CodeAdventure: An Adventure Game for Computer
Science Education

Panayiotis Andreou'*?, George Nicou', Irene Polycarpou', Panagiotis Germanakos?,
and Nearchos Paspallis'

! University of Central Lancashire, Larnaka, Cyprus
{pgandreou, gnicou, ipolycarpou,npaspallis}@uclan.ac.uk
2 SAP SE, Walldorf, Germany
panagiotis.germanakos@sap.com

Abstract. Among the most fundamental concepts of computer science education
is introductory programming, and, many effective approaches were proposed to
teach programming to novice learners. Despite all efforts, students still show poor
performance with course assessments, which can then lead to dropping out of
their studies after their first experience with programming. In the last few years,
anumber of interventions were suggested, including the utilization of educational
games that can motivate, stimulate and engage students far better than conven-
tional approaches. In this paper, we present CodeAdventure, an educational
adventure-like game that has been designed for learning and practicing introduc-
tory programming concepts. CodeAdventure adopts an integrated design
approach that employs various mechanisms and techniques to achieve a truly
immersive game learning experience while in parallel provides a fun way to
practice and apply various programming concepts. CodeAdventure uses compel-
ling graphics and incorporates different learning techniques that have been shown
to be effective for students’ learning, such as providing hints and clues on how to
solve puzzles, referencing instructional material, and immediate feedback on
students’ performance .

Keywords: Game-based learning - Educational technologies - Learning - User
experience - Programming concepts

1 Introduction

Among the most fundamental concepts of computer science education is introductory
programming, and thus, many different approaches were proposed on efficient and
effective ways to teach programming to novice learners. Despite all the efforts, it has
been well documented that students have difficulties learning introductory programming
and as a result, many of them have poor performance with course assessments, which
can then lead to dropping out of computer science studies after their first experience
with programming [2, 12]. In [2], the authors present the results of study which suggest
that the main sources of student-reported learning difficulties are the lack of previous
knowledge, the lack of effort or personal persistence, and the lack of motivation.

© Springer International Publishing AG 2017
P. Zaphiris and A. Ioannou (Eds.): LCT 2017, Part I, LNCS 10295, pp. 423-432, 2017.
DOI: 10.1007/978-3-319-58509-3_33

424 P. Andreou et al.

In the last few years, a number of interventions have been suggested [4, 15-17],
including the utilization of educational software [1, 9—11], and more specifically, educa-
tional games [3, 6, 13] that can provide students with a non-traditional learning envi-
ronment in which they can learn and practice in a fun and intuitive way. Many
researchers argue for the appeal of educational games to students of all ages and their
potential to enhance the educational experience, including motivating, exciting and
engaging the students in the learning process [35, 7, 8, 14]. Educational games can enable
self-paced interactive learning; allow students to make mistakes and re-attempt prob-
lems without negative outcomes; support various modes of level difficulty and achieve-
ments to accommodate for mixed ability classes and personal student goals; and enhance
the development of understanding through immersive environments and their reflective
nature [3]. Furthermore, educational games can take advantage of students’ enthusiasm
about video games and serve as an additional motivational and inspirational factor.
Given the demanding curriculum and the limited amount of time available for instructors
to convey the rather complex (for novice learners) concepts of programming, an educa-
tional game can provide an additional resource of information and practice problems
that students can use on their own time and pace as well as provide the opportunity to
spend additional time to focus on the material that is more challenging for them.

In this paper, we present an educational game, called CodeAdventure, which has
been designed for computer science students to learn and practice introductory program-
ming concepts. CodeAdventure is an adventure game where the player assumes the role
of the protagonist exploring the game environment, and in the process, solving puzzles,
and overcoming challenges in order to discover and acquire certain items. In terms of
educational value, in addition to providing a fun way to practice and apply various
programming concepts, CodeAdventure incorporates different learning techniques that
have been shown to be effective for students’ learning, such as providing hints and clues
on how to solve puzzles referencing instructional material, and immediate feedback on
students’ performance [6].

The remainder of this paper is organized as follows: Sect. 2 reviews the literature.
Next, Sect. 3 presents the Code Adventure educational game and finally Sect. 4 concludes
the paper.

2 Background and Related Work

In the last few decades there has been a reform movement in higher education to shift
from the traditional paradigm, the positivist approach, towards the constructivism para-
digm. This emerged in a wide range of academic areas such as philosophy, the arts,
education, politics, religion, medicine, physics, chemistry, ecology, evolution,
psychology, linguistics, and sciences [25, 26]. Following the constructivist approach,
educators serve as the main teaching instrument. According to [27], constructivist
knowledge “is knowledge that human reason derives from experience. It does not repre-
sent a picture of the ‘real’ world but provides structure and organization to experience”
(p. 5). For the educators the facilitation of understanding is a process of co-construction
of multiple meanings in which they accommodate their own understanding to fit

CodeAdventure: An Adventure Game for Computer Science Education 425

students’ own experiences. To be able to construct their own understanding, students
should be actively involved and engaged in the learning process, rather than being
passive recipients of knowledge. This turns to be one of the most challenging principles
of constructivism and the one that educators struggle to accommodate.

Educators from different disciplines are investigating ways to enhance the way they
design and develop their teaching material and activities, so that they are more motiva-
tional and engaging for the students. According to [20], failure of students to actively
engage with the taught material can lead to poor understanding and performance with
the course (e.g., low marks on the course assessments). Students learn best when they
feel that they enjoy learning and are engaging in the learning process. Furthermore, the
results of a study conducted by [22] suggest that the higher the student engagement, the
higher the student learning. There are many suggestions in the literature on how to
motivate and engage students in their own learning, especially as they relate to sciences.
As reported in [20] students can be motivated when the material is presented within a
real life context, in relation to students’ needs, as well as when they are provided with
constructive feedback, valuable reward for their efforts, and clear expectations.

One way to engage students is to provide an enjoyable learning environment through
play and fun activities, a concept that many times is referred to as edutainment (enter-
tainment which is specifically designed to be educational, i.e., educational entertain-
ment). As with entertainment, edutainment can have many different forms, ranging from
media (e.g., video productions, audio productions, computer software, etc.) to physical
places (museums, educational centres, parks and exhibits, etc.), all with the aim to attract
learners and keep their interest on specific subject areas. Of special interest to this paper,
are educational software, and specifically, educational video games. Many researchers
argue that educational video games, as opposed to other edutainment elements, have a
greater appeal to students of all ages and can potentially enhance the educational expe-
rience. While edutainment is being grounded on only didactical purposes and allows for
static linear progressions, [29], it does not allow for exploration or consideration of
alternative routes, thus decreasing the overall motivation and engagement of the student.
In contrast, the immersive environments supported by educational video games use
compelling graphics, sound, and physical interaction that can significantly enhance the
educational experience, motivate, excite and engage the students [5, 7, 8, 14, 18, 19,
24]. Additionally, allowing users to roam freely large spaces and explore different
scenarios, which they can connect to their learning experience, increases the cognitive
curiosity of the student and offers an intrinsic reward.

On the other hand, the majority of games also employ a number of extrinsic rewards
for their end-users to further increase motivation, participation and engagement. This
includes game components like points, levels, badges and quests that can be used also
for tracking the players’ progress. Allowing the user to reflect on his/her progress is also
avery important element of active learning. In particular, educational games use concrete
goals to make learning through reflection possible. In particular, by placing specific goals
that the user must meet (e.g., quizzes and puzzles that assess the level of knowledge) the
game ensures that essential skills are acquired before he/she can continue in more
complex areas.

426 P. Andreou et al.

Educational games have gained increasing popularity in the last years and there has
been a rapid growth in their development and effective use as non-traditional learning
environments for independent learning as well as a supplement of traditional instruction,
along with other pedagogical methods [5, 19]. They have become part of the modern
culture and the everyday life of the young generation of learners, since they become
familiar with them as early as preschool when they use them to learn numbers, letters,
colours, shapes, etc. [5]. Computer Science and more specifically, introductory program-
ming, is no exception. There is a vast literature on educational games and how they can
be used to enhance instruction of introductory programming as well as to motivate and
engage young learners with introductory programming [21, 23].

3 Code Adventure

CodeAdventure is an adventure game where the player assumes the role of the protag-
onist exploring the game environment, and in the process, solving puzzles, and over-
coming challenges in order to discover and acquire certain items. Code Adventure adopts
an integrated design approach by employing various mechanisms and techniques to
achieve a truly immersive game learning experience. In particular, the game has an
attractive storyline and offers a highly interactive 3D environment that allows the user
to explore different levels, which are composed of multiple rooms, each one containing
a diverse set of puzzles. Each room has specific objectives and includes various ency-
clopaedic interactive elements that convey the required knowledge to meet the objec-
tives as well assessment methods that allow the user to reflect on his/her current status
and progress. Moreover, achievements, rewards and secret items provide a feeling of
challenge and increase overall engagement.

In the following sections we thoroughly describe the design aspects of CodeAdventure.

3.1 Storyline

The game story takes place in the year 2500, where the player, who is a time-traveller,
detects a strong ripple in the fabric of space-time caused by another time-traveller. This
nemesis, who travelled back in time to steal the six rotors of the Enigma machine, has
amission to prevent Alan Turing from breaking Enigma ciphers, thus allowing the Nazi
to win World War II. The player traces that the nemesis has travelled back in 1939, and
hid the rotors in different rooms. The game starts at the point in time where the player
has travelled back in time, and is searching to find the six rotors. The player is required
to solve specific programming puzzles and overcome specific challenges (e.g., unlocking
doors and chests) in order to explore all the rooms and discover the hidden rotors.

3.2 Level Design

Code Adventure features 4 distinct levels representing different “subject areas” for
introductory programming. In particular, there are four levels incorporated in the current
version of the game: (i) Introduction to the JAVA language; (ii) Object-oriented

CodeAdventure: An Adventure Game for Computer Science Education 427

Programming; (iii) Data Structures and Algorithms; and (iv) Advanced Topics. As
illustrated in Fig. 1(left), each level is composed of multiple rooms that may have one
or more doors! each posing unique challenges (e.g., quizzes, puzzles) that must be met
in order to allow to the user to continue to next one. Each room has a specific theme that
represents one or more related programming topics (e.g., introduction to data types) as
can be seen from the superimposed overlay in the middle of Fig. 1(right).

Room:A1
Hints:5
Keys: 0/10
Jokens: 0/5

y

Fig. 1. (left) One of the CodeAdventure levels showing the configuration of multiple rooms;
(right) One of the rooms of CodeAdventure that introduces data types

3.3 Room Design

Each room of Code Adventure focuses on one or more related introductory programming
topics. At the entrance of the room, the user is informed about the learning objective(s)
using an overlaid message, as illustrated in Fig. 1(right). When the user enters the room,
he/she need to explore and find the entrance to the next room by finding specific coloured
key cards. In order to acquire these cards, the user must explore the room, discover their
location and solve specific challenges to get them.

Examples of challenges are illustrated in Fig. 2, where the user is asked to: (i) (top-
left) solve a multiple choice question; (top-right) rotate a wheel to solve a puzzle; (iii)
(bottom-left) rotate boxes with operators to validate a mathematical expression; and (iv)
(bottom-right) pull/push levers to form the bit representation of a number.

In order to solve the challenges the user can participate in a number of learning of
active and passive learning activities. These activities currently include: (i) static over-
laid visual elements (e.g., banners in corridors, wall papers); (ii) interactive visual
elements (e.g., movable boxes, push buttons, levers); (iii) animated elements (e.g.,
moving rotors, small toy vehicles); and (iv) reference points (e.g., question mark icons
that link to external documentation). In order to facilitate our description, consider the
gameplay screenshots in Fig. 3. As was mentioned before, each room has a specific
theme that represents one or more related programming topic (e.g., introduction to data
types, casting, operator precedence). As can be seen in Fig. 3(left) and (right) has an
overlaid label that shows the type of each box. For example, Additionally,

1
Doors include traditional doors, automatic doors, electric fences, etc.

428 P. Andreou et al.

Ki 110
Tg&/ ;s . 0I5 Tolgens 4/5

om——

Room A2
(

Tukens 0/5

mooDoa:
TLL&

Fig.2. Examples of challenges in each CodeAdventure room: (top-left) multiple choice question;
(top-right) mechanical wheel puzzle; (bottom-left) rotating operator boxes mathematical
challenge; and (bottom-right) pulling/pushing levels for bit representation of numbers

Room:A1
Hints:5
Keys: 010
Tokens: 0/5
e

Fig. 3. (left) static visual elements: (a) boxes with overlaid data type name. (b) Quantified visual
representation of data types: a single box represents a byte-sized data type such as byte and
boolean. Boxes are grouped to form larger data types (e.g., two boxes form a two-byte data type
such as short, four boxes form a four-byte data type such as int); (right) expressions embossed on
corridor tiles.

3.4 End-User Monitoring

The monitoring of the end user interaction is being performed in a multi-modal way as
illustrated in Fig. 4. All the actions of the user are recorded and time stamped for further
analysis and understanding of how much time a student spent on a specific activity
learning or practicing. This sets the foundation on understanding the user’s behaviour
and assessing the effectiveness of the software.

Additionally, we have also incorporated components to collect continuous streams
of sensor data (e.g., Accelerometer, Galvanic Skin Response and Heart Rate) through
smart wearable devices and to expose them in a unified way for further processing. These

CodeAdventure: An Adventure Game for Computer Science Education 429

Wearable Listener/KnowldgeBase
Device

< onnect: >
Query Manager

Raw Data | Smart Data
Fusion

Sensors AP| Query Parser

| Sensor Data N Event Listeners

Refined|Data

Repository

TContinuous Query

A Context

Accel. | | Heart Recognition
Rate

A

K
© {
— @ <« Game Application

End user

Fig. 4. (left) The monitoring architecture of CodeAdventure (right) XML representation of the
information utilized for room configuration

mechanisms will in the future augment the data received from the aforementioned
monitoring of activities to infer knowledge about a user’s affective state during game
play, eventually leading to an enhanced understanding of his behaviour and experience.

3.5 Feedback

Allowing the user to reflect on his/her progress is a very important element of active
learning. To this end, CodeAdventure provides a variety of feedback mechanisms that
allow the student to be informed on his progress and assess his current level of knowl-
edge.

On the top right corner, the user is always aware of his location (i.e., level and room
code), number of available hints, and number of keys and tokens acquired. Before
entering the room, an overlaid message displays the objective of the room (i.e., the
programming topic that will be covered with the visual elements and objects). When the
user enters the room, there are one or more tokens that provide information about the
theory behind the topic. This information is provided as a link to specific content (e.g.,
links to lecture notes, to oracle website with JAVA documentation, etc.). Additionally,
an object may have a label that signifies something related to the theory (e.g., box
labelled as Boolean). Furthermore, when the user is in close proximity of an object, the
object may change colour if there is an interactive activity related to it. Finally, during
the answering of questions, the system illuminates a green light for every correct answer
and a red for incorrect ones.

3.6 Prototype Implementation

CodeAdventure was implemented with Unity 5.5% using C# scripts. It uses only unity
libraries and in order to facilitate access into the scene, the majority of the developed

: Unity game development platform, https://unity3d.com/learn.

https://unity3d.com/learn

430 P. Andreou et al.

scripts extend monoBehavior class® so they can have access to the models in the scene.
The monoBehavior class includes easy to use functions that facilitate seamless interac-
tion in each frame. In order to allow for modularity, every object (e.g., lever, wheel) that
interacts with the player has its own dedicated script. For the overlaid questions and
information, we have utilized XML manipulation and 1O libraries from the .NET frame-
work. Finally, all room configurations, including all objects that reside inside rooms,
are loaded from XML files as illustrated in Fig. 4(right) in order to allow for maintain-
ability and expandability. The current implementation includes level one: Introduction
to the JAVA programming languages and covers the following topics: Data Types,
Casting, Operators and their Precedence, Expressions, Conditional Statements, and
Loop Structures.

4 Conclusions and Future Work

In this paper, we have presented CodeAdventure, an educational game for learning and
practicing introductory programming concepts. Inside CodeAdventure, players need to solve
specific programming puzzles and overcome specific challenges (e.g., unlocking doors and
chests), in order to explore different rooms and discover hidden items. Throughout the
game, players are exposed to theory related to specific programming concepts, while at the
same time they can practice and apply the concepts in a fun and engaging way. CodeAd-
venture incorporates different effective learning techniques, such as providing hints and
clues on how to solve puzzles and providing immediate feedback on students’ performance.

Since our game-based learning environment is still at a functional prototype level, we
have conducted a qualitative exploratory study to evaluate its usability and accept-ability
using a small group of students. In the format of focus groups and following the open-ended
questions protocol, we tried to derive insights regarding students’ thoughts and feelings
while interacting with the environment. At this stage our main concern was to understand
whether the objectives of the game were clear for them and the scenario structured and
motivating. Also, special emphasis placed on the visual representation and navigation over
the various elements of the game. In this respect, our understanding focused on the chal-
lenges and difficulties they had to encounter while tackling the proposed learning activities
as well as on their overall experience during their interaction. Even though a detailed anal-
ysis of the data collected is still pending, the preliminary results indicate that CodeAdven-
ture visually communicates fundamental programming concepts in a fun, stimulating and
engaging manner, leading to increased student comprehension.

To further validate the impact of CodeAdventure on learning, during the next academic
year (i.e., 2017/18), we plan to conduct a larger user study, using first year undergraduate
computer science students taking Introduction to Programming with JAVA. In addition to
the regular lecturing hours and use of provided learning material, participants will be given
access to CodeAdventure as an auxiliary tool that would support their learning, will be asked
to play the game on their own time and undertake particular tasks that refer to specific
sections of the course. At the end of each semester, a survey questionnaire will be

} Creating and Using Scripts, https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html.

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html

CodeAdventure: An Adventure Game for Computer Science Education 431

administered to all participants, with questions for identifying specific behavioral and
usability factors such as motivation, engagement into the learning objectives, ease of use. In
addition, focus groups will be organized, so as to take advantage of group interaction for
acquisition of supplementary information and insights into participants’ thoughts and
perceptions about the game.

References

10.

11.

12.

13.

. Efopoulos, V., Dagdilelis, V., Evangelidis, G., Satratzemi, M.: WIPE: a programming

environment for novices. In: 10th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2005), pp. 113-117. ACM, New York (2005). doi:
10.1145/1067445.1067479

. Gomez, A., Santos, A., Mendes, J.A: A study on students’ behaviours and attitudes towards

learning to program. In: 17th ACM Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2012), pp. 132-137. ACM, New York (2012). doi:
10.1145/2325296.2325364

. Hijon-Neira, R., Velazquez-Iturbide, A., Pizarro-Romero, C., Carrico, L.: Game

programming for improving learning experience. In: 2014 Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2014), pp. 225-230. ACM, New York
(2014). doi:10.1145/2591708.2591737

. Isomottonen, V., Nylen, A., Tirronen, V.: Writing to learn programming? A single case pilot

study. In: Koli Calling, pp. 140-144. ACM, New York (2016)

. Mach, N.: Gaming, learning 2.0, and the digital divide. In: Siemens, G., Fulford, C. (eds.)

EdMedia: World Conference on Educational Media and Technology 2009, pp. 2972-2977.
Association for the Advancement of Computing in Education (AACE) (2009)

. Miljanovic, M., Bradbury, J.: Robot ON!: A serious game for improving programming

comprehension. In: 5th International Workshop on Games and Software Engineering (GAS
2016), pp. 33-36. ACM, New York (2016). doi:10.1145/2896958.2896962

. Pierce, N., Conlan, O., Wade, V.: Adaptive educational games: providing non-invasive

personalized learning experiences. IEEE Computer Society (2008)

. Prensky, M.: Digital Game-Based Learning. McGraw-Hill, New York (2001)
. Rajala, T., Laakso, M., Kaila, E., Salakoski, T.: VILLE — a language-independent program

visualization tool. In: Seventh Baltic Sea Conference on Computing Education Research (Koli
Calling 2007), vol. 99, pp. 151-159. ACM, New York (2007)

Saloun, P. Velart, Z.: Adaptive hypermedia as a means for learning programming. In: Adaptive
Hypermedia as a Means for Learning Programming (ICWE 2006 Workshop). ACM, New York
(2006). Article 11, doi:10.1145/1149993.1150006

Schoeman, M., Gelderblom, H.: The effect of students’ educational background and use of a
program visualization tool in introductory programming. In: Annual Conference of the South
African Institute of Computer Scientists and Information Technologists (SAICSIT 2016). ACM,
New York (2016). Article 37, doi:10.1145/2987491.2987519

Shuhindan, S., Hamilton, M., Souza, D.: A study of the difficulties of novice programmers. In:
10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2005), pp. 14-18. ACM, New York (2005). doi:10.1145/1067445.1067453

Tillmann, N., de Halleux, J., Xie, T., Gulwani, S., Bishop, J.: Teaching and learning programming
and software engineering via interactive gaming. In: 2013 International Conference on Software
Engineering (ICSE 2013), pp. 1117-1126. ACM, New York (2013)

http://dx.doi.org/10.1145/1067445.1067479
http://dx.doi.org/10.1145/2325296.2325364
http://dx.doi.org/10.1145/2591708.2591737
http://dx.doi.org/10.1145/2896958.2896962
http://dx.doi.org/10.1145/1149993.1150006
http://dx.doi.org/10.1145/2987491.2987519
http://dx.doi.org/10.1145/1067445.1067453

432

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

28.

29.

P. Andreou et al.

Van Eck, R.: Digital game-based learning: it’s not just the digital natives who are restless.
EDUCAUSE Rev. 41(2), 16-30 (2006)

Wirth, M., McCuaig, J.: Making programs with the Raspberry Pi. In: Western Canadian
Conference on Computing Education (WCCCE 2014). ACM, New York (2014). Article 17, doi:
10.1145/2597959.2597970

Waulf, T.: Constructivist approaches for teaching computer programming. In: Constructivist
Approaches for Teaching Computer Programming (SIGITE 2005), pp. 245-248. ACM, New York
(2005). doi:10.1145/1095714.1095771

Xinogalos, S., Malliarakis, C., Tsompanoudi, D., Satratzemi, M.: Microworlds, games and
collaboration: three effective approaches to support novices in learning programming. In: 7th
Balkan Conference on Informatics Conference (BCI 2015). ACM, New York (2015). Article 39,
doi:10.1145/2801081.2801094

Bitter, G., Legacy, M.: Using Technology in the Classroom, 7th edn. Pearson Education Inc.,
Upper Saddle River (2008)

Bodnar, C., Anastasio, D., Enszer, J., Burkey, D.: Engineers at play: games as teaching tools for
undergraduate engineering students. Res. J. Eng. Educ. 105, 147-200 (2015)

Chan, E.: Motivation for mandatory courses. 7(3) (2004). Centre for Development of Teaching and
Learning

Eagle, M., Barnes, T.: Experimental evaluation of an educational game for improved learning in
introductory computing. ACM SIGCSE Bull. 41(1), 321-325 (2009)

Grissom, S., McNally, M.F., Naps, T.: Algorithm visualization in CS education: comparing levels
of student engagement. In: Proceedings of the 2003 ACM Symposium on Software Visualization
(2003)

Hijon-Neira, R., Velazquez-iturbide, A., Pizarro-Romero, C., Carrico, L.: Game programming for
improving learning experience. In: The 2014 Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2014), pp. 225-230. ACM, New York (2012). doi:
10.1145/2591708

Ireland, A., Kaufman, D., Sauvé, L.: Simulation and Advanced Gaming Environments (SAGE) for
learning. In: Reeves, T., Yamashita, S. (eds.) World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education, Cheasapeake, VA, pp. 2028-2036 (2006)
Oblinger, D.: Simulations, games and learning, pp. 1-6. EDUCAUSE Learning Initiative (2006).
http://net.educause.edu/ir/library/pdf/ELI3004.pdf

Lincoln, Y.S., Guba, E.G.: Naturalistic Inquiry. Sage Publications, Newbury Park (1985)
Schwartz, P., Ogilvy, J.: The emergent paradigm: changing patterns of thought and belief (SRI
International). (1979). Cited in [26]

Von Glasersfeld, E.: Learning as a constructive activity. In: Janvier, C. (ed.) Problems of
Representation in the Teaching and Learning of Mathematics, pp. 3—-18. Lawrence Erlbaum
Assoc., Hillsdale (1987)

Denis, G., Jouvelot, P.: Motivation-driven educational game design: applying best practices to
music education. Paper presented at the 2005 ACM SIGCHI international conference on advances
in computer entertainment technology, Valencia, Spain (2005)

http://dx.doi.org/10.1145/2597959.2597970
http://dx.doi.org/10.1145/1095714.1095771
http://dx.doi.org/10.1145/2801081.2801094
http://dx.doi.org/10.1145/2591708
http://net.educause.edu/ir/library/pdf/ELI3004.pdf

	CodeAdventure: An Adventure Game for Computer Science Education
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Code Adventure
	3.1 Storyline
	3.2 Level Design
	3.3 Room Design
	3.4 End-User Monitoring
	3.5 Feedback
	3.6 Prototype Implementation

	4 Conclusions and Future Work
	References

