
Predictive Algorithm for Converting Linear
Strings to General Mathematical Formulae

Tetsuo Fukui(B) and Shizuka Shirai

Mukogawa Women’s University, Nishinomiya, Japan
fukui@mukogawa-u.ac.jp

Abstract. Standard input methods for entering mathematical expres-
sions on digital devices are cumbersome. Our goal is to develop an intelli-
gent mathematical input method that allows users to input mathematical
expressions using colloquial linear strings. This paper presents the evalua-
tion of an improved predictive algorithm for converting linear strings into
general mathematical formulae. The results of our evaluation show that
the prediction accuracy of the top ten ranking for our method is 85.2%.

1 Introduction

In recent years, computer-aided assessment (CAA) systems have been used in
mathematics education. However, current mathematical input methods for dig-
ital devices are cumbersome for novice learners [1,2].

To reduce the effort required to input mathematical expressions, we propose
an interactive conversion input method that uses linear strings in a colloquial
style [3,4]. In this method, a list of candidates for the desired mathematical
expression is shown in a “what you see is what you get” (WYSIWYG) editor.
After all the elements are interactively chosen, the desired expression is formed.
We have previously shown that an interface implementing this method is 1.2 to
1.6 times faster than standard interfaces [5]. However, users must convert each
element into the appropriate colloquial-style mathematical strings in the correct
order from left to right [6].

We have previously addressed this shortcoming and proposed a predictive
algorithm [7–9] for converting linear strings into complete mathematical expres-
sions using a perceptron [10]. The results of an evaluation that involved the entry
of quadratic polynomials achieved a prediction accuracy of 96.2% for the top-ten
ranking. The mean CPU time for predicting each mathematical expression was
0.44 s.

However, it is not clear whether this algorithm results in the same high
level of prediction accuracy for more general mathematical formulae. In fact,
the results of our previous investigation showed that the prediction accuracy for
complicated mathematical formulae decreased to approximately 70% and the
prediction time increased remarkably, to more than 6 min in some cases.

This study aims to address these shortcomings by extending the previous
algorithm to a wider field of mathematics. We present the improved algorithm
c© Springer International Publishing AG 2017
S. Yamamoto (Ed.): HIMI 2017, Part II, LNCS 10274, pp. 15–28, 2017.
DOI: 10.1007/978-3-319-58524-6 2

16 T. Fukui and S. Shirai

and the results of its evaluation using a dataset containing 4,000 mathemati-
cal formulae. The prediction accuracy of the top-ten ranking for this improved
method is 85.2%.

2 Predictive Conversion

In this section, we review our previously proposed predictive conversion system
[7–9]. First, we define the linear string of a mathematical expression to be input
by the user. We describe an intelligent predictive conversion system of such
linear strings in Sect. 2.2. In Sect. 2.3, we formulate a predictive algorithm using
machine learning.

2.1 Linear String Rules

The rules for a linear mathematical string for a mathematical expression are as
follows:

Definition 1 (Linear String Rules). Set the key letters (or words) corre-
sponding to the elements of a mathematical expression linearly in the order of
the colloquial (read or spoken) style, without considering two-dimensional place-
ment and delimiters.

In other words, a key letter (or word) consists of the ASCII code(s) corre-
sponding to the initial or clipped form (such as the form) of the objective
mathematical symbol; a single key often supports many mathematical symbols.
For example, when a user wants to input θ2, the linear string is denoted by “t2,”
where “t” represents the “theta” symbol. It is unnecessary to include the power
sign (i.e., the caret letter (̂)). The linear string denoting 3

x2−1 is “3/x2−1,”
where it is not necessary to include the denominator (which is generally the
operand of an operator) in parentheses, because they are not printed.

Other representative cases are shown in Table 1. For example, the linear string
for eπx is denoted by “epx.” However, the linear string of the expressions epx,
epx, and eπx are also denoted by “epx.” Hence, there are some ambiguities when
representing mathematical expressions as linear strings using these rules.

2.2 A Predictive Conversion System

In 2015, we proposed a predictive algorithm [7,8] to convert linear string s
into the most suitable mathematical expression yp. For prediction purposes, we
devised a method in which each candidate to be selected is ranked by its suit-
ability. Our method uses the function Score(y) to assign a score proportional
to the occurrence probability of mathematical expression y, which enables us to
predict candidate yp, using (1), as the most suitable expression with the max-
imum score. Here, Y (s) in (1) represents all possible mathematical expressions
converted from s.

yp s.t. Score(yp) = max{Score(y)|y ∈ Y (s)} (1)

Predictive Algorithm for Converting Linear Strings 17

Table 1. Examples of mathematical expressions using linear string rules.

Category Linear strings Math formulae

Variable t t or θ

Polynomial x2 + 2x + 1 x2 + 2x + 1

Fraction 3/4 3
4

Equation (x−3)2 = 0 (x − 3)2 = 0

Square root root2
√

2

Trigonometric cos2t cos2 θ

Logarithm log10x log10 x

Exponent epx eπx

Summation sumk = 1nak
n∑

k=1

ak

Integral intabf(x)dx
∫ b

a
f(x)dx

Generally, any mathematical expression is represented by a tree structure
consisting of nodes and edges, which correspond to the symbols and operating
relations, respectively. In other words, any mathematical expression y is charac-
terized by all the nodes and edges included in y. We identify each node or edge
as a mathematical element in the formula.

First, all node elements of the mathematical expressions are classified into
the nine categories listed in Table 2. Thus, a node element is characterized by
(k, e, t), where k is the key letter (or word) of the mathematical symbol e that
belongs to type t(= N,V, P,A,BL, BR, C,Q,R, or T) in Table 2. For example,
the number 12 is characterized as (“12”,12, N), the variable a as (“a”, a, V),
and the Greek letter π can either be characterized as (“pi”, π, V) or (“p”, π, V).
As an example of an operator, (“/”, �1

�2
, C) represents a fraction symbol with

input character “/”, where �1 and �2 represent arbitrary operands.
An edge element, i.e. an operating relation, is characterized by (ep, i, ec),

where the parent operator ep operates the i-th operand whose top element is ec.
For example, expression π

12 consists of three nodes,

{e1, e2, e3} := {(“p”, π, V), (“/”,
�1

�2
, C), (“12”, 12, N)}, (2)

and the following two edges:

{(e2, 1, e1), (e2, 2, e3)}. (3)

In this study, our prototype system implements a total of 509 mathematical
symbols and 599 operators in node element table D.

The totality Y (s) of the mathematical expressions converted from s is calcu-
lated using Procedures 1–3 (cf. [4,7]), referring to node element table D.

18 T. Fukui and S. Shirai

Table 2. Nine types of mathematical expressive structures

Math element type Type codes Examples

Number N 3, 256

Variable, Symbol V a, x, α, θ, π

Prefix unary operator P
√�1, sin �1

Postfix unary operator A �′
1, �◦

1

Bracket BL, BR (�1), {�1}, |�1|
Infix binary operator C �1 + �2, �1 × �2,

�1
�2

Prefix binary operator Q log�1
�2

Prefix ternary operator R
∫�2

�1
�3

Infix ternary operator T �1
�2→ �3

�1, �2, and �3 represent operands.

Procedure 1. A linear string s is separated in the group of keywords defined
in (4) using the parser in this system. All possible key separation vectors
(k1, k2, · · · , kK) are obtained by matching every part of s with a key in D.

s = k1 � k2 � · · · kK where (ki, vi, ti) ∈ D, i = 1, ...,K (4)

Procedure 2. Predictive expressive structures are fixed by analyzing all the
key separation vectors of s and comparing the nine types of structures in
Table 2.

Procedure 3. From the fixed structures corresponding to the operating rela-
tions between the nodes, we obtain Y (s) by applying all possible combina-
tions of mathematical elements belonging to each keyword in D.

2.3 Predictive Algorithm

Let us assume that the occurrence probability of a certain mathematical ele-
ment is proportional to its frequency of use. Then, the occurrence probability
of mathematical expression y, which is a possible conversion from string s, is
estimated from the total score of all the mathematical elements included in y.
Given the numbering of each element from 1 to the total number of elements
Ftotal, let θf be the score of the f(= 1, · · · , Ftotal)-th element, and let xf (y) be
the number of times the f -th element is included in y. Then, Score(y) in (1)
is estimated by (5), where θT = (θ1, · · · , θFtotal

) denotes the score vector and
X = (xf (y)), f = 1, · · · , Ftotal is an Ftotal-dimensional vector.

hθ (X(y)) = θT · X(y) =
Ftotal∑

f=1

θfxf (y) (5)

Equation (5) is in agreement with the hypothesis function of linear regression and
X(y) is referred to as the characteristic vector of y. To solve our linear regression

Predictive Algorithm for Converting Linear Strings 19

problem and predict the occurrence probability of a mathematical expression,
we conduct supervised machine learning on the m elements of training dataset
{(s1, y1), (s2, y2), · · · , (sm, ym)}. To obtain the optimized score vector, our learn-
ing algorithm utilizes the following four-step procedure:

Step 1. Initialization θ = 0, i = 1
Step 2. Decision regarding a candidate.

yp s.t. hθ (X(yp)) = max{hθ (X(y)) |y ∈ Y (si)} (6)

Step 3. Training parameter.
if(yp �= yi) {

if(θf < Smax){θf := θf + 2 for {f ≤ Ftotal|xf (yi) > 0}}
θf̄ := θf̄ − 1 for {f̄ ≤ Ftotal|xf̄ (yp) > 0} (7)

}

Step 4. if(i < m){ i = i + 1; repeat from Step 2}
else { Output θ and end}

This learning algorithm is simple and is similar to a structured perceptron used
for natural language processing (NLP) [10]. However, in our previous study [7], we
revised the increase weight from one to two in (7) to avoid negative score learning.
When two different candidates belonging to the same key appear in the training
dataset, e.g., the pair a and α, their scores change into a positive value from a
negative value or vice versa; even if a candidate with a negative score has occurred
many times, it has lower priority than one with a score of zero. Here, Smax in (7) is
a suitable upper bound for any mathematical element score, preventing the score
parameter from continuing to increase as the algorithm runs.

3 Main Algorithm

In previous investigations [7–9] of the learning algorithm in Sect. 2.3, limiting
the entered expressions to quadratic polynomials resulted in a prediction accu-
racy of 96.2% for the top-ten ranking. The mean CPU time for predicting each
mathematical expression was 0.44 s.

However, the algorithm in Sect. 2.3 did not provide the same high perfor-
mance given more general mathematical formulae. In fact, the results of our
investigation using a dataset of 4000 math formulae from broader fields of mathe-
matics (cf. Sect. 4.1) showed that prediction accuracy decreased to approximately
70% and prediction time increased considerably; for a complicated mathematical
formula, prediction took more than 6 min.

As the reason for the decrease in prediction accuracy and increase in predic-
tion time, we found the following three challenges in predicting general mathe-
matical expressions.

20 T. Fukui and S. Shirai

1. Scores can increase based on the number of elements, instead of their priority.
2. If Y (s) includes the same mathematical expressions, but has different internal

tree structures, machine learning does not work well.
3. The number of complicated mathematical expressions, which lead to long

prediction times, increases when general mathematics fields are considered.

To overcome these shortcomings, we have revised the weight calculations of the
score in Sect. 3.1, introduce a normal form for mathematical tree expressions in
Sect. 3.2, and improved the search routine, breaking it off after ten seconds that
is described in Sect. 3.3.

3.1 Balancing Scores with the Key Character Length

An expression’ score can increase based on the number of its elements, instead
of their priority. For example, the score of sinx(= s ⊗ i ⊗ n ⊗ x) is higher than
the score of sin x because sinx includes 7 nodes and 6 edges, compared to the 3
elements in sin x. (Here, in this paper, the symbol ⊗ is used for recollection of
an invisible multiplication that is also treated as an operator or node element.)

Generally, when Y (s) from linear string s with character length n is obtained
by Procedures 1–3, s can be decomposed into a key separation vector with n
elements, per (4), because the character keys of almost all ASCII codes are
registered in our system’s key dictionary D.

For example, if s = “pi”, there exist two key separation vectors (“pi”) and
(“p”,“i”) from s, and the totality of candidates Y (“pi”) is estimated to be

Y (“pi”) = {π, pi, pi, pi, · · · }. (8)

The score of the first candidate in (8) is estimated only by parameter θπ, whereas
the score of the second candidate pi(= p⊗ i) is summed among the five parame-
ters as

hθ (X(pi)) = θp + θ⊗ + θi + θ(⊗,1,p) + θ(⊗,2,i). (9)

Therefore, hθ does not become proportional to the occurrence probability of
such a mathematical expression, because its score can increase according to its
number of elements if the value of each score parameter has the same degree.
This shortcoming also occurs for multidigit figures (e.g., 123) and some operators
(e.g., sin).

To overcome this issue, we revise the score’s weight calculations by adding a
suitable weight to the score parameters depending on the length of key charac-
ters. Let K be the length of linear string s when a candidate expression yp(s) is
formed from s. The tree structure of a product of K variables consists of 2K −1
nodes and 2(K − 1) edges. In this study, we have adopted the following score
functions (10–12) for numbers N , variables/symbols V , and operators O onto
m(= 1, 2, 3) numbers of operands as a weight balance, respectively.

Score(N) = Len(N) + 3Smax{Len(N) − 1} (10)

Predictive Algorithm for Converting Linear Strings 21

Score(V) = θV × Len(V) + 3Smax{Len(V) − 1} (11)

Score(O) = θO × Len(O) + 3Smax{Len(O) − 1} + 2mSmax (12)

Here, Len(e) stands the length of the key string of element e, and θV and θO
are the score parameters for nodes V and O, respectively. Any score parameter
θf � Smax, as described in (7). Using (8), Score(π) = 2θπ + 3Smax, per (11),
and if θπ ≈ θp ≈ θi, then Score(π) � hθ (X(pi)).

Therefore, we propose to revise the algorithm in Steps 1–4, by altering Step
2 to

yp s.t. Score(yp) = max{Score(y)|y ∈ Y (si)}. (13)

3.2 Unique Normal Form for Mathematical Expressions

There exist innumerable tree representations of mathematical expression with
the same notation but different internal structures. For example, a + b + c is
denoted without any parentheses, given the associativity of addition (14). How-
ever, it can be represented by two different tree structures, shown in Fig. 1.

(a + b) + c = a + (b + c) (14)

This becomes a challenge in the machine learning stage; in Step 3 in Sect. 2.3,
candidate yp is judged to be different from the correct formula yi, despite the
same notation in both expressions. Thus, our system cannot definitively predict
the desired mathematical expression.

To overcome this shortcoming, we define a normal form for mathematical
notation.

Definition 2 (Normal form for mathematical notation). A normal form
for a mathematical notation ensures that all trees based on a mathematical
expression with the same notation are recorded uniquely.

Normal form was discussed using “term rewriting system” by Knuth and Ben-
dix [11] in 1967 and a unique normal form in computer algebra systems was
discussed in [12], in particular, that there exists a unique normal form for poly-
nomial systems. We proposed a normal form for mathematical notation to use

c b

+

a

+

c b

+

a

+

Fig. 1. The different tree structures of a + b + c

22 T. Fukui and S. Shirai

in a math input interface in [4], in which we concretely define the normal form
for mathematical notation to implement into our prediction system for general
mathematical formulae.

First, we define the order for all formulae per algebraic rules in Table 3 to
prescribe the unique normal form for mathematical notation. The definition for
all elements that constitute a formula using Buchus’ normal form (BNF) in
Table 3 stands for a recursive definition from a elements of low rank to those of
high rank. The order of operators are conducted as in (15), per algebraic rules.

⊗ < ⊕ < Comparison op. < Relational op. < Multiple op. (15)

Namely, any formula can be a high-rank multiple form 〈Multiple〉. Here, ⊗ stands
for an invisible multiplication, ⊕ for an addition-type binary operator (+ or −)
and ± for a prefix unary sign operator (+,− or ±). Let 〈Term〉 and 〈Factor〉
be an algebraic term (e.g., xy2z) and a factor (e.g., x, y2, z), respectively. As
prescribed by Table 3, the right-hand side of an invisible multiplication ⊗ can be
a 〈Factor〉 and a factor 〈Right factor〉 prefixed by sin, lim, log,

∑
,
∫

, etc., can be
arranged on the right side of ⊗ but is forbidden on the left side of ⊗. For example,∫

f(x)dx is a 〈Right factor〉 because if the factor y was arranged on the right
side of such an integral, y could not be distinguished from an integral calculus
variable. Similarly, a 〈Left factor〉 like a signed factor (e.g., −x) is forbidden on
the right-hand side of ⊗.

For example, the tree structure on the right in Fig. 1, which is formed as
〈Factor〉 ⊗ 〈Term〉, is excluded because such a form is not included in the defin-
ition equation for 〈Term〉 in Table 3.

Therefore, we treat only the normal form defined by Table 3 for mathematical
tree expressions in this study. We converted the 4000 math formulae in the
training dataset to the normal form and use only the normal form to predict

Table 3. The definition equation for the normal form of mathematical formulae using
BNF

Predictive Algorithm for Converting Linear Strings 23

the N -best candidates from a linear string using the algorithm proposed in this
section.

3.3 Complexity of Candidate Math Expressions and Calculation
Time

Generally, the number of elements in Y (s), denoted by n(Y (s)), increases rapidly
corresponding to the increase in the length of s. For example, because the
key character “a” corresponds to seven symbols (Y (“a”) = {a, α, a,a,a, a,ℵ})
and the invisible multiplication between a and b corresponds to Y (“ab”) =
{ab, ab, ab,

ab, ab}, then n(Y (“abc”)) = 73×52 = 8575. However, for a mathemat-
ical input interface, it is sufficient to calculate the N -best high score candidates
in Y (s) as shown in (1).

Therefore, we improve the search routine, breaking it off after ten seconds,
because the mean runtime for cases in which the length of s was less than 16
required less than 10 s (cf. Sect. 4.3). To improve the efficiency of calculation, we
obtain the N -best candidates in Y (s) as follows:

1. In Procedure 1, all the key separation vectors (k1, k2, · · · , kK) of s are sorted
in ascending order of K in (4), i.e., in order starting from higher probability.

2. In Procedure 2, we set an upper limit T = 10 s for breaking down all possible
calculations of the predictive expressive structures.

3. In Procedure 3, to obtain the N -best candidates in Y (s), we apply only the
N -best mathematical elements for operand expressions related to an operator,
instead of all possible combinations.

4 Experimental Evaluation

In this section, we experimentally investigate the prediction accuracy of the
algorithm described in the previous section. Then, we present the results of this
evaluation in Sect. 4.2 and discuss the results of this study in Sect. 4.3.

4.1 Method

We examined prediction accuracy using a dataset of 4000 mathematical for-
mulae E = {(si, yi)|i = 0, · · · , 3999} from a five-volume mathematics textbook
[13], organized into the following categories: algebra, geometry, vector algebra,
sets/logic, numbers, probability/statistics, trigonometry, exponents/logarithms,
sequences, limits, and calculus, which are studied in the tenth through twelfth
grades in Japan. Dataset E was generated manually with our previous system [14]
in the order of appearance in the textbook by choosing individual expressions y
with the corresponding linear string s, the length of which is less than 16.

In the experimental evaluation, we measured the proportion of correct pre-
dictions for 500 test datasets after learning the parameters using the predictive
algorithm described in Sect. 3 on a training dataset consisting of 3500 formulae
by 8-fold cross-validation.

24 T. Fukui and S. Shirai

4.2 Results

The machine learning results for our predictive algorithm are given in Table 4
for various training set sizes. Figure 2 illustrates this result and shows that 3500
training data are sufficient for performing our machine learning algorithm.

The accuracy of “Best 1” with our predictive algorithm was approximately
51.5% after being trained 3500 times and that of “Best 3” was 72.4%. However,
for its top-ten ranking, this algorithm achieved an accuracy of 85.2%.

The mean CPU time for predicting each mathematical expression with cor-
responding linear string of length less than 16 was 2.85 s (SD = 0.16).

The search ratio omitting the best score was only 0.6%; nevertheless, the cal-
culation break ratio was 16.5%, which indicates that the improvements described
in Sect. 3.3 worked well for finding the N -best candidates.

Table 4. Prediction accuracy using our predictive algorithm (%)

Training no. Best 1 Best 3 Best 10

0 16.0 (0.7) 20.2 (0.9) 23.8 (1.5)

500 36.4 (2.9) 49.9 (5.2) 61.3 (7.9)

1000 45.3 (2.6) 63.6 (1.8) 77.2 (1.9)

1500 47.5 (4.2) 67.4 (2.6) 80.7 (1.6)

2000 49.9 (3.3) 69.7 (2.2) 82.7 (1.6)

2500 51.6 (4.5) 71.2 (3.6) 84.0 (1.7)

3000 50.9 (3.9) 71.5 (3.3) 84.0 (1.7)

3500 51.5 (3.1) 72.4 (2.2) 85.2 (1.8)

Numbers in parentheses denote SD.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000 3500

Best1

Best3

Best10

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Training No.

Fig. 2. Prediction results for varying numbers of training examples

Predictive Algorithm for Converting Linear Strings 25

4.3 Discussion

Analysis on Length of s. The 4000 test data consist of approximately 66%
of the mathematical expressions included in a five-volume textbook [13]. There
is a negative association (R2 = 0.83) between the length of s and prediction
accuracy for top-ten rankings (Fig. 3). The mean CPU time to obtain yp from
various lengths of string s is illustrated in Fig. 4. The mean runtime when the
length of s is less than 16 required less than 10 s, although when the length is
greater than 10, the mean runtime increases rapidly, because the complexity of
candidate math expression increases with the length of string s (c.f. Sect. 3.3).
Therefore, this algorithm is insufficient for predicting the N -best candidates from
strings whose length is greater than 16. In this case, we need another strategy,
like a predictive conversion limited from a part of s.

Pr
ed

ic
tio

n
ac

cu
ra

cy

Length of s

R2 =0.83
100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 1 5 1 6

Fig. 3. Length of s effects prediction accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Length of s

M
ea

n
pr

ed
ic

tio
n

tim
e

(s
)

12

10

8

6

4

2

0

Fig. 4. CPU time for varying lengths of s

26 T. Fukui and S. Shirai

Differences Across Mathematics Fields. Figure 5 shows the difference in
projection accuracy for each field of mathematics after learning with 3500 train-
ing data. The line indicates the data distribution of each field. The prediction
accuracies for vector algebra and trigonometry are greater than 90% for the
top-ten ranking, but are low for exponents and sequences because mathematical
expressions, such as recursive formulae can be complex.

0

200

400

600

800

1000

1200

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Algebra Geometry Vectors Sets/Logic Numbers Prob./Stat. Trigonometry Exp./Logs Sequences Limits Calculus

Best 1

Best 3

Best 10

Distribution

Fields of Mathematics

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Fig. 5. The difference in projection accuracy for each field of mathematics

5 Related Works

In this section, we describe related works on NLP, along with other predictive
inputs for mathematical formulae that use an N-gram model.

Input-word prediction has been studied in NLP since the 1980s, often to pre-
dict input characters for a word unit [15]. Structured perceptrons have been used
in NLP to input Japanese characters since the 1990s. As explained in Sect. 2, our
predictive algorithm uses a structured perceptron; however, mathematical formu-
lae have tree structures, rather than the sentential chain structures of natural lan-
guage. Indeed, none of the aforementioned methods consider sentence structures,
although our method considers the tree structure of mathematical formulae.

Structure-based user interfaces for inputting mathematical formulae are pop-
ular. They enable users to format a desired mathematical formula on a PC in
a WYSIWYG manner by selecting an icon corresponding to the structure of
the expression. Users do so using a GUI template, e.g., a fraction bar or an
exponent form, into which the mathematical elements can be entered. Hijikata
et al. improved the input efficiency of mathematical formulae by proposing an
algorithm for predicting mathematical elements using an N -gram model [16].
However, their proposal is still structure-based in the sense that users must
understand the entire structure of a desired mathematical formula before select-
ing the corresponding icons.

In contrast, our predictive conversion method predicts mathematical struc-
tures from a linear string in a colloquial style, separating it from structure-based
input methods.

Predictive Algorithm for Converting Linear Strings 27

6 Conclusion and Future Work

In this study, we proposed a predictive algorithm for linear string conversion to the
N -best candidate mathematical formulae, with an accuracy of 85.2% for the top-
ten ranking, by improving upon a previously proposed structured perceptron algo-
rithm to apply to general categories of mathematics. The mean CPU time for pre-
dicting each mathematical expression with a corresponding linear string of length
less than 16 (obtained from a five-volume mathematics textbook) was 2.84 s.

The most important avenues for future research are to reduce prediction time
and to develop an intelligent mathematical input interface by implementing our
proposed predictive algorithm.

This work was supported by JSPS KAKENHI Grant Number 26330413.

References

1. Pollanen, M., Wisniewski, T., Yu, X.: Xpress: a novice interface for the real-time
communication of mathematical expressions. In: Proceedings of the Workshop on
Mathematical User Interfaces (2007)

2. Sangwin, C.: Computer aided assessment of mathematics using STACK. In:
Cho, S.J. (ed.) Selected Regular Lectures from the 12th International Congress
on Mathematical Education, pp. 695–713. Springer, Cham (2015). doi:10.1007/
978-3-319-17187-6 39

3. Fukui, T.: An intelligent method of interactive user interface for digitalized math-
ematical expressions. RIMS Kokyuroku 1780, 160–171 (2012). (in Japanese)

4. Fukui, T.: The performance of interactive user interface for digitalized math-
ematical expressions using an intelligent formatting from linear strings. RIMS
Kokyuroku 1785, 32–44 (2012). (in Japanese)

5. Shirai, S., Nakamura, Y., Fukui, T.: An interactive math input method for com-
puter aided assessment systems in mathematics. IPSJ Trans. Comput. Educ. 1(3),
11–21 (2015). (in Japanese)

6. Shirai, S., Fukui, T.: Improvement in the input of mathematical formulae into
STACK using interactive methodology. Comput. Educ. 37, 85–90 (2014). (in
Japanese)

7. Fukui, T.: Prediction for converting linear strings to mathematical formulae using
machine learning. In: Proceedings of ARG WI2, vol. 6, pp. 67–72 (2015). (in
Japanese)

8. Fukui, T., Shirai, S.: Predictive algorithm from linear string to mathematical for-
mulae for math input method. In: Proceedings of the 21st Conference on Applica-
tions of Computer Algebra, pp. 17–22 (2015)

9. Shirai, S., Fukui, T.: Evaluation of a predictive algorithm for converting linear
strings to mathematical formulae for an input method. In: Kotsireas, I.S., Rump,
S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 421–425. Springer, Cham
(2016). doi:10.1007/978-3-319-32859-1 36

10. Manning, C.D., Scheutze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press, London (2012)

11. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Pro-
ceedings of Oxford, vol. 67, pp. 263–298 (1967)

http://dx.doi.org/10.1007/978-3-319-17187-6_39
http://dx.doi.org/10.1007/978-3-319-17187-6_39
http://dx.doi.org/10.1007/978-3-319-32859-1_36

28 T. Fukui and S. Shirai

12. Sasaki, T., Motoyoshi, F., Watanabe, S.: Computer Algebra System, vol. 36, Shouk-
oudo (1986). (in Japanese)

13. Matano, H., et al.: Vols. I301, A301, II301, B301, and III301 of Mathematics,
Japan. Tokyo Shoseki (2014). (in Japanese)

14. Shirai, S., Fukui, T.: MathTOUCH: mathematical input interface for e-assessment
systems. MSOR Connections 15(2), 70–75 (2016)

15. Garay-Vitoria, N., Abascal, J.: Text prediction systems: a survey. Univers. Access
Inf. Soc. 4(3), 188–203 (2006)

16. Hijikata, Y., Horie, K., Nishida, S.: Predictive input interface of mathematical for-
mulas. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.)
INTERACT 2013. LNCS, vol. 8117, pp. 383–400. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40483-2 27

http://dx.doi.org/10.1007/978-3-642-40483-2_27

	Predictive Algorithm for Converting Linear Strings to General Mathematical Formulae
	1 Introduction
	2 Predictive Conversion
	2.1 Linear String Rules
	2.2 A Predictive Conversion System
	2.3 Predictive Algorithm

	3 Main Algorithm
	3.1 Balancing Scores with the Key Character Length
	3.2 Unique Normal Form for Mathematical Expressions
	3.3 Complexity of Candidate Math Expressions and Calculation Time

	4 Experimental Evaluation
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 Related Works
	6 Conclusion and Future Work
	References

