
Dynamic Task Sharing Within Human-UxS
Teams: Computational Situation Awareness

Scott Grigsby(&), Jacob Crossman, Ben Purman, Rich Frederiksen,
and Dylan Schmorrow

Soar Technologies, Inc., Ann Arbor, MI, USA
scott.grigsby@soartech.com

Abstract. In current military operations, a team of human operators, often dis-
tributed across multiple locations, is required to manage even a single Unmanned
Vehicle (UxV). For future multi-UxV control, effective dynamic task sharing
strategies – the ability to quickly re-assign tasks and responsibilities between
operators or between operators and autonomous systems - will vastly improve
team coordination. However, for task hand-off to be executed effectively, the task
assignee needs to be quickly brought up to speed with sufficient situation
awareness to effectively handle their new tasking.We have implemented a system,
called Computational Situation Awareness (CSA), that encodes the awareness
maintenance process into the control station itself. CSA generates a computational
“mental” model of an expert’s SA and maintains multi-level awareness of the
mission and state of the unmanned systems. This allows the system to predict
information requirements and drive cueing and other mitigations for individuals
and across the team. By tracking user tasks and system state related to those tasks,
CSA builds an understanding of the task’s progress thus enabling it to better
determine what information the user needs to maintain task relevant SA without
bogging them down. By encoding workload assessment and situation awareness
into the operator control station itself, the control station becomes a partner with
the operator (or team of operators) in making sense of the data. This enables it to
manage task sharing and offloading and share information in terms that aids rather
than distracts, thus improving each operator’s mission effectiveness.

Keywords: Situation awareness � Workload � Human-Machine teaming �
Decision support

1 Introduction

Supervisory control of multiple UxVs is a challenge, due to the cognitive burdens it
places on the operator. These burdens include:

1. Staying aware of all important mission activities and events
2. Predicting outcomes and activities so as to proactively address them
3. Making decisions about how to best deploy aircraft
4. Shifting and regaining awareness when multiple activities occur simultaneously
5. Triaging and offloading tasks when overloaded
6. Recognizing faults or failures

© Springer International Publishing AG 2017
D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC 2017, Part II, LNAI 10285, pp. 443–460, 2017.
DOI: 10.1007/978-3-319-58625-0_32



Prior work suggests that, under the right conditions, supervisory control should
provide an operator with the ability to control 4–8 UAVs simultaneously given the
right conditions (i.e. that the level of automation is correct, and required situation
awareness is maintained) [1]. Current systems fall far short of this level – most
requiring multiple people to manage one aircraft.

The Multi Autonomous Ground-robotic International Challenge 2010 (MAGIC
2010) [2] provided an opportunity to test the limits of human supervisory control in a
reasonably complex ground domain. In this competition, multiple robots executed ISR
and dangerous object interaction tasks under the supervision of one or two operators.
For this environment, Soar Technology, Inc. (SoarTech) developed the SAGE user
interface designed to keep operators (and competition judges) aware of the overall
mission as well as important events that were critical to the mission. Though only one
of several factors that influenced the results, SAGE (along with a significant amount of
robot autonomy [3]) helped a team of two operators efficiently control 14 ground
robots. This results suggested an opportunity to apply new technologies to the problem
of multi-vehicle control – specifically, technology that can enhance and expand
operator situation awareness.

This prior work has led to the further research, development, and evaluation of
what we call Computational Situation Awareness (CSA). CSA is stand-alone soft-
ware that maintains multi-level awareness of the mission and state of the unmanned
systems. CSA Ingests (via networking protocols) data regarding the mission, UAV
state, and some user-entered data. CSA then maintains an internal operating picture,
detects task, failure, and mission-relevant events, and estimates user workload. The
purpose of this technology is to help the operator continuously orient him/herself to the
situation with the goal of making faster and better decisions.

2 Approach

Multi-UAV missions require a combination of global situation awareness (e.g., the
state of the whole mission) and awareness of specific details such as the activity of a
specific track, or the cause of a failure. Alternating between these types of macro and
micro views of a mission is known to cause loss of situation awareness and thus can
lead to poor decisions or change blindness.

To aid the user, CSA maintains situation awareness within the system itself and,
unlike the human, CSA does not get distracted, attending equally effectively to all
aspects of the mission. Unlike other systems, CSA maintains this awareness at multiple
levels as defined by Endsley [3]:

1. Perception: Like most command and control systems, CSA maintains an internal
operating picture (IOP) with the locations and states of each entity.

2. Comprehension: Unlike most other systems, CSA monitors this perception data for
important relationships that matter in the mission. When discovered, these rela-
tionships trigger events. Events are a key output of CSA – they represent situations
that require user attention. Events are maintained in a queue and are color coded to
indicate priority. Events are CSA’s means of orienting the user to critical situations.

444 S. Grigsby et al.



Without CSA, the operator would need to use scan-and-assess techniques to
maintain the same awareness making it difficult to maintain both macro- and
micro-awareness.

3. Projection: CSA also projects some information into the future – for example,
computing estimated task completion time. This projection data is integrated back
into CSA’s internal operating picture allowing events to be proactively triggered on
predicted situations.

This multi-level IOP can be used for purposes beyond event detection. Our existing
Lucid system uses this data to estimate the workload required of the user to execute the
mission. This estimate associates a multi-dimensional workload model with each event
and task in the IOP, and from the collection of these models, it computes an overall
workload. This estimate is used within the system to automatically offload tasks to
other users when overloaded.

CSA’s ability to maintain its own internal operating picture can form the basis for
situation awareness for both human users and autonomous entities. Within a decision
support application, CSA would output its events using a smart interaction module to
display alerts or events, allocate tasks, or otherwise inform missions, allowing the
human user to take intelligent actions. Within an autonomous control system, CSA
would be used to track and inform the entities decision processes directly.

2.1 CSA Architecture and System Integration

Computational Situation Awareness is implemented as a software module that ingests a
broad range of state data and outputs filtered state data, events, and workload estimates.
Figure 1 illustrates the CSA data flow.

The central component of CSA is the internal operating picture (IOP), which stores
state data. This store is implemented as an in-memory store with separate indexed data
structures for assets, tasks, tracks, and other relevant state items.

The IOP is maintained by a set of processes that are continuously processing
incoming state messages from simulation (though the source is unimportant) and either
(L1) simply storing them, (L2) making additional computational inferences on them, or
(L3) making projections based on them. The Ln labels indicate the level of processing
provided by these functions in Endsley’s levels of SA terminology [4].

The basic SA processes set the stage for event detection. Event detection finds
patterns in the IOP that match to mission, task, and failure situations that are of interest to
the user. Some of these events are hard coded (e.g., the task start/completion tasks and the
failure tasks). Others are informed by user requests (e.g., the force protection zone and
restricted areas). These events are prioritized and output to the network where any
component can subscribe to them. Each event is associated with a specific client (based
on the task offloading work we will discuss in the next sub-section) and, thus, clients that
do not “own” an event, display the event differently (grayed out, low on the event queue).

Events can be added to the CSA module relatively easily by simply implementing
an event class and logic. There is support in the infrastructure for various
spatio-temporal computations that can be reused to support new events. New event
classes can easily be added within a day or two.

Dynamic Task Sharing Within Human-UxS Teams 445



As an example, Table 1 summarizes the classes of events that were supported as of
the end of our Lucid effort. The shaded rows highlight the events that the user can
request explicitly. The “zone” based events are created in two cases: (1) when mission
plan data is received force protection and restricted operating zones are created around
objectives and dangerous areas, and (2) when the user creates a zone of interest using
the polygon drawing tools in the UI. The track-based events are created when users
select to “watch” a track. In these cases the user is alerted when new information about
that track becomes available, when the track is lost, and when the track changes course
significantly. These user-driven events are a critical component to CSA’s utility as they
let the user specify how the CSA system should help him/her. In our evaluation, these
user-driven events were most valuable in helping the operators execute the mission.

2.2 Real-Time Workload Assessment and Offloading

The IOP is also used to infer the workload on the user in any given situation. When the
workload is estimated to be above a single operator’s capacity to execute effectively,
events and tasks are offloaded to another operator. The basic workload assessment
capability uses a 3-dimensional model to estimate workload in the cognitive, visual,
and manual dimensions (these three dimensions are taken from Wickens [5], but here
the auditory mode is not incorporated to simplify the model for initial implementation).

Fig. 1. CSA architecture

446 S. Grigsby et al.



The basic architecture for workload estimation is illustrated in Fig. 2. Events and
state data (most importantly, tasks) are pulled from the IOP. For each event and task,
the system looks up the workload model for that event and reads the expected

Table 1. Classes of events that CSA can detect (Lucid implementation)

Event name Type Description

Orbit point start Task Detect when orbit starts

Search route start/end Task Detects when route search starts and when end of route is reached

Search area start/end Task Detects when areas search starts and ends

Follow vessel Task Detects when tracking starts (failure event detects when it is lost

Asset task hasn’t
changed

Task Detects when an asset has not been tasked recently (default: 5 min)

Force protection
(user)

Mission Detects when red/yellow tracks are discovered within a specified region

Restricted operating
zone (user)

Mission Detect blue forces in an unsafe area

Area of operation
breach (user)

Mission Detect that an asset has left an expected area of operation

New info available
(user)

Mission Detects when new data is available to track – Automatically created for any
track being followed

Track change (user) Mission Detects when a track changes course (45 deg) or is lost – Automatically
created for any track being followed

Fuel warning Fault Detects when a vehicle is at risk of not making back to carrier group with fuel
levels

High/low altitude Fault UAV breaks an altitude boundary

Lost comms Fault UAV has lost communications

Near max comms
range

Fault Reaching limit of direct line-of-sight communication (Fire Scout-B)

Not making expected
progress

Fault Asset appears to be moving incorrectly (not following expected path)

Fig. 2. Workload estimation architecture.

Dynamic Task Sharing Within Human-UxS Teams 447



instantaneous workload value for that event at the given time. The expected instanta-
neous workload values are aggregated, using Eq. 1, to form an overall estimated
workload. This value is fed into the task evaluation and distribution function where
decisions are task distribution are made.

The equation used to compute the overall workload is as follows:

WðtÞ ¼
XN

i¼1
maxk¼1;2;3fwkðt � tiÞgþ gðtÞ ð1Þ

g tð Þ ¼ 0:1� 1:25N ð2Þ

Here W(t) is the estimated workload computed as the maximum of the accumulated
component (e.g., cognitive, visual, manual) workloads. Component workloads are
computed as functions of time, where each ti is the start time for the ith event or task.
The g(t) component approximates the non-linear effects caused by multiple simulta-
neous active events (attention switching). Its constant values were tuned during labo-
ratory tests such that workload values approximated to 1.0 when a user appeared to be
overloaded. g(t) presents some problems as it scales exponentially over the whole range
of N, which is not realistic and can overestimate the workload for high Ns. It works
reasonably well for N < 15, but provides excessive estimates. A future version will
likely replace the exponential with a sigmoid function to model a diminishing effect as
N increases to large numbers.

This model is similar in concept to the Wickens’ model [5], but differs in that it
scales to an arbitrary number of tasks and events and accounts for change in workload
over time such as temporal delays, workload ramp up, and workload ramp down. Our
model also designed to be more precise in that it seeks to derive a number that can be
compared to the user’s full load level (e.g., 1.0 = fully loaded).

The decision when to offload is not straightforward.We found in our discussions with
users during the evaluation that there are several ways tasks can be divided within a team.

1. They can be broken up purely based on their timing (e.g., round robin distribution,
or secondary user gets all tasks after the main user becomes overloaded).

2. They can be broken up based on load balancing (e.g., the choice of which user gets
which tasks is made so as to minimize user workload differences).

3. They can be made based on geography (e.g., each user takes care of a geographic
segment)

4. They can be made based on asset ownership (e.g., each user gets events and tasks
associated with the assets that he/she owns).

In practice, during our evaluation, operators used more than one of these approa-
ches when they were given a choice.

We only had time and resources to select one offloading method for our initial
implementation. We selected a variant of (2) for its simplicity. The variation was that
the algorithm tries to load users one at a time – meaning it will not balance the load
until at least one user is fully allocated. The idea behind this strategy is that it allows the
secondary operator(s) to focus on other tasks while the primary operator is able to do
the task alone. The algorithm is as follows:

448 S. Grigsby et al.



1. Assign all unassigned events to the user with the highest
workload (this is the primary user).

2. If this user’s workload estimate is < 1.2 (combined) then
stop, otherwise –

3. Find the maximum workload event assigned to the high workload
user that has occurred in the last 30 s. (i.e. offload the event
that is the biggest component of the workload.

4. Assign this event to the lower workload user if (event.work-
load < 0.9 (high_user.workload - low_user.workload))

We note a couple of key points regarding this algorithm. First, events/tasks are not
offloaded until the workload level reaches 1.2. This allows for the lack of precision in
the workload model numbers. They are not intended to be correct to a single decimal
place. Second, it moves tasks to other users from largest to smallest. The idea is to take
the major focus tasks away from the primary user, so the primary user can continue to
maintain global SA.

A crucial aspect of task offloading is maintaining situation awareness of the task
parameters during handoff. Here CSA provides the appropriate mission parameters for
the secondary operator. When the task is assigned or re-assigned, it is accompanied by
a clickable “mini-brief” and recommendation with information drawn from the
CSA IOP (Fig. 3) to enable the operator to quickly come up to speed on the task.

2.3 Architecture and Sample System Integration

The first implementation of CSA was within a system, called Lucid, to enhance
operator situation awareness when executing control over multiple unmanned aerial
vehicles (UAVs) to fulfill an ISR mission.

The Lucid system forms an innovative operator control unit (OCU) with a goal of
decreasing operator: UAV ratios. Our specific research goals were:

SITUATION - ! URGENT !
UAV Flight Control Stuck
UAV Drifting, losing altitude
(-2.1 m/s) 

Mission

Who: UAV A31
What: Manual control UAV to
CP17
Why: UAV crash in 10min
How: Tele-operation required
When: ASAP, Land NLT 1330

COMMAND AND SIGNAL
Commanding Unit: XXXXX
Main operator: XXXX
Main operator radio channel: XXXX

Target:

Inspect with UAV62

5min

!

Anticipated
intercept location

Route and time to
intercept

Side effect (task abandoned)

Hover to "what if";
click for quick action

Fig. 3. Sample mini-brief (left) and recommendation panel (right) for task offloading

Dynamic Task Sharing Within Human-UxS Teams 449



1. Achieve operator:UAV ratios of 1:4 or better
2. Minimize operator interaction time
3. Maximize allowable neglect time (time the operator can neglect the system without

degrading mission performance)
4. Maximize operator situation awareness
5. Lessen primary operator workload by automatically distributing tasking

Lucid was implemented in two pieces. First, CSA and workload estimation were
combined into a single software component that was executed within a Java virtual
machine. These technologies were then integrated with a supervisory control interface
(RaptorX). Display and control capabilities were encapsulated within a plugin that resided
in a RaptorX front end. These two components talk with each other using the Lightweight
Communication Protocol (LCM). A proxy at the RaptorX end converts LCM traffic into
native RaptorX TCP CommPath traffic so that the user interface plugins can send and
receive data. The system as a whole is integrated with our own simulation environment,
called SimJr, which provides simulated real-world data feeds and allows us to test and
evaluate the system. The interface to SimJr is also a network interface using LCM.

3 Evaluation and Results

To test the efficacy of our CSA implementation, we implemented a rigorous evaluation
process on the Lucid prototype. Our evaluation was designed to test several claims.
Each claim is framed as a comparison between an operator using Lucid (the evaluation
case) and a user using Raptor X without Lucid (the control case).

1. Using Lucid, operators will interact less with the system. Interaction here is defined
to include control tasks and manipulation tasks.

2. Using Lucid, operators will be able to attend the mission less frequently in order to
do other tasks.

3. Using Lucid, operators will have increased situation awareness of the mission,
operating area, and asset state.

4. Using Lucid, operators will complete missions more effectively. We will measure
effectiveness in terms of high value individuals identified, classification accuracy,
reaction time, and task failures.

3.1 Evaluation Design

The Lucid evaluation was executed as a comparative study using a single control (or
base) case and a single evaluation case. Both cases used the same scenario design and
simulation and RaptorX as the core user interface. Communication between operators
occurred only via a chat window. The independent variable for the study and the
difference between the two cases is presence or absence of the Lucid capabilities, which
are presented to the user as extensions of the Raptor X capability. Table 2 compares the
features available in each configuration.

Operators were provided with a laptop computer with Raptor X and the Lucid
plugin installed. Separate machines were used to run the simulation. Manual data was

450 S. Grigsby et al.



collected (1) by the operators using predefined web forms/spreadsheets and (2) by the
experiment director when required. At the end of each day, the team met in a hot wash
to summarize what happened that day including collecting subjective feedback on
performance.

Each test run (mission) has three main phases: planning/preparation (5 min), exe-
cution, and wrap up. The planning phase is short because the operators executed the
same basic mission over and over (including training runs) and thus did not need much
time to plan out activities. The mission execution phase was interrupted twice to
measure situation awareness – once at 15 min and once at 30 min. During intermediate
situation awareness testing the simulation was paused and the RaptorX screen blanked.
For final situation awareness testing the simulation was paused, but the RaptorX screen
remained visible. The wrap-up phase consists of structured questions and gathering of
data from that mission. Each session typically ran 75–80 min.

Two operators executed each mission: a primary operator and a support operator:

Primary Operator: The primary operator is responsible for the overall mission
including situation awareness, classification of tracks, and control of UAVs. The pri-
mary operator can offload tasks to the support operator when desired.

Support Operator: The support operator is responsible for any tasks the primary
operator request for the secondary operator to execute.

The only exceptions to this structure were three runs made near the end of the
evaluation when a second operator was not available. In these cases, a primary operator
executed the mission alone.

Metrics
We collected a wide range of data associated with each of our experimental claims.
A substantial volume of data was collected in the form of automatically generated logs

Table 2. Evaluation configurations

Control case Evaluation case

Users • Primary operator
• Supporting operator

SAME

Human
communication

• Text chat SAME

Simulation • SimJr running battlegroup/harbor
scenario

SAME

Secondary
task

• Elementary math using tablet SAME

Front end • Raptor X
• Assets Commands
• Polygon overlay drawing

• Raptor X
• Assets Commands
• Polygon overlay drawing
• Event detection/queue
• Situation mini-briefs
• Decision overlay (if possible)

Task sharing • Ad hoc using chat • Auto event passing
• Manual event passing (via chat)

Dynamic Task Sharing Within Human-UxS Teams 451



from the RaptorX platform, including user actions with timing, and from the simulation
(to capture ground truth of entity locations and timing of simulated events). For sub-
jective workload measurement, we used an HTML version of the NASA Task Load
IndeX (TLX) [6, 7], a widely employed multi-dimensional rating procedure that
derives an overall workload score based on a weighted average of ratings on six
subscales: Mental Demands, Physical Demands, Temporal Demands, Own Perfor-
mance, Effort and Frustration. To assess situation awareness, we developed an adap-
tation of the Situation Awareness Global Assessment Technique (SAGAT) [4]. We
supplemented the standard SAGAT procedure where subjects place entities on a map to
demonstrate their awareness of the geographic situation with scenario-specific ques-
tions about mission-relevant conditions such as threats to own force and status of
adversary activities.

User’s Mission and Tasks
Overall, the operators were responsible for monitoring activity at a port. They were
given initially 4, and as the mission progressed as many as 6 UAVs to execute the
mission. These assets could be used to obtain tracks of vessels and ground vehicle in
and around the port. Each track was associated with a set of property data (e.g.,
location, size, cargo, type), the completeness of which is dependent on the quality of
the sensor reading on the vehicle. All operators were given the following mission brief:

“You are responsible for monitoring activity in a port city. You have some UAVs at your
disposal and can use them to obtain tracks of surface vessels and ground vehicle in and around
the port. Each track has some associated data, the completeness of which is dependent on the
quality of the sensor reading on the vehicle. Intelligence reports suggest that adversary forces
intend to move explosives and other equipment out of the city by sea. Past experience suggests
that operations like this begin by moving explosives from a bomb-making factory to a training
site, then moving to a dock where they are transferred onto a ship. Ships used for such transfers
usually arrive only shortly before the contraband coming from the training site is to be loaded.
The locations of the training site and two or three bomb factories are known, as are the
locations of all the docks. It is not known which bomb factory will supply the training site, or
which dock will be used for the transfer. An informant reports that the ship to be used is the
Trojan Steed, which can be distinguished by its white color, cargo of large crates, and like new
condition.”

Figure 4 provides an overview of the mission geography including the overall
mission area view with the carrier group to the southeast.

Figure 5 is a close-up view of the land region where ground vehicles moved. These
figures are taken from the RaptorX display.

Within the general activity of the harbor, the user is to detect three events:

1. A vehicle arriving at a known training site from one of two known bomb labs. The
operator was required to identify the source location for this vehicle.

2. A vehicle leaving the training site at some point and moving to a dock to meet up
with the Trojan Steed (sea vessel). The operator was required to identify whether or
not the ground vehicle did meet up with the Trojan Steed.

3. Any vessel approaching the carrier group. The scenario supported carrier threats
from either an opponent force destroyer or a fishing vessel. The operator had to
correctly identify which vehicle threatened the battle group (as soon as possible).

452 S. Grigsby et al.



In support of detecting these mission-level events, the operator also attempted to
complete these supporting actions:

1. Identifying the track of the vehicle that moved from a bomb site to the training area.
2. Identifying the track of the vehicle that moved from the training site to the dock or

some other location.
3. Identifying the ship named “Trojan Steed” and its track.

Fig. 4. Overall mission region

Fig. 5. Close-up of harbor area.

Dynamic Task Sharing Within Human-UxS Teams 453



We developed two different movement models – one for the sea and one for land.
The sea vessels were spawned at both fixed and random locations in the sea (most at the
beginning of the mission) and within the port. They each selected random destination
and moved toward those destinations at rates dependent on the vessel type. The land
vessels were spawned randomly along a road network and were given random desti-
nations. Movement speeds were constant. The high value individuals (HVIs) were also
randomized, but in a constrained manner:

• Bomb Vehicle: The vehicle moving from the bomb lab to the training camp. This
vehicle spawned at a random time early in the mission. It source was randomly
selected between two different bomb lab locations (one on the east, the other on the
west).

• Dock Vehicle: The vehicle moving out of the training camp, possibly to a dock.
This vehicle spawned a random (but constrained) number of seconds after the bomb
vehicle arrived at the training camp. Its destination was randomized such that 50%
of the time it went to the dock where the Trojan Steed was headed, while the other
50% of the time it went somewhere else.

• Trojan Steed: The sea vessel of interest begins out of port, but moves into the port
to a dock during the mission. The Trojan Steed was randomly selected to be one of
two sea vessels, one to the east and one to the west of the port mouth. Other clutter
sea vessels with similar attributes were placed near each location. The Trojan
Steed’s dock destination was assigned randomly at startup (dependent in part on
whether it would meet the dock vehicle that run).

• Military Destroyers and Threatening Fishing Vessels: Two destroyers patrolled
the mouth of the port. At the beginning of the mission a threat was randomly
selected among these vessels and a fishing fleet out of the port. The threat vehicle
(either the military destroyer or a fishing vessel) would approach the carrier group
over time.

To achieve the mission objectives the user can do two primary things: command
UAVs and inspect/update information about tracks. The user can also execute sup-
porting actions that help make decisions and commands easier. Table 3 lists the actions
that a user can execute. Some of these activities can only happen when the user is using
the Lucid plugin to RaptorX.

In addition to the main tasks, various situations can arise that require operator
attention. Table 4 lists the situations that may occur during a mission and the expected
operator response (or type of response). In many cases the operator has freedom in the
details of the action taken.

Finally, the operators were asked to execute a secondary task whenever their pri-
mary task was not urgent or all consuming. The secondary task was the game “Tetris”
executed on a tablet computer. The purpose of this secondary task is twofold:

1. To ensure that the user minimizes work on the main task (i.e., doesn’t do “filler”
tasks).

2. To estimate the allowable neglect time.

At the beginning of each scenario, the operator was asked to execute the secondary
task as much as possible, running up as high a score as possible. At the start of the

454 S. Grigsby et al.



Table 3. Available user actions in the Lucid and non-Lucid configurations.

Action Description Lucid only

UAV commands (speed and altitude can be set for each)
Go to point Go to a point in space and orbit or hover. Active

sensor remains forward looking
Observe point Go to point or circular route where it is possible to

keep sensor coverage on the point
Search area Fly in a circular pattern through an area such that

every point in the area will be observed by the
sensor at least once

Search route Fly along a route with the sensors oriented forward
along the route

Follow surface vessel Position asset to keep vessel in view of its sensors.
Move in order to keep vessel in view

Track annotation
View track information The user can select a track and view the known

information for that track (e.g., location, type, etc.).
Some fields may be unknown

Mark track ID The user can set the ID to one of the known HVIs
Mark track force For unknown entities, the user can mark the force

of the track (i.e., Hostile, Suspected, or Unknown).
Tracks marked as Hostile and Suspected have
different colors so that they appear visually clear

Mark track intent For the foreign military surface vessel, the user can
select the track and set the intent either “Patrol
Harbor” or “Approach Battlegroup”

Map markup
Create waypoints The user can drop a waypoint on the map and

assign a type to it: “Control” for use in tasking
UAVs and “Location of Interest” to mark the main
mission tasks

Create routes and areas The user can define routes as a series of waypoints
and give them names. These can be used for
route-based tasks

Other
Chat The user can chat in a standard chat window with

the other operator
Event management
Create watchbox The user can create a box or radius and configure it

to be watched by the system
X

Create watch on track The user can mark a track to be watched for certain
behaviors

X

Move event and asset
control to other station

The user can select and offload an event (with an
asset, if desired) to the other operator

X

Dynamic Task Sharing Within Human-UxS Teams 455



mission the operators press the “start” button on the secondary task application, and
pause when not executing this task. When the mission is complete, the operators end
the secondary task and report their score and time. In practice, some operators did not
correctly report their score/time so some data was lost.

3.2 Evaluation Results

The overall finding of our evaluation is that Lucid had a moderate, positive effect on
primary operator efficiency and effectiveness. Further findings include:

1. Mission Effectiveness
(a) With Lucid, users had a higher effectiveness on the ground tracking task.

Ground tracking was by far the most difficult aspect of the mission.
(b) With Lucid, users more effectively kept HVIs in sensor view.

2. Interaction
(a) With Lucid, the primary operator issued fewer commands
(b) With Lucid, the primary operator executed fewer track views
(c) With Lucid, the primary operator sent less chat to the secondary operator

3. Situation Awareness
(a) With Lucid, subjective situation awareness was higher
(b) With Lucid, there were significantly more correct SAGAT answers

Table 4. Failure events that could occur during a mission.

Situation Symptom Timing Expected response

UAV runs low
on fuel

Observe the fuel level in
the asset details display

Fuel loss is permanent Return the vehicle to the
carrier group. If desired,
launch reserve aircraft

UAV loses
communication

Vehicle will appear to
“freeze” for a period of
time. The vehicle will
continue its last action

Random. Comms loss
may occur for 30 s to
2 min

Monitor for comms
reacquisition. Possibly
task another entity to
complete that vehicle’s
mission

UAV
navigation
failure

Vehicle will drift away
from planned route s and
altitudes

Random. Navigation
failures will repeat
occurring periodically
for up to 30 s each time

Possibly task another
entity to complete that
vehicle’s mission

UAV breaches
area of
operations

Vehicle will be present
in an area designated as
“no fly” in the mission.
Vehicle is removed from
mission (“shot down”)

This is not a random
event, it only occurs
when the operator loses
track of the vehicle

Launch another vehicle
or continue mission with
one less vehicle

Track lost
while
attempting to
auto-track

Aircraft will stop
following sea vessel and
just orbit the last known
location

Permanent until
re-acquired

User must direct asset to
location where it can see
the vessel to track and
tell it to begin tracking
again

456 S. Grigsby et al.



4. Neglect Time
(a) With Lucid, the primary user spent more time on the secondary task (result not

significant)
(b) One user was able to execute secondary tasks while operating alone

Here we highlight four of the more interesting findings from the evaluation relevant
to CSA, workload monitoring, and task offloading.

Primary operators using Lucid selected and viewed tracks data much less frequently
(Fig. 6 left). This effect is statistically significant with a 35% reduction in track
inspection (p < 0.05 for the 3-tailed T-test). We hypothesize that this is mainly due to
Lucid’s CSA providing some of the scanning/check tasks that the user would have to
do in the baseline system. Because of Lucid’s alerts for tasking, failures, and especially
mission issues (like track changes), the operator could focus on one area for a period of
time without missing as much.

Another interesting finding was that, overall, users attempted to identify ground
tracks much more frequently when using Lucid than without (Fig. 6 right). In each
mission, there are two ground vehicles to identify, and using Lucid the operator almost
always made an attempt to identify both. Without Lucid, the operator only attempted to
identify a single ground vehicle every 2 runs. Our conclusion is that Lucid aided the
user in executing the ground-tracking mission, mainly through its alerts on tracks near
the areas of interest, but also through its general reduction in required interaction time,
providing more time to analyze tracks. The error rate was high using Lucid - on
average, the user misclassified roughly one ground vehicle on every Lucid run, while
correctly classifying roughly one ground vehicle every 2 runs. However, classification
of ground vehicles was very difficult given the dozens of clutter vehicles and the many
possible variations on the sources and destinations of the HVI vehicles. Thus, this error
rate is not a surprise.

A surprising result is that the operators (especially the primary operator) issue far
fewer chat lines when using Lucid than without (Fig. 7 left). For the primary user, the
reduction is 44% with p < 0.05 using the usual 2-tailed T-test. We did not hypothesize
that Lucid would reduce chat. We are uncertain as to why we see this effect. We believe

Fig. 6. Task counts for track-views (left) and ground vehicle identification (right).

Dynamic Task Sharing Within Human-UxS Teams 457



that there are at least three possibilities: (1) a combination of the events and offloading
reduced the need to communicate basic information about what was happening and
where it was occurring, (2) the primary operator took more control during the Lucid
runs and had the secondary operator do less, and (3) the primary operator, due to the
stream of events felt more overwhelmed or engrossed in the details that he/she chatted
less frequently. We cannot make any final conclusions as to which of these is true given
our data, but we believe alternative (1) is most likely by elimination. Alternative (3) is
not supported by the subjective evaluations (especially the TLX scores which show no
difference in subjective workload between Lucid and non-Lucid runs). For alternative
(2), we broke out the tasking activities by primary and secondary operator (Fig. 7
right). If alternative (2) were true we’d expect that for Lucid runs the secondary
operator would issue many fewer UAV tasks than in the non-Lucid runs. This is not the
case, in fact, the opposite is true (though not significantly so). This leaves us with
alternative (1) as being most likely, and it is supported by the subjective and objective
increase in SA shown above. This suggests that Lucid may be helping with shared
situation awareness as well as individual awareness.

Finally, as previously stated, Lucid did not have an effect on subjective workload
based on the TLX measure – users felt workload with or without Lucid was compa-
rable. This is not surprising in and of itself as the goal of Lucid was not to reduce
workload per se, but to use workload measures to help balance task loading and allow
the primary user to do more and be more effective.

4 Conclusions

The Lucid effort made significant strides toward developing a computational situation
awareness capability that can aid a user in maintaining mission awareness and that can
reduce some of the tedious work associated with executing ISR missions.

Our most important finding is that Lucid’s CSA functionality appears to signifi-
cantly reduce the manual interaction and intra-team interaction required for ISR mis-
sions using multiple UAVs. We hypothesize this effect is caused by (1) a reduction in

Fig. 7. Lines of chat (left) and workload estimate distributions (right)

458 S. Grigsby et al.



the scan/check process required to maintain situation awareness and (2) better targeted
tasking (few tasks issued, better sensor coverage). However, users did not report lower
workload. This suggests that users were trading one type of work for another. In this
case, we believe that Lucid reduced the user’s manual workload allowing the primary
user to focus more attention on cognitive and visual aspects of the problem. Our
hypotheses is supported by the fact that operators using Lucid were able to execute the
most challenging parts of the mission, ground target tracking, more often and more
effectively when using Lucid.

This insight leads us to conclude that CSA’s event detection and queuing capability,
can be an effective complement to many standard common operating picture displays.
CSA adds a layer of situation awareness and appears to improve the user’s orientation
to important mission items. It also enables a user to manage the mission better by
reducing interaction (especially for SA tasks) and increases user focus on the critical
tasks.

5 Future Directions

To achieve greater performance improvements (e.g., 2–3x), it would be most beneficial
to combine CSA’s capabilities with other improvements such as adding visualizations
to the user interface that are specifically designed to take advantage of both event
detection and workload estimation. Furthermore, while CSA’s event detection appears
to be a useful capability as implemented, further work to expand and refine this
capability would allow it to be applied to more situations and have a larger impact.
Potential areas for improvement include:

• Making events role specific and adding offloading strategies based on role, geog-
raphy, and assets.

• Enhancement of the user-specified mission events. The users most liked these
events and it is likely that these events were the biggest factor in the CSA’s positive
effects.

• Expand events to include compound events (combinations of situations that warrant
attention).

• Further integrate event detection with UI elements. We spent relatively little time
configuring the user interface to highlight event elements. Other related work
suggest that such visualization improvements could increase the impact of the event
detection system.

Finally, while we were able to implement a rudimentary workload estimation
capability, Lucid’s workload model would benefit from additional refinement. In
particular, improvements to the workload model could be accomplished by using the
evaluation data as a basis for model tuning/learning. For example, each workload
function could be modeled as a probability distribution and the system could learn the
parameters of these distributions using user activity. This would be most effective if
combined with physiological sensors such as eye trackers, heart rate monitors, and
EEG/MRI to input real-time objective of workload in addition to the task estimates..
Additionally, the following activities could improve the utility of the model

Dynamic Task Sharing Within Human-UxS Teams 459



• Integration of user activity into the online model (e.g., the clicks)
• Implementation of UI configuration changes based on workload
• Use of workload to decide when to use autonomy rather than human control

Acknowledgements. This research was sponsored by a Small Business Innovation Research
(SBIR) award through NAVAIR PMA (contract #N68335-14-C-0015). The views and conclu-
sions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied of the U.S. Navy or U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation herein.

References

1. Cummings, M.L., Bruni, S., Mercier, S., Mitchell, P.J.: Automation architecture for single
operator, multiple UAV command and control. Int. C2 J. 1(2), 1–24 (2007)

2. Crossman, J., Marinier, R., Olson, E.: A hands-off, multi-robot display for communication
situation awareness to operators. In: International Conference on Collaboration Technologies
and Systems, Denver, pp. 109–116 (2012)

3. Ranganathan, P., Morton, R., Richardson, P., Strom, J., Goeddel, R., Bulic, M., Olson, E.:
Coordinating a team of robots for urban reconnaissance. In: Proceedings of the Land Warfare
Conference, LWC 2010, Brisbane (2010)

4. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37
(1), 32–64 (1995)

5. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–455
(2008)

6. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of
empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental
Workload. North Holland Press, Amsterdam (1988)

7. Hart, S.G.: NASA-task load index (NASA-TLX): 20 years later. In: Proceedings of the
Human Factors and Ergonomics Society 50th Annual Meeting, pp. 904–908. HFES, Santa
Monica (2006)

460 S. Grigsby et al.


	Dynamic Task Sharing Within Human-UxS Teams: Computational Situation Awareness
	Abstract
	1 Introduction
	2 Approach
	2.1 CSA Architecture and System Integration
	2.2 Real-Time Workload Assessment and Offloading
	2.3 Architecture and Sample System Integration

	3 Evaluation and Results
	3.1 Evaluation Design
	3.2 Evaluation Results

	4 Conclusions
	5 Future Directions
	Acknowledgements
	References


