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Abstract. Naturalistic Action Test (NAT) is a diagnostic tool that
involves a participant completing a common, everyday task under the
observation of a trained clinician. The clinician can identify and quan-
tify the severity of an individuals cognitive impairments based on the
his or her actions while carrying out the task. Individuals with cogni-
tive impairments have been shown to commit errors such as performing
an incorrect sequence of steps when completing a task at greater rates
than individuals without cognitive impairments. This paper describes
our initial experiences in developing a wearable computing-based system
to support NATs. The system’s objective is to eventually help the clin-
ician streamline the analysis of NATSs by processing of the smartwatch
collected sensor values to try and identify episodes that resemble errors.

Keywords: Wearable computing - Mild cognitive impairment - Natu-
ralistic action test

1 Introduction

Managing the costs of dementia is a pressing problem facing many countries all
around the world [29]. In the United States alone, there are an estimated 5.4
million Americans suffering from Alzheimer’s Disease (AD), the most common
cause of dementia today. The costs of managing AD is estimated to be as high
as $236 billion dollars a year. This number is projected to continue to grow.
By 2050, the number of AD sufferers is expected to reach to 13.8 million, and
cost the country $1 trillion dollars [3]. Early detection of dementia can help
patients, their families, and caregivers, better prepare for the disease to improve
the overall quality of life [9,28]. The stage preceding dementia is termed mild
cognitive impairment (MCI) [22]. Since age is the greatest risk factor for devel-
oping dementia, making screening of MCI more accessible to the larger older
adult population is a priority.

The current approach for diagnosing dementia and MCI relies on accu-
rate characterization of everyday functioning. Currently, self-reported and
family-reported questionnaires are used to identify functional ability [15,19].
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Questionnaires have numerous advantages, including efficiency and low cost.
However, they also have numerous drawbacks. Questionnaire data reflect ones
appraisal of his/her ability to perform daily activities in the natural context.
Limited insight, bias, and/or cognitive dysfunction may compromise the validity
of self-reports [24,31]); consequently, caregiver-reports are generally preferred.
However, some adults are not comfortable asking a relative to report on their
functioning and many do not have a knowledgeable or healthy informant. As
of 2014, over a quarter (28%) of non-institutionalized adults over age 65 live
alone and the proportion of elders living alone increases with advanced age when
functional difficulties may be more likely to emerge (e.g., 46% of women aged
75 and over lived alone). Even older adults who live with a close family mem-
ber may not be observed when performing daily activities, particularly when
functional difficulties are mild and do not disrupt independence. Additionally,
older adults differ in their current and past daily routines, which may be prob-
lematic when assessing functioning with questionnaires. For example, a person
who typically performs only a few simple tasks (e.g., making a sandwich for one
person) throughout the day may be judged by an informant to be less impaired
than a person who consistently is required to perform more complex tasks (e.g.,
preparing a full-course meal for a large family).

Performance-based tests address some of the drawbacks of questionnaires by
recording participant behaviors while they perform standardized daily tasks in
the laboratory [17]. The major limitation of performance-based tests is that they
are time-consuming and require extensive training to score to identify subtle
difficulties. This paper describes our initial experiences in developing a wear-
able computing-based system to address the limitation of the NAT and other
performance-based tests. Our system consists of three components: (1) a smart-
watch that collects and synchronizes the accelerometer and gyroscope data with
the captured video; (2) a video annotation system that allows the clinicians to
record notes while viewing the captured video; and (3) an analytical toolkit to
sift through the sensor readings and identify features based on clinician-supplied
input parameters. Our objective is to eventually help the clinician streamline
the analysis of NATSs by processing of the smartwatch collected sensor values to
try and identify episodes that resemble errors.

2 Related Work

The popularity of smartphones and smartwatches has led to a new approach for
monitoring human activity. These devices come with sensors that can detect,
among other things, ambient light, acceleration, orientation, and so on. While
these sensors cannot directly determine what the user is doing, there has been
considerable research into algorithms that make use of these sensor data to infer
human activity [2,14,18]. Most of existing work focused on recognizing common
physical human activities like walking, jogging, biking, etc. [6,7,13,16,25]. More
recent research has considered recognizing more complex human activities like
eating [11,27] and smoking [23]. Our work differs from existing research in that
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Fig. 1. Photograph of participant performing the NAT (breakfast preparation task).
The left picture shows the start of the task. Note the presence of distractor objects (ice-
cream scoop, paint brush, and salt shaker) found on the table. The right picture is the
participant using his dominant arm to reach for the coffee. Participants are instructed
to use their dominant arm as much as possible while carrying out the task.

we focus on identifying errors rather than activities. Compared to activities, e.g.
walking, errors are more difficult to quantify, and are more personalized.

Another related area of research is the use of cameras to infer human activ-
ity [5,20,21]. Rather than infer human activities using sensors, this approach uses
the captured camera images to classify human activities algorithmically. More
recent work in this area has expanded beyond traditional cameras, towards using
3D cameras like the Microsoft Kinect, which can capture additional depth infor-
mation [8,30]. We avoided using cameras for detection because of the lack of
flexibility. The advantage of wearable devices is that they can be carried or worn
unobtrusively on the person virtually all the time. This is unlike camera-based
systems which can only record activities in a specific physical space.

Ubiquitous computing systems approach towards human activity recognition
is a holistic approach that integrates different types of sensors and cameras
together [1,10,12]. Work on “smart table” systems [4,26,32], for instance, which
are used to track diet, can be also be repositioned to monitor the NATs. However,
ubiquitous computing systems often require embedding sensors directly into the
environment, which is expensive to deploy in practice. Our approach, on the
other hand, uses consumer wearable devices like a smartwatch, which is readily
available.

3 Background

The NAT is a standardized, performance-based measure of everyday functioning
that requires participants to complete common tasks of increasing complexity
with little guidance from the examiner. The clinician can identify and quantify
the severity of a participants cognitive impairments based on the his or her
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Table 1. Summary of errors used in NAT analysis

Overt errors | Omission errors: steps required to complete a task are not performed.
E.g. does not add coffee grounds to coffee

Commission errors:

— Substitution: A similar, alternate object is used in place of target
object to complete a task. E.g. spreads butter on toast with spoon
instead of knife

— Sequence: Anticipation of a step; steps or subtasks performed in
reverse order. E.g. applies butter on bread without toasting

— Perseveration: A step is performed more than once or for an
excessive amount of time. E.g. adds butter/jelly repeatedly to toast

Action-addition errors: The performance of an action not readily
interpreted as a task step. E.g. puts toast in creamer

Micro errors | Initiating and terminating an incorrect action before the error is
completed; picking up an incorrect item; initiating but not
completing a behavior that is dissonant with the task goal. E.g. picks
up garden shears instead of scissors, but never uses the garden shear
to cut the wrapping paper

actions while carrying out the task. Participants with cognitive impairments
have been shown to commit more errors while competing the NAT compared
to participants without cognitive impairment. A wide range of error types have
been reported and include overt errors, such as inaccurate task sequencing, use
of distractor objects, and omissions of task steps. In people with more mild
cognitive impairment micro-errors have been observed and shown to correlate
with performance on cognitive tests. Micro-errors are more subtle than overt
errors and include misreaching toward distractor objects and hesitations before
reaching to target objects (see Table1).

An example of a NAT task is to pack a lunch bag with the necessary objects
(e.g., thermos lids) and distracting objects (e.g., spatula) distributed evenly
on a large table. Figurel is a picture of a participant performing a breakfast
preparation task involving making toast and coffee. A typical NAT session will
involve the participant sitting at a table with the necessarily objects to complete
the task, as well as additional objects to serve a distractors. For example, a coffee
making task will include the coffee powder, milk, sugar, etc. within arms reach
on the table, as well distractor objects like a salt shaker, a spatula, etc. that are
not part of completing the task. The participant is told to complete the task by
the clinician ahead of time. The complete instructions is shown in Fig.2. The
entire task is recorded on video for later analysis to evaluate the participants
performance.

The NAT video is scored by trained coders blind to participant details (e.g.,
group membership, test scores, etc.). The video is scored for overt errors and
micro-errors using standard scoring procedures. Scoring procedures focus on cog-
nitive failures during the task and do not penalize participants for clumsiness or
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Instructions for Conducting Lunch Task NAT

The following 10 points are read out verbatim to the participant.

1. I would like you to pack a lunch box. The lunch is for someone who wants a peanut
butter and jelly sandwich, a snack, and a drink.

2. Can you repeat what you need to do? [repeat the instructions for the participant
until the participant shows that he/she understands the task instructions.)

3. Now that you understand the task, you do not need to talk though the task. Remain
silent and focus on what you are doing.

4. Do not touch or move any of the objects until you are ready to use them. Make your
movements clear and precise.

5. Keep your hand at this resting position when you are not working with the objects. If
you need to think about what you’re doing, place your hand back at the rest position
before you do the next step.

6. Do not use your non-dominant hand to do the steps of the task. We have put the
bright bracelet on your non-dominant hand as a reminder for you not to use it. You
may use the non-dominant hand to stabilize objects as you use them. For example,
you may need to use it to stabilize a jar or the bread. But, do not use it to do
meaningful task steps.

7. I will be timing you, so work as quickly as you can without making mistakes.
8. Last, touch the “QUIT button™ at the top right when you are finished working.

Can you repeat the task rules? [repeat the instructions for the participant until the
participant shows that he/she understands the task instructions)

10. Great. Go ahead and pack a peanut butter and jelly sandwich, a snack, and a drink.

Fig. 2. Verbal instructions to participant.

poor dexterity. Overt errors are grouped according to a widely published tax-
onomy that includes omissions, commissions, and action additions. Micro-errors
include imprecise actions that do not reach the level of overt error. Table 1 sum-
marizes these overt and micro-errors.

A key advantage of using NATSs is that the tasks are sufficiently common-
place to be familiar to people across different socio-economic backgrounds, thus
allowing a well-developed NAT to be used for a wide range of participants. How-
ever, the entire analysis process is both time consuming and labor intensive.
Each video needs to be reviewed by multiple trained scorers, who then need to
arrive at a consensus on the outcomes. Our system seeks to simplify this process
through the use of smartwatch and analytical toolkit.

4 System Design

Our system consists of three components: a smartwatch component to collect
the accelerometer and gyroscope orientation information; a video annotation
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program to facilitate the annotation and segmentation of the videos, and an
analytical toolkit to process the resulting data.

4.1 NAT Workflow with Wearables

At the start of the experiment, the examiner will synchronize smartwatch and
video recorder to the wall-clock time. The participant will be instructed to wear
the smartwatch on his dominant wrist throughout the duration of the task. We
also placed a brightly colored bracelet on the non-dominate hand with the words
“DO NOT USE” printed on it to remind the participant not to use the non-
dominant hand. The NAT was initially designed for stroke populations and was
developed to be completed using only one hand in an attempt to accommodate
people with hemiparesis following stroke. At the end of the experiment, the data
from the smartwatch is extracted and archived.

The video annotation program is used to help divide a NAT task into small
sub-tasks. Figure 3 illustrates the division of the breakfast preparation task into
smaller sub-tasks. The coders will use the video annotation program to identify
the start and end times for each sub-task. Since both the recorded video footage
and smartwatch are synchronized to wall-clock time at the beginning of the
experiment, we can associate each sub-task with the corresponding accelerometer
and gyroscope data for the duration of that sub-task. This annotated date is fed
into the analytical toolkit for later analysis.

The analytical toolkit uses the smartwatch data to identify videos, or seg-
ments of videos, that are suggestive of errors. The toolkit allows the coder to
specify parameters to identify segments of interest. Figure 4 shows an example of
the configuration file where the coder wants to determine the number of pauses,
and the length of each pause, that occurred within each sub-task. The output

‘ Put bread into toaster ‘ ‘ Add sugar ‘

‘ Turn on toaster ‘ ‘ Stir ‘

p]?er;i(aftaif)tn |:> ‘ Mix coffee and water ‘ ‘ Remove bread from toaster ‘
task | Stir || Add jelly |

‘ Add cream ‘ ‘ Add butter ‘

Fig. 3. Division of breakfast preparation task into sub-tasks.

User Name Data File Path Subtasks Type of analysis
] ] ) ]
c \ | |
[ JON ) | config.txt
{Username = mc; File = /sdata/Breakfastl.csv ; Task = all; Analysis = Pause:2.5:2}

Fig. 4. Example of configuration file for the analytical toolkit.
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also includes the timestamp of the video segments that correspond to each pause
event so that the coder can return to the original video to review as needed.

4.2 Associating Smartwatch Data with Errors

Rather than attempting to match the accelerometer and gyroscope data with
the errors listed in Table 1. Instead, our approach is to identify features that
are suggestive of errors. To better understand errors and how they related to
smartwatch data, we examined the collected videos to determine possible features
which can be identified from the smartwatch data.

Figure 5 shows several frames of a video segment of a participant with MCI
performing the NAT lunch sub-task of putting jelly onto toast. In Fig. 5(a) the
participant is adding jelly to the toast, in (b) he places the knife down on the
plate, and in (c) he starts to reach towards the jelly jar. This action was coded
as a micro-error, because as shown in (d), even before touching the jelly jar, the

Fig. 5. Example of a micro-error from the “Add Jelly” subtask. Part (a) shows the
participant adding jelly to the bread. In part (b), the participant is done with adding
jelly and the next step is to replace the cap onto the jelly jar to complete the subtask.
Part (c) shows the participant’s hand reaching towards (but not touching) the jelly jar
instead of the cap, and part (d) shows the participant quickly withdrawing his arm
when he realizes this is a mistake. Parts (e) and (f) shows the participant performing
the correct action of picking up the cap and placing it onto the jelly jar.



Wearable Computing Support for Objective Assessment 219

participant quickly redirects his reach towards the jelly jar lid. In (f), he places
the lid onto the jelly jar. The micro-error depicted in (c¢) is characterized by a
sudden and sharp arm movement from one object to another. From our prelim-
inary observations of videos of participants with and without MCI performing
NATSs, we have identified two features that might be indicative of micro-errors.
A micro-error is an imprecise action that do not reach the level of overt error,
as described in Table 1.

The first are pauses where the participant’s hand remains stationary in the air
in the middle of completing a task. This could indicate a participant’s hesitancy
about the completing a sub-task, i.e. does salt or sugar go with coffee. The
mobility of the arm can be measured by computing the magnitude of the x,
y, and z-axis of the accelerometer, \/x2 + y? + 22. A pause is a consecutive
period of time where the arm remains static. This is determined by whether the
magnitude of the accelerometer data is within a user-specified threshold value
Tole a2+ 2+ 22 <71

The second feature is the presence of sudden movements, where the partic-
ipant’s hand moves accelerates in the same or opposite direction. This could
indicate instances where the participant realizes a mistake before completing
an action, e.g. initially reaching for the ice-cream scoop (instead of the spoon),
but self-corrects before actually touching the ice-cream scoop. We determine
a sudden movement when either consecutive x or y-axis accelerator values are
larger than a user-supplied threshold value. We do not consider the z-axis values
because a fast downward movement may be common when picking up objects.

4.3 Preliminary Results and Discussion

We tested our system on two older adults, OA2 and OA7, performing the lunch
task NAT. One of the older adults (OA2) has mild cognitive impairment (MCI),
whereas the other (OA7) does not. Figure 6 shows the demographics of the two
older adults, as well as the differences in pauses and sudden movements based
on the smartphone data. The Mini Mental Status Exam (MMSE) is a test of
global cognitive status given to the older adults. Both OA2 and OA7 performed
within the healthy range on this task. The Functional Assessment Questionnaire
(FAQ) is a self-reported measure of functioning. A higher score indicates more
functional problems. Both older adults performed within the normal range on
the FAQ.

As shown in Fig. 6, the results of human error coding showed that the older
adult with MCI committed 1 overt error and 9 micro-errors, whereas the healthy
older adult made no overt or micro-errors. Data from the watch reveled that the
older adult with MCI had approximately 50% more pauses than the healthy
older adult, as well as 17% more sudden movements. The threshold for pauses
and sudden movements is a magnitude of 1.0 and difference of acceleration of
0.5m/s respectively.
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Fig. 6. Preliminary results from smartphone data.

Our preliminary findings indicate that the smartwatch can capture data from
a NAT that can be indicative of MCI. However, we also identified two open
issues. The first issue is the need to develop methods to individualized parame-
ters and thresholds in the toolkit. Older adults differ in speed and dexterity of
their physical movements, which may not be directly related to their cognitive
abilities. However, the features of sudden movements and pauses are sensitive to
these physical differences. One of our future aims is to explore ways of adjust-
ing the parameters based on participant’s physical capabilities. One approach
is to include a profiling stage into the NAT to capture sufficient data to adjust
the parameters. Another open issue is to identify a better method for accu-
rately identifying episodes of overt and micro-errors. From Fig. 2, we see that the
instructions to the participant’s are fairly generic. This means that participants’
arm movements may differ because they are completing a subtask differently
than other older adults (e.g., adding two scoops of sugar rather than just one).
Such individual differences may not be indicative of any difference in cognitive
state. One approach we are considering is a finer-grain approach that examine
a few specific sub-tasks, rather than the entire NAT trace, to identify errors.

5 Conclusion

Early detection of dementia is an important problem for many countries, espe-
cially countries with an aging population. Current methods of detection are
not scalable to large population. This paper describes a system that uses con-
sumer smartwatches to capture data from NATS to facilitate the identification
of MCI among older adults. Preliminary experiments indicate that the approach
is promising.
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