
smartAPI: Towards a More Intelligent Network
of Web APIs

Amrapali Zaveri1,2(B), Shima Dastgheib1, Chunlei Wu3, Trish Whetzel4,
Ruben Verborgh5, Paul Avillach6, Gabor Korodi6, Raymond Terryn7,

Kathleen Jagodnik8,9,10, Pedro Assis11, and Michel Dumontier1,2

1 Stanford Center for Biomedical Informatics Research,
Stanford University, Stanford, USA

2 Institute of Data Science, Maastricht University, Maastricht, The Netherlands
amrapali.zaveri@maastrichtuniversity.nl

3 The Scripps Research Institute, San Diego, CA, USA
4 T2 Labs, Sunnyvale, CA, USA

5 Imec – IDLab, Ghent University, Gent, Belgium
6 Harvard Medical School, Boston, MA, USA

7 University of Miami, Miller School of Medicine, Miami, FL, USA
8 Icahn School of Medicine at Mount Sinai, New York, NY, USA

9 NASA Glenn Research Center, Cleveland, OH, USA
10 Baylor College of Medicine, Houston, TX, USA

11 Department of Genetics, Stanford University, Stanford, USA

Abstract. Data science increasingly employs cloud-based Web applica-
tion programming interfaces (APIs). However, automatically discovering
and connecting suitable APIs for a given application is difficult due to
the lack of explicit knowledge about the structure and datatypes of Web
API inputs and outputs. To address this challenge, we conducted a sur-
vey to identify the metadata elements that are crucial to the descrip-
tion of Web APIs and subsequently developed the smartAPI metadata
specification and associated tools to capture their domain-related and
structural characteristics using the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles. This paper presents the results of the
survey, provides an overview of the smartAPI specification and a refer-
ence implementation, and discusses use cases of smartAPI. We show that
annotating APIs with smartAPI metadata is straightforward through an
extension of the existing Swagger editor. By facilitating the creation of
such metadata, we increase the automated interoperability of Web APIs.
This work is done as part of the NIH Commons Big Data to Knowledge
(BD2K) API Interoperability Working Group.

Keywords: Web API · Web API description · Web services · Linked
data · FAIR principles

1 API Interoperability

Workflows for data analysis are increasingly employing cloud-based, Web-
friendly application programming interfaces (APIs). Thousands of Web tools
c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part II, LNCS 10250, pp. 154–169, 2017.
DOI: 10.1007/978-3-319-58451-5 11



smartAPI: Towards a More Intelligent Network of Web APIs 155

and APIs are available through Web API registries such as ProgrammableWeb1,
BioCatalogue2 (specifically for life science data), and cloud platforms such as
Galaxy3. However, sifting through these and other API repositories to define
a linkable toolset pertinent to the workflow is challenging. Discovering relevant
APIs often requires a precise combination of matching keywords; and once dis-
covered, the API outputs must be examined to determine whether or not they
can be connected together. This task is made more difficult since, in general,
there is a lack of rich metadata that precisely describe the APIs, their ser-
vices, and the data on which they operate. Improvements to this task have been
achieved slowly since authoring rich metadata is seen as tedious and unreward-
ing. Providing easy methods for Web API annotation that integrate with shared
terminologies could ease this perception and foster a more discoverable envi-
ronment for API repositories. In turn, users could more precisely find linkable
services that meet their functional requirements as the number of APIs grows.

The problem of authoring coherent, comprehensive, and structured API
metadata is gaining attention as a pressing matter due to the aforementioned
demand and a lack of work in this area that has fully addressed the issues
described. The API metadata problem requires an end-to-end solution – from
the specification of metadata elements, to developing metadata templates, to fill-
ing out such templates using ontology-based terms, to offering developer-friendly
solutions to augment API results. All of this needs to occur in a manner that
facilitates discovery, exploration, and reuse. While this problem is admittedly
large and complex, our objective here is to carve out specific elements and pilot
a lightweight software system for the annotation, discovery, and reuse of what
we call smart Web APIs. Our approach is innovative because we address first
the problem of API metadata authoring, a task generally disliked in the field,
by making it easier to generate useful metadata, and by demonstrating concrete
benefits of semantic metadata to developers and users alike.

The overall aim of this project is to undertake a pilot effort that investigates
the use of semantic technologies such as ontologies and Linked Data for the anno-
tation, discovery, and reuse of APIs. Linked Data4 involves the creation of typed
links between data from different sources on the Web. It has the properties of
being machine-readable, having a meaning that is explicitly defined, being linked
to other datasets external to itself, and being able to be linked to from external
datasets [4]. The Linked Data principles define the use of Web technologies to
establish data-level links among diverse data sources. Linked Data is very useful
in cases where exchanges of heterogeneous data are required between distributed
systems [2]. Web services can similarly benefit from these principles to facilitate
integration and composition [20]. The smartAPI specification employs Linked
Data with the aim to connect diverse data sources in pursuit of improved API
discovery, interoperability, and reuse.

1 programmableweb.com.
2 https://www.biocatalogue.org/.
3 https://galaxyproject.org/.
4 https://www.w3.org/DesignIssues/LinkedData.html.

http://programmableweb.com
https://www.biocatalogue.org/
https://galaxyproject.org/
https://www.w3.org/DesignIssues/LinkedData.html


156 A. Zaveri et al.

Our main objective is to develop and evaluate a lightweight software system
for the discovery and reuse of smart Web APIs. Smart Web APIs have the advan-
tages that they (i) are easier to discover due to rich semantic annotations, (ii)
can be readily connected together without additional data wrangling, and (iii)
eliminate data silos by providing Linked Data. Our proposed system will consist
of two key components: (a) a coordinated facility for the intelligent annotation
of smart Web APIs; and (b) an application to discover smart APIs and how
they connect to each other. Essentially, smartAPI helps make APIs FAIR [26]:
Findable with the API metadata and the registry; Accessible with the detailed
API operations metadata; Interoperable with the responseDataType metadata
(profiler); and Reusable with the access to existing APIs stored in an open repos-
itory. This work is done as part of the NIH Commons Big Data to Knowledge
(BD2K) API Interoperability Working Group (WG)5 and is available at http://
smart-api.info/.

This project has four main contributions:

– Development of the smartAPI metadata specification, based on the results of
survey of API metadata guidelines and metadata-in-use in API repositories
(Sect. 4).

– Development of an intelligent tool that supports the composition and valida-
tion of API metadata that conforms to the smartAPI specification (Sect. 5).

– Development of a profiler that automatically annotates the API response data
with semantic identifiers (Sect. 5).

– Development of a repository and smartAPI-conformant API to submit,
search, and browse API descriptions (Sect. 5) and obtain field-specific meta-
data suggestions.

We list the different use cases and projects, specifically in the biomedical domain,
that are actively participating in the API Interoperability WG and in the process
of annotating (or plan to annotate) their APIs using the smartAPI specifica-
tion (Sect. 6). We then conclude with a discussion on the future direction of this
work in Sect. 7.

2 Related Work

Currently, there exist several challenges in finding relevant APIs as well as
reusing those APIs. We discuss both of these challenges in this section. Also,
when discussing the annotation and description of Web APIs, we need to distin-
guish two main groups that interact with these APIs [24]. First, there are anno-
tations targeted at developers, with the main aim of facilitating development.
Second, there are efforts to describe Web APIs in such a way that automated
clients can access and compose them. In this section, we will provide a brief
overview of both kinds of annotations.

5 https://bd2kccc.org/index.php/working-groups/?v=commons&h=front.

http://smart-api.info/
http://smart-api.info/
https://bd2kccc.org/index.php/working-groups/?v=commons&h=front


smartAPI: Towards a More Intelligent Network of Web APIs 157

2.1 Challenges of Finding APIs

Finding relevant APIs is a challenging task for developers for diverse rea-
sons. Extensive collections of useful and representative code and data are still
lacking [10] despite the quick proliferation of APIs that makes the discovery of
resources relevant to individual developers and users difficult [22]. The most vis-
ible and accessible APIs are often those that are currently most used, relegating
newer and potentially more useful, but less popular, APIs to obscurity [22].
Application frameworks and software libraries often lack proper documenta-
tion [9,21], and more sophisticated algorithms need to be developed to facili-
tate the identification of useful resources [10]. The discovery of relevant APIs
can be facilitated by enhancing rich metadata that describe APIs and the ser-
vices and data associated with them. The smartAPI initiative contributes toward
improved discoverability by providing methods that permit simple and intuitive
annotation of Web APIs and that are integrated with standard ontologies.

2.2 Challenges of Reusing APIs

Reuse in the context of Web APIs can mean multiple things [24]. First, an
API itself is a means to enable reuse of the functionality offered by a certain
server. Second, the client-side code for interacting with an API can be (partially)
reused across applications. Third, the interface of an API – independent of its
implementation – can be (partially) reused by other servers, as is the case with
standardized APIs. This third form of reuse is unfortunately rare, since many
Web APIs are designed from scratch. The resulting heterogeneity leads to a
steep learning curve for the integration of existing Web APIs in applications
[10,24], which is the fourth and most common meaning of “Web API reuse”. The
smartAPI initiative aims to tackle this challenge by developing a profiler that
features automatic annotation of API response data. This profiler is integrated
with the smartAPI editor to facilitate the semantic annotation of APIs. These
features enhance reusability as well as interoperability.

2.3 Annotations for Developers

The XML-based Web Service Description Language (WSDL) provided one of the
first models to describe Web services [5,6]. However, WSDL only provides the
mechanisms to characterize the technical implementation of Web services; it does
not provide the means to capture the functionality of a service. Furthermore, the
module source code is generated automatically using a WSDL description, which
is then compiled into a larger program. Then, if the description changes, the pro-
gram no longer works, even if such a change leaves the functionality intact. This
prevents WSDL from being used for automatic service discovery at runtime.
Furthermore, WSDL is limited by proprietary vendor-specific implementations,
being bound to a specific programming language. Swagger6, on the other hand,

6 http://swagger.io/.

http://swagger.io/


158 A. Zaveri et al.

provides an editor for authoring HTTP API documents, and is widely used by
API developers7. Swagger uses the OpenAPI specification8, which defines a stan-
dard, language-agnostic interface to HTTP APIs. However, each API developer
annotates his API in isolation, which results in less interoperable and reusable
APIs. The current Web API landscape is hindered by the problem of scalability
as every API requires its own hardcoded clients, which only benefits the devel-
opers. In particular on the current Web, there is a one-to-many relationship
between Web APIs and clients: a single API often has clients for one or more
programming languages, but none of these clients work with other APIs. As
such, individual clients do not scale with the number of APIs. This makes each
API unusually short-lived with a tightly coupled relationship of highly subjec-
tive quality. This directly leads to increase in development costs and prevents
the design of a more intelligent generation of clients that provide cross-API com-
patibility [24]. Annotating APIs is an important step in making them accessible
for more generic clients.

2.4 Descriptions for Automated Clients

Many approaches for service description exist with different underlying service
models. OWL-S [18] and WSMO [16] are the most well-known Semantic Web
Service description paradigms. They both allow the description of high-level
semantics of services whose message format is WSDL [7]. Though extension to
other message formats is possible, this is rarely seen in practice. Semantic Anno-
tations for WSDL (SAWSDL [14]) aim to provide a more lightweight approach
for bringing semantics to WSDL services. Composition of Semantic Web Services
has been well documented, but all approaches focus on Remote Procedure Call
(RPC) interactions and require specific software [19].

In recent years, several description formats for the more lightweight Web
APIs have emerged [25]. Several methods aim to enhance existing technologies to
deliver annotations of Web APIs. HTML for RESTful Services (hRESTS, [12])
is a microformats extension to annotate HTML descriptions of Web APIs in
a machine-processable way. SA-REST [8] provides an extension of hRESTS that
describes other facets such as data formats and programming language bindings.
MicroWSMO [13,17], an extension to SAWSDL that enables the annotation of
RESTful services, supports the discovery, composition, and invocation of Web
APIs, but requires additional software.

The description of hypermedia APIs is a relatively new field. Hydra [15] is
a vocabulary to support API descriptions, but does not directly support auto-
mated composition. RESTdesc [23] is a description format for hypermedia APIs
that describes them in terms of resources and links. The Resource Linking Lan-
guage (ReLL, [1]) features media types, resource types, and link types as prior-
ities for description.

With our smartAPI specification, we build upon the already existing widely
used OpenAPI specification to provide richer metadata that precisely describes

7 10M+ downloads according to http://swagger.io/, last accessed Dec 14, 2016.
8 https://github.com/OAI/OpenAPI-Specification.

http://swagger.io/
https://github.com/OAI/OpenAPI-Specification


smartAPI: Towards a More Intelligent Network of Web APIs 159

the APIs, their services, the data on which they operate, and the data they
return. Our smartAPI editor, which is also an extension of the popular Swagger
editor, makes it easier to generate useful metadata and indicates which terms are
most widely used to annotate Web APIs. The editor also supports suggestion of
metadata elements and values along with their usage frequency to the next API
provider while she is annotating her API. Furthermore, the smartAPI profiler
(c.f. Sect. 5), integrated within the editor, provides automatic annotation of the
API response data. Finally, the smartAPI registry serves as a repository to save,
search, and browse the created API descriptions. Consequently, the smartAPI
framework helps to make APIs FAIR.

3 Survey of API Metadata in the Wild

We conducted a survey of existing metadata repositories and specifications that
describe APIs. In particular, the following eight resources were surveyed:

– Repositories:
• Biocatalogue [3]9, a registry of biological Web APIs with 1,184 entries.
• Programmable Web10, a directory of internet-based APIs with over 15,000

API descriptions.
• Tools & Data Services Registry [11]11, a registry with information about

analytical tools and data APIs for bioinformatics with 2, 331 entries.
– Specifications:

• OpenAPI Initiative12, created by a consortium of forward-looking indus-
try experts who recognize the immense value of standardizing how HTTP
APIs are described.

• Minimal Information About a Software (MIAS)13, a key set of minimal
fields can that provide maximum value when describing a software.

• Prototype smartAPI Specification14, a specification describing semanti-
cally annotated Web APIs that facilitates discovery and reuse of Web-
based APIs.

• Semantic Automated Discovery and Integration (SADI)[27]15, a set of
design patterns defining the behavior of data retrieval and/or analysis
resources that must interoperate on the Semantic Web.

• schema.org API Reference16, reference documentations for APIs as
described by schema.org.

9 https://www.biocatalogue.org, Accessed April 9, 2016.
10 http://www.programmableweb.com/apis/directory, Accessed April 10, 2016.
11 https://bio.tools/, Accessed April 9, 2016.
12 https://www.openapis.org/, Accessed April 11, 2016.
13 http://www.softwarediscoveryindex.org/, Accessed April 11, 2016.
14 http://smart-api.info/website/docs/specification/, Accessed April 11, 2016.
15 https://rawgit.com/wilkinsonlab/SADI-Specification/master/SADI-W3C-Member-

Submission.html#service-metadata, Accessed April 12, 2016.
16 https://schema.org/APIReference, Accessed April 12, 2016.

https://www.biocatalogue.org
http://www.programmableweb.com/apis/directory
https://bio.tools/
https://www.openapis.org/
http://www.softwarediscoveryindex.org/
http://smart-api.info/website/docs/specification/
https://rawgit.com/wilkinsonlab/SADI-Specification/master/SADI-W3C-Member-Submission.html#service-metadata
https://rawgit.com/wilkinsonlab/SADI-Specification/master/SADI-W3C-Member-Submission.html#service-metadata
https://schema.org/APIReference


160 A. Zaveri et al.

We retrieved and listed the metadata elements from each of the resources and
also analyzed the degree to which each field was actually employed in practice
by its frequency of usage. For instance, in the case of Programmable Web, which
contains over 15, 000 API descriptions17, all of the entries use the Title and
Description fields. However, only 90% of them supply details about the API
provider and the primary category to which the API belongs. Results of the
survey are available at https://goo.gl/F4OLnW. Thereafter, we aggregated all
the metadata elements from the full set of eight resources to produce a common
list of 54 API metadata elements (as discussed in Sect. 4).

4 SmartAPI Metadata Specification

This standard is the result of a survey conducted by the NIH Commons Big Data
to Knowledge (BD2K) API Interoperability Working Group of existing meta-
data repositories and specifications that describe APIs. The smartAPI specifi-
cation implements the FAIR principles: Findable, Accessible, Interoperable, and
Reusable. In particular, we aggregated all the metadata elements from the eight
surveyed resources to produce a common list of 54 API metadata elements. We
subsequently divided these elements into five categories:

– API Metadata (Table 118): 20 elements
– Service Provider Metadata (Table 2): 6 elements
– API Operation Metadata (Table 3): 12 elements
– Operation Parameter Metadata (Table 4): 10 elements
– Operation Response Metadata (Table 5): 6 elements

The smartAPI Specification includes 21 metadata elements beyond those
included in the OpenAPI specification. Examples of the 21 elements are the cat-
egory to which the API belongs; metadata format and access mode at the API
metadata level; the parameter type and parameter value type at the operation
parameter level; and the conformance to a specified response profile at the oper-
ation response level. The metadata elements marked with a * in the tables are
those specific to the smartAPI specification.

Next, we re-evaluated each of the metadata fields according to its applica-
bility and relevance, and further determined whether each MUST, SHOULD,
or MAY be included in the API description. The cardinality and datatype of
metadata fields were further specified along with a description and example 19.
The smartAPI Specification along with cardinality, datatype, and an example of
each metadata element is available at https://websmartapi.github.io/smartapi
specification/.
17 last accessed April 2016.
18 Note: The tables only contain the elements which are MUST and SHOULD. All

other elements can be found on the website https://websmartapi.github.io/smartapi
specification/.

19 The keywords “MUST”, “SHOULD”, and “MAY” in this document are to be inter-
preted as described in RFC 2119 http://www.ietf.org/rfc/rfc2119.txt.

https://goo.gl/F4OLnW
https://websmartapi.github.io/smartapi_specification/
https://websmartapi.github.io/smartapi_specification/
https://websmartapi.github.io/smartapi_specification/
https://websmartapi.github.io/smartapi_specification/
http://www.ietf.org/rfc/rfc2119.txt


smartAPI: Towards a More Intelligent Network of Web APIs 161

Table 1. smartAPI specification metadata elements: API metadata.

Element Description Level # Type Example

Name A human-readable label
for the API

MUST 1..1 URI MyGene.info API

Access point The base URI for
interacting with the API

MUST 1..1 URI
http://mygene.info/

Description A human-readable
description of the API
functionality

SHOULD 0..1 string MyGene.info Gene

Query Web APIs.

Learn more at

http://mygene.info/.

Response MIME-type A list of media types
the APIs can produce.
Can be overridden on
specific API calls

SHOULD 0..n string application/json

Documentation Documentation page
URL for the API

SHOULD 0..n URI
http://docs.mygene.
info/en/

Version The version of the API SHOULD 1..1 string 3.0.0

Terms of service A document that
describes the terms of
use for the API

SHOULD 0..1 string
http://mygene.info/
terms/

Support* Indication of whether
SSL Support is present
or absent

SHOULD 0..1 bool yes

Authentication mode Lists the required
security schemes to
execute this operation

SHOULD 0..1 URI none

Table 2. smartAPI specification metadata elements: Service Provider Metadata.

Element Description Level # Type Example

Responsible
organization

The identifying
name of the
contact person-
/organization

MUST 1..1 string The Scripps Research

Institute

Responsible
developer

Name of the
developer (User
ID/Name)

MUST 1..1 URI
http://orcid.org/
0000-0002-2629-6124

Contact email An e-mail address
where the
provider of the
service may be
contacted

MUST 1..1 email cwu@scripps.edu

http://mygene.info/
http://mygene.info/.
http://docs.mygene.info/en/
http://docs.mygene.info/en/
http://mygene.info/terms/
http://mygene.info/terms/
http://orcid.org/0000-0002-2629-6124
http://orcid.org/0000-0002-2629-6124


162 A. Zaveri et al.

Table 3. smartAPI specification metadata elements: API Operation Metadata.

Element Description Level # Type Example

Operation title* Title of the operation.
A unique identifier of
the operation

MUST 1..1 string q

Operation description Description of the
operation

MUST 1..1 string Query string.

Examples:

"CDK2",

"NM 052827",

"204639 at".

Consumes A list of MIME types
the operation can
consume

SHOULD 0..n string application/json

HTTP method The base path on
which the API is
served, which is
relative to the host

SHOULD 0...1 string GET

Authentication mode Lists the required
security schemes to
execute this operation

SHOULD 0..n string none

Transfer protocol The transfer protocol
of the API

SHOULD 0..1 string http

Table 4. smartAPI specification metadata elements: API Parameter Metadata.

Element Description Level # Type Example

Operation parameter
name

Name of the
operation parameter

MUST 1..1 string q

Operation parameter
description

Description of
operation parameter

MUST 1..1 string multiple query

terms separated by

comma (also

supports "+" or

white space), but

no wildcards,

e.g.,

"q=1017,1018" or

"q=CDK2+BTK"

Location Determines the
location of the
parameter

MUST 1..1 string query

Parameter type* Type of parameter SHOULD 0..n string inputParameter

Parameter value
type*

Type of the value of
the particular
parameter

SHOULD 0..n string enterzgene



smartAPI: Towards a More Intelligent Network of Web APIs 163

Table 5. smartAPI specification metadata elements: Operation Response Metadata.

Element Description Level # Type Example

Response
format

A list of MIME
types the APIs
can consume

MUST 1..n string application/json

Example
response
value

An example of
the response
value

SHOULD 0..n integer 200

5 SmartAPI Implementation

smartAPI serves both the API providers and API users. The framework consists
of three modules: the editor that facilitates the API metadata authoring for
API providers; the searchable API registry where the created API documents
are stored and indexed; and the profiler that annotates the API response data.

The smartAPI editor is an extension of the Swagger editor20, which is widely
used by API providers. The Swagger editor uses the OpenAPI specification and
provides a framework for creating interactive HTTP API documentation. First,
we extended the OpenAPI specification JSON file to incorporate the newly
added smartAPI metadata. We extended the auto-completion functionality of
the Swagger editor, by suggesting not only the list of predefined metadata and
values, but also the values retrieved from the indexed API documents previously
created and saved in the registry21, along with the frequency of their usage.
Every new API document added to the registry is indexed using Elasticsearch
query engine22, and their metadata elements and values along with their usage
frequency are suggested to the next API provider (Fig. 1b). The conformance
level (Required, Recommended, or Optional) of the suggested metadata element
is also provided (Fig. 1a).

The smartAPI profiler, shown in Fig. 2a, provides automatic annotation of
the API response data, i.e. responseDataType (Fig. 2b). To do this, the API
response data (e.g. http://mygene.info/v3/gene/1017) is recursively traversed to
provide a keypath/value pair where the keypath consists of one or more labels
concatenated together and the value is either a single value or list of strings.
The resource annotation is provided by comparing the keypath labels to resource
names and synonyms from Identifiers.org23. In cases where a match is not found,
an example value for the keypath is then compared against resource identifier
patterns from Identifiers.org and resulting matches are displayed as suggested
annotations. The user may also add his own resource annotation if one does
not exist. The annotated API response data is stored in the responseDataType
element (Fig. 2b).
20 http://swagger.io/swagger-editor/.
21 http://smart-api.info/registry/.
22 https://www.elastic.co/products/elasticsearch.
23 http://identifiers.org/.

http://mygene.info/v3/gene/1017
http://swagger.io/swagger-editor/
http://smart-api.info/registry/
https://www.elastic.co/products/elasticsearch
http://identifiers.org/


164 A. Zaveri et al.

Fig. 1. Auto-suggestion functionality for API metadata elements and values.

Fig. 2. Semantic annotation of the API response (e.g. http://mygene.info/v3/gene/
1017) using the smartAPI profiler.

The “parameterValueType” and “responseDataType” elements are added
to the specification to semantically annotate the input (parameter) and the
output (response) of the API respectively. As shown in Fig. 1b and Fig. 2b, the
values of these metadata elements are semantic identifiers from identifiers.org,
prefixcommons24, and other relevant ontologies.

The code, full documentation, and tutorial are available at https://github.
com/WebsmartAPI/swagger-editor. A live demo is also available 25.

6 SmartAPI Use Cases

One of the main use cases in which we will examine the usefulness and usability
of the smartAPI system is to find and explore connections pertaining to car-
diovascular pharmacogenomics. Our use case begins with a set of genes that
are differentially expressed in hypertrophic cardiomyopathy (HCM), a leading
cause of death among young athletes. HCM arises from genetic defects in close
to 20 different genes, although the most common forms of HCM result from
mutations in genes encoding proteins of the cardiac sarcomeric apparatus. One
concern is that young athletes may be increasing their risk of HCM through

24 http://prefixcommons.org/.
25 https://www.youtube.com/watch?v=EQpUEiOu1ng&t=3s.

http://mygene.info/v3/gene/1017
http://mygene.info/v3/gene/1017
https://github.com/WebsmartAPI/swagger-editor
https://github.com/WebsmartAPI/swagger-editor
http://prefixcommons.org/
https://www.youtube.com/watch?v=EQpUEiOu1ng&t=3s


smartAPI: Towards a More Intelligent Network of Web APIs 165

pharmacogenomic interactions. Our objective is to use the smartAPI platform
to i) discover which, if any, differentially expressed genes in HCM are targeted
by FDA-approved drugs, and ii) identify which HCM genes are also differen-
tially expressed in other published cardiovascular studies. Information about
drug targets and pharmacogenomics is already available as Linked Data, through
the open source Bio2RDF project26. Bio2RDF provides nearly 11 billion Linked
Data points from 35 life science databases including DrugBank27 (a source of
drug targets) and PharmGKB28 (a source of pharmacogenomic interactions).
Users of the smartAPI system can gain access to Bio2RDF data by following
the Linked Data generated by the MyGene.info and MyVariant.info smartAPIs
to Identifiers.org, which in turn will provide links to these Bio2RDF data.

The API Interoperability group is a Working Group29 in the NIH Commons
Framework project. The NIH Commons is defined as “an initiative which is
essentially a shared virtual space where scientists can work with the digital
objects of biomedical research, i.e., it is a system that will allow investigators to
find, manage, share, use and reuse data, software, metadata and workflows.”30. A
series of Commons pilots has been initiated to develop and test these components
in order to understand and evaluate how well they will contribute to an ecosystem
that will effectively support and facilitate sharing and reuse of digital objects.

Below, we list the projects that are actively participating in the WG and are
in the process of annotating (or plan to annotate) their APIs, specifically in the
biomedical domain, using the smartAPI specification:

– MyGene.info [28]31 provides Web APIs for both gene queries and gene anno-
tation retrieval. MyGene.info services are being used in Web applications that
require querying genes, e.g. BioGPS32, as well as in an analysis pipeline to
retrieve regularly updated gene annotations. MyGene.info has a Swagger-
based API document that was loaded into the smartAPI Swagger editor for
being validated against the smartAPI specification and saved into the smar-
tAPI registry33. The validation process provided a list of missing required,
recommended, and optional metadata elements. As a result,“contact” info
was added as a required element and the “parameterType”, “parameter-
ValueType”, and “responseDataType” were recommended. These additions
semantically enrich the API document and increase its interoperability with
other relevant APIs.

– MyVariant.info [28]34 provides simple-to-use Web APIs to query/retrieve
variant annotation data, aggregated from many popular data resources.

26 bio2rdf.org.
27 http://download.bio2rdf.org/release/3/drugbank/drugbank.html.
28 http://download.bio2rdf.org/release/3/pharmgkb/pharmgkb.html.
29 https://bd2kccc.org/index.php/working-groups/?v=commons&h=front.
30 https://datascience.nih.gov/commons.
31 http://mygene.info/.
32 http://biogps.org.
33 http://smart-api.info/registry/.
34 http://myvariant.info/.

http://bio2rdf.org
http://download.bio2rdf.org/release/3/drugbank/drugbank.html
http://download.bio2rdf.org/release/3/pharmgkb/pharmgkb.html
https://bd2kccc.org/index.php/working-groups/?v=commons&h=front
https://datascience.nih.gov/commons
http://mygene.info/
http://biogps.org
http://smart-api.info/registry/
http://myvariant.info/


166 A. Zaveri et al.

MyVariant.info was modified and saved into the smartAPI registry through
the same process as MyGene.info.

– The National Institutes of Health Library of Integrated Network
Cellular Signatures (NIH LINCS) Data Portal35 provides access to a
diverse array of novel bioassay data that has been curated and packaged with
rich metadata for the assay entities. These metadata conform to the NIH
LINCS metadata standards36 that enable integration and interpretation of
LINCS data. The LINCS Data Portal API37 provides programmatic access
to all datasets, dataset entities, and metadata within the LINCS Data Portal.

– The BD2K PIC-SURE HTTP API facilitates platform-agnostic program-
matic access to disparate patient-level heterogeneous datasets to authenti-
cated users. The API provides a selection of methods to access, query, and
interrogate data in diverse formats38. To test the PIC-SURE API, a demo
with the National Health and Nutritional Examination Survey (NHANES)
is available online39. NHANES is a publicly available epidemiological survey
conducted by the US CDC, recording over 1, 100 variables from more than
41, 000 respondents across the US; it is essentially a snapshot of patients’
exposomes and phenomes. The exposome is composed of collections of envi-
ronmental, behavioral, and dietary factors that are associated with health
and disease, and phenomes include clinical and physiological phenotypes that
are predictive of health.

– The Alliance of Genome Resources (AGR)40 is an initiative formed in
2016 that has the goals of providing better support for the biological sci-
ences via an integration of shared data; standardization of data models and
interfaces; and unified outreach to researchers, educators, and the public. The
initial members of AGR are the Gene Ontology Consortium41 and six model
organism databases: Saccharomyces Genome Database42, WormBase43, Fly-
Base44, Zebrafish Model Organism Database45, Mouse Genome Database46

and Rat Genome Database47. This integration will provide the best visual-
izations and tools currently in use and allow efficient development of new
tools in a collaborative manner. As the project moves toward deeper inte-
gration of content and software, we will provide easy-to-use cross-organism
queries of the extensive data available in the component resources. The data

35 http://lincsportal.ccs.miami.edu/dcic-portal/.
36 http://www.lincsproject.org/data/data-standards/.
37 http://lincsportal.ccs.miami.edu/apis/.
38 http://bd2k-picsure.hms.harvard.edu.
39 http://bd2k-picsure.hms.harvard.edu/example-01.html.
40 http://www.alliancegenome.org.
41 http://www.geneontology.org/.
42 http://www.yeastgenome.org/.
43 http://www.wormbase.org/.
44 http://www.flybase.org/.
45 http://www.zfin.org/.
46 http://www.informatics.jax.org/.
47 http://rgd.mcw.edu/.

http://lincsportal.ccs.miami.edu/dcic-portal/
http://www.lincsproject.org/data/data-standards/
http://lincsportal.ccs.miami.edu/apis/
http://bd2k-picsure.hms.harvard.edu
http://bd2k-picsure.hms.harvard.edu/example-01.html
http://www.alliancegenome.org
http://www.geneontology.org/
http://www.yeastgenome.org/
http://www.wormbase.org/
http://www.flybase.org/
http://www.zfin.org/
http://www.informatics.jax.org/
http://rgd.mcw.edu/


smartAPI: Towards a More Intelligent Network of Web APIs 167

access will be available via an API that will be conformant to the smartAPI
specification.

The API Interoperability project is still an ongoing project, and there are a
number of BD2K centers that have been actively participating in the WG meet-
ings and have expressed interest in adopting and implementing the smartAPI
specification and editor to annotate their APIs. Once we have annotated the
APIs using the smartAPI editor, we will store them in the smartAPI registry48,
which will not only provide all of the smartAPI-conformant APIs in one loca-
tion but will also be integrated into the editor. With this integration, the data
and values will be used to suggest related fields and values for new similar APIs
during the annotation process (refer to Sect. 5).

7 Conclusions and Future Work

In this paper, we have defined a smartAPI metadata template that contains
54 API metadata elements used to describe an API. Results are reported for a
survey of eight resources that were used to identify these API-associated meta-
data. We constructed the smartAPI metadata template for the validation of API
annotations. Additionally, we built a Web application for the intelligent annota-
tion of smartAPIs. Since authoring metadata can be tedious and overwhelming,
we developed a software built upon the already existing Swagger editor that will
help users describe their APIs by (i) indicating highly used fields, (ii) suggest-
ing commonly used values, and (iii) enabling the discovery and reuse of terms
authored by others. Moreover, we developed a profiler for automatic annotation
of API response data and integrated that within our editor to enable semantic
annotation of APIs, which increases their reusability and interoperability.

Our proposal to facilitate the authoring of rich API metadata is especially
significant because of the increased emphasis on providing cloud-based APIs. If
left unmanaged, a majority of the APIs will lack the proper metadata needed to
find APIs. As sketched out by the participants of the Software Discovery Index
Workshop49, our work begins to explore their roadmap to address challenges
facing specifically the biomedical research community in locating, citing, and
reusing biomedical software. We believe that the semantic tools and technologies
developed in this project will form an important cornerstone in the overall vision
of the Commons. As future work, we will assess the ease and utility of authoring
smart API metadata for biomedical APIs as well as APIs in other domains.
Although we have developed our own API repository (http://smart-api.info/
registry/), we expect to be able to export to other repositories that generally
have fewer metadata requirements, e.g. ProgrammableWeb. Additionally, our
main aim for future work will be to focus on use cases that illustrate our aim of
making the APIs interoperable.

48 http://smart-api.info/registry/.
49 http://www.softwarediscoveryindex.org/.

http://smart-api.info/registry/
http://smart-api.info/registry/
http://smart-api.info/registry/
http://www.softwarediscoveryindex.org/


168 A. Zaveri et al.

Acknowledgments. The smartAPI pilot project was funded as a supplement to
CEDAR (U41HG000131521). Mygene.info and MyVariant.info are supported by
U01HG008473 (from NHGRI). The LINCS Data Portal is supported by grant
U54HL127624 awarded by the National Heart, Lung, and Blood Institute through
funds provided by the trans-NIH LINCS Program http://www.lincsproject.org/ and
the trans-NIH Big Data to Knowledge (BD2K) initiative http://www.bd2k.nih.gov.

References

1. Alarcón, R., Wilde, E.: RESTler: Crawling RESTful services. In: Proceedings of the
19th International Conference on World Wide Web, pp. 1051–1052. ACM (2010)

2. Auer, S., Heath, T., Bizer, C., Berners-Lee, T.: LDOW 2016: 9th workshop on
linked data on the web. In: Proceedings of the 25th International Conference Com-
panion on World Wide Web, WWW 2016 Companion, International World Wide
Web Conferences, pp. 1039–1040 (2016)

3. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wol-
stencroft, K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: Bio-
Catalogue: A universal catalogue of web services for the life sciences. Nucleic Acids
Res. 38, W689–W694 (2010)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Semantic
Services, Interoperability and Web Applications: Emerging Concepts (2009)

5. Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S.: Web Services Description
Language (WSDL) Version 2.0. Part 1: Core Language. W3C Recommendation
(2007). http://xml.coverpages.org/wsdl20000929.html

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services
Description Language (WSDL) 1.0. W3C Recommendation (2000). http://xml.
coverpages.org/wsdl20000929.html

7. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services
Description Language (WSDL). W3C Note, March 2001. http://www.w3.org/TR/
wsdl

8. Gomadam, K., Ranabahu, A., Sheth, A.: SA-REST: Semantic Annotation of
Web Resources. W3C Member Submission, April 2010. http://www.w3.org/
Submission/SA-REST/

9. Hsu, S.K., Lin, S.J.: MACs: Mining API code snippets for code reuse. Expert Syst.
Appl. 38(6), 7291–7301 (2011)

10. Ishag, M.I.M., Park, H.W., Li, D., Ryu, K.H.: Highlighting current issues in API
usage mining to enhance software reusability. In: Proceedings of the 15th Inter-
national Conference on Software Engineering, Parallel and Distributed Systems
(SEPADS 2016). Recent Advances in Computer Engineering Series (2016)

11. Ison, J., Rapacki, K., Ménager, H., et al.: Tools and data services registry: A
community effort to document bioinformatics resources. Nucleic Acids Res. 44(1),
D38–D47 (2015)

12. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML microformat for
describing RESTful Web services. In: Proceedings of the International Confer-
ence on Web Intelligence and Intelligent Agent Technology, pp. 619–625. IEEE
Computer Society (2008)

13. Kopecký, J., Vitvar, T.: MicroWSMO. WSMO Working Draft, February 2008.
http://www.wsmo.org/TR/d38/v0.1/

14. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Semantic annotations for WSDL
and XML schema. IEEE Internet Comput. 11, 60–67 (2007)

http://www.lincsproject.org/
http://www.bd2k.nih.gov
http://xml.coverpages.org/wsdl20000929.html
http://xml.coverpages.org/wsdl20000929.html
http://xml.coverpages.org/wsdl20000929.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/SA-REST/
http://www.w3.org/Submission/SA-REST/
http://www.wsmo.org/TR/d38/v0.1/


smartAPI: Towards a More Intelligent Network of Web APIs 169

15. Lanthaler, M., Gütl, C.: Hydra: A vocabulary for hypermedia-driven Web APIs. In:
Proceedings of the 6th Workshop on Linked Data on the Web, May 2013. http://
ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf

16. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO).
W3C Member Submission, June 2005. http://www.w3.org/Submission/WSMO/

17. Maleshkova, M., Kopecký, J., Pedrinaci, C.: Adapting SAWSDL for semantic anno-
tations of RESTful services. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM
2009. LNCS, vol. 5872, pp. 917–926. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05290-3 110

18. Martin, D., Burstein, M., Hobbs, J., Lassila, O.: OWL-S: Semantic Markup for
Web Services. W3C Member Submission, November 2004. http://www.w3.org/
Submission/OWL-S/

19. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Comput. 8(6), 51–59 (2004)

20. Pedrinaci, C., Domingue, J.: Toward the next wave of services Linked services for
the web of data. J-JUCS 16, 1694–1719 (2010)

21. Scaffidi, C.: Why are APIs difficult to learn and use? Crossroads 12(4), 4–4 (2006)
22. Torres, R., Tapia, B., Astudillo, H.: Improving web API discovery by leveraging

social information. In: 2011 IEEE International Conference on Web Services, pp.
744–745 (2011)

23. Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T., Gabarró
Vallés, J.: The pragmatic proof: Hypermedia API composition and execution. The-
ory Pract. Logic Program. (2016). http://arxiv.org/pdf/1512.07780v1.pdf

24. Verborgh, R., Dumontier, M.: A web API ecosystem through feature-based reuse
(2016). CoRR abs/1609.07108, http://arxiv.org/abs/1609.07108

25. Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan,
M., Van de Walle, R.: Survey of semantic description of REST APIs.
In: Pautasso, C., Wilde, E., Alarcón, R. (eds.) REST: Advanced Research
Topics and Practical Applications, pp. 69–89. Springer, New York (2014).
http://link.springer.com/chapter/10.1007/978-1-4614-9299-3 5

26. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al.: The FAIR Guiding Prin-
ciples for scientific data management and stewardship. Sci. Data 2 (2016). http://
www.nature.com/articles/sdata201618

27. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The semantic automated discovery
and integration (SADI) web service design-pattern, API and reference implemen-
tation. J. Biomed. Semant. 2(1), 5–23 (2011)

28. Xin, J., Mark, A., Afrasiabi, C., Tsueng, G., Juchler, M., Gopal, N., Stupp, G.S.,
Putman, T.E., Ainscough, B.J., Griffith, O.L., Torkamani, A., Whetzel, P.L.,
Mungall, C.J., Mooney, S.D., Su, A.I., Wu, C.: High-performance web services
for querying gene and variant annotation. Genome Biol. 17(1), 91 (2016)

http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
http://www.w3.org/Submission/WSMO/
http://dx.doi.org/10.1007/978-3-642-05290-3_110
http://dx.doi.org/10.1007/978-3-642-05290-3_110
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://arxiv.org/pdf/1512.07780v1.pdf
http://arxiv.org/abs/1609.07108
http://link.springer.com/chapter/10.1007/978-1-4614-9299-3_5
http://www.nature.com/articles/sdata201618
http://www.nature.com/articles/sdata201618

	smartAPI: Towards a More Intelligent Network of Web APIs
	1 API Interoperability
	2 Related Work
	2.1 Challenges of Finding APIs
	2.2 Challenges of Reusing APIs
	2.3 Annotations for Developers
	2.4 Descriptions for Automated Clients

	3 Survey of API Metadata in the Wild
	4 SmartAPI Metadata Specification
	5 SmartAPI Implementation
	6 SmartAPI Use Cases
	7 Conclusions and Future Work
	References


