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Abstract. In addition to efforts to increase the intelligence and perception capa‐
bilities of robots to enable collaboration with human counterparts, there is also a
focus towards improving interaction mechanics. Multimodal communication is
one such tool under investigation due to its dynamic ability to select explicit and
implicit communication modalities with the aim of facilitating robust exchanges
of information. Although there is extensive research in the domain of explicit
communication using auditory, visual, and tactile interfaces, investigations into
systems that incorporate implicit methods, or actually adapt and select appropriate
modalities for reporting data from a robot to human is limited. Furthermore, a
missing piece is identifying how and when to trigger these changes. A novel
strategy to accomplish adaptation is through identification of teammate’s phys‐
iological state. From the literature, one can find examples of researchers using
high fidelity systems to measure physiological response and predict user work‐
load, but many of these technologies are prohibitively expensive or not suitable
for use in many domains of interest for human robot interaction such as
dismounted infantry operations. Recent advancements in wearable consumer
technologies, specifically fitness trackers supporting integration with third party
software, are making it possible for incorporation of low cost systems in a variety
of novel applications. A logical extension of these applications being physiolog‐
ical state measurement to drive adaptive automation in the form of multimodal
interfaces. This paper describes the results of a study to assess the feasibility of
using data from a wearable fitness tracker in an adaptive multimodal interface for
squad-level human-robot interaction.
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1 Introduction

A growing body of research and added commercial interest is pushing intelligence and
perception capabilities of robots into new areas of collaboration with human counter‐
parts. Through congressional mandate and funded research efforts, robots are no longer
seen as remote control tools, but teammates capable of taking on different roles and
responsibilities to accomplish a shared objective [1–3]. In addition to making robot
teammates smarter, there is also a strong focus towards improving interaction mechanics
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for seamless integration with end users within mixed-initiative teams. Within the mixed-
initiative paradigm, teams employ flexible interaction strategies where each agent
(human or robot) contributes what is best-suited at the most appropriate time [4]. At the
root of any interaction between humans and robots is the exchange of information using
auditory, visual, and tactile modalities. Appropriately using these modalities is required
for effective communication, with interactions tailored to human expectations, demands,
and mental models [5]. Multimodal communication is a framework and tool under
investigation to meet this need due to its support for the flexible selection of explicit and
implicit communication modalities to enable robust exchange of information when
compared to single modalities [6–8]. Although there is extensive research in the domain
of explicit communication using auditory, visual, and tactile interfaces, investigations
into systems that adapt and select appropriate modalities for bi-directional interaction
with human teammates is limited.

1.1 Adaptive Automation for Human Robot Interaction

The environments todays soldiers interact within are inherently complex. Working
within teams, regardless of the presence of a robot, includes multitasking during which
soldiers must pay attention to their own task execution and their teammates. For
example, a cordon and search operation, one of the most frequently used tactics
dismounted soldier teams use in complex urban environments, requires reconnaissance,
enemy isolation and capture, and weapons and material seizures [9]. With the inclusion
of robots to assist in cordon and search or other operations, there is potential for an
increase in soldier workload due to the superhuman information gathering capabilities
of robots. Robot teammates equipped with cameras, LIDAR, SONAR, and other sensors
have the ability to capture and aggregate a multitude of data, which could negatively
impact a soldier’s situational awareness and workload if not delivered appropriately.

Adaptive automation refers to a system capability that enables task sharing between
a human operator and a system [10, 11]. With robots and their interfaces becoming more
capable and independent, adaptive automation is well suited to enabling mixed-initiative
squad-level team concepts. Previous efforts at using adaptive automation in ground robot
teaming scenarios have shown performance benefits [10, 12]. Extending this work to
adapt multimodal communication is henceforth likely to improve team communication
performance. In such a scenario, automation built within human robot interfaces can
select the appropriate modality, or combination thereof, to deliver messages to soldiers
in a way that does not increase cognitive demand or interfere with tasks using conflicting
visual or auditory resources.

1.2 Implicit Communication for Adaptive Strategies

In addition to understanding what single or combination of modalities will result in the
most effective exchange of information, a critical piece of the puzzle is identifying how
and when to trigger these changes. Situational context when directly interacting with a
robot is one method of triggering these changes, but an alternative strategy of interest
from the domain of implicit communication is the identification of teammate
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physiological states [13]. From the literature, one can find examples of researchers using
electroencephalograms (EEG), electrocardiograms (ECG), eye tracking, and other
sensors in combination to measure physiological response to classify a participant’s
level of workload [13–16]. By employing physiological sensors to classify a user’s state,
automation within an interface can trigger different multimodal communication strat‐
egies to maintain a baseline level of performance. For example, when a soldier is expe‐
riencing high workload; a multimodal interface may chunk auditory reports together or
pair with tactile feedback to ensure messages are received. Teo, et al. [13] developed a
closed-loop system that demonstrated this exact concept by using a combination of
physiological sensors to trigger automation in a remote supervisory reconnaissance and
surveillance mission with a ground robot.

1.3 Wearable Fitness Trackers for Implicit Communication

Although using physiological sensors to measure a person’s state is a promising tech‐
nique, many of the technologies, are prohibitively expensive or not suitable for use in
squad level human robot teaming. Within this domain, users are on the move, and current
physiological sensing devices would interfere with operations or disrupt their wearing
of other equipment. Recent advancements in wearable consumer technologies, specifi‐
cally fitness trackers supporting integration with third party software, are closing this
gap, making it possible for incorporation of low cost, non-disruptive systems in a variety
of novel applications. The Microsoft Band 2, Fig. 1, is an example of a wrist-worn device
that supports real-time collection of heart rate, inter-beat interval, heart rate variability,
skin temperature, ambient temperature, and galvanic skin response (GSR) over a Blue‐
tooth connection on multiple operating systems [17].

Fig. 1. Microsoft band 2 wearable fitness tracker.

These sensors, in particular the optical heart rate monitor and GSR, provide similar
measures to those used in previous efforts such as Teo, et al. [13]. However, the feasi‐
bility of fitness trackers for triggering adaptive communication is unclear, as the manu‐
facturers did not design them with this purpose in mind and may not have the required
sensitivity and saliency for accurate physiological state classifications.
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1.4 Adaptive Multimodal Interfaces

Accomplishing the vision of adaptive multimodal communication interfaces for soldiers
and robots requires a systematic investigation into the performance costs and benefits
of single versus multiple modalities and physiological response within different mission
contexts and environmental demands. However, a review of the literature shows a
limited number of studies to date investigating multimodal communication within
mixed-initiative infantry operations [18], with the majority focused on teleoperation
[19, 20], humanoid robot assistants [7, 21], and vehicle driving scenarios [22–24]. Few
meta-analyses have surveyed the performance costs and benefits of redundant versus
single-modality presentation for an interrupting and ongoing task [22, 23]. Moreover,
conflicting results across studies demonstrate unclear effects of modality switching on
vision-based signal detection tasks like those of cordon and search operations [25]. The
goal for this effort is to address this gap by beginning to understand independent and
redundant communication modalities and adaptive strategies in squad-level human robot
interactions. Specifically, the aim for this paper is to assess the feasibility of using wear‐
able fitness trackers as a means of state identification for adapting multimodal commu‐
nication.

2 Method

2.1 Participants

A total of 56 (34 males, 22 females) participants between the ages of 18 and 40
(M = 19.29, SD = 2.29) participated in the study. All participants received credit for
their psychology courses for completing the study. Participants were asked not to
consume alcohol or any sedative medication for 24 h or caffeine for two hours prior to
the study.

2.2 Equipment and Simulation Environment

As previously mentioned, cordon and search is one of the most common operations a
squad may perform in an urban environment. It also contains enough complexity to make
it well suited for investigating the challenges of mixed-initiative teaming between
humans and robots. For the present effort, a custom 3D simulation using the Unreal 4
Game Engine [26] was created, Fig. 2. Within the simulation, participants took the role
of a squad leader performing the outer cordon task. This outer cordon activity replicated
a signal detection task, [27], where participants were required to look for insurgents
walking in front of and around a building at different event rates. If participants detected
an insurgent, they used a mouse to click on the character, which the software logged. A
30ʺ monitor with a resolution of 2560 × 1600 pixels was used to present the environment.
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Fig. 2. Unreal 4 game engine simulation used in experiment. Image represents the 3D field of
view participants experienced while executing an outer cordon operation. Characters in the
environment were animated and walked on and off screen and variable event rates. At the top
center is an overlay of the multimodal interface visual display when present.

In addition to the outer cordon signal detection task, participants received informa‐
tion from two virtual robot teammates performing the inner cordon task (not within the
participants’ field of view). A modified version of the multimodal interface (MMI)

Fig. 3. Multimodal interface (MMI) visual display. Display is comprised of three main areas:
semantic map (left) showing robot location and icons of objects found, video/camera (top right),
and status (bottom right) illustrating the current command the robot is executing and the most
recent report (in text) of what the robot detected.
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developed by Barber et al. [5] was used to deliver auditory and visual reports from robot
teammates. The visual display of the interface, illustrated in in Fig. 3, appeared on top
of the 3D simulation at the top center area of the screen at a resolution of 602 × 377
pixels, Fig. 2. The resolution and size of the visual display was scaled to match 1:1 to
the physical size of the Toughpad FZ-M1 tablet used in [5] when shown on the 30ʺ
monitor used in the study. For each visual report, the display was present for 10 s before
being hidden off screen. For the auditory modality, text reports were converted to speech
using Microsoft Speech Platform SDK version 11 text-to-speech (TTS) and the default
male voice of the Windows 10 operating system, [28].

For physiological data capture, the Microsoft Band 2 was used [17]. The Microsoft
Band 2 was selected because it provided sensor data corresponding with previous
research efforts for classifying physiological state (e.g. interbeat interval (IBI)), and
Microsoft providing a Windows software development kit (SDK) enabling real-time
capture of data during the simulation. A custom software application using the provided
SDK captured and recorded data from the device.

2.3 Design

A 3 (Adaptive Strategy: Constant, MMI, User) × 3 (Modality: Auditory, Visual, Audi‐
tory and Visual) × 2 (Environmental Demand: High, Low) repeated measures design
was employed. For adaptive strategy, constant (C) meant that no adaptation to commu‐
nication modality occurred, MMI indicated that the multimodal interface triggered
changes to modality, and for user (U), the participants triggered which modality was

Fig. 4. Scenario design for the experiment. Four scenarios were created for each participant, one
constant adaptive strategy (both visual and audio reports), two MMI adaptive (audio to visual and
visual to audio), and one user-adaptive. Event rate (high/low) for the signal detection task is
indicated by the square wave function, with report periods divided into 4 min blocks.
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used with the spacebar key on the keyboard. Two modalities were used auditory (A) and
visual (V) and depending on the adaptive strategy were presented standalone or redun‐
dantly. Environmental demand during scenarios was either high (H) or low (L). To
manipulate environmental demand, event rates of 15 events/minute and 60 events/
minute on the signal detection task were used corresponding to low and high task load
respectively. Selection of these event rates was taken from Abich et al. [29], which
established event rates for a similar signal detection task that elicited distinct levels of
low and high workload as reported by the NASA-TLX.

A total of four scenarios were created to capture the experimental design and collect
an equal amount of data across adaptive strategy, communication modality, and envi‐
ronmental demand (event rate), illustrated in Fig. 4.
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Fig. 5. Comparison of IBI between high and low environmental demands across adaptive strategy
scenarios. Error bars represent standard error.

Each scenario was sub-divided into eight 4-minute blocks where participants
received nine reports each, for a total of 72 reports. After three reports, participants were
asked two questions regarding the information received to measure their situational
awareness (SA). These “SA probes” were delivered via pre-recorded audio, and partic‐
ipants responded verbally. Six SA probes were given for each 4-minute block for a total
of 48 per scenario. Through the manipulation of event rate within each scenario, and the
break down of modality transitions, performance and physiological response was
captured across adaptive strategies and during low and high environmental demands.
For each scenario, a different building location was used which was counterbalanced
across manipulations and participants. Furthermore, presentation order for each scenario
was randomized and counterbalanced across participants as well.
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Dependent Variables
Signal Detection Task (SDT). The accuracy of participants in identifying enemy insur‐
gents [27]. For each time period analyzed, the total number of correctly identified insur‐
gents was divided by the total number of insurgents presented to obtain an accuracy
percentage.
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Fig. 6. Comparison of HRV between high and low environmental demands across adaptive
strategy scenarios. Error bars represent standard error.
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Fig. 7. Comparison of GSR between high and low environmental demands across adaptive
strategy scenarios. Error bars represent standard error.
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Interbeat interval (IBI). Interbeat interval as reported from the Microsoft Band 2,
measured as the time in milliseconds between heartbeat RR peaks of the QRS complex
[30]. For each time period analyzed, the mean IBI was calculated and normalized across
participants by subtracting the mean resting baseline value.

Heartrate Variability (HRV). The variance of the interbeat interval reported from the
Microsoft Band 2. For each time period analyzed, the mean HRV was calculated and
normalized across participants by subtracting the mean resting baseline value.

Galvanic Skin Response (GSR). Mean skin resistance converted to Siemens reported
from the Microsoft Band 2 [30]. For each time period analyzed, the mean GSR was
calculated and normalized across participants by subtracting the mean resting baseline
value.

3 Procedure

Upon arrival, participants first completed an informed consent document, and then were
equipped with the Microsoft Band 2 on the wrist of their non-dominant hand after the
area was cleaned with an alcohol pad. Participants then completed a demographics
questionnaire, followed by measurement of a five-minute wakeful resting baseline with
the Microsoft Band 2. Next, they were trained on each of the tasks they would perform
individually, then in combination. To do this, participants were first trained on the char‐
acter models used in the signal detection task and which models were considered
enemies to detect and which were not. They then performed the signal detection task
with a low to high event rate transition as practice. Following the signal detection task
training, example visual and audio reports from the robot were demonstrated, with focus
on what information they would need to recall during situation awareness (SA) probes.
Participants than performed practice scenarios with SA probes for each of the modalities
(A, V, A + V). After these practice scenarios, participants completed four additional
practice scenarios with the combined signal detection task and robot reports that covered
the four types of experimental scenarios they would encounter. After completing the
practice scenarios, they performed each of the experimental scenarios. Performance
during practice scenarios was not used to screen participants from performing experi‐
mental scenarios. After completing all four experimental scenarios, participants were
debriefed and dismissed.

4 Results

4.1 SDT

A 4 (Adaptive Strategy: Constant, MMI Audio to Visual, MMI Visual to Audio,
User) × 2 (Environmental Demand: High, Low) repeated measures ANOVA was
performed for performance on the signal detection task revealing a significant main
effect for adaptive strategy (F(2.50, 97.33) = 3.30, p = .03, η2 = .08), Fig. 8. A pairwise
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comparison with a Bonferroni correction indicated that participants in the constant
adaptive strategy (M = 0.94, SD = 0.04) identified insurgents more accurately than
participants in the audio to visual adaptive strategy (M = 0.92, SD = 0.05, p = .002). A
significant main effect for environmental demand (F(1, 42) = 88.13, p < .001, η2 = .68)
Fig. 8, was also found, such that performance was higher in a low event rate (M = 0.96,
SD = 0.04) than in a high event rate(M = 0.91, SD = 0.05).
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Fig. 8. Comparison of SDT between high and low environmental demands across adaptive
strategy scenarios. Error bars represent standard error

4.2 IBI

A 4 (Adaptive Strategy: Constant, MMI Audio to Visual, MMI Visual to Audio,
User) × 2 (Environmental Demand: High, Low) repeated measures ANOVA was
performed and showed no significant main effect for mean IBI between adaptive strat‐
egies or environmental demand, Fig. 5.

4.3 HRV

A 4 (Adaptive Strategy: Constant, MMI Audio to Visual, MMI Visual to Audio,
User) × 2 (Environmental Demand: High, Low) repeated measures ANOVA was
performed and showed no significant main effect HRV for adaptive strategy. There was
however a significant main effect for environmental demand, (F(1, 36) = 27.66, p < .
001, η2 = .44), such that HRV during high demand (M = 42.49, SD = 37.56) was lower
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than during low (M = 49.367, SD = 36.06), Fig. 6. No significant interaction between
adaptive strategy and modality was shown.

4.4 GSR

A 4 (Adaptive Strategy: Constant, MMI Audio to Visual, MMI Visual to Audio,
User) × 2 (Environmental Demand: High, Low) repeated measures ANOVA was
performed and revealed no significant effects for mean GSR between adaptive strategies
or high and low task demands, Fig. 7.

5 Conclusion

The present study described a starting point in the advancement of dynamic multimodal
interfaces capable of changing presentation format to ensure robust communication. An
experimental design demonstrating different adaptive strategies and levels of environ‐
mental demands was used to measure impacts on task performance and the sensitivity
of a commercial-off-the-shelf wearable (Microsoft Band 2) to detect these changes. An
analyses of task performance on an SDT supported previous findings related to manip‐
ulation of event rate reported by Abich et al. [29], where participants’ detection accuracy
decreased during higher event rates. Furthermore, a performance difference was also
revealed for adaptive strategy type, with highest SDT performance in the constant (dual
modality) condition. Following these findings, analyses of the Microsoft Band 2 data
showed that heart rate information was most sensitive to changes in environmental
demands, with GSR showing no effects. Specifically, HRV results showed significant
differences between low and high task demand within adaptive strategies, such that HRV
was higher during low, and lower for high environmental demand. This finding supports
previous research correlating HRV and workload, [31]. Although promising, further
work is still needed to determine if these findings are consistent across different task
types within this domain before attempting to dynamically change modalities. Further‐
more, although differences in performance on the SDT were shown between adaptive
strategies, more analyses are still required to understand impacts of these strategies on
working memory and situational awareness on longer duration exercises, and whether
when you adapt the modality during changes to environmental demand matters.
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