
Practical Aspects of Pattern-Supported
Model-Driven User Interface Generation

Jürgen Engel1,2(&), Christian Märtin1, and Peter Forbrig2

1 Faculty of Computer Science, Augsburg University of Applied Sciences,
An der Hochschule 1, 86161 Augsburg, Germany

{Juergen.Engel,Christian.Maertin}@hs-augsburg.de
2 Institute of Computer Science, University of Rostock,
Albert-Einstein-Straße 21, 18059 Rostock, Germany

{Juergen.Engel,Peter.Forbrig}@uni-rostock.de

Abstract. Today, highly interactive software has become a crucial ingredient
of the daily life. Rapidly evolving technologies and simultaneously increasing
user demands make human-computer interaction (HCI) more and more a major
criterion for the judgement on success or non-success of software and electronic
devices. Contemporary users expect that software products run on a variety of
heterogeneous devices with a consistent look and feel, invariable high usability,
and a high degree of appealing user experience. In addition, people tend to be
impatient and like to have their applications contemporaneously available on
their different devices. In order to meet these requirements we have combined a
model-driven user interface development process with pattern-based methods in
order to realize the best possible reuse when constructing models which sub-
sequently serve as basis for at least semi-automatic user interface generation.
This hybrid development approach is the fundament of the PaMGIS framework
which is explicated in theory and primarily in practice within the following
sections.

Keywords: Model-based user interface development � Pattern-based
development � User interface modeling � User interface generation � HCI
patterns

1 Introduction

Prior to the design of the current version of the combined model-driven and
pattern-based PaMGIS framework a total of 18 model-based user interface develop-
ment environments (MBUIDE) have been analyzed and evaluated. A résumé of the
related results is provided in [5]. In addition, eight user interface description languages
(UIDL) have been examined. An overview of the achievements is recapitulated in [4].
The findings of these assessments served as groundwork for the model-driven part of
the PaMGIS framework which was designed in the style of the CAMELEON Refer-
ence Framework (CRF) [1]. In particular, the ontological domain and context-of-use
models are used as proposed by the CRF. However, we decided to split the CRF
platform model into a device model and a UI toolkit model. While the former

© Springer International Publishing AG 2017
M. Kurosu (Ed.): HCI 2017, Part I, LNCS 10271, pp. 397–414, 2017.
DOI: 10.1007/978-3-319-58071-5_30

comprises all relevant characteristics of the respective end-user device, the latter holds
information about the user interface (UI) elements that are available on the respective
underlying software development platform. This avoids redundancies especially in
cases where the same software basis supports significantly different devices, e.g.
Android on smartphones and tablet computers. A dialog model comprises the dynamic
aspects of the future user interface. On the basis of the domain and dialog models an
abstract user interface model is derived which is subsequently transformed into a
concrete and lastly into a final user interface model. The various user interface model
transformations are affected by the information which is deposited within the context of
use model. An overview of the PaMGIS models is given inside the dotted box in the
upper part of Fig. 1.

In order to alleviate the sometimes complex construction of the models required for
user interface generation, the model-driven approach is supported by pattern-based
development techniques. For this purpose, we have developed the XML-compliant
PaMGIS Pattern Specification Language (PPSL) which was designed to meet two
major goals. On the one hand, it shall be possible to easily transform already existing
patterns from popular and well-accepted pattern collections, such as Designing Inter-
faces of Jenifer Tidwell [11], Patterns in Interaction Design of Martijn van Welie [12],
and Design of Sites of Douglas van Duyne [2] into the PPSL formalism. On the other

Fig. 1. Logical overview of the PaMGIS framework architecture

398 J. Engel et al.

hand, the patterns shall be augmented with any kind of information required for sup-
porting the model-driven user interface generation with PaMGIS.

Regarding the former target, we explored six existing pattern description languages,
including PLML 1.1 [8]. Results concerning this matter can be retraced in [6, 7].
Further, five pattern collections were analyzed. An excerpt of the related conclusions is
outlined in [6]. We already have demonstrated in [5] that patterns from [2, 11, 12] can
be mapped to PLML 1.1 at least in a semi-automatic manner. In [7] it is demonstrated
that patterns being specified by means of PLML 1.1 can be translated to PPSL without
loss of information.

The basic idea in terms of the latter goal is to equip patterns with pre-assembled
model fragments which can be used as building blocks for the construction of the
domain and UI models. In addition, certain patterns could also provide valuable input
for the various model transformation steps. The complete specification of PPSL is
presented in [7].

In preparation of the specification of the tool set required for pattern authoring and
management a total of fourteen pattern tools have been analyzed and evaluated. The
related results are documented in [3]. The tools for both the pattern-based and
model-driven part of PaMGIS are indicated in Fig. 1.

2 The Hybrid Development Process of the PaMGIS
Framework

The hybrid development process follows a model-driven methodology which is
extended by pattern-based techniques, i.e. patterns are equipped with task, concept, and
dialog model fragments which serve as building blocks during the construction of the
related models. As soon as a pattern is selected and applied, the fragments are inte-
grated into the overall models. An overview of the development process is provided in
Fig. 2. It encompasses nine major steps. Gray-shaded arrows indicate that the associ-
ated efforts can generally be supported by the use of patterns.

The domain model constitutes the starting point of the user interface modeling and
generation process. Hence, it is to be specified in the very first step. It comprises of two
sub-models, i.e. a task and a concept model. The formalism for describing task models
is based on the ConcurTaskTrees notation [10] which we have extended according to
our needs. Subsequently or in parallel, a concept-of-use model is either to be defined or
selected from the PaMGIS model repository. This model includes four sub-models for
the intended end user device, the software development toolkit, user, and environment.
Then, the dynamic aspects of the user interface are determined in a dialog model. The
dialogs and their sequence are specified by means of dialog graphs [9]. The next step is
to derive the abstract user interface (AUI) from the domain and dialog models. In
consideration of the UI toolkit model, the abstract UI elements are to be transformed
into concrete ones and context-specific adaptations are carried out, if necessary.
Finally, the CUI is to be translated into the final user interface, i.e. coded in the target
programming language. Optionally, the resulting source code must be compiled before
the user interface can be executed.

Practical Aspects of Pattern-Supported Model-Driven 399

In the following sections we describe practical details of (1) how to develop and
formalize the various model fragments as integral part of a pattern and (2) how these
fragments can be used during the hybrid UI development process.

3 Practical Application of the Hybrid Development Approach

The practical work with the PaMGIS framework is demonstrated using the example of
the Poll pattern which is part of the pattern collection Patterns in Interaction Design
[12]. The intention of this pattern is to prompt users’ opinions in terms of a specific
aspect of the current web site. The original pattern specification is outlined in Table 1.

Before we translated the pattern into the PPSL format we generalized it in a way
that it can be used to query users’ attitudes towards any matter of fact, not solely toward
a particular topic of a web site. Ex ante, we do not decide the concrete appearance of
user interface elements, i.e. radio buttons, but employ an abstract user interface
(AUI) element which will be replaced by a concrete widget when iteratively trans-
forming the entire AUI model into a concrete user interface (CUI) model. Additionally,
we decided to change the implied course of action and enable access to the overall
result values not until the vote has been accomplished.

In summary, the UI must display a question to the user and offer a set of possible
answers to this question from which the user can choose the one that fits best in his
view. Further, three different interaction elements must be provided to confirm the
choice, to request the overall results, and to finally quit the poll procedure.

In order to benefit from the pattern within the hybrid development approach it must
be analyzed in detail and inherent task, concept, and dialog model portions have to be
extracted, formally described, and accommodated in the <Deployment> <PaMGIS>
<ModelFragments> section of PPSL.

Fig. 2. Development process of the hybrid model-driven and pattern-based approach

400 J. Engel et al.

3.1 Task Model Fragment

Within this subsection it is shown how the task model fragment (TMF) of the Poll
pattern is implemented by means of PPSL.

As illustrated in Fig. 3, the root element of the task model is an abstract task named
poll which consists of the three subtasks vote, retrieve results, and terminate. Here, the
retrieve results task is defined to be optional and therefore is not necessarily executed
by the user.

The vote subtask consists, in turn, of subordinated application tasks for displaying
the question and the possible answers, user tasks for reading the system output and
picking the best fitting answer, interaction tasks to confirm that answer and submit the
choice, and an additional application task to send the data from the user interface to the
instance representing the business logic of the system. The retrieve results task
incorporates an interaction task to request the poll results and three application tasks to

Table 1. Excerpt of the Poll pattern specification according to [12]

Element Description

Problem Users want to state their opinion about a certain statement that is relevant to the
site’s content

Solution List the statements as exclusive options and present the results directly after voting
Use
when

You are designing a site where interaction with the users is desired. Typically this
will be a News Site or Community Site where visitors are to be encouraged to
share their opinions and improve interactivity

How The poll consists of two steps. First the list of options is presented, usually using
radiobuttons, together with a ‘vote’ button. After clicking the vote button, the
results are displayed. The results include both a percentage and an absolute
number

Why A poll is a very simple and direct page element that invites users to interact with
the site. Users can even do it anonymously so there is no barrier at all to
participate. Polls are often linked to content on the site such as articles or products,
and the results of a poll can be linked to a discussion in a Forum

Fig. 3. Entire task model fragment of the Poll pattern

Practical Aspects of Pattern-Supported Model-Driven 401

send out that request, to receive the related result data, and to display the values on the
screen. Finally, the purpose of the terminate interaction task is to abandon the poll
procedure.

In the following steps this fundamental task model fragment is reduced in order to
incorporate solely the information that is relevant for user interface generation.
Amongst others, the user tasks indicate the required cognitive workload of the user and
provide information to evaluate whether he/she has been provided with all data nec-
essary to correctly complete the next process step. Apart from that, they do not con-
siderably contribute to the UI specification and are therefore not required for our
purposes as illustrated in Fig. 4.

Some of the remaining subordinated tasks possess temporal dependencies which
are indicated by the temporal operator enabling with information passing ([]�). In this
case both adjacent tasks deal with the selfsame data element respectively the selfsame
set of data. Therefore, in these cases we can eliminate the respective application tasks
without losing significant information required for the user interface generation pro-
cess. In the given example, these application tasks are display answers, send data, send
request, and receive data. The remaining TMF is depicted in Fig. 5.

In order to increase the flexibility of the patterns, we introduced a new task type.
Besides the standard abstract, user, application, and interaction types of CTT, PaMGIS
supports dummy tasks. Please note that such tasks may only appear in task model
fragments, but not in task models. Dummy tasks act as templates for variable parts of a
TMF and are to be replaced before the pattern is used. If a user selects a pattern by
means of the Pattern Selection & Assignment function and tries to apply it, the tool will
automatically open a dialog and ask whether and how the dummy tasks should be
adopted. Here, the predetermined texture of the dummy tasks serves as construction
plan, i.e. the resulting task type, the position inside the TMF and the temporal
dependencies to sibling tasks. The TMF of the Poll pattern including related amend-
ments is shown in Fig. 6.

Fig. 4. Task model fragment of the Poll pattern reduced by user tasks

402 J. Engel et al.

The PaMGIS user may change the name of the task interactively within the
mentioned dialog and can decide on how often the dummy mechanism is to be repe-
ated. Please note that the concept model fragment of the pattern also contains related
dummy concepts which have to be adapted where necessary, too.

In our example the choose first answer dummy task is renamed to choose
“excellent” and choose next answer to choose “fair”. Further the right dummy task is
applied a second time and renamed to choose “poor”. The resulting task model
fragment is illustrated in Fig. 7. If the user decides not to use the pre-designed dummy
tasks, the tool will remove them automatically.

The task model fragment is coded in PPSL format and stored with the pattern.
Basically, the same syntax rules apply as for task models. The beginning of this XML
compliant representation is provided in Fig. 8. Please note that line numbers have been
included for better orientation.

Fig. 5. Task model fragment of the Poll pattern further reduced by redundant application tasks

Fig. 6. Task model fragment of the Poll pattern supplemented by dummy tasks

Practical Aspects of Pattern-Supported Model-Driven 403

When the pattern is applied the task model fragment has to be integrated into the
overall task model the user is working on. This can be achieved by simply interlinking
the root task of the TMF with the desired sibling tasks and the new parent task inside
the task model. The specification of the TMF root element starts at line 10 in Fig. 8.

Once the user has specified the position inside the overall task model where the
pattern shall reside this can be performed automatically. In a first step, the entire
content of the <TMF_Content> element is copied into the overall task model speci-
fication. Subsequently, the identifier and name of the new parent task have to be set
accordingly in the <Parent> section of the TMF root element (see lines 25 and 26). If
applicable, this must also be done in analogous manner for the left and right siblings
(refer to line 29 and 30 resp. 33 and 34). Further, the identifier and name of the
pattern’s root task (see lines 11 and 12) must be copied into the <RightSibling> section
of the preceding and the <LeftSibling> section of the successive task. The temporal
relation between the TMF root element and its right sibling is defined straight forward
by means of the <TemporalOperator> element (see line 37). A proposed value for the
temporal relation between the left sibling and the TMF root element is included in the
<TMF_ProposedTempOp> element (see line 08). Here, the user can decide whether to
accept or override this suggestion. As a last step, this value must be registered within
the <TemporalOperator> element of the left sibling. An exemplary illustration of the
resulting task model can be viewed in Fig. 9. Here, the names of the tasks which are
not shipped with the TMF are marked with in bold.

3.2 Concept Model Fragment

This subsection shows how the concept model fragment (CMF) of the Poll pattern is
constructed and formalized using PPSL.

Fig. 7. Resulting task model fragment of the Poll pattern after dummy task resolving

404 J. Engel et al.

A concept model comprises high-level specifications of all data elements and
interaction objects elements that are relevant for the user interface. Hence, all concepts
required by the Poll pattern have to be identified. In addition, we have to define the
abstract type of the concepts. The most common types are listed in Table 2.

When having a look at the TMF of the Poll pattern eight required concepts can be
identified.

As illustrated in Fig. 10 these are: (1) a <DataOutput> element for the display
question task, (2) <SingleChoice> for select answer, (3) <ChoiceItem> for the first
dummy, (4) another <ChoiceItem> for the second dummy, (5) <Activator> for confirm
choice, (6) <Activator> for request results, (7) <DataOutput> for display results, and
(8) a <Navigator> element for the terminate task in order to abandon the poll
procedure.

01: <ModelFragment>
02: <MDFR_Type>Task</MDFR_Type>
03:<MDFR_FragmentID>"__TMF_0001_01"</MDFR_FragmentID>
04: <MDFR_Label>"Poll"</MDFR_Label>
05: <MDFR_Diagram>"see Fig. 7"</MDFR_Diagram>
06: <MDFR_Fragment>
07: <TMF_IncludesDummy>True</IncludesDummy>
08: <TMF_ProposedTempOp>Interleaving</TMF_ProposedTempOp>
09: <TMF_Content>
10: <Subtask>
11: <TaskID>"__TSK_0001_01_0001"</TaskID>
12: <TaskName>"poll"</TaskName>
13: <TaskDescription>""</TaskDescription>
14: <TaskType>Abstraction</TaskType>
15: <TaskOrigin>
16:<TaskOriginPatternID>"PPT_0100_0001"</TaskOriginPatternID>
17: <TaskOriginPatternName>"Poll"</TaskOriginPatternName>
18:<TaskOriginPatternVersion>"0001"</TaskOriginPatternVersion>
19:<TaskOriginPatternRevision>"0000"</TaskOriginPatternRevision>
20:</TaskOrigin>
21: <Optional>False</Optional>
22: <Iterative>False</Iterative>
23: <Position>
24: <Parent>
25: <ParentID>""</ParentID>
26: <ParentName>""</ParentName>
27: </Parent>
28: <SiblingLeft>
29: <SiblingLeftID>""</SiblingLeftID>
30: <SiblingLeftName>""</SiblingLeftName>
31: </SiblingLeft>
32: <SiblingRight>
33: <SiblingRightID>""<SiblingRightID>
34: <SiblingRightName>""</SiblingRightName>
35: </SiblingRight>
36: </Position>
37: <TemporalOperator>Interleaving</TemporalOperator>
38: <UIConcepts></UIConcepts>
39: <Subtasks>
40: <Subtask>
41: <TaskID>"__TSK_0001_01_0002"</TaskID>
426: <TaskName>"vote"</TaskName>
……

Fig. 8. Excerpt of the XML representation of the TMF of the Poll pattern

Practical Aspects of Pattern-Supported Model-Driven 405

All required concepts are listed within the concept model fragment of the pattern as
presented in Fig. 11. Each concept specification includes links to the tasks that use the
concept (see lines 28 and 28 in Fig. 11).

Vice versa, the task specifications contain references to the concepts which are
required for their completion (please refer to lines 31 and 32 in Fig. 12).

When the pattern is applied, the user is prompted by the PaMGIS Pattern Selection
& Assignment function whether the concepts being listed within the CMF should be
adopted. If this is the case, the concepts of the pattern will simply be copied into the list
of the overall concept model.

Table 2. Most common concept types

Type Purpose

DataOutput Making information perceptible for the user, e.g. displaying it on screen or
replaying an audio stream

DataInput Request input from the user
Activator Activate a user interface element or call a function
Navigator Navigate to a different window, screen or dialog
SingleChoice Select exactly one of several options
MultiChoice Select none, one, or more of several options
ChoiceItem A single item that can be chosen by SingleChoice or MultiChoice
UserFeedback Providing feedback to the user, e.g. about the current system state
Alarm Providing urgent feedback to the user, e.g. in case of system error or

emergency
Cluster Construct consisting of several components of any type

Fig. 9. Task model fragment of the Poll pattern integrated in the overall task model

406 J. Engel et al.

3.3 Dialog Model Fragments

While patterns can possess at most one TMF and one CMF they may comprise multiple
dialog model fragments (DMF). The task model serves as basis for the specification of
dialog models. In consideration of the intended context of use, e.g. the capabilities of
the target end user device, it is divided into different sets of closely related tasks, i.e. the
dialogs. In addition, the transitions between these dialogs have to be defined. Valuable
indications for this work are the hierarchical structure of the task model, i.e. the various
sub-trees and the temporal relationships between the tasks.

In the context of PaMGIS dialog models and DMF are specified by means of dialog
graphs [9]. Dialogs are represented as boxes containing the name of the dialog as well
as the different task that are covered by the dialog. The flow between the various
dialogs is specified by arrows, whereupon the arrowheads indicate the direction.

Figure 13 illustrates a possible dialog graph regarding the application of the Poll
pattern for desktop computers with a large screen. All tasks involved in the poll (see
Fig. 7) are combined into one single dialog.

The PPSL representation of this DMF is shown in Fig. 14. The actual dialog
specification starts at line 10. The <Position> section (see lines 16 to 39) incorporates
information regarding potential predecessor and successor dialogs. The related
description elements have to be specified when the pattern is applied. Especially the
concepts that trigger the transitions forth and back between the dialogs must be
specified, where applicable. This work cannot be accomplished in a fully automated
way. Hence, the user must decide how to integrate the DMF into the overall dialog
model and which triggers shall be used. However, the PaMGIS Pattern Selection &
Assignment function offers support regarding this procedure. The tasks being included
within the dialog are specified in the <DLG_Tasks> section (see lines 40 to 56). Not
necessarily every single task has to be listed here. With the <DLG_TaskProcessing>

Fig. 10. Deducing required concept from the task model fragment of the Poll pattern

Practical Aspects of Pattern-Supported Model-Driven 407

element (refer to lines 44, 49, and 54) it can be indicated whether solely the related
sub-task itself (Exclusive) or also all defined subtasks shall also be included in the
dialog specification (Recursive).

A second scenario for another DMF for the Poll pattern is the implementation on
mobile devices with limited screen space, such as a cell phones or smart phones. Due to
the display size limits it is not possible or reasonable to display all interaction elements
simultaneously. Therefore, we opt for the definition of two different dialogs with a
transition between them as illustrated in Fig. 15.

The question which tasks to include in which dialog can be answered when having
a look at the task model structure. Very often, it is a promising approach to combine the
task elements included in the selfsame sub-tree because they are closely related to each
other. All of them have to be completed in order to achieve the superordinate goal
related to the top element of the task sub-tree. In the present case we decided to assign
the sub-tree starting at the vote task to the first (named Vote) and likewise the sub-tree
beginning at the review results task to the second dialog (named Results). Since it
makes no sense to treat the remaining single interaction task terminate separately,

01: <ModelFragment>
02: <MDFR_Type>Concept</MDFR_Type>
03: <MDFR_FragmentID>"__CMF_0001_01"</MDFR_FragmentID>
04: <MDFR_Label>"Concepts for poll pattern"</MDFR_Label>
05: <MDFR_Fragment>
06: <CMF_Content>
07: <Concept>
08: <CCPT_ConceptID>"__CPT_0001_01_0001"</CCPT_ConceptID>
09: <CCPT_ConceptName>"Question"</CCPT_ConceptName>
10: <CCPT_Description>"Question to be displayed"</CCPT_Description>
11: <CCPT_Label>""</CCPT_Label>
12: <CCPT_Perceptible>True</CCPT_Perceptible>
13: <CCPT_Enabled>True</CCPT_Enabled>
14: <CCPT_Required>False</CCPT_Required>
15: <CCPT_ConceptType>DataOutput</CCPT_ConceptType>
16: <CCPT_DataType>"String"</CCPT_DataType>
17: <CCPT_ConceptOrigin>
18: <CCPT_OriginPatternID>"PPT_0100_0001"</CCPT_OriginPatternID>
19: <CCPT_OriginPatternName>"Poll"</CCPT_OriginPatternName>
20: <CCPT_OriginPatternVersion>"0001"</CCPT_OriginPatternVersion>
21: <CCPT_OriginPatternRevision>"0000"</CCPT_OriginPatternRevision>
22: </CCPT_ConceptOrigin>
23: <CCPT_Preconditions></CCPT_Preconditions>
24: <CCPT_Postconditions><CCPT_Postconditions>
25: <CCPT_DataLink></CCPT_DataLink>
26: <CCPT_TaskLinks>
27: <CCPT_TaskLink>
28: <CCPT_TaskID>"__TSK_0001_01_0005"</CCPT_TaskID>
29: <CCPT_TaskName>"display question"<CCPT_TaskName>
30: </CCPT_TaskLink>
31: </CCPT_TaskLinks>
32: </Concept>
33: <Concept>
34: <CCPT_ConceptID>"__CPT_0001_01_0002"</CCPT_ConceptID>
35: <CCPT_ConceptName>"Answer"</CCPT_ConceptName>
……

Fig. 11. Excerpt of the XML representation of the CMF of the Poll pattern

408 J. Engel et al.

we added it to the Results dialog. The transition from the Vote to the Results dialog is
triggered as soon as the confirm choice task is completed. The integration of the DMF
into the overall dialog model as soon as the pattern is applied is carried out under the
same conditions as described before.

Due to lack of space we abstained from including the PPSL specification of this
second dialog model fragment into the document at hand. But its derivation is straight
forward and similar to the previous example (see Fig. 14).

01: <Subtask>
02: <TaskID>"__TSK_0001_01_0005"</TaskID>
03: <TaskName>"display question"</TaskName>
04: <TaskDescription>""</TaskDescription>
05: <TaskType>Application</TaskType>
06: <TaskOrigin>
07: <TaskOriginPatternID>"PPT_0100_0001"</TaskOriginPatternID>
08: <TaskOriginPatternName>"Poll"</TaskOriginPatternName>
09: <TaskOriginPatternVersion>"0001"</TaskOriginPatternVersion>
10: <TaskOriginPatternRevision>"0000"</TaskOriginPatternRevision>
11: </TaskOrigin>
12: <Optional>False</Optional>
13: <Iterative>False</Iterative>
14: <Position>
 ……
27: </Position>
28: <TemporalOperator>Interleaving</TemporalOperator>
29: <UIConcepts>
30: <UIConcept>
31: <UIConceptID>"__CPT_0001_01_0001"</UIConceptID>
32: <UIConceptName>"Question"</UIConceptName>
33: </UIConcept
34: </UIConcepts>
35: </Subtask>
……

Fig. 12. Excerpt of the XML representation of the display question subtask

Fig. 13. Dialog model fragment of the Poll pattern for desktop computers (large screen)

Practical Aspects of Pattern-Supported Model-Driven 409

01: <ModelFragment>
02:<MDFR_Type>Dialog</MDFR_Type>
03:<MDFR_FragmentID>"__DMF_0100_01"</MDFR_FragmentID>
04:<MDFR_Label>"Poll"</MDFR_Label>
05:<MDFR_Purpose>"DMF for large screens"</MDFR_Purpose>
06:<MDFR_Diagram>"see Fig. 13"</MDFR_Diagram>
07:<MDFR_Fragment>
08:<DMF_ContextModelReferences></DMF_ContextModelReferences>
09:<DMF_Content>
10:<Dialog>
11:<DialogID>"__DLG_0100_01_01"</DialogID>
12:<DialogName>"Poll"</DialogName>
13:<DialogDescription>"Poll for large screens"</DialogDescription>
14:<DialogLabel>"Poll"</DialogLabel>
15:<DialogType>Modal</DialogType>
16:<Position>
17:<Predecessors>
18:<Predecessor>
19:<PRED_DialogID>""</PRED_DialogID>
20:<PRED_DialogName>""</PRED_DialogName>
21:<PRED_TransitionType>Sequential</SUCC_TransitionType>
22:<PRED_Trigger>
23:<PRED_TaskID>""</SUCC_TaskID>
24:<PRED_TaskName>""<SUCC_TaskName>
25:<PRED_Trigger>
26:</Predecessor>
27:<Predecessors>
28:<Successors>
29: <Successor>
30: <SUCC_DialogID>""</SUCC_DialogID>
31:<SUCC_DialogName>""</SUCC_DialogName>
32:<SUCC_TransitionType>Sequential</SUCC_TransitionType>
33:<SUCC_Trigger>
34:<SUCC_TaskID>"__TSK_0001_01_0004"</SUCC_TaskID>
35:<SUCC_TaskName>"terminate"<SUCC_TaskName>
36:<SUCC_Trigger>
37: </Successor>
38:</Successors>
39:</Position>
40:<DLG_Tasks>
41:<DLG_Task>
42:<DLG_TaskID>"__TSK_0100_01_0002"</DLG_TaskID>
43:<DLG_TaskName>"vote"</DLG_TaskName>
44:<DLG_TaskProcessing>Recursive</DLG_TaskProcessing>
45:<DLG_Task>
46:<DLG_Task>
47:<DLG_TaskID>"__TSK_0100_01_0003"</DLG_TaskID>
48:<DLG_TaskName>"review results"</DLG_TaskName>
49:<DLG_TaskProcessing>Recursive</DLG_TaskProcessing>
50:<DLG_Task>
51:<DLG_Task>
52:<DLG_TaskID>"__TSK_0100_01_0004"</DLG_TaskID>
53: <DLG_TaskName>"terminate"</DLG_TaskName>
54:<DLG_TaskProcessing>Exclusive</DLG_TaskProcessing>
55:</DLF_Task>
56:</DLG_Tasks>
57:</Dialog>
58:</DMF_Content>
59:</MDFR_Fragment>
60:</ModelFragment>

Fig. 14. XML representation of DMF of the Poll pattern for desktop computers (large screen)

410 J. Engel et al.

3.4 Derivation of the User Interface

In an initial step, the structure of the abstract user interface (AUI) must be built
up. Here, the dialog model delivers fundamental input. The tasks which are combined
within the dialogs include links to the particular concepts being required to complete
these tasks. As illustrated in Fig. 16 for the DMF of the Poll pattern for mobile devices,
these concepts are mapped to corresponding AUI elements. The dialogs themselves are
treated as <Cluster> elements. In the example at hand, the display question task is
linked to a concept of the type DataOutput. It is intended to hold a string variable
specifying the question for the poll. The select answer task and its sub-tasks provide
the information regarding the selection of the best fitting answer. Hence, it is a matter
of a <SingleChoice> AUI element with related <ChoiceItem> elements. The confirm
choice and request results tasks contribute <Activator> elements while display results
relates to a <DataOutput> element for displaying an image and terminate to a
<Navigator> element allowing to abandon the poll process and effect the transition to
the subsequent dialog.

The XML representation of the related AUI excerpt is sketched in Fig. 17. Here,
the Vote dialog is covered by the first <Cluster> element (see lines 01 to 30), the
Results dialog by the second one (see lines 31 to 46).

In the next process step, the AUI specification is to be translated into a concrete
user interface (CUI) description. In the example we want to arrive at a final user
interface (FUI) coded in Hypertext Markup Language (HTML). In this regard, the
<Cluster> AUI elements are mapped to <Form> CUI elements as illustrated in Fig. 18.
The <DataOutput> element for the poll question is represented as a <TextField> and
the <SingleChoice> element together with its associated <ChoiceItem> elements is

Fig. 15. Dialog model fragment of the Poll pattern for mobile devices (small screen)

Fig. 16. Deriving the AUI from the DMF of the Poll pattern for mobile devices (small screen)

Practical Aspects of Pattern-Supported Model-Driven 411

translated into <Radiobuttons> on the CUI level. The <Activator> and <Navigator>
elements are transformed into <Button> elements and the remaining <DataOutput>
element into a <Picture> CUI element.

Finally, the CUI specification must be transformed into the final user interface, i.e.
HTML source code. The <Form> elements are both replaced by <form tar-
get=“_blank”> constructs that each incorporate the required UI elements of the original
Vote resp. the Results dialogs. The <TextField> element is realized by a <p> HTML tag
while the three radio buttons appear as <input type=“radio”> and the <Button> ele-
ments as <button type=“submit”> tags. Finally, the <Picture> CUI element is translated
into a tag. Figure 19 shows screenshots of the resulting HTML FUI. The red
arrow indicates the transition from the Vote to the Results dialog when the confirm
button is pressed.

01: <Cluster>
02: <ClusterID=>"__GRP_01"</ClusterID>
03: <ClusterName>"Vote"</ClusterName>
04:<DataOutput>
05:<ConceptID>"__CPT_0001_01_0001"</ConceptID>
06:<ConceptName>"Question"</ConceptName>
07:</DataOutput>
08:<SingleChoice>
09: <ConceptID>"__CPT_0001_01_0002"</ConceptID>
10: <ConceptName>"Answer"</ConceptName>
11: <ChoiceItems>
12: <ChoiceItem>
13: <ConceptID>"__CPT_0001_01_0007"</ConceptID>
14: <ConceptName>"Answer1"</ConceptName>
15: </ChoiceItem>
16:<ChoiceItem>
17:<ConceptID>"__CPT_0001_01_0008"</ConceptID>
18:<ConceptName>"Answer2"</ConceptName>
19:</ChoiceItem>
20:<ChoiceItem>
21:<ConceptID>"__CPT_0001_01_0009"</ConceptID>
22:<ConceptName>"Answer3"</ConceptName>
23:</ChoiceItem>
24:</ChoiceItems>
25:</SingleChoice>
26:</Activator>
27:<ConceptID>"__CPT_0001_01_0003"</ConceptID>
28:<ConceptName>"Confirmation"</ConceptName>
29: </Activator>
30: </Cluster>
31:<Cluster>
32:<ClusterID>"__GRP_02"</ClusterID>
33:<ClusterName>"Results"</ClusterName>
34:<Activator>
35:<ConceptID>"__CPT_0001_01_0004"</ConceptID>
36:<ConceptName>"Request"</ConceptName>
37: </Activator>
38:<DataOutput>
39:<ConceptID>"__CPT_0001_01_0005"</ConceptID>
40:<ConceptName>"Results"</ConceptName>
41:</DataOutput>
42:<Navigator>
43:<ConceptID>"__CPT_0001_01_0006"</ConceptID>
44:<ConceptName>"Termination"</ConceptName>
45:</Navigator>
46:</Cluster>

Fig. 17. XML representation the AUI of Poll pattern for mobile devices (small screen)

412 J. Engel et al.

4 Conclusion

The PaMGIS framework combines a model-driven user interface development
approach and pattern-based development techniques. It allows for the creation of
abstract user interface models (AUI) on the basis of fundamental information stored in
task, concept, and dialog models. In consideration of context-of-use characteristics held
in user, device, UI toolkit, and environment models, the AUI is iteratively transformed
into a concrete UI representation which, in turn, is used to generate respective user
interface source code for the intended context.

In the current paper, we emphasized on practical aspects of the work with the
PaMGIS framework. Using the example of the Poll pattern which we have adopted
from Martijn van Welie’s pattern collection Patterns in Interaction Design [12] and
translated into PPSL, we have demonstrated how task, concept, and dialog model
fragments can be derived from the pattern description. In addition, we delivered insight
into the formal description of these model fragments and showed how they can be used
as building blocks during the construction of the respective constitutive PaMGIS
models when a pattern is applied.

Fig. 18. Deriving the CUI from the AUI of the Poll pattern for mobile devices (small screen)

Fig. 19. Realization of the dialog model for mobile devices (small screen) (Color figure online)

Practical Aspects of Pattern-Supported Model-Driven 413

We believe that the hybrid UI development process can accelerate the model-driven
design process, feature the reuse of already existing design know-how, and effectively
contribute to high usability and appealing user experience of the resulting user inter-
faces. Amongst others, our plans for future research include various studies to sub-
stantiate these presumptions and render related facts more precisely.

References

1. Calvary, G., et al.: The CAMELEON Reference Framework. Document D1.1 of the
CAMELEON R&D Project IST-2000-30104 (2002)

2. van Duyne, D., et al.: The Design of Sites: Patterns for Creating Winning Websites, 2nd edn.
Prentice Hall International (2006). ISBN 0-13-134555-9

3. Engel, J., Herdin, C., Märtin, C.: A review of HCI pattern tools. In: Proceedings of IHCI
2015, Las Palmas de Gran Canaria, Spain, 22–24 July 2015, pp. 51–58. IADIS Press (2015)

4. Engel, J., Herdin, C., Märtin, C.: A review of user interface description languages. In:
Proceedings of the 6. Forum Medientechnik, St. Pölten, Austria – Next Generation, New
Ideas, vwh, pp. 183–198 (2014)

5. Engel, J., Herdin, C., Märtin, C.: Evaluation of model-based user interface development
approaches. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8510, pp. 295–307. Springer, Cham
(2014). doi:10.1007/978-3-319-07233-3_28

6. Engel, J., Herdin, C., Märtin, C.: Exploiting HCI pattern collections for user interface
generation. In: Proceedings of PATTERNS 2012, Nice, France, IARIA 2012, pp. 34–44
(2012)

7. Engel, J., Märtin, C., Forbrig, P.: A unified pattern specification formalism to support user
interface generation. In: Kurosu, M. (ed.) HCI 2016. LNCS, vol. 9731, pp. 445–456.
Springer, Cham (2016). doi:10.1007/978-3-319-39510-4_41

8. Fincher, S., et al.: Perspectives on HCI patterns: concepts and tools (introducing PLML). In:
CHI 2003 Workshop Report (2003)

9. Forbrig, P., Reichart, D.: Spezifikation von “Multiple User Interfaces” mit Dialoggraphen.
In: Processdings of INFORMATIK 2007: Informatik trifft Logistik. Beiträge der 37.
Jahrestagung der Gesellschaft für Informatik e.V. (GI). Bremen (2007)

10. Paternò, F.: ConcurTaskTrees: an engineered approach to model-based design of interactive
systems, ISTI-C.N.R., Pisa (2001)

11. Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design, 2nd edn.
O’Reilly Media Inc. (2011). ISBN 978-1-449-37970-4

12. van Welie, M.: Patterns in interaction design. http://www.welie.com. Accessed 6 Jan 2016

414 J. Engel et al.

http://dx.doi.org/10.1007/978-3-319-07233-3_28
http://dx.doi.org/10.1007/978-3-319-39510-4_41
http://www.welie.com

	Practical Aspects of Pattern-Supported Model-Driven User Interface Generation
	Abstract
	1 Introduction
	2 The Hybrid Development Process of the PaMGIS Framework
	3 Practical Application of the Hybrid Development Approach
	3.1 Task Model Fragment
	3.2 Concept Model Fragment
	3.3 Dialog Model Fragments
	3.4 Derivation of the User Interface

	4 Conclusion
	References

