded
suited their needs for analysis. The five programmers chosen were to review six
programs. Among the programmers it was commonly found that the reviewers
would read code in a linear fashion the first time (referred to as a scan) reading
and then go back and piece apart the code. Results showed that different code
reviewers used different reading patterns involving recursive styles and focus on
variables [12].

Using eye-tracking to aid in computer science education is an ever growing
field of interest. In 2010 a study was done that looked at program comprehension
for educators in the computer science field [13]. It broke down a programmer’s
thought process into different sections to help better identify learning concepts.
External representation is any part of a program outside of the programmers
current known knowledge. Cognitive structure is what is already known to the
programmer, and assimilation process is how a programmer tackles the current
programming problem. They broke down program comprehension into several
different models. In the end, the study concluded that there is no single way to
learn reading and comprehension of programs. Also that being open to how a
program operates by reading code, is like different patches of knowledge coming
together to better understand a program as a whole.

In 2013 when Busjahn and Schulte studied code reading, they found with
a small group of 6 participants that there was a direct link to comprehension
of algorithms and code constructs used [14]. Following this study a workshop
was conducted that determined that even after a single programming course it’s
possible for the reading techniques of a programmer to change. Even from the
beginning of a programming class, to the end, a novice programmer can read
code different.



210 P. Peachock et al.

Eye-tracking and code comprehension studies are very detail oriented and
can often be time consuming. A study done by Marter et al. [15] took a look at
reducing study time by doing a study on the readabilty of source code using nat-
ural text. Marter’s study had a unique setup in that it did not use programmers
or programming code. The program was focused on using identifiers and the
readability of those identifiers. They primarily did this study due to the claims
that programming experiments can be quite costly and time consuming. The
study set out to with one primary focus, finding if the similarity and the number
of identifiers has a part in the readability of source code. They set out to do this
study by having users read short snippets of natural language text with iden-
tifiers in it. After having read the text each user was asked two questions. One
of these questions would relate to an identifier that was associated to the text,
the other fulfilling criteria within the text. Each one of these readings was timed
until a correct answer was given. The results of the study showed that while it is
easy to produce a quick experiment and get data from multiple subjects, there
are strong risks that come in to play. Whether a study of this type can relate
directly to source code and the understanding of source code being one of them.
The study itself does show a way to create quick lightweight studies, used for
specific experiment types. They should not replace a controlled study confirming
a hypothesis [7].

3 The Study

This study seeks to analyze and compare the reading and comprehension of
natural language text and C++ source code. The main purpose of this study is
to determine if natural text is read differently from source code and determine
if novice programmers read differently than non-novices.

3.1 Data Collection and Tools

We used a Tobii X60 eye tracker which recorded at 60 Hz and was able to gen-
erate 60 samples of eye movements per second. The device is a non-intrusive
eye tracker, meaning that a user does not need to wear it. The eye tracker is
stationary on a desk between the user and monitor. The eye tracker is capable
of compensating for head movements. We used a High Definition 24” monitor at
1920× 1080 resolution for the study and an identical monitor for the moderator.
Audio and video was recorded via a webcam. We used several different metrics
via the Tobii Studio software that included fixations, durations, validity, areas
of interest, gaze positions, timestamps, pupil size, validity codes, as well as start
and end times for each trial.

3.2 Study Variables

The independent variables are the type of stimulus: source code or natural lan-
guage text and the expertise (non-novice or novice) of the test participant. The
dependent variables being the linearity metrics shown below taken from Busjahn
et al. [1].



Investigating Eye Movements in Natural Language and C++ Source Code 211

– Vertical Next Text: The percentage of forward saccades that either stay on
the same line or move one line down.

– Vertical Later Text: The percentage of forward saccades that either stay on
the same line or move down any number of lines.

– Horizontal Later Text: The percentage of forward saccades within a line.
– Regression Rate: The percentage of backward saccades of any length.
– Line Regression Rate: The percentage of backward saccades within a line.

In addition to the linearity metrics, we also measure Saccade Length, which
is the average Euclidean distance between every successive pair of fixations and
Element Coverage, measured by the fraction of words that the participant looked
at. Element Coverage and Saccade Length were used to measure the differences
between non-novices and novices while the first five measures were used to ana-
lyze reading styles and were mostly used to compare source code to natural
language text.

3.3 Participants

For the study we used 33 students from Youngstown State University ranging
from 0 to 5 years or more of programming experience. We grouped the students
into two groups. We consider a non-novice to be a student who was exposed to
programming in a prior course. They are typically students enrolled in a higher
level course. Novices on the other hand had little or no programming background.
The novices were recruited from the Introduction to Programming course and
were all given extra credit. They were familiar with various concepts such as
variables, looping structures, and data types all done in C++. All participants
filled out a questionnaire before the study, we had a total of 18 male and 15 female
participants between the ages of 18 and 27. All students were able to speak, read,
and write in English, the native language of a majority of participants.

3.4 Tasks

Tasks given to the students were three different natural text paragraphs and
seven small C++ programs. The different natural language text programs were
all non related topics and were the same ones used by Busjahn et al. [1]. They
discussed government and economy, the history of black powder, and the effects
of dung beetles into a new environment. The C++ programs were all formulated
with the understanding that novice programmers were part of the study. Given
that information, we made the programs easy enough for a student going through
the Introduction to Programming course to figure out. We included different
concepts in each program including loops and nested loops, as well as input
statements. While there was a range in difficulty of the programs, they were not
overly difficult.

The natural text tasks were presented first (in a random order) followed by
the seven source code tasks (in a random order). Subjects announced out loud
when they were ready to begin the test and used the mouse to continue on to



212 P. Peachock et al.

the next slide. Subjects selected one of three numbers (in a random order) after
each task and answered the question that followed using the mouse or keyboard.
After each task, subjects were presented with a short questionnaire about the
difficulty of the task and their confidence in their answer. After all tasks were
answered, test subjects were presented with a post questionnaire that asked
about difficulty, time needed, and if any problems occurred during the test.

There was no time limit given to the participants of the study. They were
allowed as much time as needed to finish each Natural language and source
code task. Participants were also given as much time as needed to answer the
comprehension questions. Each comprehension question was one of three types;
a summary of the task, a multiple choice question about the task, or a fact about
the text/the output of the source code. The comprehension questions, chosen at
random, helped to better understand a participants ability to read a program.
The random options helped deter participants from discussing answers with
each other. A replication package with all tasks and study material is available
at http://sereslweb.csis.ysu.edu/HCII2017.

4 Study Results

We present the results in terms of our two research questions. We first describe
how the data was processed followed by comprehension task and timing results.
Threats to validity and a discussion is also presented.

Before we ran statistical tests on the data, we needed to map the fixations
on source code elements, which was done using eyeCode [16]. eyeCode is able to
automatically determine lines and words given an image stimulus. These lines
and words form the areas of interest (AOI). In our case the image stimulus is
the natural language and source code tasks. eyeCode also maps the fixations on
corresponding words so we are able to determine which fixation falls on which
word in natural text or source code. We use the abbreviation NT for natural
language texts and SC for source code.

4.1 Comprehension Scores

We observe that overall non-novices scored higher than novices. We also observer
the gap between novices and non-novices per task. The gaps are larger for difficult
programs like SignChecker and PrintPattern. The other programs that fell into
the medium and easy difficulty category had less of a gap between novices and
non-novices. This indicates that novices had a hard time giving a correct answer
for difficult problems. See Fig. 1 for the average comprehension score for novices
vs. non-novices within each task.

4.2 Response Time

We recorded the time that it took each user to go through each task. The time
differences showed similar results to the comprehension scores. Both novices and

http://sereslweb.csis.ysu.edu/HCII2017


Investigating Eye Movements in Natural Language and C++ Source Code 213

Fig. 1. Average comprehension scores for all participants.

non-novices spent the least amount of time in SC4 which was a small and simple
program. Similar to comprehension scores, the gaps between novices and non-
novices are much more apparent in difficult programs. Non-novices also tend to
take the study more seriously compared to novices and so they spend more time
on the tasks. A Mann-Whitney test reveals no significant differences in time
between novices and non-novices (p = 0.866, U = 126). See Fig. 2 for completion
time per task for novices vs. non-novices.

4.3 Element Coverage and Saccade Length

Novices: For element coverage, we found that 31.7% of NT in novices were looked
at and 34% of elements were looked at for SC. Both saccade length (p< 0.001)
and element coverage (p = 0.03) are significantly different between NT and SC
indicating that these two types of stimuli are quite different in terms of their
cognitive load for novices.

Non-novices: For element coverage, we found that 28.37% of NT in non-novices
were looked at and 33.43% of elements were looked at for SC among non-novices.
Both the saccade length (p = 0.001) and coverage (p = 0.01) were significantly
different for NT and SC in the non-novices group as well.

We also notice that the saccade length is higher for NT than SC for novices.
This means that in NT they jumped a few lines more than in the SC. The same
can be seen in the non-novices group. However, we find that the saccade length in
the non-novices SC category is lower (by 9 points) than the novices SC category.
For NT, the non-novices have higher (15 points more) saccade length compared
to the novices NT category.



214 P. Peachock et al.

Fig. 2. Average time measurements for all participants

4.4 Research Questions Revisited

In order to answer RQ1, we report on the linearity metrics we introduced in
the previous Section. We notice that the measures Vertical Next Text, Vertical
Later Text, and Horizontal Later Text are all higher for NT compared to SC.
These are all linearity measures indicating that NT is read more linearly than
SC. The regression measures deal with non-linear reading. The line regression
rates were higher in NT than SC i.e., participants went back to read a line
more often in NT than SC. We ran the Wilcoxon paired test within novices and
within non-novices to see if the above measures were significantly different in
these groups. Table 1 shows the results of the Wilcoxon test. We see that the
measures Vertical Next Text, Vertical Later Text, and Horizontal Later Text
and Line Regression Rate are all significantly different between NT and SC for

Table 1. Wilcoxon signed ranked test for NT vs. SC for non-novices and novices

Linearity measure Sum of positive signed ranks Non-novices Novices

p p

Vertical next text 253 0.001* <0.001*

Vertical later text 253 0.001* <0.001*

Horizontal later text 253 0.001* <0.001*

Regression rate 136 0.01* 0.775

Line regression rate 246 0.002* <0.001*



Investigating Eye Movements in Natural Language and C++ Source Code 215

non-novices. The Regression Rate which involves regressions of any length is not
significant in the novices groups but is significant in the non-novices group. This
means that there are significant more line regressions in SC vs. NT reading in
the non-novices group.

In order to answer RQ2, we ran the Mann-Whitney test on all participants.
We did not find any major differences between the novice group and the non-
novice group. These results are shown in Table 2. This could be due to the fact
that our non-novices were still students and not what could be considered an
expert in the programming industry. This leaves room to expand on this research
with expert programmers compared to novices and non-novices. In contrast,
Busjahn et al. found significant differences in these linearity measures (except
line regression rate) for novices vs. experts in their study.

Table 2. Mann Whitney results for novices vs non-novices over all tasks

Linearity measure U p

Vertical next text 546 0.406

Vertical later text 539 0.461

Horizontal later text 536 0.487

Regression rate 540 0.453

Line regression rate 487 0.973

4.5 Story Order Among Novices

We now discuss the alignment of NT and SC to Story Order among novices and
show the results of the Needleman-Wunch (N-W algorithm) in Table 3. Story
order is basically reading the stimulus one line at a time from top to bottom
(typically the way we read natural language text). The N-W algorithm is used
as a string matching algorithm to determine story order. It has also been used
by Cristino et al. [17] in earlier work on eye movement research. We also use
it in order to compare our work with Busjahn et al. [1]. The algorithm gives a
similarity score where a high score indicates that two sequences are close to each
other. The difference between näıve and dynamic scores is whether repetitions
through the code are counted. So if we care about how many times the person

Table 3. Needleman-Wunch results comparing the story order for NT and SC for
novices

Story order NT SC p

Näıve N-W score −8.27 −21.16 <0.001

Dynamic N-W score 18.71 −4.06 <0.001

Repetitions 3.42 2.6 <0.001



216 P. Peachock et al.

read through the code, we keep repeating the string matching with the story
order and the eye gaze movements to get a dynamic score, exactly the same as
done in [1].

These scores are not close to one another. This means that even novices do
not start with an approach that is very top down and left to right (contrary
to what Busjahn [1] found for novices). The results indicate that both natural
language text and source code were both read multiple times. The NT was read
3.42 times compared to SC which was read 2.6 times. The more read-throughs
the higher the N-W alignment score. We found a significant difference between
NT and SCs story order for novices. In comparison to the Busjahn study, the NT
was read 6.35 times compared to the SC which was read 3.89 times. Busjahn did
not find a significant difference between NT and SC which indicates that their
novices start out with a primarily linear approach to code reading. We found a
clear differences in our novice group as shown by the numbers in Table 3. We
leave the same comparison of story order and eventually execution order (how
the program is actually executed) for the novices and non-novices group as part
of our future work.

4.6 Post Questionnaire Results

After all tasks were complete, each participant was asked if they felt that the
given time that it took to go through the tasks was enough. All agreed that they
had enough time. Within the group of participants, the difficulty ranking varied.
10% found it to be very easy, 34% easy, 41% average, and 16% found it difficult.
The main difficulty that seven participants reported was trying to remember the
given stimuli when presented with the comprehension question after the fact.

4.7 Threats to Validity

To account for different control structures in source code as well as different word
lengths in natural language text, we used three NT passages and seven source
code passages. The fact that we did not find any differences between novices and
non-novices indicates that they are possibly at the same level in reading skills.
In order to find differences in linearity, it might be necessary to study expert
programmers in industry who program on a daily basis and have been working
in industry for more than 10 years. One major threat to validity is the skewness
that occurs in eye tracking data. The linearity metrics are directly dependent on
how accurately the fixations are mapped to words or source code elements. We
did not manually correct skewness for this study. We did however make sure our
calibrations were done well and since our study didn’t last more than 20 min,
the drift was minimal. We also discarded all trials with less than 60% mapping
on source code elements and found the same significant results. This indicates
that we might find even more strength and effect in our findings if all the data
was manually corrected. Also, on examining the scan paths, we found that most
of them were close to the word that they were looking at. We strongly believe



Investigating Eye Movements in Natural Language and C++ Source Code 217

that after correction, we should see even stronger significance. We have left this
as an immediate future exercise.

5 Conclusions and Future Work

The paper presents a study that characterized linearity in eye movements
between natural language text and source code in C++. This study replicates an
earlier study by Busjahn et al. [1] that looked at Java code. Similar to Busjahn,
our results show that both non-novices and novices read source code significantly
different than natural language text, while most natural text is read left to right,
top to bottom with few regressions, source code is read in a less linear manner
with more regressions. Unlike Busjahn our study did not find any significant
differences between novices and non-novices. As these findings are different, it
calls for more studies to be conducted. It is very likely that this difference was
not visible in our study since our non-novices was not comparable to experts
from industry used in the Busjahn study.

As part of future work, we are currently conducting a second phase of this
study with the same group of students. The purpose is to determine if the eye
movements differ at the end of the semester indicating if any learning occurred.
The second phase of the study is being conducted during the last week of the
semester. We are also taking a look at fixations and durations on specific areas
(beacons) in the code provided and want to determine if the difficulty of a task
makes a difference on how both novices and experts read the code. Beacons are
places in the code that non-novices tend to focus on as one chunk of data. More
studies and replications need to be done to add to the body of knowledge and
thereby advance the state of the art of eye movement research in programming.

References

1. Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J.H., Schulte, C.,
Sharif, B., Tamm, S.: Eye movements in code reading: relaxing the linear order.
In: Proceedings of the 2015 IEEE 23rd International Conference on Program Com-
prehension, ICPC 2015, Piscataway, NJ, USA, pp. 255–265. IEEE Press (2015).
http://dl.acm.org/citation.cfm?id=2820282.2820320

2. Rayner, K., Chace, K.H., Slattery, T.J., Ashby, J.: Eye movements as reflections
of comprehension processes in reading. Sci. Stud. Read. 10, 241–255 (2006)

3. Brooks, R.: Towards a theory of the comprehension of computer programs.
Int. J. Man-Mach. Stud. 18(6), 543–554 (1983). http://www.sciencedirect.com/
science/article/pii/S0020737383800315

4. Raina, S., Bernard, L., Taylor, B., Kaza, S.: Using eye-tracking to investigate
content skipping: a study on learning modules in cybersecurity. In: 2016 IEEE
Conference on Intelligence and Security Informatics (ISI), pp. 261–266, September
2016

5. Beelders, T., du Plessis, J.-P.: The influence of syntax highlighting on scanning and
reading behaviour for source code. In: Proceedings of the Annual Conference of
the South African Institute of Computer Scientists and Information Technologists,
SAICSIT 2016, pp. 5:1–5:10. ACM, New York (2016). http://doi.acm.org/10.1145/
2987491.2987536

http://dl.acm.org/citation.cfm?id=2820282.2820320
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://doi.acm.org/10.1145/2987491.2987536
http://doi.acm.org/10.1145/2987491.2987536


218 P. Peachock et al.

6. Sarkar, A.: The impact of syntax colouring on program comprehension. In: PPIG,
July 2015

7. Crosby, M.E.: Natural versus computer languages: a reading comparison. Ph.D.
dissertation, University of Hawaii at Manoa (1986)

8. Fan, Q.: The effects of beacons, comments, and tasks on program comprehension
process in software maintenance. Ph.D. dissertation, Catonsville, MD, USA (2010)

9. Turner, R., Falcone, M., Sharif, B., Lazar, A.: An eye-tracking study assessing the
comprehension of C++ and Python source code. In: Proceedings of the Symposium
on Eye Tracking Research and Applications, ETRA 2014, pp. 231–234. ACM, New
York (2014). http://doi.acm.org/10.1145/2578153.2578218

10. Sharif, B., Maletic, J.I.: An eye tracking study on camelcase and under score iden-
tifier styles. In: Proceedings of the 2010 IEEE 18th International Conference on
Program Comprehension, ICPC 2010, Washington, DC, USA, pp. 196–205. IEEE
Computer Society (2010). http://dx.doi.org/10.1109/ICPC.2010.41

11. Binkley, D., Davis, M., Lawrie, D., Maletic, J., Morrell, C., Sharif, B.: The impact of
identifier style on effort and comprehension. Empir. Softw. Eng. J. (Invit. Submiss.)
18(2), 219–276 (2013)

12. Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.-I.: Analyzing individual
performance of source code review using reviewers’ eye movement. In: Proceedings
of the 2006 Symposium on Eye Tracking Research Applications, ETRA 2006, pp.
133–140. ACM, New York (2006). http://doi.acm.org/10.1145/1117309.1117357

13. Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., Paterson, J.H.: An introduction
to program comprehension for computer science educators. In: Proceedings of the
2010 ITiCSE Working Group Reports, ITiCSE-WGR 2010, pp. 65–86. ACM, New
York (2010). http://doi.acm.org/10.1145/1971681.1971687

14. Busjahn, T., Schulte, C.: The use of code reading in teaching programming. In:
Proceedings of the 13th Koli Calling International Conference on Computing Edu-
cation Research, Koli Calling 2013, pp. 3–11. ACM, New York (2013). http://doi.
acm.org/10.1145/2526968.2526969

15. Marter, T., Babucke, P., Lembken, P., Hanenberg, S.: Lightweight programming
experiments without programmers and programs: an example study on the effect
of similarity and number of object identifiers on the readability of source code
using natural texts. In: Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2016, pp. 1–14. ACM, New York (2016). http://doi.acm.org/10.1145/
2986012.2986020

16. Hansen, M.: GitHub - synesthesiam/eyecode-tools: a collection of tools for ana-
lyzing data from my eyeCode experiment. https://github.com/synesthesiam/
eyecode-tools

17. Cristino, F., Mathôt, S., Theeuwes, J., Gilchrist, I.D.: ScanMatch: a novel method
for comparing fixation sequences. Behav. Res. Methods 42(3), 692–700 (2010).
http://www.springerlink.com/index/10.3758/BRM.42.3.692

http://doi.acm.org/10.1145/2578153.2578218
http://dx.doi.org/10.1109/ICPC.2010.41
http://doi.acm.org/10.1145/1117309.1117357
http://doi.acm.org/10.1145/1971681.1971687
http://doi.acm.org/10.1145/2526968.2526969
http://doi.acm.org/10.1145/2526968.2526969
http://doi.acm.org/10.1145/2986012.2986020
http://doi.acm.org/10.1145/2986012.2986020
https://github.com/synesthesiam/eyecode-tools
https://github.com/synesthesiam/eyecode-tools
http://www.springerlink.com/index/10.3758/BRM.42.3.692

	Investigating Eye Movements in Natural Language and C++ Source Code - A Replication Experiment
	1 Introduction
	2 Related Work
	3 The Study
	3.1 Data Collection and Tools
	3.2 Study Variables
	3.3 Participants
	3.4 Tasks

	4 Study Results
	4.1 Comprehension Scores
	4.2 Response Time
	4.3 Element Coverage and Saccade Length
	4.4 Research Questions Revisited
	4.5 Story Order Among Novices
	4.6 Post Questionnaire Results
	4.7 Threats to Validity

	5 Conclusions and Future Work
	References


