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Abstract. Forward-secure signatures minimize damage by preventing
forgeries for past time periods when a secret key is compromised.
Forward-secure signature schemes are useful for various devices such as
logging systems, unattended sensors, CCTV, dash camera, etc. Consid-
ering sensors equipped with limited resources and embedded real-time
systems with timing constraints, it is necessary to design a forward-secure
signature scheme with minimal overhead on signer’s side.

This paper proposes the first forward secure digital signature schemes
with constant complexities in signature generation, key update, the size
of keys, and the size of a signature. The proposed algorithms have O(k3)-
time complexity for each signing and key update algorithm and O(k)-size
secret keys where k is an RSA security parameter. We prove the security
of our proposed schemes under the factoring assumption in the random
oracle model and present a concrete implementation of our schemes to
demonstrate their practical feasibility.

Keywords: Forward secure · Digital signature · Fast signing/update ·
Factoring

1 Introduction

Forward-secure signature schemes mitigate the damage caused by a secret key
exposure. The role of the digital logs and data as forensic values has boosted the
need for strong authenticity of data. For example, audit logs record the “what
happened when by whom” of the system. The forensic value of audit logs makes
them an attractive target for attackers [1]. An active attacker compromising a
logging machine can modify log entries related to the past, erasing records of the
attacker’s previous break-in attempts. Forward secure digital signature schemes,
of which goal is to preserve the validity of past signatures even if the current
secret key has been compromised, become an effective solution to prevent this
active attack as well as to provide strong authenticity for the recorded video
frames.
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Briefly, a forward-secure signature scheme divides the total time into T time
periods and uses a different secret key in each time period (while the public
key remains fixed). Each subsequent secret key is computed from the current
secret key via a key update algorithm. Although it is ideal to have constant
complexities regardless of the parameter T in computations and storage sizes
overall, it is a challenging work. In the first forward-secure signature scheme
proposed by Anderson [2], the size of secret key increases linearly with T . In
the Bellare and Miner (BM) scheme [3] both public and secret key sizes are
constant, but the signing and the verification time (of a single signature) grows
linearly with T . Itkis and Reyzin [4] (IR) propose a scheme to have constant
complexities in signing and verification, however, at the expense of key update
time and the secret key size which grow logarithmically with T . Malkin et al.
[5] (MMM) proposed a generic forward secure signature scheme based on a hash
chain tree with a constant size public key. Although the secret key size, the
signature size, signing and verifying time are O(log T ), theoretically, the actual
computation time and the storage requirement seem to be independent of T
since the hash computation and size are relatively small compared with a public
key signature scheme which it uses internally. However a signature in MMM
contains two public keys and two signatures with an O(log T ) size hash chain.
The resulting signature size is 4 times larger than BM and IR.

One of main hurdles when forward-secure signature schemes are deployed
in the real systems is located in their non-constant signing/update overhead.
For example, in the video recording devices for streaming applications, a cap-
tured video frame is compressed periodically, e.g., every 33 ms. If a signature
is generated for each frame, the signature computation with key update should
be completed within 33 ms. When an incident occurs, the stored video frames
and their signatures are used for forensic analysis. In this scenario, the signing
and update time should be short enough to meet the time constraint. On the
contrary, the verification of the signatures may be performed when a forensic is
required.

The goal of this paper is to construct forward-secure signature schemes effi-
cient enough to cover even resource- and/or time-constraint devices such as
unattended sensors and surveillance real-time streaming systems. To achieve this
goal, the computation and size complexities on signer’s side should be short and
constant at least. For the practical usage like other previous schemes, the pub-
lic key size also needs to be constant. Setup and verification times not directly
related with the signing device are comparatively less important.

Contributions. Our schemes extend the Bellare-Miner (BM) scheme [3] and
the Abdalla-Reyzin (AR) scheme [6] to provide a short and constant signature
computation time. The proposed schemes, denoted as Fast-BM and Fast-AR,
require the same constant size memory for secret/public keys, and generate the
same constant size signatures as BM and AR, respectively. The signature compu-
tation time complexity is O(k3) in our schemes, while the signature computation
time complexity is O(k2T ) in the BM scheme, and O(k2lT ) in the AR scheme,
where l is a security parameter representing the bit length of the hash output,
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k is a security parameter denoting the bit length in RSA (modulo N is k-bit inte-
ger), and T represents the number of periods. Surprisingly, there is no significant
performance degradation in other metrics, while we optimize the signing algo-
rithms of BM and AR. In the experiment, our algorithms generate a signature
and update their secret keys in 25 ms with security parameters k = 2048 and l
= 160 regardless of the total number of periods T . The results show that our
proposals are fast enough not only for normal applications but also for real-time
streaming applications. The proposed Fast-BM and Fast-AR schemes are secure
under the factoring assumption in the random oracle model.

We begin, in the next section, by describing background for forward secure
digital signature schemes. Section 3 proposes our fast forward secure digital sig-
nature schemes with explaining the underlying schemes. Section 4 discusses the
security of the proposed schemes. In Sect. 5, experimental results present quan-
titative measurements. We describe related work in Sect. 6 and summarize our
conclusion in Sect. 7.

2 Background

This section reviews the syntax and security definitions of a forward secure
digital signature scheme and defines its formal notion of security. All definitions
provided here are based on those given in [3,6]. We also present the underlying
cryptographic assumptions that our proposal relies on. We introduce some basic
notations. If S is a set then s

$← S denotes the operation of picking a random
element s of S. We write A(x, y, · · · ) to indicate that A is an algorithm with
inputs x, y, · · · and by z ← A(x, y, · · · ) we denote the operation of running A
with inputs (x, y, · · · ) and letting z be the output.

2.1 Forward Secure Signature Schemes

A forward secure signature scheme is a key-evolving signature scheme. We follow
the definition of forward secure signature schemes in [3,6].

Definition 1 (Key-evolving signature scheme). A key-evolving digital sig-
nature scheme is a set of four algorithms: FSIG = (Setup, Sig, Upd, Ver), where:

– Setup: The key generation algorithm is a probability algorithm which takes as
input a security parameter l and the total number of periods T and returns a
pair (SK0, PK), the initial secret key and the public key.

– Sig: The signing algorithm takes as input the secret key SKi for the current
time period i and the message M to be signed, and returns a pair 〈i, s〉, the
signature of M for time period i.

– Upd: The key update algorithm takes as input the secret key SKi for the
current interval and returns a new secret key SKi+1 for the next interval.

– Ver: The verification algorithm takes as input the public key PK, message
M and a candidate signature 〈i, s〉, and returns 1 if 〈i, s〉 is a valid signature
of M , or 0, otherwise. It is required that VerPK(M,SigSKi(M)) = 1 for every
message M and time period i.



526 J. Kim and H. Oh

We assume that the secret key SKj for period j ≤ T always contains the
value j itself and also contains the value T of the total number of periods. Finally,
we adopt the convention that SKT+1 is the empty string and Upd(SKT ) returns
SKT+1.

Security: The adversary executes the usual adaptive chosen-message attack
(cma) until it breaks in and learns the secret key for a given time period. The
adversary is then considered successful if it can create a valid forgery on a new
message for a previous time period. Formally, this adversary, denoted by F , is
modeled via the following experiment. The adversary, denoted by F , runs in
three phases. In the cma phase, F has access to a sign oracle. F is allowed to
query multiple signatures in the same period. In the break-in phase, F is given
the secret key SKj for the specific interval j. Finally, in the forgery phase (forge),
F outputs a pair of a signature and a message. The adversary is successful if
it forges a signature of any new message (not previously queried to the signing
oracle) for any time period prior to j. The formal experiment is described in the
following:

F-Forge(FSIG,F) :

(SK0, PK)
$← Setup(k, · · · ,T);

j ← 0
repeat

j ← j + 1; SKj ← Upd(SKj); d ← F
SigSKj

(·)
(cma, PK)

until (d = breakin) or (j = T )
If (d �= breakin) and (j = T ) then j ← T + 1
(M, 〈b, s〉) ← F (forge, SKj)
If Ver(M, 〈b, s〉) = 1 and 1 ≤ b < j

and M was not queried of SigSKb
(·) in period b

then return 1 else return 0

Definition 2 (Forward-security). Let FSIG=(Setup, Sig, Upd, Ver) be a key-
evolving signature scheme and F an adversary as described above. Let Succfwsig

(FSIG[k, · · · ,T],F) denote the probability that the experiment F-Forge(FSIG[k,
· · · , T ], F ) returns 1. Then the insecurity of FSIG is the function

InSecfwsig(FSIG[k, · · · ,T]; t, qsig) = max{Succfwsig(FSIG[k, · · · ,T],F)},

where the maximum is taken over all adversaries F making a total of at most
qsig queries to the signing oracles across all the stages and for which the running
time of the above experiment is at most t.

3 Fast Forward Secure Digital Signature Schemes

Our proposed schemes extend the previous forward secure signature schemes
proposed by Bellare and Miner (BM) [3] and by Abdalla and Reyzin (AR) [6].
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Since the way of extension is the same for each, we describe our scheme focusing
on the AR version (which has a simpler parameter setting). We first overview the
scheme proposed by Abdalla-Reyzin (AR) in [6] and then describe our proposed
schemes.

3.1 Overview of the AR Scheme

The AR scheme [6] defines T the maximum number of periods and extends the
2l-th root signature scheme [7] to have the forward security property. The initial
secret key S0 is arranged as 2l(T+1)-th root of a public key U . For each period, the
secret key is updated by raising it to the 2l power and thus the secret key at the
period j becomes Sj = S2l(T+1−j)

0 . At period j, the signer proves the knowledge
of the 2l(T+1−j)-th root of U , of which computational cost is proportional to T .
Thus, as T increases, the signing time increases. The size of T depends on the
application and is possibly large in general to avoid frequent setups. For instance,
assume that a signature is generated and a secret key is updated every second.
In order to provide a forward security in this device for a year, T should be no
less than 31,536,000 (=60×60×24×365). AR (of which signature computation
depends on T ) may be impractical to be used for applications with this large T
setting.

3.2 Fast-AR

Algorithm 1 summarizes the key setup, the secret key update, the sign, and the
verification of our proposed algorithm called Fast-AR. In the proposed algorithm,
all numbers including secret keys (Sj), a public key (U), random numbers (R),
and their exponentiations (Y ) are chosen in 〈g〉 where g is a generator of a large
subgroup in Z∗

N . In the following, we describe our approach and details of each
algorithm.

Setup: We generate a safe RSA (or a safe-prime product RSA) modulus N = pq
where p, q, p′, and q′ are primes such that p = 2p′ +1, and q = 2q′ +1. Note that
p and q are congruent 3 mod 4 and N becomes a Blum integer. Pick a random
element g s.t. g generates a maximum subgroup in Z∗

N , i.e. ord(g) = 2p′q′ and
s.t. −1 �∈ 〈g〉. Note that this holds for about half of the elements in Z∗

N , and it
is easily tested. In addition, the Jacobi symbol of g, (g|N) = −1.

Additionally, we compute X = g2
l(T+1)

mod N . Using g and X, we can
efficiently compute l(T + 1) squaring operations of any group element in 〈g〉,
given the order of the element. Thus, to compute U = S2l(T+1)

0 mod N where
S0 = gs mod N for some known s, we compute Xs mod N instead. (The same
technique is used in the sign algorithm.)

Since the group size φ(N)(= (p − 1)(q − 1)) is known at setup, computation
of X = g2

l(T+1)
mod N has O(k3)-time complexity. A secret key S is chosen from

〈g〉 by selecting a random number s in ZN/2 and computing S = gs mod N . A
public key U (≡S2l(T+1) ≡ gs2l(T+1) ≡ Xs(modN)) is computed by raising X to
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the s as we describe above. After computing a secret key and a public key, the
primes p, q and the chosen random number s are discarded. g and X are stored
in a secret key.

Sign and Update: In AR, the signing overhead occurs mainly due the com-
putation of Y ← R2l(T+1−j)

mod N for a chosen random R at period j. Since
the computation requires l(T + 1 − j) squaring operations of R, the computa-
tion complexity is proportional to T . Recall that we select a generator g (of a
maximum subgroup of Z∗

N ) and compute g2
l(T+1)

denoted as X in advance. In
the signing procedure of our scheme, we generate R by raising g to a random
number e in ZN/2. Then since Y is R2l(T+1) ≡ ge2l(T+1) ≡ Xe(modN), Y can be
computed by raising X to the e. So the computation time of Y does not rely on
T . After computing R and Y , e is erased. Note that the computation of Y in our
scheme is different from AR: Y = R2l(T+1)

in our scheme, while Y = R2l(T+1−j)
in

AR. I.e., the computation of Y in our scheme is independent of period j, unlike
AR. Therefore, after we compute X = g2

l(T+1)
once (in setup), it can be reused

at every period. The verification in our scheme is modified accordingly, which is
slightly different from AR and slower than AR, but has the same computation
complexity as AR.

Algorithm 1. Fast-AR
function Setup(k, l, T )

Pick random p′ and q′ such that p(= 2p′ + 1), q(= 2q′ + 1), p′, q′ are prime, and p and q are
k/2 bit and set N ← pq

Pick a random element g s.t. g generates a maximum subgroup in Z∗
N , i.e. ord(g) = 2p′q′, and

such that −1 �∈ 〈g〉
x ← 2l(T+1) mod (p − 1)(q − 1); X ← gx mod N

s
$← ZN/2; S0 ← gs mod N ; U ← Xs mod N

SK ← (N, T,g,X, 0, S0); PK ← (N, U, T )
return (PK, SK)

end function

function Upd(SK) : parse SK as (N, T,g,X, j, Sj)
if j=T then SK ← ε

else SK ← (N, T,g,X, j + 1, S2l

j mod N)
end if
return SK

end function

function Sig(M, SK) : parse SK as (N, T,g,X, j, Sj)

e
$← ZN/2; R ← ge mod N ; Y ← Xe mod N ;σ ← H(j, Y, M); Z ← RSσ

j mod N

return (j, (Z, σ))
end function

function Ver(M, PK, sign) : parse PK as (N, U, T ); parse sign as (j, (Z, σ))
if Z ≡ 0(modN) then return 0
else

Y ′ ← Z2l(T+1)
/Uσ2lj

mod N
if σ = H(j, Y ′, M) then return 1
else return 0
end if

end if
end function
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The key update algorithm is the same as AR, which requires l times squaring
operations only.

Verification: As mentioned early, our verification algorithm is slightly different
from AR due to the different exponentiation number for Y . While the verifi-
cation tests whether Y is equal to Z2l(T+1−j)

Uσ in AR, it checks whether Y is
equal to Z2l(T+1)

/Uσ2lj

in our scheme. On average, our verification requires twice
computation than AR.

Correctness: For a given signature of (j, (Z, σ)) for message M , the verification
is to check whether σ = H(j, Y ′,M) where Y ′ ← Z2l(T+1)

/Uσ2lj

. Since Z =
RSσ

j = geS2ljσ
0 and (ge)2

l(T+1)
= Xe = Y , Z2l(T+1)

= Y Sσ2lj2l(T+1)

0 = Y Uσ2lj

.
So the verification works correctly.

4 Security Analysis

Since the proposed Fast-AR scheme is similar to the existing AR scheme except
that numbers are chosen in 〈g〉 rather than Z∗

N in a signature generation, the
security proof is similar to the proof of AR.

Let k and l be two security parameters. Let p = 2p′ + 1, q = 2q′ + 1, p′,
and q′ be primes and N = pq be a k-bit integer (Since p ≡ q ≡ 3 (mod 4), N
is a Blum integer). Let Q denote the set of non-zero quadratic residues modulo
N . Note that for x ∈ Q, exactly one of its four square roots is also in Q. In
the following description, x

$← 〈g〉 denotes that r
$← ZN and x ← gr mod N for

ord(g) = 2p′q′.

Lemma 1. Given α �= 0, λ > 0, v ∈ Q and X ∈ 〈g〉 such that vα ≡ X2λ

(mod
N) and α < 2λ, one can easily compute y such that v ≡ y2(modN).

Proof. Let α = 2γβ where β is odd. Note that λ > γ. Let β = 2δ + 1.
Then (v2δ+1)2

γ ≡ vα ≡ X2λ

(modN), so v2δ+1 ≡ X2λ−γ

(modN). Note that
it is allowed to take roots of degree 2γ since both sides are in Q. Let
y = X2λ−γ−1

/vδ mod N . Then y2 ≡ X2λ−γ

/v2δ ≡ v(modN). Note that since
α < 2λ, λ − γ − 1 ≥ 0.

Theorem 1. If there exists a forger F for FSIG[k, l,T] that runs in time at most
t, asking at most qH hash queries and qS signing queries, such that Succfwsig

(FSIG[k, l,T],F) ≥ ε, then there exists an algorithm A that factors Blum integers
generated by FSIG.key(l,T) in expected time at most t′ with probability at least
ε′, where t′ = 2t + O(k2lT + k3), and ε′ = (ε−23−kqS(qH+1))2

2T 2(qH+1) − ε−23−kqS(qH+1)
2l+1T

.

Proof. Suppose that there exists a forger F against Fast − AR scheme that
succeeds with ε in time t. We construct an algorithm A using F as a subroutine
to factor a given Blum-Williams integer N with a probability of ε′ within t′ time.
The goal is to find a pair (p, q) such that N = pq.
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A is constructed as follows:

Setup

1. select g
$← Z∗

N such that −1 �∈ 〈g〉 [Given a safe RSA modulus N , with
probability about 1/2 we have ord(g)=2p′q′.]

2. w
$← 〈g〉; v ← w2 mod N [Will try to find a square root of v that is different

from w.]

3. b′ $← {1, · · · , T} [Choose break-in period hoping that the break-in will occur
after b′ period, and the forgery will be at b′ or earlier.]

4. U ← v2l(T −b′)
[The intention is that Sb′2

l

= v mod N .]
5. PK ← (N,T, U) [Build a public key.]

Now, we will explain how A simulates.

Simulation

1. Hash query simulation: If H(j, Y,M) is undefined then H(j, Y,M) $←
{0, 1}l. It returns H(j, Y,M).

2. Sign query for M at the j-th period: If j ≤ b′ then Z
$← 〈g〉; σ

$← ZN/2;

Y ← Z2l(T+1)

v2l(T −b′+j)σ
mod N . Y satisfies that Z2l(T+1) ≡ Y U2ljσ(modN) since

Uσ = v2l(T −b′)σ mod N . If H(j, Y,M) is defined then A sets fail1 ← true and
aborts the execution of F ; otherwise H(j, Y,M) ← σ. A returns (j, (Z, σ)).
Since there are at most qH entries defined in tables H, the probability that
fail1 happens is at most qH/2l per sign query. Consider j > b′. Since secret
Sj = v2l(j−b′−1)

, Sig(M,SK) can be performed and (j, (Z, σ)) is returned.
3. Update simulation: If j ≤ b′ then nothing is performed. Otherwise

Upd(M,SK) is called.
4. Break-in simulation at the b-th period: If b ≤ b′ then A sets fail3 ← true and

aborts the execution of F . Otherwise, A returns Sb such that Sb = S2l(b−b′)
b′ =

v2l(b−b′−1)
.

Factoring of N
Assume that F outputs a forged signature (j, (Z, σ)) for a message M where

σ is a hash query for H(j, Y,M). Assume that the forgery period j is no later
than the break-in period b′ or j ≤ b′. If F forges the signature without querying
on H(j, Y,M) then A sets fail2 ← true and aborts the execution of F . A resets
F with the same random tape as the first time, and runs it again, giving the
exact same answers to all F ’s queries before the hash query of H(j, Y,M). On

the query of H(j, Y,M), A comes up with a new answer σ′ $← {0, 1}l, sets
H(j, Y,M) ← σ′. Then F returns (j, (Z ′, σ′)). If the second forgery was not
based on hash query on H(j, Y,M) then A fails.
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We know the following two equations must hold: Z2l(T+1) ≡ Y U2ljσ (mod N)
and Z ′2l(T+1) ≡ Y U2ljσ′

(mod N). Dividing, we get ( Z
Z′ )2

l(T+1) ≡ U2lj(σ−σ′)

(mod N). From the setup, we know that U ≡ v2l(T −b′)
(mod N). So we can

write ( Z
Z′ )2

l(T+1) ≡ v2l(T+j−b′)(σ−σ′) (mod N). Taking roots of degrees 2l(T+j−b′)

of both sides, which we are allowed to do because both sides are in Q and
remain in Q, because v is a square, vσ−σ′ ≡ ( Z

Z′ )2
l(b′+1−j)

(mod N). By applying
Lemma 1, our algorithm can easily compute a square root of v, denoted as x,
by setting α = σ − σ′, X = Z/Z ′, and λ = l(b′ + 1 − j). If x ≡ ±w mod N then
abort. Otherwise, we compute h ← gcd(w−x,N) which is a non-trivial factor of
N . Note that to argue the extracted square root of v differs from ±w, subgroup
〈g〉 should contain at least another square root of v which is not −w. It cannot
be −w since −1 does not belong to 〈g〉 by construction. Such an element exists
in 〈g〉 because, if the Jacobi symbol of g equals to −1 (or (g|N) = −1), gp′q′

must be a non-trivial square root of unity in Z∗
N . As a consequence, gp′q′ · w is

another square root of v that belongs to 〈g〉. Since the signing oracle and the
break-in oracle never use w, the knowledge extractor allows to extract gp′q′

with
probability 1/2. The computations of the probability and the running time are
identical to [6].

5 Experiment

We implement the proposed Fast-BM and Fast-AR schemes using openssl
library in C. For comparison, we implement BM [3], AR [6], IR, optimized IR
(IROpt) [4], and MMM [5]. We use GQ [8] as public key signature scheme in
MMM. All schemes except MMM generate a short size signature of which size is
k while MMM generates a signature of which size is 4k, where k is the bit-length
of RSA modulus N . The experiment is performed on Intel i5 2.6 GHz laptop
with 16 GB RAM under OS X. The hash length (l) is fixed to 160 bit.

Figure 1 illustrates the key setup time, the signing time per message, the key
update time, and the verification time per message by varying the number of
periods T from 10 to 100000 denoted as x axis when the security key parameter
k is 2048. The y axis represents the execution time in second.

Figure 1(a) shows the setup time. As T increases, the setup time becomes
significantly large in IR and IROpt. For instance, it is 1,000 s when T = 100,000,
and it will be 10,000 s when T = 1,000,000 in IR and IROpt while in Fast-BM
and Fast-AR it is a few ten seconds in which a safe RSA is generated.

Figure 1(b) represents the signing time per message. The signing time is pro-
portional to T in BM and AR while it is independent of T in IR, IROpt, MMM,
Fast-BM and Fast-AR. Note that the signing time complexity is O(k3) in Fast-
BM and Fast-AR where k represents the bit length of modulus N .

Figure 1(c) indicates the key update time. In BM, AR, MMM, Fast-BM, and
Fast-AR, the key update time is constant only depending on k and l while it is
proportional to T and log T in IR and IROpt, respectively.
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Fig. 1. Execution time variation as T varies when l = 160 and k = 2048

Figure 1(d) denotes the verification time. The verification time is proportional
to T in BM, AR, Fast-BM and Fast-AR since T number of exponentiation oper-
ations are performed for verification in those algorithms, while it is irrelevant to
T in IR, IROpt, and MMM.

Figure 2 illustrates the setup, signing, update, and verification times by vary-
ing k which is the bit-length of RSA modulus N when l = 160 and T = 10000.
The setup time increases faster in IR, IROpt, Fast-BM, and Fast-AR since they
use a safe RSA where N = pq, p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are prime.
When k is 2048, BM, AR, MMM, Fast-BM, and Fast-AR algorithms show a
similar setup time.

Figure 2(b) shows the signing time per message. Since the signing time in
all algorithms except Fast-BM and Fast-AR is proportional to k2 if T and l are
fixed, the signing time increases similarly in all algorithms as k increases. On the
other hand, the time increases faster in Fast-BM and Fast-AR as k increases.
Fast-AR is as fast as Fast-BM while AR is l time slower than BM since Fast-AR
does not require l(T + 1) squares.
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Fig. 2. Execution time variation as k varies when T = 10000

Figure 2(c) shows the key update time. As k increases, the key update time
increases in all schemes. In IR and IROpt, the key update time increases slowly
since the effect of T against k decreases where the update time complexities in
IR and IROpt are O(k2T ) and O(k2 log T ) while they are O(k2) in the other
algorithms.

Figure 2(d) represents the verification time. Regardless of k, IR and IROpt
show the shortest verification time.

Table 1 summarizes the key sizes, setup time, signing time per message, key
update time, and verification time in BM, AR, IR, IROpt, MMM, Fast-BM and
Fast-AR. Fast-BM and Fast-AR reduce the signing time compared with BM and
AR without sacrificing the other parameters.
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6 Related Work

The pioneering studies addressing the forward secure signatures were first pro-
posed by Anderson [2] and subsequently formalized by Bellare and Miner in [3].
In a forward-secure signatures scheme, the forward- security property is attained
by dividing time into T discrete intervals, and using a different secret key within
each interval. The main challenge in designing forward-secure signature schemes
is efficiency: an ideal scheme must have constant (public and secret) key sizes,
constant signature size as well as constant signing, verification, and (public and
secret) key update operations.

In the first category, the schemes use some generic method in which a master
public key is used to certify the current public key for a particular time period
(via a chain of certificates). Usually, these schemes increase storage space by
noticeable factors in order to maintain the current (public) certificates and the
(secret) keys for issuing future certificates. They also require longer verification
times than ordinary signatures do, because the verifier needs to verify the entire
certificate chain in addition to verifying the actual signature on the message.
There is, in fact, a trade-off between storage space and verification time. These
schemes include the tree-based scheme of Bellare and Miner [BM99] (requiring
storage of about O(log T ) secret keys and non-secret certificates, and verification
of about O(log T ) ordinary signatures), the scheme of Krawczyk [9] (requiring
storage of T non-secret certificates, and verification of only 2 ordinary signa-
tures), and the scheme of Malkin et al. [5] has constant-size public key while the
secret key size, the signature size, signing and verifying time are O(log t) where
t denotes the time interval index which is less than T . The scheme of Holt [10]
has constant-size secret key and signatures but requires T non-secret certificates
storage/communication to verify signatures. The generic construction proposed
by Libert et al. [11] has a non-constant signature size and computational over-
head and the exact complexities depend on the underlying schemes.

In the second category, the schemes are built upon standard signature
schemes. The main advantage of these schemes is that they achieve better depen-
dence on T . In particular, they typically have constant size parameters. The
first such scheme is based on the Fiat-Shamir signature scheme [3]. Abdalla and
Reyzin scheme [6] shortens secret and public keys of at the expense of signing
and verifying time. Itkis and Reyzin scheme [4] has shorter signing and verifying
time derived from the underlying Guillou-Quisquater signature scheme [8] at
the expense of logarithmic key update time and the secret key size. Kozlov and
Reyzin [12] propose another scheme based on a similar optimizing technique used
in [4]. The scheme is an improved version of [4], and the key update time and
the secret key size grow logarithmically in T . However, linear-time operations
are needed at the beginning of each period in the scheme.

Boyen et al. [13] proposed a forward-secure signature scheme, where the
secret key is encrypted with a second factor such as a user’s password and can
be updated in its encrypted form. The scheme in [13] based on [14] features a
constant signing time at the expense of its key update time in O(log T ), its secret
key size in O(log2 T ), its public key size in O(log T ), and comparatively stronger
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cryptographic assumption. It makes use of a very specific mathematical setting
consisting of groups equipped with a bilinear mapping whose computation is
expensive. Abdalla et al. [15] proposed a variant of [4] to have a much tighter
security reduction, however, assuming stronger security assumptions.

7 Conclusion

In this paper, we propose fast forward secure digital signature schemes called
Fast-BM and Fast-AR which provide fast signing and key update with constant
size public and secret keys, and a short constant size signature. The proposed
schemes are applicable to real-time surveillance streaming applications as well
as the traditional forward secure signature systems. In the proposed schemes,
the signing and the key update are performed in O(k3) meaning that they are
independent of the maximum period T , where k denotes the bit length of module
N in RSA. In real implementation, the signing and the update can be performed
within 25 ms in the proposed schemes regardless of T when k = 2048 while they
require 200 ms in the optimized IR. The signature size is only 2240 bit when
k = 2048, and l = 160 in our schemes. Fast-BM and Fast-AR schemes are secure
under the factoring assumption in the random oracle model which is a weaker
assumption than a strong RSA which IR is based on.
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