
Multi-UAV Based Helicopter Landing Zone
Reconnaissance

Information Level Fusion and Decision Support

Marc Schmitt(&) and Peter Stütz

Institute of Flight Systems (IFS),
University of the Bundeswehr Munich (UBM), Neubiberg, Germany

{marc.schmitt,peter.stuetz}@unibw.de

Abstract. This article presents an information fusion and decision-support
system for the multi-UAV based landing zone reconnaissance and landing point
evaluation in manned-unmanned teaming (MUM-T) helicopter missions. For
this, numerous and heterogeneous data from variety of sensors must be gathered,
fused and evaluated. However, payload capacity and on-board processing
capabilities are often restricted. Thus, the teaming of multiple unmanned aerial
vehicles (UAVs) offers a promising way to overcome these limitations and
allows to benefit from heterogenous sensor payloads. Furthermore, measurement
and sampling processes are never completely reliable. Hence, achieved obser-
vations must be interpreted very carefully, especially if the reliability of such
functions is relatively low. Thus, the fusion system presented in this paper is
based on a Bayesian network to specifically address this problem. Therefore,
information needs of the pilots on safe landing zones are determined and
required perceptive capabilities are derived. Consequently, reliability estima-
tions of the applied perceptive capabilities are incorporated. Modelling aspects
of the evaluation mechanism are explained and implications of incorporated
export knowledge are set out. The feasibility of the implemented system is tested
in an exemplary rescue mission, outlining the importance of incorporating
automation reliability in automated decision-support systems.

Keywords: Information fusion � Bayesian networks � Decision support �
Perception management � Manned unmanned teaming � Multi-UAV

1 Introduction

Landing the aircraft is one of the most challenging and dangerous tasks in aviation as
pilots must perform many workload-intensive cognitive tasks simultaneously in a
complex environmental situation. This is especially true for field landings of heli-
copters taking place in uncontrolled and unsafe areas as required e.g. during military
search & rescue (SAR) operations like CASEVAC (casualty evacuation) or CSAR
(combat search and rescue) [1]. In such situations, the pilots must not only cope with
the landing procedure itself, but also with the vulnerability of the H/C during landing
and take-off [2], making it necessary to reconnoiter the landing zone in advance.
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In this scope, one of the research topics in the R&D project CASIMUS (Cognitive
Automated Sensor Integrated Unmanned Mission System) investigates the usage of
multiple unmanned aerial vehicles (UAVs) to provide a manned two-seated transport
helicopter (H/C) with up-to-date recce and surveillance data of potential landing zones
in military SAR missions. To cope with the time-criticality of the latter, the UAVs are
guided from on-board the H/C by the pilot-in-command (PiC) in a manned-unmanned-
teaming (MUM-T) fashion to reduce typical command & control (C2) latencies and
increase operational flexibility by employing higher levels of interoperability (LOI 4/5,
[3]). Figure 1 depicts this functional principle, showing the H/C cockpit and three
UAVs in a CASEVAC setting.

However, shifting the C2-loop into the cockpit comes with a cost. In contrast to
legacy unmanned aerial system (UAS), the PiC must handle all UAV-related tasks in
addition to his conventional task spectrum. Thus, a naïve MUM-T approach bears the
risk to greatly increase crews workload which needs to be monitored and balanced in
some way [4], either by the crew themselves or by an associate system on-board the
H/C [5–7]. A promising way for workload mitigation is to adapt the task sharing
between human and machine by adopting varying levels of automation (LOA, [8, 9]).
Thus, to enable higher LOA, the UAVs must be capable to perform certain tasks in a
(semi-)autonomous manner. Nevertheless, employing higher LOA bears the risk of
automation-induced errors (“automation surprises”), complacency effects or other
Trust-in-Automation issues [10–12]. To cope with such effects the behavior of the
automated systems should be pilot-understandable and self-explanatory.

Fig. 1. MUM-T principle in our H/C mission simulator at the IFS. The PiC (left) is commanding
multiple UAVs to reconnoiter its flying route (white) and mission-critical areas, i.e. the desired
landing zone in the background (red). (Color figure online)
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Therefore, this article describes a decision support system (DSS) for the multi-UAV
based reconnaissance and assessment of helicopter landing zones to aid the H/C crew
in picking a safe and suitable landing point during mission. The DSS is built upon the
Perception-Oriented Cooperation Agent (POCA) [13], using a Bayesian network
approach to evaluate possible landing points while providing self-explanation capa-
bilities through diagnostic inference.

The remainder of this article is structured as follows: Sect. 2 sums up previous and
related work in automated landing zone reconnaissance and agent self-explanation
mechanisms. A general system is given in Sect. 2, stating requirements and providing
operational principles for multi-UAV based landing zone reconnaissance. Section 4
describes the Bayesian network approach used in the landing point evaluation and
self-explanation mechanisms. Preliminary evaluation results are presented in Sect. 5
along with some integration aspects in a full mission H/C simulator. Finally, Sect. 6
concludes the article and gives an outlook to further research and planned experiments.

2 Related Work

Landing Zone Reconnaissance or Landing Site Detection is a common problem in
manned and unmanned aviation as well as in space exploration. In the following, some
of the surveyed articles are reflected.

In manned aviation, landing zone reconnaissance often denotes the problem of
flying in degraded visual environments (DVE). Therefore, Szoboszlay et al. [14–17]
investigated the usage of LIDAR technology to detect a H/C landing site under DVE
conditions and integrated the visualization in the helmet-mounted-display of the H/C
pilot. They conducted research on necessary symbology and proofed their system in
several flight test campaigns. A similar system was developed by Airbus [18], incor-
porating more sophisticated means of landing site and obstacle visualization.

Likewise, systems for the detection of safe landing points are presented in the
unmanned aviation domain. Fitzgerald et al. [19, 20] combined basic computer vision
algorithms with neural network based texture classifiers for surface type detection to
select the best LS in a single image in case of UAV emergency. Patterson et al.
developed a comparable system for the same problem in [21]. However, they are only
relying on the detection of free areas in a single monocular image to determine a safe
landing sites by using a simple edge extraction algorithm. In [22] their concept is
extended to incorporate data obtained by other UAVs or using human operator input.

In the same scope, Coombes et al. [23] used a Multi Criteria Decision Making
(MCDM) Bayesian Network (BN) for landing site selection. In their approach the
proposed decision-making BN selects the emergency landing site based on General
Aviation (GA) requirements on emergency landing sites.

Apart from that emergency LS detection problem, much work was done by Scherer
et al. [24, 25] to determine a suitable landing site for an unmanned full-size helicopter.
The proposed system heavily relies on a LIDAR-created 3D point cloud to create an
elevation map allowing a rough evaluation of free areas. Besides the point cloud
information, various other factors are considered, including terrain clearance, approach/
depart paths, and wind direction. The selection itself is based on a goodness function,
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linearly combining the different selection criteria, incorporating operator preference in
terms of weight adjustments.

Furthermore, space exploration missions demand a safe and reliably mechanism for
automated landing site suitability determination during spacecraft descent. Therefore,
Serrano [26] proposed a selection systembased onBayesianNetworks (BN), integrated in
a multi-sensor framework comprising of RADAR, LIDAR and camera sensors. Thereby,
the presented decision system incorporated not only classical safety-related criteria, but
also additional mission-specific factors, as for example the expected scientific return.

Our approach now incorporates sensors on multiple UAVs in the decision-making
process. Therefore, the idea of modelling multiple decision criteria in a Bayesian
Network [23] was picked up and extended to incorporate the perceptive reliability for
landing point suitability determination.

3 Multi-UAV-Based Landing Zone Reconnaissance

Landing Zone Reconnaissance (LZR) denotes the task of reconnoitering a designated
area (landing zone, LZ) to examine its suitability for take down, incorporating possible
threats and physical characteristics of the landing zone. In this regard, performing LZR
for a manned H/C in a full-fledged military rescue mission differs from the approaches
presented before (cf. Sect. 2) as additional tactical and mission-critical aspects must be
considered, most importantly the reliability of highly automated perceptive subfunc-
tions [27, 28].

Figure 2 depicts an example setup for such a CASEVAC mission. There, a manned
transport helicopter supported by three UAVs is deployed to rescue a group of persons
in an unsafe operation area, whereby their last known position determines the desig-
nated landing zone. In this MUM-T setup, the UAVs shall reconnoiter potential landing
points for the H/C suitable for a successful evacuation. Therefore, the UAVs must
gather numerous and heterogenous data from the multiple potential landing points and
evaluate them accordingly.

In the following, landing zone selection and landing point evaluation criteria are
stated. Subsequently, the general concept for multi-UAV based LZR is presented.

3.1 Landing Zone Selection Criteria

Different regulations or heuristics exist for the definition of safe landing zones, both in
civilian and in military applications. Basic requirements for conducting military LZR
are stated in [1], leaving much space for national implementation, as for example the
publicly available LZR regulations by the U.S. Army [29]. In general, several
heterogeneous information needs must be incorporated when reconnoitering a landing
zone: tactical, aeronautical, and meteorological. These needs come with inherent
sequential ordering - for example, flight safety related considerations as obstacle sit-
uation can be neglected if tactical clearance has already failed.

Below, the current regulatory situation is summarized. Additional information
gathered in consultative talks with German army aviators is incorporated.
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Tactical Considerations
The dominant concern for military LZR is information on the tactical situation and on
mission-critical observations:

• Safety. Is the LZ safe or do threats exist? Are buried objects as EODs or mines present
in the LZ? Are streets nearby, thus allowing enemy forces to reach the LZ fast?

• Mission achievability. Is the mission achievable from the LZ? How long will it
take to reach the mission objective from the LZ? How long will the H/C be
grounded and thus remain vulnerable?

Aeronautical Considerations
This contains requirements related to flight safety aspects in the LZ:

• Landing zone size. Is enough space for the actual H/C to touch down available?
• Approach and departure directions. Are obstructions in the approach or depart

vectors present? Are conditions given limiting the approach/depart directions? What
if the H/C is fully-loaded?

• Obstacle situation. Is the landing point itself free of obstacles? Smaller obstacles
(debris, < 0.45 m) can be ignored;

• Ground slope. Does the slope exceed the H/C’s limits? (However, the pilots can
hover if ground slope is too high.)

• Surface type and conditions. What kind of surface will be encountered? Is there a
risk to bog down? Are there brown-out or white-out conditions?

Fig. 2. CASEVAC example scenario: a manned transport helicopter aims in rescuing persons in
an unsafe environment, guiding a team of three UAVs in a MUM-T fashion to determine the
most suitable landing point in the designated landing zone (light blue). (Color figure online)
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• Ground solidity and load suitability. Can a heavy transport H/C touch down on
the desired landing point? Is the landing gear of the H/C suitable for landing in the
desired area?

Meteorological Considerations
This refers to meteorological conditions in the LZ, directly influencing the H/Cs
capability or risk for landing:

• Cloud ceiling and visibility.What is the ceiling level? Is it raining or dowe have fog?
• Density altitude. What is the comparable density altitude at the LZ? Thus, is the

H/C performant enough to operate in the LZ, even under high-load conditions?
• Wind conditions.What are wind velocities and directions? Thus, is landing into the

wind possible? Do crosswind or tailwind conditions prevail?

3.2 Multi-UAV Concept

As depicted in Fig. 2 and stated in the prior section, landing zone reconnaissance requires
the gathering and evaluation of numerous and heterogeneous data from (multiple)
potential landing points in a designated area, the landing zone. Thus, the UAVs must
provide a broad range of perceptive capabilities. However, UAVs are often restricted in
terms of sensor payload capacity and on-board processing resources, effectively resulting
in a limited set of capabilities. Hence, a single UAV might be insufficient to satisfy the
perceptive requirements for a complex task as LZR. A promising way to overcome these
limitations is the teaming of multiple UAVs by combining their capabilities in a coop-
erative manner, profiting from heterogeneous payload setups and varying platform
characteristics as well as from task parallelization opportunities.

Consequently, we proposed the system concept of the Perception Oriented Coop-
eration Agent (POCA) in [13], extending the Sensor- & Perception Management
(SPM) paradigm described in [30]. Thereby, it integrates environmental and platform
self-adaption mechanisms from the SPM system while additionally incorporating
perception planning and scheduling capabilities allowing to benefit from the
multi-UAV set up stated above.

Figure 3 depicts the basic system concept. Here the operator (Pilot in Command)
issues a “Landing Zone Recce” task to the system in a supervisory control manner,
along with external constraints as the landing zone boundaries and available resources,
e.g. available UAVs and thus available sensory equipment. This task is then analyzed
by POCA to extract required perceptive actions, thus reflecting the information needs
described in Sect. 3.1. These subtasks are interpreted as primary planning goals for the
integrated task planning and scheduling mechanisms. During planning, external con-
straints, specific task requirements and available UAV capabilities extracted from a
Perception Resource and Capability Ontology [31] are incorporated. Combining these,
the Perception Planner creates a task agenda comprised of interleaved perceptual und
navigational subtasks which are subsequently used to control and coordinate the UAVs
underlying automation functions, i.e. the UAVs flight management system (FMS) and
the SPMS. Thereby, plan generation itself follows a classical team-leader/team-member
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structure: the plan itself is generated by a designated team leading UAV whereas each
team member is responsible for execution of the subtasks. During execution, the single
POCA instances onboard the UAVs gather the results of their scheduled perception
tasks, e.g. obstacle or vehicle detection. The results are transmitted to the leading UAV,
which fuses and assesses the gathered results to derive a recommendation on the best
suited landing zone.

This article focus on this latter step. In the following we describe an information-level
fusion agent [32] for landing point evaluation based on causal Bayesian Inference, thereby
incorporating perceptive reliability of the automated reconnaissance functions and expert
knowledge on the underlying perceptive subtasks as well as their interconnections.

4 Bayesian Landing Point Evaluation

The fusion of heterogeneous information reflecting different physical phenomena, as
needed for landing zone reconnaissance (cf. Sect. 3.1), invalidates the usage of clas-
sical low-level fusion methods such as Kalman filtering. Thus, a more abstract repre-
sentation for such incommensurate data is needed to enable higher level fusion
mechanisms on information level [32]. Hence, preprocessing and pre-assessment of the
underlying sensory data is mandatory to enable the subsequent fusion mechanisms.

In POCA such preprocessing is realized by incorporating the SPM system of
Hellert and Smirnov [34] (cf. Fig. 3), allowing it to rely on the integrated perceptive
capabilities and high-level inference mechanisms to obtain semantically enriched
results. Consequently, in POCA information-level fusion is applied on the percepts
retrieved from the underlying SPM instances.

However, automated perception functions are imperfect by design and must
be handled carefully, as such exhibit non-deterministic behavior and are prone to
inherent uncertainties due to implementation weaknesses or changing operational

Fig. 3. Operational principle of POCA [13]. The notation is based on the work system notation
in [33], thus the supervisory control arrow denotes both control and information feedback flow.
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environments [27, 28]. Thus, the outcome and results of the perceptive subtasks can best
be expressed probabilistically. Therefore, to safely assess landing points in an examined
landing zone a fusion mechanism is needed capable of handling these uncertainties.

In addition, the fusion architecture shall be able to incorporate expert knowledge on
the information needs and provide means for extension and modularization allowing to
adapt the fusion architecture on new or changed applications, e.g. civilian search &
rescue missions.

Considering the above, we propose the usage of a Bayesian Network (BN) [35] to
explicitly model knowledge on the interdependencies between the information needs in
a fusion graph. Thereby, the conditional probabilities of the network are automatically
adjusted during runtime.

In the following, some BN fundamentals are stated. Afterwards, our approach to
evaluate landing points using a BN is explained in Subsect. 4.2.

4.1 Bayesian Network Fundamentals

BNs are a commonly used graphical tool for knowledge representation and reasoning
under uncertainty in decision-making intelligent systems, allowing the incorporation of
explicit modelled and elicited knowledge of domain experts.

More generally, a BN is a Directed Acyclic Graph (DAG) in which the nodes
represent the random variables of interest and the arcs the causal relation between these
nodes, thus reflecting the conditional dependency between the nodes. In addition, a BN
assumes conditional independency between nodes on the same level, meaning that any
node xi with the parents yi is conditionally independent from any other variable except
of its descendants zi. Thereby, the graphical representation of BNs provides an
unambiguous and relatively simple way of representing this independency between
variables.

Figure 4 visualizes this independency topology and shows the three fundamental
connection types for nodes in a BN, forming the basic conditional probabilities for
BNs. Thus, a joint probability distribution (JPD) for a BN with the nodes Xi ¼
xi; . . .; xnf g can be derived using Bayes’ chain rule:

P x1; . . .; xnð Þ ¼ P xnj xn�1. . .x1ð ÞP xn�1j xn�2. . .x1ð Þ. . .P x2jx1ð ÞP x1ð Þ ð1Þ

P x1; . . .; xnð Þ ¼
Yn

i¼1
P xij xi�1; . . .; x1ð Þ ð2Þ

Incorporating the independency assumption above with the parents Yi ¼ yi; . . .;f
yng, Eq. (2) could be simplified to:

P x1; . . .; xnð Þ ¼
Yn

i¼1
P xijyi Xið Þð Þ ð3Þ

This simplified JPD exhibits an important feature of BNs: since the node xi in a BN
is only dependent on the state of its parents yi instead of depending on arcs to each
other node xj 2 Xi (which requires 2n arcs), the number of parameters needed to model
or learn a BN can be reduced drastically.
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With Influence Diagrams (ID) a generalization for BNs exists to allow the appli-
cation on decision-making problems [36]. IDs add two special types of nodes in the BN
notation (decision and utility nodes), whereas random variables are called chance
nodes. Thereby, a decision node is a controllable point where a mutual exclusive action
A ¼ a1; . . .; anf g influences the probability distributions off connected random vari-
ables. Utility nodes represent the value or outcome of a decision. In multi-criteria
decision-making (MCDM) problems, criteria nodes denote chance nodes directly
influencing a utility node [37].

4.2 Landing Point Evaluation Using a Bayesian Network

As described earlier, various criteria are needed to safely assess and evaluate a landing
zone and to pick a safe and reliable landing point. Thus, it comes naturally to formulate the
landing point evaluation problem in terms of multi-criteria decision-making (MCDM).

In the following our approach for a MCDM Bayesian Network to evaluate landing
points, following the notations in [37]. The single components of the network are
explained, providing insights on implementation details. Figure 5 visualizes the DAG
of the developed BN while Table 1 lists all nodes with their possible, discretized states
and associated node types.

Essentially, the requirements in Sect. 3.1 can be summarized in two criteria:
helicopter safety and mission achievability. Consequently, the utility end-node
“Landing Point Quality” in Fig. 5 is only influenced by the two reflecting criteria
nodes “Landing Point Safety” and “Mission Achievability”, which combine the con-
ditional probabilities tables (CPT) of the underlying information needs encoded in the
single chance nodes. Effectively, the utility node implements a weighting function of
the two mission-influencing criteria, thereby prioritizing helicopter safety.

In our current implementation, mission achievability is only influenced by the
geographical distance to the mission objective (e.g. the distance to the last known
position of the persons to be rescued in the example in Fig. 2). In contrast, helicopter
safety is influenced by a broad variety of parameters.

Expert knowledge on the interconnections between information needs is encap-
sulated semantically in the structure of the net in Fig. 5 and the CPT of the criteria
nodes. Thus, to ease the compilation of the CPT for the “Landing Point Safety” node,
several intermediate or hidden nodes were used.

Fig. 4. Basic elements of BNs: serial connection (left), diverging connection (middle) and
converging connection (right).
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Fig. 5. DAG structure for the proposed landing point evaluation network.

Table 1. List of all nodes, their discrete states and the associated node type in the proposed
landing point evaluation network. Nodes are sorted according their related type.

Node States Node type

Vehicles Present; Absent Chance
Persons Present; Absent Chance
Trees Present; Absent Chance
Rocks Present; Absent Chance
Slope Very High; High; Medium; Low; None Chance
Landing point size Tiny; Small; Medium; Big Chance
Surface type Grass; Concrete; Swamp; Sand; Snow Chance
Surface conditions Dry; Wet Chance
Wind strength Strong; Medium; Weak; None Chance
Wind direction Head; Cross; Tail Chance
Density altitude Comparable; Different Chance
Distance Close; Medium; Out of Range Chance
Tactical Safe; Unsafe Hidden
Obstacles Present; Absent Hidden
Surface Good; Bad Hidden
Aeronautical Good; Bad Hidden
Meteorological Safe; Unsafe; Dangerous Hidden
Safe landing point Safe; Unsafe Criteria
Mission achievability Possible; Critical; Impossible Criteria
Landing point quality Quality percentage (0–100) Value
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The chance nodes represent the sensed input to the proposed fusion system. CPT
values are expressed probabilistically to reflect inaccurate measurements and nonde-
terministic behavior of the underlying processing algorithms. Quantitative values for
the CPTs are constantly updated during mission, thereby incorporating potentially
varying automation reliabilities for the actually selected perceptive functions, which
can be adjusted during mission due to environmental changes [28]. Perceptive tasks
with quantifiable results, for example vehicle or obstacle detection are heavily con-
densed (cf. Table 1). Thus, the insignificance for the safety assessment is expressed
whether there are one or ten potentially dangerous objects at a landing point. Con-
tinuously valued results, e.g. the slope in degrees, are discretized accordingly to enable
incorporation in the BN structure [38]. In addition, the influence of the helicopter type
on the aeronautical and meteorological criteria is explicitly modelled in the BN, using a
decision node. However, for the sake of greater clarity this is neither depicted in Fig. 5
nor listed in Table 1.

Finally, causal reasoning is applied using the SMILE engine1 [39] to gain an actual
quality value for the currently processed landing point.

5 Results and Discussion

To demonstrate the feasibility of the presented landing point evaluation and fusion
mechanism, an example use case scenario for landing zone reconnaissance was created.
The tactical situation for the unreconnoitered landing zone in the test setup is depicted
in Fig. 6, embedded in the bigger scope of a full CASEVAC mission outlined before
(cf. Sect. 3). There, a group of persons must be rescued in an unsecure and potentially
dangerous area, whereby their last position is known, thus determining the rescue area
and the designated landing zone. The rescuing H/C is supported by a team of three
UAVs, providing perceptive capabilities for landing zone reconnaissance.

The parameters for each chance node in the test scenario are shown in Table 2. To
reflect state crossings, a soft threshold was used to determine the discrete states. For
example, the surface type of LPB is not clearly determinable. To account for such
ambiguities, the CPTs of the continuous attributes may contain factorized values. Thus,
the surface type of LPB is set to 85% of grassland and 15% of sand, reflecting an area
with a rough grass cover containing some sandy spots.

Not depicted in Table 2 are the probabilistic influences of the used perceptive
capabilities. The values for the appropriate measurements are applied to the single
chance nodes individually. We used reliability values for perceptive algorithms
available in our SPM systems [30, 34]:

• Person detection was performed using an infrared camera based support vector
machine (SVM) classifier, having a relatively low reliability of 0.66 [27].

• For vehicle detection a deformable part model (DPM) with a trained SVM classifier
on electro-optical images was deployed, having a reliability of 0.93 [28].

1 BayesFusion, LLC, http://www.bayesfusion.com/.
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Fig. 6. Test setup for landing zone reconnaissance in a CASEVAC scenario. The landing zone
contains four landing points LPA, LPB, LPC and LPD to be reconnoitered and evaluated.

Table 2. Discrete parameters of the chance nodes for the single landing points. A soft threshold
was applied, thus factorized values reflect transition between the discrete states.

LPA LPB LPC LPD

Vehicles Present Absent Absent Absent
Persons Absent Absent Absent Absent
Trees Present Absent Present Absent
Rocks Absent Absent Absent Present
Slope Low Low Low Medium
LP size Medium Big Big Small
Surface type 0.5 Grass

0.5 Sand
0.85 Grass
0.15 Sand

0.3 Grass
0.7 Sand

Grass

Surface conditions Dry Dry Dry Dry
Wind strength Medium Weak Medium Weak
Wind direction 0.3 Cross

0.7 Tail
0.8 Head
0.2 Cross

0.3 Head
0.7 Cross

Head

Density altitude Comparable Comparable Comparable Comparable
Distance Close Close Medium Close
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• Rock and tree detection as well as landing point and slope measurement are based
on LIDAR processing, having a measurement and detection reliability of 0.98.

• Surface determination is based on GIS data for which a deterministic value is
assumed. Nevertheless, the nodes incorporate soft thresholding as described above.

• The same applies for the meteorological nodes, incorporating data from a weather
information service.

• Distance measurement is based on a simple estimation of the walking distance,
combining Euclidean distance and the movement speed of persons by foot.

Table 3. Evaluation results and quality values for the single landing points.

Safety Achievability Quality

LPA Unsafe: 7% Possible: 100% 69%
LPB Safe: 60% Possible: 100% 59.9%
LPC Unsafe: 21% Critical: 50% 18.1%
LPD Unsafe: 18% Possible: 100% 17.5%

Fig. 7. Results of the landing point evaluation for LPB, modelled in GeNIe [36]. Chance nodes
belonging in the same group are color-coded: (tactical), yellow (obstacle), light blue
(aeronautical) and dark blue (meteorological). Submodels (e.g. “Cars” or “Persons”) were used
to apply the automation reliabilities on the CPTs of the appropriate chance nodes. Due to
modelling and test purposes in GeNIe, an additional decision node (“Landing Points”, gray)
exist. (Color figure online)
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The quality of each landing point was determined assuming a Boeing CH-47 as
rescuing helicopter. The criteria values and estimated quality inferred are summarized
in Table 3. The network selects LPB as recommended landing point for the rescue
mission as it has the highest quality assessment of 59.9%. Although this value seems to
be rather low, it characterizes the importance of incorporating automation reliability in
the decision-making process when applying highly-automated sensor based systems.

Figure 7 displays the Bayesian network modelled in GeNIe [39] with inferred
values for the winning landing point LPB. As it can be seen, the quality assessment is
mainly based on the safety estimation. Thus, the usage of the relatively unreliable
person detector described above heavily influences the quality estimation, following
Bayes rule for determining the JPD as shown in Eq. (3).

A naïve interpretation of the parameters in Table 2, ignoring automation reliability,
might have led to the false impression of safety. Consequently, a decision-support
mechanism for highly automated reconnaissance systems must consider possible
drawbacks when presenting results and providing suggestions to human operators.

Thus, the presentation of the evaluation results and final recommendation shall
express the uncertain nature of the decision-making process and allow the pilot to
scrutinize the derived result. Our current approach for presenting the evaluation results
on recommendation level uses a color-coded traffic-light representation as shown in
Fig. 8. Whenever the pilot chooses to receive more details on the decisions rational,
information on the most influencing factors are presented (not depicted).

Fig. 8. Tactical map visualization of the landing point evaluation results displayed in the
multi-function-display of our H/C simulator. The landing point quality is depicted color-coded in
an easy-to-understand traffic-light representation.
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6 Conclusion

The safe and reliable reconnaissance of a helicopter landing zone requires the gathering
of various heterogenous data from potential landing points which must be fused and
evaluated accordingly. Therefore, such an evaluation and fusion mechanisms was
presented in this paper based on a multi-criteria decision-making Bayesian Network.
The proposed BN incorporates expert knowledge on LZR information needs and a
probabilistic representation of the automation reliability, adapted online during mis-
sion. Bayesian inference is applied to estimate the landing point quality whenever new
reconnaissance data comes available.

The feasibility of presented fusion agent was demonstrated on a given example and
obtained results are demonstrated and discussed, emphasizing the importance of
incorporating automation reliability in the decision-making process. Probabilistic
inclusion of the reliability value in a Bayesian Network as presented here provides a
promising way to deal with such influences and resulting automation over trust issues.
An easily understandable visualization concept for the evaluation results in the
multi-function-display of a H/C cockpit is presented.

Nevertheless, to avoid distrust effects, further work is required to increase the
overall system reliability. For example, the automated system can apply additional
fusion mechanisms to fulfill a perceptive requirement more reliably, e.g. by combining
multiple perception algorithms in the person detection processing chain. Another
promising approach is to incorporate inputs of a human operator in cases when the
overall system reliability is too low to be trusted [7].

Furthermore, additional work is required on the result presentation to enable the
crew to verify the reconnaissance results by themselves and thus to better understand
the landing point recommendation.

Next steps will quantifiably determine benefits and overall system acceptance when
interacting with military trained H/C pilots. Therefore, an experimental operator-in-
the-loop campaign in the full mission MUM-T H/C simulator are planned for summer
2017. In addition, technological readiness for multi-UAV based perception will be
evaluated in a down-sized Landing Zone Reconnaissance experiment at university
grounds in summer too.
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