Report on Practice of a Learning Support
System for Reading Program Code Exercise

Takahito Tomoto'®® and Takako Akakura®

! Faculty of Engineering, Tokyo Polytechnic University, Tokyo, Japan
t. tomoto@cs. t-kougei.ac. jp
2 Faculty of Engineering, Tokyo University of Science, Tokyo, Japan

Abstract. Reading the source code of software programs is an effective way of
learning, but novice programmers need (1) exercises that involve reading pro-
grams by tracing execution manually, and (2) feedback when they interpret the
program incorrectly. In this paper, we propose exercises in which students read
programs, and we report on the development of a system that provides feedback
on mistakes. Furthermore, we also report the results of a comparison, conducted
in a laboratory environment, between the approach proposed here and the
conventional approach of learning via creating programs, as well as the results
of two teaching trials.

Keywords: Learning programming - Learning by reading - Code reading -
Tracing

1 Introduction

In courses on computer programming, a common pattern is for the lecturer to first
explain syntax or the approach to programming and then present example programs
before asking students to create programs in a series of exercises. However, in our
experience, reading and understanding other people’s programs is just as important as
creating programs. The process of reading the source code of a program in this way is
known as “code reading”, and is regarded as very important.

However, books on the subject typically do little more than describe tips for deci-
phering programming code. Likewise, most explanations of example code in university
courses are conveyed by a one-way flow of information, from teacher to students. This
means that students are not explicitly given tasks that involve reading code. In this
study, we propose program trace exercises as one type of exercise for reading programs.
We also develop and evaluate a learning support system to support these exercises.

2 Program Trace Exercises

2.1 Exercise for Reading Programs

The importance of reading programs is widely recognized, but there are few systems that
explicitly require students to read a program and provide feedback on their activities.

© Springer International Publishing AG 2017
S. Yamamoto (Ed.): HIMI 2017, Part II, LNCS 10274, pp. 85-98, 2017.
DOI: 10.1007/978-3-319-58524-6_8

86 T. Tomoto and T. Akakura

Kanamori et al. [1] and Arai et al. [2] advocate exercises involving reading programs
with the goal of understanding the content of the program. Some earlier studies [3]
divide the process of creating a program into “algorithm design” (thinking about the
flow of processing) and “coding” (converting the flow of processing into the specific
expressions of the programming language), but Kanamori et al. propose a reading
process that reverses this order. That is, reading can be divided into the process of
“decoding” (deciphering the processing flow based on the language-specific expres-
sions) and “meaning deduction” (understanding the goal, or meaning, of the program
based on the processing flow). Deconstruction is the inverse of construction above,
while comprehension is the inverse of algorithm design (Fig. 1). However, these studies
do not present exercises for actually tracing the flow of processing in a program in detail.

Algorithm Design Coding
Requirement —3 Abstraction —> | Concretization
(problem text) | «— (Flowchart) < (Source code)
Meaning Deduction Decoding

Fig. 1. Program reading process (Kanamori et al.)

To read a program, it is important to learn how to trace “program behavior”. This
entails working out which line (location) of the program is currently executing, which
line will be executed next, and what will happen as a result. Students who cannot
accurately trace program behavior in this way will not be able to debug their own
programs properly and will end up creating programs with a half-formed under-
standing. Accordingly, in this study we propose exercises that require students to trace
program behavior line-by-line and to think about what kind of instructions are being
performed at each line.

2.2 Proposed Program Tracing Exercises

In this section, we explain the program trace exercises proposed by this study, using
Fig. 2 for illustration.

To make students think about program behavior, program trace exercises are of two
types: (A) exercises asking which line will be executed, and (B) exercises asking about
the details of the instructions executed by each line. In these exercises, students are first
given some source code. Students are then asked to (A) select which line in the source
code will be executed first. Next, students are asked to (B) describe changes in the
values of variables or the details of the output. The intent is to have them think about
the instructions executed by that line. For loop processing and conditional branching,
the flow of program processing changes depending on the outcome of the conditions,
and so students are asked to describe the outcome of conditions as well. Thereafter,
students are asked to describe the behavior of the program until the program terminates,
by selecting which line will be executed next, and so on in the same manner. For
programs with a sequential structure, the execution order will be almost the same as the

Report on Practice of a Learning Support System

87

(A) (B)
Ve N\
Y—RXa—F EITY 51T izﬁja)ﬁéa [=:] HIE
void main(){ void main(){
inti,j,a=0; inti,j,a=0; 0
for(i=1;i<3;i++){ for(i=1;i<3;i++){ 1 =9
for(j=1;i<3;j++) for(j=1;i<3;j++) 1 =g
a=a+j; a=a+j;
printf(“%d¥n”, a); for(j=1;i<3;j++) 2 =9
} a=a+j; 3
} for(j=1;i<3;j++) 3 =S
printf(“ %d¥n”, a); 3

Fig. 2. An example program trace exercise

order in which the lines appear in the source code, but for loops, conditional branching
and functions, the processing flow jumps from one line to another, and so these
exercises test whether students can trace this processing flow properly. This kind of
task is a daily activity for an experienced programmer, but there are beginners who
either do not know about this kind of task or who know about it but cannot do it
properly and require guidance. For this reason, we believe that it is important to
explicitly provide learners with such tasks, and to also provide them with feed-back.

2.3 Previous Research

Yamaguchi et al. [4] developed a system that visualizes which line in the source code is
currently executing and changes in the execution environment for that line. Similarly,
Yamaguchi et al. [5] visualize differences between the correct program behavior and
the program entered by the user as changes in the execution environment. However,
these studies go no further than observing behavior, and do not require the learner to
generate the behavior themselves. Sugiura et al. [6] and Noguchi et al. [7] require
learners to generate behavior consistent with an algorithm in order to develop their
ability to create algorithms. However, the goal of these studies is to understand
algorithms, and, unlike in this study, they do not ask users to trace behavior based on
the source code. Egi et al. [8] have developed a support system that instructs novices in
the process of tracing. This system provides support by prompting novices to trace their
program when they get stuck creating a program, as well as guidance using trace
instructions for diagnosing the state of the system or identifying the location for the
solution. However, this system does not conduct traces in the sense of understanding
program behavior itself.

88 T. Tomoto and T. Akakura

3 Learning Support System

3.1 System Overview

As part of this study, we have developed a learning support system with the goal of
helping students understand program behavior [9]. The goal of this system is to present
learners with program trace exercises, ask them to enter information about program
behavior, and then provide them with feed-back. Learners are given source code and
asked to (A) select which line will be executed (the execution point) and (B) enter
information about the details of the processing executed by that line (such as the values of
variables, input and output, and the details of condition evaluations). If the learner’s input
is incorrect, the system provides feedback designed to prompt them to find the error
themselves. Within the range of constraints (A) and (B), this system is not affected by
language specifications, but language features outside of this range (such as event-driven
programming, pointers and reference passing, objected-oriented programming) are out of
scope for this system. We have prepared eight exercises in the C programming language
for this system. When users select a problem number, the selected problem is displayed.

3.2 Interface

Figure 3 shows the interface for the system. The system first provides learners with
source code (the left-hand side of the screen). Next, learners are asked to click lines in

o ER
OICASEEE, ADREUHDRATIZEL.

aEmE |V AR B 1=-DBAE QIR

void main(){ 1. void main(){ =
inti,j,a=0; 2. inti,j,a=0; //a=0
3, for(i=1;i<3;i++){ //i=0 &¥#0O
for(i=1;i<3;i++){
for(j=1;j<3;i++)
a=a+j; x[0] =
printf(“ %d¥n“,a); li= x[1] =
} = x[2] =
=0 x[3] =
}
IELVWVREDREIKR
|
AhREay X[0] =
o 1 2 3 4 i X[1] =
5 6 7 8 9 J =)([2] -
10 | 11| 12 [13 | 14 a=0 X[3] =
#f-y &g

Fig. 3. System interface

Report on Practice of a Learning Support System 89

the source code in the order in which they are executed (center of the screen). In
addition, when processing of constructs such as variable assignments or conditional
branching is performed, learners use the input buttons at the bottom left of the screen to
enter the details of the corresponding processing.

3.3 Feedback Function

We anticipate that beginners will have errors in understanding of the order of execution
and with entering processing details. The program trace exercises themselves can be
completed using pen and paper, but when learning independently with pen and paper,
or by methods such as looking at reference books, learners may proceed to the next step
without realizing that they have made a mistake. When this happens, they will not
notice their mistake until they look at the answer at the end of the exercise, if they
notice at all. However, they then realize their mistake because they have seen the
answer, and so they lose the opportunity to fix the mistake by themselves. Even in
cases where exercises are conducted by a teacher in an educational setting, the
one-to-many nature of the classroom makes it difficult to expect adequate support. For
normal debugging, there is often a trace function, and this can also be used for learning.
Many of these debugging functions allow the user to trace program execution by
stepping through the program one line at a time, and many also allow users to check the
values of variables or the screen output at each line. However, when learning using a
debugger, users still find out the correct answer straightaway, and so this approach is
still inadequate in terms of learners realizing their mistakes.

In this study, we visualize information input by the user (such as screen output or
changes to internal variables that occur in accordance with the program behavior) as
“Your current processing state”. At the same time, we also visualize the correct screen
output and variable values that match the program behavior as “Correct current pro-
cessing state” (right-hand side of the screen in Fig. 2). If a learner has made a mistake
regarding the execution order or the processing for a particular line, then the visual-
ization will show a discrepancy between these two parts of the screen. The learner is
asked to check the discrepancy and then identify and fix the error own their own.

Figure 4 shows an example of the visualization content for a learner error. This
error is a common mistake that learners make regarding “for” statements. In “for”
statements, the processing for the third clause is executed every time the loop repeats
but before the continuation condition in the second clause is evaluated as true or false.
If the condition is not met, then the loop ends. This means that in the example where
the continuation condition is “j < 3”, then the loop will end when the value of j
becomes 3. However, some learners will see this “for” statement and interpret it
vaguely as “repeat with j ranging from 1 to 2”. In this case, they will not understand
that j is equal to 3 when the loop ends. In this kind of example, a discrepancy will occur
in terms of whether the processing for the third clause is performed at the end of the
loop or in the part where the condition in the second clause is evaluated. This dis-
crepancy is then visualized as a gap in the timing of the screen output, or a difference in
the value of j. Because learners are asked to constantly check these discrepancies in
output results or internal variables, they are able to review their answer at the point
when the discrepancy occurs.

90 T. Tomoto and T. Akakura

| = || vTHE | HET-OREDIIEBR R
1. void main(){
2. inti,j,a=0; //a=0
for(i=1;i<3;i++){ //i==15&HEH-T
for(j=1;j<3;j++) //j==1KHEHBIT
a=a+j; //a=0+1=1
for(j=1;j<3;j++) //j==2F&WEHLT
a=alj; //a=1+2=3
printf(“%d¥n”,a); //“3“&ZHAN

3

©oNO VAW

ELWREDRERR
I

I
w Wk

x[0] =
x[1] =
x[2] =
x[3] =

Q — =
1]

Fig. 4. Feedback from the system

4 Comparison Test

4.1 Test Overview

Objective

We conducted an experiment to assess whether learning with this system promoted
better understanding of program behavior than the normal approach of learning by
creating programs. In this experiment, we conduct three types of test before and after
students used the support system in order to assess whether the system is able to
promote more effective program comprehension than normal study. We also assessed
whether the proposed program trace exercises and support system were in alignment
with the goals of this study, based on subjective assessments by the students
(questionnaires).

Test procedure

The test participants were 18 engineering students who had learned the C programing
language at university, divided randomly into a test group and a control group with 9
subjects in each group. Both groups took a 30-minute pre-test, followed by 60 min of
learning and then a 30-minute post-test and questionnaire. The test group learned via
the support system, whereas the control group learned in the conventional manner by
creating programs.

Report on Practice of a Learning Support System 91

Test types
We conducted three types of test for the pre- and post-tests: (1) an output result test,
where subjects are asked to write down the output results for given source code, (2) a
trace test, where subjects are asked to describe the execution order and variable changes
for given source code, and (3) a coding test, where subjects are given output results and
source code with blank spaces and asked to write a program by filling in the blanks.
Each test consisted of five problems, with each problem worth one point, for a total
of five points. The problems were as follows: (1) source code including nested struc-
tures of “for” and “if” statements, (2) source code including double “for” statements,
(3) source code including a “for” statement where the control variable is involved in the
condition expression, (4) source code including substitutions to the values of arrays and
functions, and (5) source including recursive functions.

4.2 Experiment Results

Test results

Table 1 shows the test results, and Table 2 shows the ANOVA results with one
between-subjects factor (A: test group versus control group) and two within-subject
factors (B: pre-test versus post-test; C: test type). Interactions between A and B were
apparent in the ANOVA results, and so we assessed the simple main effects. The results
are listed in Table 3, which shows a significant difference between groups for the
post-test results (p < 0.05). From this, we see that by using the system the test group
achieved better results in all three types of test. In particular, there is a clear difference
in the post-test results for the trace test and the output result test, implying that learning
via the system fosters the ability to trace program behavior. Furthermore, although the
control group learned via creating programs, the test group was still able to achieve

Table 1. Results of tests

Output test Trace test Coding test

Pre | Post | Difference | Pre | Post | Difference | Pre | Post | Difference
Test group 0.67 (244 |1.77 0.44|2.11|1.67 0.782.33 | 1.56
Control group | 0.67 | 1.22 | 0.55 0.4410.78 | 0.34 0.78 | 1.44 | 0.66

Table 2. Results of ANOVA

Sum of squares | Degrees of freedom | F value | Significance
A: Group 8.90 1 1.76 n.s.
B: Test timing | 32.2 1 90.4 <0.01
AB 8.90 1 25.0 <0.01
C: Test type |3.02 2 2.45 n.s.
AC 0.24 2 0.20 n.s.
BC 0.13 2 0.22 n.s.
ABC 0.24 2 0.41 n.s.

92 T. Tomoto and T. Akakura

Table 3. Results of means for AB interaction

Sum of squares | Degrees of freedom | F value | Significance
Group (pre) 0.00 1 0.00 n.s.
Group (post) 17.8 1 6.55 <0.05
Test timing (test group) 37.5 1 105.2 |<0.01
Test timing (control group) | 3.63 1 10.2 <0.01

better results than the control group in the coding test. These results indicate the
possibility that students can improve their ability to create proper programs via learning
that focuses on tracing program behavior.

Questionnaire result

Table 4 shows the results of the questionnaire given to the test group after they had
used the system (four-level multiple choice: 1 Not at all; 2 Not really; 3 A bit; 4 Quite a
lot). From these results, we found that participants felt that the visualization of the
execution process improved their understanding of the program, and that they reviewed
their answers by comparing the visualizations of their own processing state with the
correct state. We also found that students felt that their activities using the system led to
an understanding of the program. From these results, we found that subjects felt the
system and feedback were valuable.

Table 4. Mean answers on questions (N = 9)

Do you think that visualization of the execution process and output state makes the 3.2
program easier to understand?
If there was a difference between your processing state and the correct processing state, | 3.3
did you think about where you went wrong?

Do you think your understanding of the program was improved by the system? 3.1

5 Teaching Trial

5.1 Experiment Overview

Objective

In Sect. 4, we found that learning via using the system promoted understanding of
program behavior more than normal learning via creating programs. However, only
nine participants used the system, the limited assessment took place in a test lab
environment, and the entire process from pre-test through to post-test took a bit more
than two hours without interruptions. University courses consist of 90-minute time
slots, so that conducting an assessment over a similar amount of time would require
two time slots, and students may lose concentration. Accordingly, we conducted further
experiments to assess whether the system can be used in the context of two normal
90-minute university time slots in an environment where teaching staff cannot thor-
oughly monitor student activities. We also assessed whether we can expect learning
benefits from using the system.

Report on Practice of a Learning Support System 93

Experimental procedure

Two courses conducted by the Department of Industrial Management and Engineering
of the Faculty of Engineering at the Tokyo University of Science were selected as the
targets for this experiment: Information Technology Lab 1 (IT1; first semester of
second year, 80 students), which is the course where students first study programming
and master syntax and elementary coding technology; and Information Technology
Lab 3 (IT3; second semester of third year, 66 students), where students with a certain
amount of experience studying programming learn about algorithms in greater detail.
The timing of the tests was the latter half of each course, namely, July for IT1 and
December for IT3. Both of these courses are compulsory for students in the department
and are taken by all students, not just those who are particularly good at programming.
73 of the participants in IT1 and all of the participants in IT3 are focusing on the C
programming language. In normal classes for these courses, the procedure is for stu-
dents to learn by creating programs through a series of exercises after first hearing an
explanation from the teacher.

For the test procedure, we used a shortened form of the same procedure as was used
in the comparison test. However, for the comparison test, we conducted assessments
using a 30-minute pre-test, 60 min of learning, and a 30-minute post-test. However, the
time slots for the course are 90 min long, meaning that two time slots are required.
Accordingly, we decided to conduct the trial by spending the first 30 min of the first
time slot on the pre-test, followed by 20 min explaining the system and the lecture
content, with the remaining 40 min spent learning via the system. The first 20 min of
the second time slot was spent on learning via the system (for a total of 60 min of
system usage over the two time slots), followed by a 30-minute post-test and ques-
tionnaire. Note that the four teaching assistants in each course were instructed to allow
students to work out how to solve problems on their own, only answering questions on
how to use the system and responding to technical issues.

Test types

Three types of test were conducted for the pre- and post-tests, in the same manner as for
the comparison test: (1) an output result test, where participants are asked to write
down the output results for given source code; (2) a trace test, where participants are
asked to describe the execution order and variable changes for given source code; and
(3) a coding test, where participants are given output results and source code with blank
spaces and asked to write a program by filling in the blanks. The problems and marking
methods were also the same as for the comparison test.

5.2 Experimental Results for Information Technology Lab 1

Test results for Information Technology Lab 1

Table 5 shows the test results for when the system was used in IT1 (first semester of
second year), consisting mainly of students with no programming experience. Table 6
shows the ANOVA results with two within-subject factors (A: pre-test versus post-test;
B: test type [output result, tracing or coding]). As seen in Tables 5 and 6, we found a
significant difference in test timing (pre-test vs. post-test), showing that using the
system promotes students’ understanding. Moreover, Table 7 shows the results for the

94 T. Tomoto and T. Akakura

simple main effects in the interaction between factors A and B. In Tables 5 and 7,
significant differences are apparent between test types (output results, tracing and
coding) in the pre-tests, and so we conducted multiple comparisons for test type in the
pre-test results. The results, summarized in Table 8, show significant differences
between the tracing test and the other tests. From this, we found that the novice
programmers taking IT1 could, as a result of learning via the system, improve their
ability to predict output based on given source code, as well as their ability to create
appropriate source code based on required output and their ability to understand pro-
gram behavior based on source code. In particular, we found that the ability to properly
understand program flow improved as a result of the system, despite being weaker than
the other skills at the time of the pre-test.

Table 5. Results of tests for IT1

Output test Trace test Coding test
N = 80| Pre | Post | Difference | Pre | Post | Difference | Pre | Post | Difference
1T1 0.95(1.35(0.40 0.33/1.23/0.90 0.76 | 1.34 1 0.58

Table 6. Results of ANOVA for IT1

Sum of squares | Degrees of freedom | F value | Significance
A: Test timing | 46.9 1 1.76 <0.01
B: Test type |12.1 2 90.4 <0.01
AB 5.15 2 25.0 <0.01

Table 7. Results of means for A*B interaction for IT1

Sum of squares | Degrees of freedom | F value | Significance

Test timing (output) | 6.40 1 15.8 <0.01
Test timing (trace) |32.4 1 80.0 <0.01
Test timing (coding) | 12.2 1 32.7 <0.01
Test type (pre) 16.5 2 14.9 <0.01
Test type (post) 0.76 2 0.69 n.s

Table 8. Means on factor B (al) for IT1

Nominal significance level | ¢ value | Significance
Output-trace | 0.017 5.32 |<0.01
Output-coding | 0.033 1.60 |n.s.
Coding-trace | 0.033 3.72 | <0.01

Questionnaire results for Information Technology Lab 1

Table 9 shows the results of the questionnaire given to the students taking IT1
(four-level multiple choice, as before). The results obtained are positive, as was the
case for the comparison test. The students taking IT1 are programming novices, but we

Report on Practice of a Learning Support System 95

Table 9. Mean answers on questions for IT1 (N = 80)

Do you think that visualization of the execution process and output state makes the 33
program easier to understand?
If there was a difference between your processing state and the correct processing state, | 3.3
did you think about where you went wrong?

Do you think your understanding of the program was improved by the system? 3.0

found that they believe that their understanding of programming has improved as a
result of their learning activities using the system, and that they feel that their under-
standing of the programs has improved as a result of the visualization of the execution
process. We also found that they reviewed their answers by comparing their own
processing state with the correct state. From these results, we found that learning via
system and the feedback provided by the system were received as valuable, even by
novices with no programming experience.

5.3 Experimental Results for Information Technology Lab 3

Test results for Information Technology Lab 3

Table 10 shows the test results for when the system was used in IT3 (second semester
of third year), which is a course for students who have already studied a certain amount
of programming to develop a deeper understanding of more advanced algorithms.
Table 10 shows the ANOVA results with two within-subject factors (A: pre-test versus
post-test; B: test type [output result, tracing or coding]). As seen in Tables 10 and 11,
we found a significant difference in test timing (pre-test versus post-test), just as for
IT1. From these results, we infer that the system has learning benefits for students who
have already studied some programming and algorithms. Moreover, Table 12 shows
the results for the simple main effects in the interaction between factors A and B. In
Tables 10 and 12, significant differences are apparent in the test timing (pre-test versus
post-test) for all test types. In addition, significant differences are also apparent between
test types (output results, tracing and coding) in the pre-tests, and so we conducted
multiple comparisons for test type in the pre-test results. The results, summarized in
Table 13, show significant differences between the coding test and the other tests. One
possible reason that the scores for the coding test were lower than for the other tests is
that the goal of IT3 is for students to understand algorithms, rather than to learn coding
as such. A certain amount of study on tracing programs and predicting output results
may have already been covered in the course.

Table 10. Results for IT3

Output test Trace test Coding test
N = 66 | Pre | Post | Difference | Pre | Post | Difference | Pre | Post | Difference
IT3 1.021.85/0.83 1.05]1.77 1 0.73 0.65/1.95|1.30

96 T. Tomoto and T. Akakura

Table 11. Results of ANOVA for IT3

Sum of squares | Degrees of freedom | F value | Significance
A: Test timing | 90.2 1 1042 |<0.01
B: Test type | 1.25 2 0.58 n.s.
AB 6.20 2 5.94 <0.01

Table 12. Results of means test for A*B interaction

Sum of squares | Degrees of freedom | F value | Significance

Test timing (output) | 22.9 1 36.0 <0.01
Test timing (trace) |17.5 1 274 <0.01
Test timing (coding) | 56.0 1 88.0 <0.01
Test type (Pre) 6.34 2 3.98 <0.05
Test type (Post) 1.10 2 0.69 n.s

Table 13. Means on factor B (al)

Nominal significance level | ¢ value | Significance
Output-trace | 0.033 0.195 |n.s.
Output-coding | 0.033 234 | <0.05
Coding-trace | 0.017 2.54 |<0.05

Table 14 summarizes the test results for IT1 and IT3. In this study, we used the same
tests for both courses, and so the pre-test results for the more advanced IT3 students
tend to be better. Moreover, we also found that the improvement in scores was more
apparent for I'T3. This result seems to indicate that the system may be more effective for
students who are more advanced and who have a better understanding of algorithms.

Table 14. Comparison of results of tests for IT1 and IT3

Output test Trace test Coding test

Pre | Post | Difference | Pre | Post | Difference | Pre | Post | Difference
IT1{0.95|1.35|0.40 0.3311.23/0.90 0.76 | 1.34 | 0.58
IT3{1.02|1.85|0.83 1.05|1.770.73 0.65]1.95(1.30

Questionnaire results for Information Technology Lab 1

Table 15 shows the results of the questionnaire given to the students taking IT3
(four-level multiple choice, as before). The results obtained are positive, as high or
higher than the questionnaire results for IT1. From these results, we see that the
participants in IT3, who are somewhat more advanced in their study of programming
and algorithms, have a greater recognition of the value of the system, feedback and
learning method than the novice programmers in IT1.

Report on Practice of a Learning Support System 97

Table 15. Mean answers on questions for IT3 (N = 66)

Do you think that visualization of the execution process and output state makes the 3.6
program easier to understand?
If there was a difference between your processing state and the correct processing state, | 3.6
did you think about where you went wrong?

Do you think your understanding of the program was improved by the system? 35

6 Conclusion

In this study, we proposed exercises for learning programming that require students to
actually trace the behavior of program processing. Using this system appears to be
beneficial for learning programming, and the questionnaire results show positive
responses, indicating that students accept the system.

Here, for the sake of input simplicity, we have asked students to trace behavior one
line at a time. However, a “for” statement, for instance, includes multiple expressions
in a single line, and it is important that students properly understand the order of
execution of these expressions. In future, we aim to support program tracing at the level
of individual expressions.

Acknowledgment. Part of this study was funded by a Grant-in-Aid for Scientific Research,
Basic Research (C) (10508435).

References

1. Kanamori, H., Tomoto, T., Kometani, Y., Takako, A.: Proposal for ‘Learning via Reading
Programs’ in the programming process and development of a learning support system for the
‘Comprehension’ process. Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J97-D(12), 1843—
1846 (2014)

2. Arai, T., Kanamori, H., Tomoto, T., Kometani, Y., Akakura, T.: Development of a learning
support system for source code reading comprehension. In: Yamamoto, S. (ed.) HIMI 2014.
LNCS, vol. 8522, pp. 12-19. Springer, Cham (2014). doi:10.1007/978-3-319-07863-2_2

3. Shinkai, J., Sumitani, S.: Development of programming learning support system emphasizing
process. Jpn. Soc. Educ. Technol. 31(Suppl.), 45-48 (2007). (in Japanese)

4. Yamashita, K., Nagao, T., Kogure, S., Noguchi, Y., Konishi, T., Ito, Y.: An educational
practice using a code reading support environment for understanding nested loop. IEICE
Tech. Rep. 114(82), 7-12 (2014). (in Japanese)

5. Yamoto, R., Noguchi, Y., Kogure, S., Yamashia, K., Konishi, T., Ito, Y.: A learning
environment for teaching students how to debug systematically. In: Proceedings of the 39th
National Convention, Japanese Society for Information and Systems in Education, pp. 453—
454 (2014). (in Japanese)

6. Sugiura, M., Matsuzawa, Y., Okuda, K., Ohiwa, H.: Introductory education for algorithm
construction: understanding concepts of algorithm through unplugged work and its effects.
J. Inf. Process. 49(10), 3409-3427 (2008). (in Japanese)

http://dx.doi.org/10.1007/978-3-319-07863-2_2

98

T. Tomoto and T. Akakura

. Noguchi, Y., Nakahara, T., Konishi, T., Kogure, S., Itoh, Y.: Construction of a learning

environment for algorithm and programming where learners operate objects in a domain
world. Int. J. Knowl. Web Intell. 1(3-4), 273-288 (2010)

. Egi, T., Takeuchi, A.: Development and evaluation of debugging support system of guide

tracing for beginners. Jpn. J. Educ. Technol. 32(4), 369-381 (2009). (in Japanese)

. Tomoto, T., Asai, K., Tamura, Y., Akakura, T.: Development and evaluation of learning

support system for programming reading exercise. IEICE Tech. Rep. 115(50), 7-10 (2015).
(in Japanese)

	Report on Practice of a Learning Support System for Reading Program Code Exercise
	Abstract
	1 Introduction
	2 Program Trace Exercises
	2.1 Exercise for Reading Programs
	2.2 Proposed Program Tracing Exercises
	2.3 Previous Research

	3 Learning Support System
	3.1 System Overview
	3.2 Interface
	3.3 Feedback Function

	4 Comparison Test
	4.1 Test Overview
	4.2 Experiment Results

	5 Teaching Trial
	5.1 Experiment Overview
	5.2 Experimental Results for Information Technology Lab 1
	5.3 Experimental Results for Information Technology Lab 3

	6 Conclusion
	Acknowledgment
	References

