Automating the Dynamic Interactions
of Self-governed Components
in Distributed Architectures

Sebastian R. Bader®)

Institute AIFB, Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany
sebastian.bader@kit.edu

Abstract. The ongoing digitalization and penetration of the Web into
each aspect of software development creates new possibilities and chal-
lenges. The flexible reuse of components promises to drastically reduce
the implementation and maintenance effort. But growing complexity in
terms of variety and dynamic changes bring monolithic approaches to
their limits. In this paper, an approach is presented which enables com-
ponents in distributed systems to observe, judge and independently react
to dynamic changes in their neighborhood. Reducing the overall complex-
ity to smaller and easier to manage subproblems leads to more flexible
and reliable systems. The target is a delegation of decision making to
the single components.

Keywords: Distributed systems -+ Component coordination
Dynamic web

1 Introduction

Initially, the Web started as a Web of documents. Through constant evolution
we now see a more and more automatically processable Web of data and services.
Semantic technologies allow specifications of characteristics and descriptions
both interpretable for humans and machines. They take part to drive the Web
from a static information provider to a decentralized interaction platform where
data and functionalities are offered, accessed and consumed. The continuously
growing number of publicly available Web APIs! emphasizes this development.

In addition, the current Web is already a dynamic environment in itself.
Resources existing at one point in time can not be taken for granted, as providers
stop hosting services, rebrand and relocate APIs. For example, even on the com-
mercial IBM Bluemix platform, Web APIs can disappear without any trans-
parent reason or machine processable information?. Contrary, APIs can still be
available even if the provider marked them as inactive (e.g. the former Google
Web Search API).

! http://www.programmableweb.com/api-research.
2 https://concept-insights-demo.mybluemix.net/ Accessed 05.12.2016.
© Springer International Publishing AG 2017

E. Blomgqvist et al. (Eds.): ESWC 2017, Part II, LNCS 10250, pp. 173-183, 2017.
DOI: 10.1007/978-3-319-58451-5_12

http://www.programmableweb.com/api-research
https://concept-insights-demo.mybluemix.net/

174 S.R. Bader

HTTP Server Connector

Semantic Output . Connector

Functionality Module {]

¢

Semantic Input Connector

Am’ Client Connector

Fig. 1. Self-governed component: Functionality is wrapped by semantic connectors.
The input connector independently establishes connections to other components.

Graphical Interface
(based on Google Streetview)

Linked Data-Fu (Semantic Input Connector)
Semantic Output t Connector Semantic Output ¢ Connector
Bluemix Geospatial Analytics & | Tour Planning Service 5 _|

Fig. 2. Prototypical implementation of self-governed components, so far with only one
connector (either input or output)

A methodology is outlined to enable distributed Web components to diag-
nose unforeseen changes and providing adaptive reaction capabilities. Compo-
nents, as regarded in this work, are software modules which encapsulate a sin-
gle functionality and are annotated with semantic descriptions. They can be
initially designed Linked Data APIs but also occur in the form of translation
instances for lifting and lowering the original Web API to Linked Data. The
components communicate via RESTful Web APIs and have the ability to select
and invoke other Web components autonomously, therefore they are denoted as
self-governed components in the following.

A self-governed component (Fig.1) consists of two semantic connectors
responsible for its semantic descriptions, the data lifting and lowering, and provi-
sion and request to and from, but not limited to, other self-governed components.
The offered core functionality is therefore independent of the communication
methods and may directly be integrated by code, occur as a remote Web service
or a database.

Parts of the concept of self-governed components were implemented for the
use case of dispatching field technicians for industrial maintenance. As shown
in Fig. 2, a IBM Bluemix analytic service for geospatial data® and a commercial
tour planning heuristic have been enabled to RESTful communication with RDF
through their respective output connectors*. The input connector, realized by a
Linked Data-Fu [9] instance, consumes the Web APIs and fills a Google Street
View based visualization component.

3 https://console.ng.bluemix.net /catalog/services/geospatial-analytics.
* https://github.com/sebbader/BlueWrapper.

https://console.ng.bluemix.net/catalog/services/geospatial-analytics
https://github.com/sebbader/BlueWrapper

Automating the Dynamic Interactions of Self-governed Components 175

For now, the integration instructions are static rules and incrementally exe-
cuted. In contrast, self-governed components need to be equipped with context-
aware reaction capabilities. That includes mechanisms for detecting possible
issues, recognizing and evaluating alternative partner components and estab-
lishing communication channels.

2 State of the Art

Components are regarded by Morrison [16] as “black boxes” with a strong
focus on reusability. He states that in productive systems, the application does
not require insights into the functionality of the used components but only on
the delivered and consumed information packets. Microservices as described by
Thones [23] further limit the amount of provided functionalities to singular, easy
to understand tasks. This drastically reduces the complexity of the necessary
descriptions and eases the reuse in unforeseen scenarios.

The Semantic Web Stack [2] constitutes a set of technologies to handle both
syntactical and semantical interoperability issues. It thereby defines the archi-
tecture of the Semantic Web with central technologies like URIs to identify
resources, RDF to encode data, ontologies define meaning and the semantic
query language SPARQL.

Semantic descriptions of Web components can be formulated in various lan-
guages and ontologies. Currently most important are the Web Service Ontology
Language (WSMO) [20], OWL-S [14] and Linked USDL [19]. RESTdesc [26]
utilizes a N3 Syntax to specify input and output parameters and how they are
connected. Similarly, Dimou et al. [8] combine access information with data
mappings in the RDF Mapping language (RML). Verborgh et al. [25] provide a
survey on machine-interpretable Web API descriptions.

The types of descriptions can be organized in the categories behavioral, func-
tional and non-functional. The technical details to operate the component are
part of the behavioral sections whereas functional statements include basic infor-
mation on the component’s purpose. Non-functional information contain addi-
tional details on e.g. prices, provenance or provided Quality of Service.

Also, central registries for Web APIs like RapidAPI® or ProgrammableWeb®
mostly do not provide semantic information, making an automated discovery a
hard task. In the approach of Sande et al. [24] for Linked Data sets the data
server recognizes other components by dereferencing its existing RDF data or
utilizing the Referer Header of incoming HTTP requests and therefore gains
knowledge about other data sources.

In order to automatically combine the components, existing approaches [3,21]
mostly use centralistic optimization during the design phase. Contrary, Web
components are not static elements but can and do change over time. In general,
they follow a life cycle as shown by Wittern and Fischer [27]. Mayer et al. [15]
extend RESTdesc to cope with a dynamic environment by introducing states.

5 https://www.rapidapi.com/.
5 https://www.programmableweb.com /category /all /apis.

https://www.rapidapi.com/
https://www.programmableweb.com/category/all/apis

176 S.R. Bader

Similarly, Alaya et al. suggest oneM2M, a IoT approach to gain machine-to-
machine (M2M) interoperability with a semantic reasoner [1]. But still, a central
organizer with knowledge about the whole network is required.

One way to enable a more flexible way to determine component compo-
sitions are policies. The non-functional characteristics of available components
are regarded with semantic reasoners [22] in order to match and rank (Palmonari
et al. [17]) them against predefined requirements. La Torre et al. [13] propose
the dynamic context of the consuming client as a selection criteria for compo-
nents. Context here is regarded as social media information of e.g. Facebook
but also physical data like GPS coordinates. Although only human users have
been regarded, it should be possible to transfer the approach to automated com-
ponents, having context like the location of the hosted server or the company
running it.

3 Problem Statement and Contributions

As outlined, self-governed components can perceive spontaneous changes and
adjustments. In particular, changes of the produced data model and the tech-
nical interaction patterns in addition to modifications of functionality and the
component’s location are possible without former notice. Together with the ris-
ing number of heterogeneous components, the complexity of coordinating the
individual elements of Web applications increases further. No central coordina-
tor can guarantee sufficient performance when no specified size limits can be set
and potential changes of components can happen at any time.

Although switching from central to distributed architectures can reach sup-
plies the necessary scalability, it does not solve the problem of sudden changes
of components. While in the first case a central coordinator was responsible, the
adjustments now have to accomplished by the self-governed components them-
selves. Therefore, this paper focuses to answer the following research question:

Research Question: How can self-governed components in distributed archi-
tectures cope with dynamic and unforeseen changes of other self-governed com-
ponents which they depend on?

3.1 Validating and Updating Semantic Descriptions of Web
Components

The Web is a dynamic environment where resources and services are not static
and may appear, disappear, and change their characteristics spontaneously. If an
API or the functionality of an used self-governed component changes, an affected
consuming component will only recognize it when its procedures begin to fail.
Even though the provider may announce the modifications upfront, it is
usually not done via machine interpretable channels. Self-governed components
in critical applications therefore need analytical mechanisms to self-detect such
incidents. In the example, the GeospatialAnalytics and the tour planning com-
ponent provide data in the WGS84 format. An update e.g. could set the tour

Automating the Dynamic Interactions of Self-governed Components 177

planning component back to its default settings, where country, address and
street name specify a location instead of WGS84 coordinates.

Bhargava and Lingayat [4] try to tackle the topic with local and global moni-
toring components to discover validations of service level agreements but do not
regard any (semantic) descriptions. SHACL [12] on the other hand allows the
comparison of incoming Linked Data against expected patterns but can hardly
cope with non-functional aspects. Consequently, the following question has to
be answered:

RQ 1. How can the changes in functional, behavioral and non-functional descrip-

tions of self-governed components be validated and, in the case of mismatches,
be modified?

3.2 Spontaneous Connector for Self-governed Components

Although self-governed components share a common stack of technologies like
URISs, semantic interfaces and RDF, they still allow nearly endless variations of
implementations. A self-governed component which identified a suitable func-
tional input source is not capable to simply consume the API without fur-
ther specification. Missing data mappings, unknown interface invocation and
other behavioral requirements prohibit a plug-and-play like connection. In the
described example, the self-governed UI component has to be able to switch from
the commercial tour planning to e.g. an instance of the open-source OpenTrip-
Planner” (see Fig. 3):

Graphical Interface
(based on Google Streetview)

Linked Data-Fu (Semantic Input Connector)
))
Q ?
Semantic Output : Connector man t tor Semantic Output t Connector

Bluemix Geospatial Analytics & |

J

g service B]] OpenTripPlanner = |

Fig. 3. Exchanging the tour planning component with the similar OpenTripPlanner

For that, Keppmann et al. [11] introduce adjustable “Smart Components”
which can change their program code — and thereby also their data sources — dur-
ing runtime. Nevertheless, these components can not individually customize their
connectors to alternative sources. In contrast to that, the system of Bhargava
and Lingayat [4] dynamically configures the network but relies on a central coor-
dinator which poses all information about the environment.

This leads to the following research question:

RQ 2. How can one self-governed component autonomously consume another
without formerly specifying connection details and requirements?

" http://www.opentripplanner.org/.

http://www.opentripplanner.org/

178 S.R. Bader

3.3 Delegation of Communication Responsibility in Distributed
Architectures

In the example, only the self-governed UI component once has to find a replace-
ment for its data provider. No other component is affected as long as the Ul
component can find a sufficient substitute. This leads to the question how self-
governed components know which providers to select in order to gain the required
input data.

Cao et al. [6] solve dynamic composition in P2P networks where the partic-
ipants iteratively create a workflow chain. Although they regard nonfunctional
characteristics, the parameters of interest have to be introduced during design
time. Additional desired parameter can not be considered. Similarly, Cardellini
et al. [7] do not regard the inherent complexity of nonfunctional requirements.

Policies like in [18,22] enable the components to act independently in a sur-
rounding with incomplete information and spontaneously occurring changes.
Comprehensible methods have to be developed or adjusted in order to rank
available candidates. The consuming self-governed component has to conclude
first whether an offering component complies with the defined policies, then
select the most appropriate, and establish a connection:

RQ 3. How can self-governed components in distributed architectures indepen-
dently derive selection criteria from abstract policies in order to appropriately
classify available, alternative self-governed components?

Summarizing, RQ 1 targets the discovery of evolving problems, RQ 2 exam-
ines methods to technically enable reactions and RQ 3 develops approaches to
select suitable reactions. In combination, they enable self-governed components
to state, if necessary, how and in which manner they react to dynamic changes
in distributed architectures and thereby answer the main research question.

4 Research Methodology and Approach

The self-governed components as regarded in this paper rely on the Semantic
Web Stack. In particular, URIs are used to identify and locate components,
in combination with RDF as the data model, and ontologies to reason about
delivered data and semantic descriptions. In addition, this paper only regards
self-governed components with RESTful APIs, based on HT'TP communication.

The research approach is directly determined by the dependencies between
the proposed modules.

The treatment of changing API descriptions (Sect. 4.1) relies on the sponta-
neous establishment of communication channels (Sect. 4.2) and vice versa. Both
parts together will allow to solve the problem of decentralizing coordination
responsibility (Sect.4.3) in order to answer the main research question.

4.1 Validating and Deriving Descriptions of Self-governed
Components

The required methods regarding the semantic description of APIs are divided
into two tasks. In the first part, component descriptions are regarded as fixed

Automating the Dynamic Interactions of Self-governed Components 179

facts. They are compared against the observed data and communication pat-
tern. The aim is to detect inconsistencies caused by e.g. applied upgrades or
API changes of the observed self-governed components. On-the-fly reasoning of
transferred RDF data allows the recognition of conflicting statements of the
received data with their functional and non-functional descriptions. Violations
in terms of behavioral aspects usually lead to transaction errors which have to be
interpreted separately. Non-functional aspects need a more advanced handling.
A mapping of behavior variants to an ontology will be developed to gain inputs
for the semantic reasoner.

In addition to methods for validating assumptions, the automated proposal of
semantic descriptions is regarded. Independently recognizing component’s char-
acteristics is essential to increase the amount of useful and machine interpretable
descriptions in the Web as it lowers the effort in both time and necessary skills
to deploy a self-governed component. Therefore, benefits for both the consumer
(having detailed control mechanisms) and the provider (reducing the manual
effort) can be accomplished.

4.2 Spontaneous Connector for Self-governed Components

Consuming components can interact with suppliers on the basis of their semantic
descriptions. Data can be easily transmitted in the case of matching demanded
and available resources. Nevertheless, in some cases meaningful interactions can
still be accomplished although specifications and demands do not fit perfectly.
Therefore, the approach will relax the retrieved descriptions of self-governed com-
ponents. It is to verify whether neglecting parts of stated constraints improves
the automated connection of components. Even though the intentional violation
will produce mismatches, it has the potential to solve situations where overly
restrictive descriptions prevent interactions.

The Linked Data streaming engine Linked Data-Fu as the input connector
will serve as the mediator between two components. It is capable to request,
process and forward RDF data. Linked Data-Fu will be extended towards an
autonomously deciding connector. The challenge is to derive the interaction
instructions solely relying on the component’s (potentially mismatching) descrip-
tive data and predefined ontological knowledge. For that, Linked Data-Fu pro-
vides on the fly semantic reasoning and SPARQL query execution which serve
as the foundation for further developments.

4.3 Delegation of Communication Responsibility

The previously developed methods will be combined in a framework for delegat-
ing coordination to the component. The framework defines how abstract policies
have to be formulated to specify the expected behavior but on the other hand
contain enough flexibility to find a matching self-governed component. In gen-
eral, components are not deployed with exactly the required use case in mind,
and therefore have at least slightly divergent descriptions. Consequently, the
stated policies need to allow a certain degree of freedom.

180 S.R. Bader

The framework also specifies how these user defined policies can be opera-
tionalized regarding a faced situation. The derived rules serve to filter and rank
the existing alternatives regarding functional and non-functional characteristics
and thereby allow decentralized decision making. In order to gain a consistent
behavior, the policies together with the derived rules are also transferred to
the involved components. Therefore, each self-governed component is capable to
configure its neighborhood independently but according to specified manners.

5 Preliminary Results

Currently, the work is in the initial experiment stage. Together with research
and industry partners from the STEP project®, a starting set of self-governed
components from various domains is established. This will be the foundation of
the a planed Web Component Network (see Sect. 6).

The first conceptual ideas have already been presented at SEMANTiICS
2016°. Regarding the domain of industrial maintenance scheduling, the ongoing
digitalization increases the requirements for maintenance providers. The hetero-
geneity of interfaces, changing needs for functionalities and new business models
reveal the inadequacy of existing monolithic systems. It was outlined how seman-
tically enriched self-governed components can provide flexible integration into
distributed architectures. The next steps are the creation of a testing and devel-
opment environment. The Web itself is not suitable as conditions can neither be
repeated nor sufficiently controlled. On the other hand the Web is the targeted
habitat for the investigated self-governed components. Building on the exist-
ing Web Service Challenges [5] a sufficiently large set of various self-governed
components will be established.

The descriptions of the created components will include incorrect and lacking
annotations, syntactic and semantic errors and changes over time. The advan-
tage of a controlled environment is the ability to control the mutations and
thereby compare different strategies. The dynamic aspects, as (dis-)appearance
and sudden modifications of components, will be implemented by both prede-
fined, repeatable sequences and randomly triggered changes. Similarly to Joshi
et al. [10] the system is configurable via seed parameters and creates dynamic
but repeatable scenarios.

6 Evaluation Plan

This simulated Web environment will work in the same way and behave following
the same dynamic principles as the real Web but at smaller and therefore better
treatable scale. The target is a Gold Standard which serves as a testing and
evaluating environment for the developed methods but will also be part of the

8 https://www.projekt-step.de/.
9 http://www.slideshare.net /semanticsconference/sebastian-bader-semantic-technolo
gies-for-assisted-decisionmaking-in-industrial-maintenance.

https://www.projekt-step.de/
http://www.slideshare.net/semanticsconference/sebastian-bader-semantic-technologies-for-assisted-decisionmaking-in-industrial-maintenance
http://www.slideshare.net/semanticsconference/sebastian-bader-semantic-technologies-for-assisted-decisionmaking-in-industrial-maintenance

Automating the Dynamic Interactions of Self-governed Components 181

contributions to the research community. The reproducible conditions of the
network will allow other researchers to compare their approaches with the results
of this research and to further improve the state of the art.

In order to judge the quality for recognition and adjusting of API descriptions
of self-governed components (RQ 1) the performance will be measured with this
environment,.

Combining formerly unconnected Web Components (RQ 2) is a problem
also faced in frameworks for service composition. In the described problem the
connection effort shall be accomplished independently and self-organized by the
component facing a problem. Nevertheless, the performance of tools like Medley
[28] can be seen as baseline approaches.

In addition to the proposed evaluation environment, the developed concepts
and implementations regarding the delegation of the interaction channels will
also be implemented through the industry project STEP!Y. Existing company
policies will be provided and automatically translated into technical instructions
by the self-governed components. The resulting behavior is then compared to the
preferred choices of responsible managers.

7 Conclusion

The variety and amount of available components is a significant advantage of
applications running in the Web. A well known set of standard protocols and
principles enables the fast reuse of software functionalities. But existing Web
based services show that the heterogeneity of their behavior and unforeseeable
changes in the implementations require constant manual adjustments. Therefore,
a stronger utilization is prohibited.

Self-governed components are one method to enhance the degree of autom-
atization in distributed architectures. The proposed methods target the local
decision making to further empower the single components. The ability to inde-
pendently react on changes minimizes required maintenance of distributed Web
applications and decreases the barriers of component reuse. This results in faster
deployments, decreasing maintenance efforts and reduced complexity. The addi-
tionally provided evaluation environment makes the proposed approaches com-
parable and opens the paths to continuous improvements.

References

1. Alaya, M.B., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoperability
in oneM2M architecture. IEEE Commun. Mag. 53(12), 35-41 (2015)

2. Berners-Lee, T., Weitzner, D.J., Hall, W., O’Hara, K., Shadbolt, N., Hendler, J.A.:
A framework for web science. Found. Trends Web Sci. 1(1), 1-130 (2006)

3. Beygelzimer, A., Riabov, A., Sow, D., Turaga, D.S., Udrea, O.: Big data exploration
via automated orchestration of analytic workflows. In: ICAC 2013, pp. 153-158
(2013)

10 https://www.projekt-step.de/en/.

https://www.projekt-step.de/en/

182

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S.R. Bader

Bhargava, B., Angin, P., Ranchal, R., Lingayat, S.: A distributed monitoring and
reconfiguration approach for adaptive network computing, pp. 31-35. IEEE (2015)
Bleul, S., Weise, T., Geihs, K.: The web service challenge-a review on semantic
web service composition. Electron. Commun. EASST 17 (2009)

. Cao, X., Kapahnke, P., Klusch, M.: SPSC: Efficient composition of semantic ser-

vices in unstructured P2P networks. In: Gandon, F., Sabou, M., Sack, H., d’Amato,
C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088,
pp. 455-470. Springer, Cham (2015). doi:10.1007/978-3-319-18818-8_28

. Cardellini, V., D’Angelo, M., Grassi, V., Marzolla, M., Mirandola, R.: A

decentralized approach to network-aware service composition. In: Dustdar, S.,
Leymann, F., Villariy, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 34—
48. Springer, Cham (2015). doi:10.1007/978-3-319-24072-5_3. http://www.ce.
uniromaZ2.it /publications/esocc2015_xweb.pdf

Dimou, A., Verborgh, R., Sande, M.V., Mannens, E., Van de Walle, R.: Machine-
interpretable dataset and service descriptions for heterogeneous data access and
retrieval, pp. 145-152. ACM Press (2015)

. Harth, A., Knoblock, C.A., Stadtmller, S., Studer, R., Szekely, P.: On-the-fly inte-

gration of static and dynamic linked data. In: COLD 2013, pp. 1-12 (2013)
Joshi, A.K., Hitzler, P., Dong, G.: LinkGen: Multipurpose linked data generator.
In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krétzsch, M., Lecue, F., Flock, F.,
Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 113—-121. Springer, Cham (2016).
doi:10.1007/978-3-319-46547-0_12

Keppmann, F.L., Maleshkova, M., Harth, A.: Semantic technologies for realising
decentralised applications for the web of things. In: ICECCS, pp. 71-80 (2016)
Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL) (2017).
http://www.w3.org/TR/shacl/

La Torre, G., Monteleone, S., Cavallo, M., D’Amico, V., Catania, V.: A context-
aware solution to improve web service discovery and user-service interaction,
pp. 180-187. IEEE (2016)

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T.: OWL-S: Semantic markup for
web services. W3C Member Submission 22 (2004). 2007-04

Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart configuration of smart
environments. IEEE Trans. Autom. Sci. Eng. 13(3), 1247-1255 (2016)

Morrison, J.P.: Flow-based Programming. In: Proceedings of the 1st International
Workshop on Software Engineering for Parallel and Distributed Systems, pp. 25—29
1994

i:’almc))nari, M., Comerio, M., Paoli, F.: Effective and flexible NFP-based ranking
of web services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC/ServiceWave
-2009. LNCS, vol. 5900, pp. 546-560. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10383-4_40

Paoli, F.D., Palmonari, M., Comerio, M., Maurino, A.: A meta-model for non-
functional property descriptions of web services, pp. 393-400. IEEE (2008)
Pedrinaci, C., Cardoso, J., Leidig, T.: Linked USDL: A vocabulary for web-scale
service trading. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S.,
Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 68-82. Springer, Cham (2014).
doi:10.1007/978-3-319-07443-6_6

Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO)
(2006). http://www.wsmo.org/TR/d2/v1.3/

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Web Semant. 1(4), 377-396 (2004)

http://dx.doi.org/10.1007/978-3-319-18818-8_28
http://dx.doi.org/10.1007/978-3-319-24072-5_3
http://www.ce.uniroma2.it/publications/esocc2015_xweb.pdf
http://www.ce.uniroma2.it/publications/esocc2015_xweb.pdf
http://dx.doi.org/10.1007/978-3-319-46547-0_12
http://www.w3.org/TR/shacl/
http://dx.doi.org/10.1007/978-3-642-10383-4_40
http://dx.doi.org/10.1007/978-3-642-10383-4_40
http://dx.doi.org/10.1007/978-3-319-07443-6_6
http://www.wsmo.org/TR/d2/v1.3/

22.
23.
24.

25.

26.

27.

28.

Automating the Dynamic Interactions of Self-governed Components 183

Speiser, S.: Semantic annotations for WS-Policy. In: ICWS, pp. 449-456 (2010)
Thones, J.: Microservices. IEEE Softw. 32(1), 116-116 (2015)

Sande, M.V., Verborgh, R., Dimou, A., Colpaert, P., Mannens, E.: Hypermedia-
based discovery for source selection using low-cost linked data interfaces. IJSWIS
12(3), 79-110 (2016)

Verborgh, R., Harth, A., Maleshkova, M., Stadtmller, S., Steiner, T., Taheriyan,
M., Van de Walle, R.: Survey of semantic description of REST APIs. In: Pautasso,
C., Wilde, E., Alarcon, R. (eds.) REST Advanced Research Topics and Practical
Applications, pp. 69-89. Springer, New York (2014)

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés,
J.G.: Description and interaction of restful services for automatic discovery and
execution. In: International Workshop on AFMS. FTRA (2011)

Wittern, E., Fischer, R.: A life-cycle model for software service engineering. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 164-171. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40651-5_13
Yahia, E.B.H., Réveillere, L., Bromberg, Y.-D., Chevalier, R., Cadot, A.:
Medley: An event-driven lightweight platform for service composition. In:
Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671,
pp. 3-20. Springer, Cham (2016). doi:10.1007/978-3-319-38791-8_1

http://dx.doi.org/10.1007/978-3-642-40651-5_13
http://dx.doi.org/10.1007/978-3-319-38791-8_1

	Automating the Dynamic Interactions of Self-governed Components in Distributed Architectures
	1 Introduction
	2 State of the Art
	3 Problem Statement and Contributions
	3.1 Validating and Updating Semantic Descriptions of Web Components
	3.2 Spontaneous Connector for Self-governed Components
	3.3 Delegation of Communication Responsibility in Distributed Architectures

	4 Research Methodology and Approach
	4.1 Validating and Deriving Descriptions of Self-governed Components
	4.2 Spontaneous Connector for Self-governed Components
	4.3 Delegation of Communication Responsibility

	5 Preliminary Results
	6 Evaluation Plan
	7 Conclusion
	References

