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Abstract. Capacity coefficient analysis offers a theoretically grounded
alternative approach to subjective measures and dual task interference
assessment of mental workload. Workload efficiency is a human informa-
tion processing modeling construct defined as the efficacy with which the
system responds to increases in the number of cognitive processes. In this
paper, I explore the relationship between capacity coefficient analysis of
workload efficiency and dual task interference response time measures.
I examine how the relatively simple assumptions underlying capacity
coefficient analysis parallel those made in dual task interference work-
load assessment. For the study of visual multitasking, capacity coeffi-
cient analysis enables a comparison of visual information throughput
as the number of tasks increases from one to two to any number of
simultaneous tasks. By using baseline models derived from transforma-
tions of response time distribution, capacity coefficient analysis enables
theoretically grounded interpretations of workload. I illustrate the use
of capacity coefficients for visual multitasking, compared to dual task
interference analysis, on sample data from dynamic multitasking in the
modified Multi-attribute Task Battery.

Keywords: Capacity coefficient · Workload · Dual-task · MAT-B ·
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1 Introduction

Visual multitasking is the simultaneous execution of at least two distinct visual
tasks. In visual multitasking, each task is comprised of separate, potentially
unique, visual stimuli, independent events and timing characteristics, and sepa-
rate decisions and responses. For example, texting while driving requires visual
attention to the environmental cues external the car to maintain lane position,
as well as attention to the screen and buttons of the mobile phone to input
responses to the incoming messages. When multiple simultaneous tasks require
the same perceptual processing resources, degradations in performance are often
observed as the number of tasks increases.

The goal of the present work is to explore the applicability of workload effi-
ciency analysis to the study of performance in multitasking situations. Work-
load efficiency, or processing capacity, is the information processing modeling
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construct that characterizes the response of cognitive information processing
mechanism to changing tasks demands [28,29]. That is, as the number of deci-
sions (processing stages or subtasks) increase, how do information processing
rates respond? There exists a set of theoretically grounded, model-based mea-
sures for workload capacity, derived from the distributions of task response times,
that may offer useful insights about multitasking, both about the mechanisms
involved and about the mental workload demands for a given situation. In the
following, I will explore the use of the capacity coefficient, in particular, as a
potential metric for multitasking workload efficiency. I compare it to the very
similar notion of dual task interference effects, which are often utilized as an
objective metric for mental workload when clear, repeated behavioral measures
can be collected empirically.

1.1 Characteristics of Multitasking

Salvucci and colleagues have defined several dimensions along which multitask-
ing scenarios can be characterized. First, the multitasking continuum defines
the timescales at which activity occurs before a person switches between
tasks [24,27]. At one end of the continuum are tasks that require seconds to
complete, like driving and talking. The other end of the multitasking continuum
is tasks requiring hours to complete before switching, such as cooking and reading
a book. Another facet of multitasking is the degree to which tasks are concur-
rent or sequential in execution [25,26]. True sequential tasks are performed with
discrete yet well-defined boundaries between tasks, such as switching between
writing an email and making a phone call. One task is completed before the next
is initiated. Concurrent tasks are executed simultaneously with overlapping tem-
poral events, such as simultaneously baking a cake and holding a conversation
with someone else in the kitchen. The concurrent-sequential nature of the tasks
has implications for the organization of the mental resources, including percep-
tual, memory, decision making, and motor resources, needed to support effective
performance. Note that these dimensions (concurrency and time scale) of multi-
tasking can be defined separately for any given combination of tasks. However,
concurrent tasks typically require frequent attention switching on the order of
seconds, and so they often align with the shorter time scale end of the multi-
tasking continuum. Likewise, sequential tasks often occur on longer time scales
at the upper end of the multitasking continuum [26].

Multitasking tasks can further be placed on an application continuum based
on the real-world nature of the tasks under observation. The application con-
tinuum ranges from abstract laboratory tasks (e.g., visual or memory search for
simple targets) to real-world multitasking (e.g., management of attention while
driving busy city streets involving other cars, signals, and pedestrians). Finally,
the abstraction continuum is used to characterize the nature of theories devel-
oped to characterize multitasking as well as the related methodologies developed
to study multitasking through those theoretical lenses. The abstraction contin-
uum is akin to Newell’s bands of cognition, defining the timescales at which
behavior can be decomposed and appropriately measured and modeled [2,20].
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The information processing mechanisms of interest in the present work fall into
the cognitive band, on the order of seconds for the completion of individual
mental operations or single task units.

1.2 Dual Task Assessment of Workload

In many ways, the assessment of performance during multitasking falls into the
general problem of measuring operator mental workload, from both the objec-
tive behavioral impacts and the subjective experience of changing processing
demands. Generally, mental workload is conceptualized as the demands placed
on information processing resources, which are recognized to be limited [36].
The assessment of mental workload, however, is difficult as the workload experi-
ence is a latent factor and can only be assessed indirectly. The goal of workload
assessment measurements is to translate the subjective experience of workload
together with the impacts of varying workload into something quantifiable, like
a numerical scale [18]. Approaches include subjective assessments of workload,
such as the popular subjective workload assessment technique (SWAT [22]), or
the NASA task-load index (NASA-TLX [11]). While popular and easy to admin-
ister, subjective techniques have faced extensive criticism for being only indirect
measures of resource allocation and information processing capacity. Objectively,
the impacts of multitasking on behavioral performance are often addressed with
a measure of dual task interference, derived from total task accuracy or mean
response times. To perform a dual task interference assessment, the difference
between a task performed in isolation and the task performed in multitasking
conditions is computed to assess the degree of impact of the multiple competing
task demands. Drops in performance or increases in subjective workload can
successfully describe some aspects of the impact of multitasking.

The popular terminology for the components of dual task assessment is
primary and secondary task measures. Primary task measures are defined as
some aspect of performance on a task of interest, which has generally been pre-
determined by the experimenter. Secondary tasks are then used to load more
cognitive demands onto available processing resources, to impact the primary
task measures in some way. There are two ways in which a secondary task can
be used empirically. First, in a task loading paradigm, participants are asked to
maintain high performance on the secondary task, at the expense of the primary
task. The second approach uses the secondary task in a subsidiary role, in which
the participant is asked to maintain high performance on the primary task. In
this latter case, the secondary task serves to degrade the primary task by dis-
traction or utilizing needed resources. A balance of both approaches could be
engaged in laboratory settings to assess bi-directionality of interference effects,
though there are often practical limitations to this being accomplished.

There is a set of critical assumptions that must be met for effective assessment
of workload using dual task interference approaches [5]. The first is that baseline
measures can be taken from both the primary and secondary task, separately
and independently of the dual task scenario. This would mean being able collect
data from at least three total experimental conditions: (1) primary task alone,
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(2) secondary task alone, and (3) dual task combination. The second assumption
is that both the primary and secondary task tap into common resource require-
ments, which is considered critical for the tasks to interfere or compete for the
limited resources. This reflects the notion that performance in multi-task situa-
tions can be limited in different ways, and that it is possible for two concurrently
performed tasks to draw from different pools of cognitive resources [21].

The next assumptions are that the secondary task places continuous demands
on the user and that the participant has had sufficient practice on the secondary
task to achieve stable performance. Both are necessary for the secondary task
to offer competing resource demands on the user but not to distract the partici-
pant from the primary task onto training of the secondary task. Because practice
and task learning can improve performance, it is possible that a secondary task
performed without initial practice can result in enough learning that the sec-
ondary task becomes trivial and no longer places enough demands on the user
to compete with the primary task for resources. Additionally, multiple levels of
difficulty can be used in the secondary task to vary the level of effort needed
(e.g., [35]). This, in turn, influences the degree of interference the secondary
task places on the primary task, which can affect both the dual task interference
effects and perhaps the subjective experience of workload.

2 Workload versus Workload Efficiency

In their efforts to assess mental workload, researchers have consistently found
that mental workload may be a multi-faceted or multidimensional construct.
This is because the subjective experience of higher workload may result from
cognitive moderators, like stress, that influence physiological responses, in addi-
tion to the information processing and motor response demands of the tasks
themselves [9,19,37]. Certainly one of the key dimensions that should be con-
sidered in the assessment of workload is the degree to which cognitive informa-
tion processing mechanisms are able to effectively perform the work demanded
of them.

Workload efficiency is a human information processing modeling construct
defined as the amount of information that can be processed by the cognitive
system given a specified of amount of time. The range of time is defined by
the range of response times required for the task under consideration. Here, I
emphasize visual tasks, so the information processing mechanisms entail visual
perception and decision making. In the visual domain, workload efficiency mea-
sures are typically applied to redundant targets task designs, such as the iden-
tification or discrimination of multiple features within a single visual object
(e.g., eyes, nose, and mouth within a face [34]) or the visual search in a redun-
dant targets array (e.g., [17]). The workload capacity of a system describes the
way in which changes in information processing demands influence the rate of
processing. If increases in demands slow processing, then the system’s efficiency
is termed limited capacity. If increases in demands do not change the process-
ing rates, then the system’s efficiency is termed unlimited capacity. If increases
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in demands increase the speed of processing, which seems counterintuitive but
has been observed (e.g., Gestalt processing [14]), then the system’s efficiency is
termed super capacity. In this framework, three broad classes of workload effi-
ciency are defined in terms of task completion rates, which can be measured
with completion or response times.

Workload capacity analysis makes a set of basic assumptions similar to those
required by effective dual task interference analysis. First, the multiple tasks
used should require comparable demands on the participant as each other. That
is, they should both be similarly discrete or continuous over the course of task
performance, and be at a similar level of complexity (i.e., both are single per-
ceptual or choice decisions, or both are at the same level of realism on the
application continuum). It is also assumed that all tasks have been practiced to
a similar degree of stable performance such that learning and practice effects are
accounted for in all tasks. Workload capacity analysis assumes that performance
can be assessed for the component tasks alone as well as for the tasks combined,
identical to the assumption in the dual task approach. However, the component
tasks need not necessarily tap into the same cognitive or perceptual resources for
capacity analysis to work. With this approach, available information processing
models offer some degree of characterization of the system regardless if the com-
ponent tasks utilize all, none, or partially overlapping resources. As discussed
in the next section, capacity characteristics reflect situations in which tasks can
interfere with each other, not interfere at all, and even cases when they facilitate
each other. In terms of processing resources, these cases, respectively, may reflect
situations wherein the two tasks compete for resources, may not need common
resources, or mutually augment the resources available to a single task alone.

Identical to dual task interference analysis, workload efficiency requires that
separate measurements be taken from the component tasks as well as perfor-
mance on the combination of tasks together. For two-task cases, this means
collecting data from the same three experimental conditions: (1) primary task
alone, (2) secondary task alone, and (3) dual task combination. This requirement
is necessary to formulate model-based predictions for multitasking performance.
And similar to the recommendation for dual task interference analysis, the diffi-
culty level of the tasks can be varied. However, because of the use of model-based
predictions as workload efficiency baseline estimates, it is important that if the
difficulty levels are varied, then data must be collected in both the single-task
and multi-task conditions at the same difficulty levels. This ensures that the
capacity interpretation reflects the workload manipulations without potential
confounds of task difficulty.

3 The Capacity Coefficient

Capacity coefficient analysis enables inferences about information processing
efficiency by comparing the amount of cognitive work completed while multi-
ple tasks are performed together to a prediction about cognitive work made
by a baseline model. Cognitive work is measured with the integrated haz-
ard and reverse hazard functions of response times. The hazard function is
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defined as h(t) = f(t)
S(t) , where f(t) is the probability density function and

S(t) = 1 − ∫
f(t) is the survivor function. Hazard functions can be interpreted

as the amount of instantaneous effort or energy in a system at any point in time,
t [29]. Consequently, the integrated hazard, H(t) =

∫ t

0
h(τ)dτ = −log(S(t)),

can be interpreted as the total amount of work completed from the start of
a task to time t. Similarly, the reverse integrated hazard function, defined as
K(t) =

∫ t

0
f(τ)
F (τ)dτ = log(F (t)) is interpreted as the amount of work left to be

completed by the system after t time has passed. Note that when applied to
a cognitive task, t is measured as the response time on each trial, or the time
between some stimulus or alert and the observer’s response.

The baseline performance model engaged in capacity coefficient analysis is
an independent, parallel, unlimited capacity (UCIP) model system. In a UCIP
system, the number of tasks can be increased without changing the speed at
which any individual task is completed. For multitasking, this means that a
person can complete a combination of multiple simultaneous tasks at the same
speed as when completing the tasks individually. The system exhibits unlimited
processing capacity. An implication of this is that the amount of mental effort
should remain consistent under increasing demands. Against the UCIP baseline,
if additional tasks slow processing, the capacity coefficient analysis will show
limited capacity. If additional tasks should benefit the person and speed up
performance, the capacity coefficient analysis will indicate super capacity.

The choice of hazard or reverse hazard function and the specific definition of
the UCIP model depend on the nature of the task under study, particularly the
nature of the stopping rule governing the termination of processing to make a
response. For dynamic visual multitasking, I consider the case in which each task
engages a single cognitive decision in response to a single alert event, separate
and independent of the decisions made in the other tasks. Using information
processing modeling terminology, this is a single-target self-terminating (ST-
ST) stopping rule. This means that for each task at a given time there is a single
target event that triggers a response, and that the response can be made after
that target event has been observed by the participant. Cognitive work for ST-
ST processing is typically measured with the integrated reverse hazard function.
For ST-ST processing, the amount of work predicted by a UCIP baseline system
for each individual task during multitasking is identical to the amount of work
completed on each task performed individually. That is, for given task A among
a set of tasks M , the UCIP baseline prediction is defined as KA(t), estimated
from the participant performing task A alone. Then the observed performance of
A during multitasking is defined as KA,M (t). The capacity coefficient for ST-ST
processing is defined as

CST(t) = KA(t) − KA,M (t). (1)

If the processing efficiency for task A during multitasking is unlimited, then
CST(t) = 0. Limited capacity is inferred if CST(t) < 0, and super capacity is
inferred if CST(t) > 0.
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Note that these inference reference values are similar to those used in dual
task interference effects at the mean level, when applied to response times. If
there is no decrement in performance under dual task conditions, then the dif-
ference in mean response time for the primary task between the single and dual
task conditions will be zero. Interference caused by an increase in workload
under dual task conditions will produce a negative impact on response time in
that RTSingle − RTDual < 0. Though not common in the workload literature,
should moving from a single task to dual task condition improve performance,
then a dual task facilitation could be inferred, when RTSingle − RTDual > 0.

The key difference in these approaches is that CST(t) provides a functional
measure of the influence of multitasking on workload efficiency. That is, we get
a value over the entire range of response times. This allows for a more nuanced
interpretation of the impact of moving from a single task to dual task situation.
With the capacity coefficient, it is possible to observe CST(t) values that vary
between levels of efficiency over time. For example, fast detection responses may
be super capacity in nature, CST(t) > 0. But if the observer did not immediately
detect a stimulus and performed a more effortful target search, then the responses
may reflect limited capacity processing, CST(t) < 0. In this way, we can get a
more detailed but still objective description of the impact of increasing cognitive
load on task performance.

4 Application to Dynamic Visual Multitasking

I demonstrate the dual task response time analysis and capacity coefficient analy-
sis on sample data from two-task combinations from multitasking software that
supports up to four simultaneous tasks. Consistent with the traditional appli-
cations of the capacity coefficient, tasks were selected because they all entail
reactionary responses to alerting events. The alerting events can be considered
the stimulus onset event, and the reactionary response times can be recorded.
In this way, a distribution of response times can be collected that is similar to
the response time distributions collected in single visual decision tasks in which
capacity analysis has been previously utilized.

A key difference between discrete trial experiments and dynamic visual mul-
titasking is that dynamic visual multitasking does not include well-defined inter-
trial intervals. But such intervals are not a critical assumption of capacity coef-
ficient analysis. A potentially larger challenge in dynamic multitasking is that
the time of an alerting event may not be the identical to the time at which the
participant observes the alerting event. This is because the alerts may not occur
while the participant is foveating on the alert, as is expected in discrete trial
experiments with centrally presented stimuli. However, I leave treatment of this
detail to future efforts. For the present, I make the reasonable assumption that
response time can measured from the timestamp of an alert to the timestamp
of keyboard or mouse response.

The tasks herein can be characterized using the various continua discussed
above. On the multitasking continuum, these tasks are continuous and concur-
rent in nature. Participants must monitor all activity in the tasks for alerting
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events. The alerting events occur on the order of seconds, with response times
also on the order of seconds or even milliseconds. Along the application contin-
uum, these tasks represent a laboratory abstraction of pilot-like multitasking.
The nature of the task is a realistic reflection of some demands occurring in real-
world pilot multitasking. However, the display and details are greatly simplified.
Thus, these tasks reside more toward the first third-to-half of the application
continuum.

4.1 Task Environment

Sample data from one well-practiced team member were captured in both single
and dual visual decision making tasks within a JavaScript implementation of a
modified multi-attribute task battery (mMATB-JS; [8,10]).1 This lightweight,
web-based version of the MAT-B contains up to four simultaneous visual tasks:
continuous object tracking, alert monitoring, communication (channel cuing),
and resource management. Any individual task within the mMATB-JS can be
used as a single visual decision making task; any combination can be leveraged
for visual multitasking. The specific combinations of tasks used herein are shown
in Fig. 1. Note that the resource management task is a strategic task requiring
participants to manage simulated fuel levels. It is not used in the current demon-
stration, so is not depicted in Fig. 1.

The monitoring task (upper left quadrant, Fig. 1), consists of a set of sliders
and two color indicator blocks. The participant’s task is to provide the appro-
priate button press (F1–F6, labeled on each indicator/slider) if a parameter is
out of its normal state. For the sliders, this means moving above or below ±1
notch from the center. Participants must respond with the appropriate button
press before the slider moves back into the central range; if the slider returns
to the central range before a response, then an event miss is recorded. For the
indicators, the normally green block might turn black, or the normally black
block might turn red. The participant must respond before the event timeout,
when the color reverts to the normal value.

The continuous tracking task (upper right quadrant, Fig. 1 top and middle)
requires the participate to continuously track a moving circular target with the
mouse. At any time, one of the circles can turn red, indicating it is the target to
be acquired and tracked. When this occurs, the participant clicks to acquire the
target (which turns green) and then tries to keep the mouse cursor centered on
the target as it moves along an ellipsoid track. A target will remain in an alert
(red) state until either acquired by the user or the next alerting event occurs,
which is recorded as an event miss.

The communications task (lower left quadrant, Fig. 1 middle and bottom)
requires the participant to adjust channel frequencies when cued. The display
includes four channels, labeled INT1, INT2, OPS1, OPS2, together with the
current channel values; the topmost line gives a target channel and value. If
a red cued target appears in the top box, the participant uses the up/down

1 Available online at http://sai.mindmodeling.org/mmatb/index.html.

http://sai.mindmodeling.org/mmatb/index.html
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Fig. 1. Screen shots of the three dual tasks combinations used in the present demon-
stration. The top shows the monitoring-plus-continuous tracking condition (MCT) with
the F5 color out of state (black) and the tracking task in a cue alert (red) state. The
middle shows the communications-plus-continuous tracking condition (CCT) with the
communications cuing a new channel value for INT2 and the tracking in a target
acquired (green) state. The bottom shows the communications-plus-monitoring condi-
tion (CM) with the slider F4 out of range and a new channel value cued for OPS1.
The frame indicates edges of the monitor, and the layout and sizing of the tasks are
preserved from the full four-task mMATB-JS environment. (Color figure online)

arrow keys to select the cued channel and the right/left arrow keys to adjust
the channel value to the new cued value. The enter key submits the corrected
channel, which changes the topmost cue box to white until the next channel cue
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appears. The cued target remains red until either the correct channel adjustment
is input with the enter key or the operation times out, which is recorded as an
event miss.

As illustrated in Fig. 1, three dual task conditions were created to cap-
ture different task/response characteristics. These dual task combinations were:
monitoring–plus–continuous tracking (MCT condition), communication–plus–
continuous tracking (CCT condition), and communications–plus–monitoring
(CM condition). For both the MCT and CCT conditions, the continuous tracking
task was designated as the primary task. For the CM condition, the communi-
cations task was designated as the primary task. The observer was instructed
to prioritize the performance of the primary task over the secondary task. The
MCT condition required two-handed responding, in that the monitoring task
uses the non-dominant hand for single-button responses and the dominant hand
for mouse clicking and tracking. The CCT conditions similarly required two
handed responding, but the communications task uses multiple button pushes
for each response. The CM condition required only button pushes by the non-
dominant hand. For consistency across all conditions, during the CM task, the
dominant hand remained on the mouse, and only the non-dominant hand could
be used for all keyboard inputs.

4.2 Task Parameters

In the mMATB-JS, all task parameters are configurable to support varying levels
of task difficulty. In the present, a fixed set of parameters were selected to illus-
trate the analysis concepts, rather than assessing performance under variable
conditions. Alert times are governed by random variables that add a random
inter-trial interval to the offset time (either by response or timeout) following
each event. For all tasks herein, the onset times of alerting events were drawn
from a uniform random variable between 8 and 14 s. For a 20 min session, this
results in an expected value of approximately 109 events per task. The timings
within each event are handled as independent event sequences. Simultaneous
events across tasks are possible, but simultaneous alerts within a task are not
possible. The additional parameter settings for each task are as follows:

Communication. Frequency ranges were 110–160, with random starting values
chosen; maximum frequency differential per alert was 6.

Monitoring. The slider speeds were 2 s/tic, 1.4 s/tic, 1 s/tic, and 1.6 s/tic for
F1 through F4, respectively. Timeout rate for F5 and F6 was 8 s.

Tracking. For all paths, path interval set to 30; satellite radius was 13 pixels.
The movement refresh was 100.

Capacity analyses were completed in R using the capacity.stst() function in the
sft package [13].

4.3 Results

Table 1 shows the traditional dual task interference effects for the two-task sce-
narios in all three conditions. Interference effects were computed by taking
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Fig. 2. Plots of the mean response times (left column) for the single and dual task
conditions; corresponding capacity coefficient functions (right column). From top to
bottom, the figure contains the MCT, CCT, and CM conditions. Error bars show ±1
standard error of the mean.
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Table 1. Magnitude in seconds of the dual task response time interference effects

Single task
mean RT

Dual task
mean RT

Interference
effect

Monitoring plus continuous tracking

Monitoring 1.22 1.93 −0.71

Tracking 1.08 1.52 −0.44

Communication plus continuous tracking

Communication 3.94 5.01 −1.06

Tracking 1.08 1.49 −0.42

Communication plus monitoring

Monitoring 1.22 2.20 −0.98

Communication 3.94 4.55 −0.61

RTSingle − RTDual for each task. The corresponding plots of the single and
dual task mean response times are shown in the left column of Fig. 2. Consistent
with dual task expectations, all tasks show an increase in mean response time
under dual task conditions, relative to the single task conditions. This is regard-
less of whether the task was designated primary or secondary; both tasks show
performance interference.

The right column of Fig. 2 shows the capacity coefficient results for all tasks.
Note that in all plots, the task designated to be primary is drawn with a solid
line, and the secondary task capacity is drawn with the dashed line. As expected,
and consistent with the interference effects at the mean level, we observe limited
capacity during multitasking for all tasks. For the CM condition, we observe
some surprising evidence of super capacity CST(t) > 0 for the early response
times in the communication task. This means that the additional task demands
placed on the participant by the monitoring task actually boosted performance
on events when the participant made a fast detection response. It is not clear
from this analysis alone if that boost resulted from an increase in attentional
resources to support the task, or an increase in motor resources to support the
need to use one hand for two concurrent tasks. Either way, the capacity analysis
suggests that workload efficiency during multitasking may not be a simple uni-
directional effect on processing speed. Similar nuances are not reflected in the
traditional dual task decrement analyses.

5 Discussion

Capacity coefficient analysis and traditional mean response time dual task inter-
ference analysis for mental workload rely on similar assumptions and techniques
for assessing the impact increasing task demands have on performance. Both
require the use of single and multiple task conditions, and leverage response
time as the dependent measure of task performance. Both attempt to assay
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the degree to which tasks require common resources and impact cognitive effort
through measurable interference (or lack thereof). As I have illustrated herein,
when applied to two-task visual multitasking, with tasks that tap into common
visual perception and motor response mechanisms requiring concurrent perfor-
mance on the order of seconds, both measures lead to consistent interpretations
about limitation in workload capacity. The presence of workload capacity lim-
itations means that the information processing mechanisms must work harder
to achieve the same amount of information throughput in any given amount of
time. That is, capacity limitations imply a higher mental workload.

So why bother with a more complicated analysis that seems to give us the
same basic interpretation? Capacity coefficient analysis, because of its theoretical
grounding in information processing modeling and the use of a baseline model,
immediately provides hypotheses about the mechanisms producing the observed
workload efficiency. When observed performance is not equivalent to the UCIP
model, we have three candidate mechanisms to investigate. First, performance
could be non-UCIP if the assumption of parallel processing architecture is not
correct. In the visual multitasking herein, the tasks are concurrent in nature.
However, the organization of the mental information processing channels could
be parallel (cues from each task processed simultaneously) or serial (cues from
each task process sequentially). The latter implies fast mental switching between
tasks is required, which is possible if attention is regularly switched between the
task quadrants and independent alerting cues. If a person engages a standard
serial processing architecture, then the resulting comparison to the UCIP base-
line will produce limited capacity performance. Additional tests of processing
architecture are available (see, e.g., [13,31]).

The second mechanism that can be tested is the degree to which the informa-
tion processing mechanisms are operating independently. Process independence
refers to stochastic dependencies between the information processing channels.
Non-independence can arise from correlated inputs or cross-talk between the
channels over the course of task execution [32]. This is not the same as concept
of independence as resource independence, in which two or more tasks require the
use of separate mental resources, such as visual and auditory perceptual mech-
anisms [36]. Inhibitory stochastic dependencies between the tasks will produce
limited capacity performance relative to the UCIP baseline.

The third mechanism producing non-UCIP performance is the employment
of a stopping rule or decision mechanism different from the one assumed by
the CST(t) implementation. In the present effort, a single-target self-terminating
stopping rule was assumed based on the nature of the concurrent visual alert
response tasks. However, other decision rules are possible, such as an exhaustive
cue processing strategy in which all cues within a task are examined before a
decision-response is made. Use of a strategy requiring more decisions to be made
than the ST-ST assumption will result in limited capacity performance relative
to the baseline UCIP model defined for the assumed stopping rule (see [16] for
an example of people engaging a stopping rule other than the one specified by
the task).
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There are additional sources of capacity limitations that may play into mental
workload that are not captured by the capacity coefficient analysis. Working
memory capacity, for example, represents a different set of mental resources
that are known to be limited in nature but that are not assessed by a measure
of information throughput. Recent work has attempted to determine the ways
in which working memory capacity and workload efficiency capacity may reflect
any common resources or may be measured conjointly [12,38]. However, evidence
suggests the two are uncorrelated, consistent with multiple resource theory of
mental workload [36].

Capacity coefficient analysis can scale to multitasking that includes more
than two tasks, which is more difficult for dual task interference measures. While
mean response times can be collected for any number of tasks, the generalization
of the dual task comparison approach would be similar to an analysis of vari-
ance with pairwise comparisons between subsets of tasks. This approach based
on purely empirical comparisons offers little theoretical foundation for predicting
and interpreting the underlying mechanisms behind the empirical observations.
Capacity coefficient analysis, together with other variations on the component
hazard functions, naturally generalize to n ≥ 2 tasks by straightforward exten-
sion of the baseline UCIP model [4]. The interpretation of the mechanisms of
workload efficiency remain consistent because the fundamental baseline model
remains consistent [30,32].

Objective, functional assessment of cognitive workload efficiency with the
capacity coefficient offers a novel tool to support the goal of real-time cognitive
state assessment [6,23]. Real-time state assessment is the process of inferring
some aspect of a person’s state, such as fatigue [3] or workload, online dur-
ing task execution. Development of such a capability is considered critical for
developing effective automation or adaptive machine aiding to mitigate the neg-
ative effects of cognitive moderators (e.g., task overload). Subjective measures
of workload are considered too disruptive to be used frequently for online assess-
ment; psychophysiological data streams can be measured continuously but they
offer only indirect correlates of the cognitive states of interest. If a task offers
a behavior for which response time can be measured with some regularity, then
the task has the potential to leverage capacity analysis for objective assessment
and mechanistic interpretation of cognitive states. There is much work left to
be done in order to determine minimal task and data requirements to support
robust inference, as well as to hone techniques for estimating the capacity mod-
els continuously. But the consistency of the interpretation of workload between
standard dual task approaches and capacity analysis suggest this is a fruitful
workload assessment technique to continue developing.

For multitasking scenarios in particular, real-time state assessment of work-
load will support adaptive machine determining when to interrupt tasks or to
switch between tasks. Evidence consistently supports that task switching is most
effective at points of low mental workload [1,7,33]. Iqbal and Bailey [15] demon-
strated efficacy of this principle by using task models to predict points of low
workload for best switching opportunities. Such task models, however, are not
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dynamically adaptive to changing environment, task, or human operator state
demands. Model-based approaches to workload assessment, like the capacity
coefficient, could supply critical input data for adaptive computational mod-
els that might be embedded into human-machine systems engaging adaptive
machine intelligence to provide external support for effective multitasking or
that attempt to mitigate cognitive overload.

Acknowledgments. The research described in this document was sponsored the U.S.
Department of Energy (DOE) through the Analysis in Motion Initiative at Pacific
Northwest National Laboratory. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.

References

1. Altmann, E.M., Trafton, J.G.: Timecourse of recovery from task interruption: data
and a model. Psychon. Bull. Rev. 14(6), 1079–1084 (2007)

2. Anderson, J.R.: Spanning seven orders of magnitude: a challenge for cognitive
modeling. Cogn. Sci. 26(1), 85–112 (2002)

3. Blaha, L.M., Fisher, C.R., Walsh, M.M., Veksler, B.Z., Gunzelmann, G.: Real-time
fatigue monitoring with computational cognitive models. In: Schmorrow, D.D.D.,
Fidopiastis, C.M.M. (eds.) AC 2016. LNCS, vol. 9743, pp. 299–310. Springer, Cham
(2016). doi:10.1007/978-3-319-39955-3 28

4. Blaha, L.M., Houpt, J.W.: An extension of workload capacity space for systems
with more than two channels. J. Math. Psychol. 66, 1–5 (2015)

5. Boff, K.R., Lincoln, J.E.: Engineering data compendium. Human perception and
performance, vol. 3. Technical report, DTIC Document (1988)

6. Borghetti, B.J., Rusnock, C.F.: Introduction to real-time state assessment. In:
Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016. LNCS, vol. 9743, pp.
311–321. Springer, Cham (2016). doi:10.1007/978-3-319-39955-3 29

7. Borst, J.P., Taatgen, N.A., van Rijn, H.: What makes interruptions disruptive?
A process-model account of the effects of the problem state bottleneck on task
interruption and resumption. In: Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pp. 2971–2980. ACM (2015)

8. Cline, J., Arendt, D., Geiselman, E., Blaha, L.M.: Web-based implementation of
the modified multi-attribute task battery. In: Fourth Annual Midwestern Cognitive
Science Conference, Dayton, OH (2015)

9. Derrick, W.L.: Dimensions of operator workload. Hum. Factors 30(1), 95–110
(1988)

10. Halverson, T., Reynolds, B., Blaha, L.M.: SIMCog-JS: simplified interfacing for
modeling cognition-javascript. In: Proceedings of the International Conference on
Cognitive Modeling, Groningen, The Netherlands, pp. 39–44 (2015)

11. Hart, S.G., Staveland, L.E.: Human Mental Workload. Elsevier Science, Amster-
dam (1988)

12. Heathcote, A., Coleman, J.R., Eidels, A., Watson, J.M., Houpt, J., Strayer, D.L.:
Working memory’s workload capacity. Mem. Cogn. 43(7), 973–989 (2015)

13. Houpt, J.W., Blaha, L.M., McIntire, J.P., Havig, P.R., Townsend, J.T.: Systems
factorial technology with R. Behav. Res. Methods 46(2), 307–330 (2014)

http://dx.doi.org/10.1007/978-3-319-39955-3_28
http://dx.doi.org/10.1007/978-3-319-39955-3_29


18 L.M. Blaha

14. Houpt, J.W., Townsend, J.T., Donkin, C.: A new perspective on visual word
processing efficiency. Acta Psychol. 145, 118–127 (2014)

15. Iqbal, S.T., Bailey, B.P.: Investigating the effectiveness of mental workload as a
predictor of opportune moments for interruption. In: CHI 2005 Extended Abstracts
on Human Factors in Computing Systems, pp. 1489–1492. ACM (2005)

16. Johnson, S.A., Blaha, L.M., Houpt, J.W., Townsend, J.T.: Systems factorial tech-
nology provides new insights on global-local information processing in autism spec-
trum disorders. J. Math. Psychol. 54(1), 53–72 (2010)

17. Little, D.R., Eidels, A., Fific, M., Wang, T.: Understanding the influence of dis-
tractors on workload capacity. J. Math. Psychol. 68, 25–36 (2015)

18. Matthews, G., Reinerman-Jones, E., Barber, D.J., Abich, J.I.: The psychometrics
of mental workload: multiple measures are sensitive but divergent. Hum. Factors
57, 125–143 (2015)

19. Matthews, G., Reinerman-Jones, L., Wohleber, R., Lin, J., Mercado, J., Abich, J.:
Workload is multidimensional, not unitary: what now? In: Schmorrow, D.D.,
Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 44–55. Springer, Cham
(2015). doi:10.1007/978-3-319-20816-9 5

20. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge
(1994)

21. Norman, D.A., Bobrow, D.G.: On data-limited and resource-limited processes.
Cogn. Psychol. 7(1), 44–64 (1975)

22. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling
procedure for measuring mental workload. Adv. Psychol. 52, 185–218 (1988)

23. Rusnock, C., Borghetti, B., McQuaid, I.: Objective-analytical measures of workload
– the third pillar of workload triangulation? In: Schmorrow, D.D., Fidopiastis, C.M.
(eds.) AC 2015. LNCS, vol. 9183, pp. 124–135. Springer, Cham (2015). doi:10.1007/
978-3-319-20816-9 13

24. Salvucci, D.D.: Multitasking. In: Lee, J.D., Kirlik, A. (eds.) The Oxford Handbook
of Cognitive Engineering, pp. 57–67. The Oxford Library of Psychology, Oxford
University Press, New York (2013)

25. Salvucci, D.D., Taatgen, N.A.: Threaded cognition: an integrated theory of con-
current multitasking. Psychol. Rev. 115(1), 101 (2008)

26. Salvucci, D.D., Taatgen, N.A.: The Multitasking Mind. Oxford University Press,
Oxford (2010)

27. Salvucci, D.D., Taatgen, N.A., Borst, J.P.: Toward a unified theory of the multi-
tasking continuum: from concurrent performance to task switching, interruption,
and resumption. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1819–1828. ACM (2009)

28. Townsend, J.T.: Issues and models concerning the processing of a finite number
of inputs. In: Kantowitz, B.H. (ed.) Human Information Processing: Tutorials in
Performance and Cognition, pp. 133–168. Lawrence Erlbaum Associates, Hillsdale
(1974)

29. Townsend, J.T., Ashby, F.G.: Methods of modeling capacity in simple processing
systems. In: Castellan, J., Restle, F. (eds.) Cognitive Theory, vol. 3, pp. 200–239.
Lawrences Erlbaum Associates, Hillsdale (1978)

30. Townsend, J.T., Ashby, F.G.: Stochastic Modeling of Elementary Psychological
Processes. Cambridge University Press, Cambridge (1983)

31. Townsend, J.T., Nozawa, G.: Spatio-temporal properties of elementary perception:
an investigation of parallel, serial, and coactive theories. J. Math. Psychol. 39(4),
321–359 (1995)

http://dx.doi.org/10.1007/978-3-319-20816-9_5
http://dx.doi.org/10.1007/978-3-319-20816-9_13
http://dx.doi.org/10.1007/978-3-319-20816-9_13


Comparing Capacity Coefficient and Dual Task Assessment 19

32. Townsend, J.T., Wenger, M.J.: A theory of interactive parallel processing: new
capacity measures and predictions for a response time inequality series. Psychol.
Rev. 111(4), 1003 (2004)

33. Trafton, J.G., Altmann, E.M., Brock, D.P., Mintz, F.E.: Preparing to resume an
interrupted task: effects of prospective goal encoding and retrospective rehearsal.
Int. J. Hum. Comput. Stud. 58(5), 583–603 (2003)

34. Wenger, M.J., Townsend, J.T.: Basic response time tools for studying general
processing capacity in attention, perception, and cognition. J. Gen. Psychol.
127(1), 67–99 (2000)

35. Whitaker, L.A.: Dual-task interference as a function of cognitive processing load.
Acta Psychol. 43(1), 71–84 (1979)

36. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors: J. Hum.
Factors Ergon. Soc. 50(3), 449–455 (2008)

37. Yeh, Y.Y., Wickens, C.D.: Dissociation of performance and subjective measures of
workload. Hum. Factors 30(1), 111–120 (1988)

38. Yu, J.C., Chang, T.Y., Yang, C.T.: Individual differences in working memory
capacity and workload capacity. Front. Psychol. 5, 1465 (2014)


	Comparing Capacity Coefficient and Dual Task Assessment of Visual Multitasking Workload
	1 Introduction
	1.1 Characteristics of Multitasking
	1.2 Dual Task Assessment of Workload

	2 Workload versus Workload Efficiency
	3 The Capacity Coefficient
	4 Application to Dynamic Visual Multitasking
	4.1 Task Environment
	4.2 Task Parameters
	4.3 Results

	5 Discussion
	References


