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Abstract. We describe a new Objective Video Quality Assessment (VQA)
metric, consisting of a method based on spatio-temporal saliency to model human
visual perception of quality. Accurate measurement of video quality is an impor‐
tant step in many video-based applications. Algorithms that are able to signifi‐
cantly predict human perception of video quality are still needed to evaluate video
processing models, in order to overcome the high cost and time requirement for
large-scale subjective evaluations. Objective quality assessment methods are used
for several applications, such as monitoring video quality in quality control
systems, benchmarking video compression algorithms, and optimizing video
processing and transmission systems. Objective Video Quality Assessment
(VQA) methods attempt to predict an average of human perception of video
quality. Therefore subjective tests are used as a benchmark for evaluating the
performance of objective models. This paper presents a new VQA metric, called
Sencogi Spatio-Temporal Saliency Metric (Sencogi-STSM). This metric gener‐
ates subjective quality scores of video compression in terms of prediction efficacy
and accuracy than the most used objective VQA models. The paper describes the
spatio-temporal model behind the proposed metric, the evaluation of its perform‐
ance at predicting subjective scores, and the comparison with the most used
objective VQA metrics.

Keywords: Objective video quality assessment · Video compression models ·
Spatio-temporal saliency · Video quality assessment metrics

1 Introduction

Humans are the end-users of most multimedia applications. Since objective models are
unable to perfectly model human vision, the most accurate methodology of video quality
assessment is still through subjective perception [1].
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Predicting subjective quality ratings in a reliable way is one of the main issues facing
objective video quality assessment (VQA) models, because subjective tests require high
cost and time effort. Moreover, the State of the Art on subjective VQA shows a wide
range of evaluation methods. At the moment, the most used methods follow the ITU-R
Recommendation BT.500 [2], which proposes standardized presentation formats to
measure human participants’ mean opinion scores of video quality. The main issue of
subjective VQA measurement is that it is often time-consuming and requires the recruit‐
ment of a high number of participants to be statistically reliable, thus incurring high
costs.

To avoid the cost and delay of subjective VQA, objective VQA is often used. The
current objective VQA methods can be classified in three categories: full-reference
VQA, reduced-reference VQA, and no-reference VQA. In full-reference VQA methods,
an undistorted quality reference video is fully available for comparisons with distorted
videos. In reduced-reference VQA methods, only some features of the undistorted
quality reference video is used to evaluate the quality of distorted videos. In no-reference
VQA methods, the reference video is not available at all [3]. This paper focuses on full-
reference methods.

The first section of this paper describes the most commonly used full-reference
objective VQA methods i.e., Peak Signal to-Noise Ratio, which is a simple and easy to
calculate algorithm but it does not highly correlate with perceived quality subjective
evaluations, and the more accurate Structural Similarity Index (for a review on all the
existing objective VQA methods see [3]). Neither of these objective VQA metrics are
able to calculate whether the relationships among pixels is perceptually salient, so they
cannot be applied to evaluate saliency-based compression algorithms. The second
section of the paper describes a new metrics, called Sencogi Spatio-Temporal Saliency
Metric (Sencogi-STSM), designed by an engineering company called Cogisen
(www.cogisen.com). The metric is based on a model using spatio-temporal saliency to
account for human visual perception. Sencogi-STSM is compared to the performance
of both PSNR and SSIM, taking as a benchmark the subjective evaluation of compressed
videos.

2 Quality Assessment Methods

This section describes two quantitative VQA methodologies: the most used objective
quality assessment methods and metrics, and the VQA methods and metrics based on
saliency models.

2.1 Objective Quality Assessment Methods

Objective VQA methods provide video quality scores without the involvement of
participants. Since there is no delay for human testing, objective VQA scores allow
practitioners to quickly develop video codecs. Many types of objective VQA methods
(e.g. Video Quality Metric (VQM); Visual Information Fidelity (VIF), see [3]), have
been proposed in the literature but there is no objective measurement which is able to
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predict subjective quality scores in all experimental testing conditions, as the research
results of the Video Quality Experts Group (VQEG) show [4].

Two existing objective methods will be described: Peak Signal to Noise Ratio
(PSNR) [5] and Structural Similarity index (SSIM) [6]. The selected methods –which
are widely cited in the literature and provide the most used measures by practitioners–
belong to Image Quality Metrics (IQMs). IQMs attempt to measure the quality of a
single static image, and can also be used to measure video quality by treating the video
stream as a collection of images, and calculating an aggregate score.

PSNR is a full reference QA method able to measure the ratio between the maximum
power of a signal and the power of corrupting noise, by performing a pixel-by-pixel
comparison of a video-frame before and after it is processed [5]. As a first step, PSNR
calculates the Mean Square Error (MSE) of each bit, so that the maximum possible pixel
value is squared and divided by MSE, and a logarithm taken of it to give the related
PSNR index. PSNR is widely used because it provides a simple measure of the distortion
and noise in a processed video-frame, even though it is not able to model human percep‐
tion in a significant way—all pixels are treated as being of equal importance. Due to its
inability to model human vision, PSNR is becoming less useful as modern video codecs
increasingly apply human perception rules to eliminate the information that falls beyond
the visual perception threshold.

Another QA method used is SSIM, which models human perception by calculating
an index of “structural similarity” that aims to emulate how the human visual system
perceives quality. In SSIM, video-frame degradation is considered as a change in struc‐
tural information. The model behind SSIM considers pixels as having strong interde‐
pendencies, especially when they are spatially close. Pixel interdependencies are there‐
fore able to convey important information about the structure of visual scene. SSIM
calculates three visual components of a frame –luminance, contrast and structure–
according to the following weighted combination:

• Luminance. High values of luminance are weighed more. The luminance of each
pixel is twice the product of average x and y over the sum of the square of average.

• Contrast. Locally unique pixel values of contrast are weighed more. The contrast of
each point is twice the product of variance x and y over the sum of the square of
average.

• Structure. The more pixel values change together with their neighbours, the more
they are weighed. The structure of each point is the covariance of x and y over the
product of the variance x and y.

Variants of SSIM have been proposed [7], such as the Multi-Scale SSIM index
(MSSIM), which is a measure based on the multi-scale processing of the early vision
system. Both SSIM and MSSIM have shown to be highly predictive of human quality
scores, but they are more complex to calculate than PSNR, and they have been both been
originally designed for static images, thus they do not properly measure visual distortion
among the frames in a video. Moreover, although SSIM/MSSIM is able to measure
structural relationships among pixels, they are still unable to measure whether those
relationships are perceptually salient. This issue affects the evaluation score especially
when salient information is selectively compressed following saliency based
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compression algorithms (Saliency-based video compression models use saliency to
provide better quality in salient areas by keeping the average distortion levels unvaried).
Subjective scores report higher values of video quality compared to saliency-based bit
distribution, even though MSSIM does not report any improvement. New objective QA
models are still needed that are able to calculate the salient parts of video information.

2.2 Saliency-Based Quality Assessment Methods

Saliency is an attention process that helps humans to focus their cognitive resources on
the most pertinent subgroup of data, since our visual system can only process partial
amounts of information from the wide stream of information that surrounds us [8]. This
selection process functions as a filter regulating the access of salient visual information
to high level processing systems in the brain, allowing only salient information to reach
our awareness.

Since the human visual system (HVS) is the ultimate assessor of image quality, the
effectiveness of an Image Quality Metrics (IQM) is generally quantified by to what
extent its quality prediction is in agreement with human judgments [9]. The relationship
between salience and quality perception has led to a number of approaches that try to
integrate salience into IQA metrics to improve their prediction performance [10]. Sali‐
ency-weighted IQAs have successfully improved SSIM and PSNR performance [11].

Most saliency algorithms use spatial properties of an image to predict visual salience.
There are more than ten spatial saliency algorithms [12]. One reason that there are so
many salience algorithms is that the quality of the salience algorithm is important -
Zhang et al. found that the difference in predicting human fixations between saliency
models is sufficient to yield a significant difference in performance gain when adding
these saliency models to IQMs [12].

Some saliency algorithms use frequency domain properties of the image to determine
salient areas [13–18]. Frequency domain saliency algorithms respond to patterns in the
image, and are typically modelled on the biological properties of the visual cortex of the
human eye. Salience maps generated by frequency domain algorithms can solve many
problems typically seen in spatial salience calculation methods [19]. Spatial domain
algorithms typically produce low-resolution salience maps, have ill-defined object
boundaries from severe downsizing of the input image, and fail to uniformly map the
entire salient region.

Most saliency-based perception models described in the literature follow two theo‐
retical approaches to obtain saliency: the bottom-up and the top-down approach. The
bottom-up approach follows the visual saliency hypothesis [16], which explains the
selection of a fixation site as a feature-guided process, and considers visual attention as
a data-driven reaction to visual features. The top-down approach is based on the cogni‐
tive control hypothesis [16, 20], according to which visual attention is guided in a top-
down way according to the task-related needs of the cognitive system. Visual stimuli
are relevant (as they are for the bottom-up theory), but this relevance is determined by
cognitive information rather than inherent visual saliency [8]. Bottom-up video
compression models predict visual saliency from visual patterns, for example using
pixel-level contrast or colour differences from the average video-frame colour [16, 21].
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However, perceptual sensitivity may not be able to completely explain human visual
attention, because it does not consider other variables related to context or cognition. In
order to solve this problem, top-down video compression models aim to predict visual
saliency starting from representations of viewers’ goals and tasks [22]. A problem with
top-down saliency models is that they are meant to calculate the saliency on a visual
scene, ignoring what is salient or may become salient due to compression artefacts, e.g.
ringing, contouring or aliasing. Zhang at el. found that image quality degradation could
give rise to changes in images’ salience maps [10].

Objective Video Quality Metrics (VQMs) differ from IQMs because human percep‐
tion of static images is different than moving images. VQMs also differ from IQMs in

Fig. 1. Video frame at progressively lower resolutions and quality, and the spatial salience map
of the frame. The salience map has readily visible changes in response to quality.
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that there is a timeliness requirement - processing video can be resource-intensive. The
saliency analysis of videos is more complicated than that of still images because there
is a spatio-temporal correlation between regions of consecutive frames. The motion of
objects changes their importance in a scene and leads to a different saliency map [23].
To address the changing salience of video, some VQMs attempt to incorporate spatio-
temporal measures of salience. VQMs that incorporate a measure of salience, perform
significantly better than traditional IQAs at predicting subjective image quality [10].

Video compression often produces distortions turning non-salient parts of a visual scene
into salient areas. Both bottom-up and top-down video compression models only consider
within-frame visual saliency (called “spatial saliency”), thus not properly calculating
between-frames spatio-temporal saliency, also called “spatio-temporal saliency”.

In the literature, less attention is given on spatio-temporal saliency compared to
spatial saliency. Spatio-temporal saliency is mainly studied in cognitive science
research, which aims to model perceptual and attentional processes [24–26], and spectral
analysis research, which aims to extend frequency domain use of phase data [27, 28].
Applying spatio-temporal saliency to compression may be complicated because of noise
produced by camera sensor or compression codec, which can be difficult to discriminate
from salient motion. Most of the compression models based on spatio-temporal saliency
use global search methods based on a single phenomenon such as motion, optical flow,
flicker, or interest points. They impose heavy computational costs because they need to
combine many such search algorithms at many scales. Measures of the salience map
deformation are a good basis for VQA, because: (1) changes in quality are more visible
in salience maps than in video images (Fig. 1); (2) changes in salience can cause a scene
to be regarded differently by a viewer (e.g. regarding a different part of a scene) affecting
subjective quality; (3) if video has been encoded using a salience-aware codec, that more
heavily compresses parts of the frame it predicts as non-salient, then deformations in
the salience map may cause the viewer to attend to heavily compressed areas.

3 Sencogi Spatio-Temporal Saliency Metric (Sencogi-STSM)

A new saliency-aware VQA metric called Sencogi-STSM has been developed by
Cogisen. The metric is able to predict subjective evaluation of quality for compression
models without using cohorts of human viewers. Unlike most objective VQA models,
Sencogi-STSM is able to evaluate the quality of videos compressed by saliency-based
codecs.

3.1 Cogisen’s Video Compression Algorithm

The VQA metric is based on saliency algorithms that Cogisen developed for video
compression. Cogisen’s video compression algorithms were designed for low band‐
width video applications, such as mobile, that have low video resolution/quality. At low
resolutions, it can be challenging for video encoders to calculate saliency, because there
are not enough pixels to calculate edges and contrasts. Although low-resolution is diffi‐
cult to compress, low bandwidth is particularly important for devices that have limited
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processing capacity and data bandwidth, such as smartphones. Smartphones are
becoming the dominant device used for video recording and playing [29]. Smartphone
video is also frequently used for live video streaming, such as video chat communication,
where latency and delays are easily apparent, so suitable video compression algorithms
should meet tight speed and low bandwidth targets.

Cogisen’s salience-enabled video compression algorithms were developed for real-
time live video, where each frame is compressed in the time between subsequent frames,
which requires very fast saliency calculations. Four different types of saliency algo‐
rithms are simultaneously run on a real-time video stream and combined to drive the
codec’s variable macro-block compression. Cogisen’s saliency is used in a different way
than other salience-based video compression algorithms: many algorithms use saliency
to variably drive compression level, to find an acceptable quality trade-off, where videos
can have a lower subjective quality in non-salient parts in order to obtain extra compres‐
sion gains. In Cogisen’s implementation, the saliency algorithms are tuned for threshold
rather than trade-off. Using a saliency threshold ensures there is no visible loss anywhere
in a video. The use of four salience drivers ensures that information removal in one
domain does not introduce salient artefacts in another domain.

3.2 A New Saliency-Aware Video Quality Assessment

The salience algorithms from Cogisen’s video compression were used to create Sencogi-
STSM, a new saliency-aware VQA. The four types of salience computed are:

• Pixel Noise Detection, which discerns between pixel noise and motion. Camera
sensors produce noise, which appears as random bit changes in the frame. In some
situations where a small part of the sensor’s dynamic range is used (e.g. low light
conditions) pixel noise can be the majority of the change between frames. Pixel noise
is the first type of saliency to be calculated, because spatio-temporal algorithms
cannot discern genuine scene motion from sensor pixel noise.

• Static Saliency, which is saliency within a video frame.
• Spatio-Temporal Saliency, which is saliency of the motion between frames. Some

types of motion are more salient than others. Once the pixel noise has been identified,
the spatio-temporal saliency gives an indication of how strong the video compression
can be in different parts of the frame. Spatio-temporal saliency, in particular the
prediction of spatio-temporal saliency artifacts, was found to be the most influential
factor in subjective image quality, especially in low bandwidth implementations. In
low quality videos, any reduction in quality or resolution may result in distortions
such as blurry edges due to ringing artifacts or shadowing effects behind the motion.
At even lower resolutions and quality levels, a moving object may not even be
recognizable but it will be a blob. Cogisen’s spatio-temporal saliency algorithm is
able to detect those parts that might become salient due to new pixel noise artifacts,
by calculating the correlation between the original high quality saliency map and the
saliency map of the compressed video.

• Delta-Quality Saliency, which calculates whether a quality change is noticeable
subjectively by a user, affecting the natural scene salience [30]. If part of a video

A New High-Speed Objective Assessment Metric 359



becomes better or worse quality, it can attract attention, depending on the amount of
quality change. We term this induced saliency “Delta-Quality Saliency”. It is a sepa‐
rate saliency calculation for each macro-block that is correlated to the amount of
compression change that would lead to the video quality being perceived as changed.

The salience maps are weighted by tunable thresholds, then added to form an overall
salience map (Fig. 2). A video quality score is obtained by comparing the overall salience
maps of the compressed and reference videos (see Fig. 3) using SSIM.

Fig. 2. Figure shows how the different saliency types are combined.

Fig. 3. Figure shows how video quality is measured as a change in saliency map.

4 Performance Evaluation of the Sencogi Spatio-Temporal
Saliency Metric

4.1 Methodology

The evaluation of the performance of the Sencogi-STSM followed three phases. In
Phase 1, a subjective model was followed to create a benchmark database. In Phase
2, objective VQA scores were calculated by applying both the most used objective
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VQA metrics (PSNR, and SSIM), and Sencogi-STSM. In Phase 3, we compared the
subjective quality scores obtained in Phase 1, to the objective score obtained in
Phase 2.

4.2 Phase 1. Subjective Video Quality Assessment Database

In order to create a subjective video quality database for benchmarking the evaluation
of the Sencogi-STSM, the subjective opinion scores were calculated of videos
compressed at different Constant Rate Factor (CRF) values, and by two different
compression methods. Constant Rate Factor is a setting that instructs the encoder to
attempt to achieve a certain output quality by reducing the bitrate. The range of the
quantizer scale is 0–51: where 0 is lossless, 23 is default, and 51 is worst possible. A
lower value is a higher quality and a normal range is 18–28. CRF 18 is considered to be
visually lossless [31]. Reference videos were compressed by two video compression
models: ×264 (which does not include a salience model) and the ×264 codec with
compression weighted by a salience model that was previously proven to increase
compression without affecting subjective scores. The saliency-based video compression
model has been recently validated and evaluated [32, 33]. Video compression was
performed at two compression levels: Constant Rate Factors (CRF) 21 and CRF 27. The
experimental design was 5 (reference videos) × 2 (compression methods) × 2 (compres‐
sion levels). Subjective opinion scores assigned to each compression level were
collected to create a VQA database.

4.2.1 Materials
Five benchmark videos (called “Big Bucks Bunny”, “Bouncing balls”, “Netflix ritual
dance”, “Crowd run” and “Tears of steel”) with high technical complexity related to the
current compression methods were selected. The selected videos lasted less than 10 s
and were in the uncompressed YUV4MPEG 4:2:0 format. Only one video was in the
MP4 format (“Bouncing Balls”) because it was unavailable in an uncompressed format.
All videos were 426 × 224 landscape resolution. The raw source of each file was encoded
into the MPEG4 format. Reference videos were compressed with a visually lossless CRF
value of 10. CRF 10 reference videos were then compressed using both the standard
H264 compression and the saliency based model, each video was compressed to two
levels: CRF 21 and CRF 27.

4.2.2 Procedure
The Single Stimulus Continuous Quality Scale (SSCQS) method with hidden reference
removal was used [2]. The SSCQS method presents one video at a time to the viewer.
An example of a high quality video is presented only once at the beginning of the test.
Reference high quality videos are randomly shown during the test as a control condition,
and participants are not aware of that. The sequence presentations are randomized to
ensure that the same video is not presented twice in succession (the randomization is
performed when the survey is developed – every user receives the same randomized
sequence). As the presentation of each trial ends, observers evaluate the quality of each
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video using a grading scale of integers in the range 1–100. The scale was marked
numerically and divided into five equal portions, which were labelled with adjectives:
“Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. The position of the slider is automat‐
ically reset after each evaluation. The survey was created and administered using a web-
based survey software tool called SurveyGizmo (www.surveygizmo.com), following
an online-based methodology, whose validity was previously assessed by the
authors [32].

4.2.3 Subjects
Thirty-nine participants (mean age 31.6 years old, 70.9% male, 17.9% expert viewers,
58.9% indoor with artificial lights, 41.1% indoor with natural lights) completed the
subjective test in a single session on November 4, 2016. The pre-screening of the
subjective test scores consisted of determining if the participants met the preliminary
requirements (no vision impairments, only personal computers, no smartphone or
tablets, maximum brightness on, bandwidth speed higher than 40 megabits/seconds).
Six outliers were removed.

4.2.4 Results of Subjective Video Quality Assessment
The Mean Opinion Scores assigned to the reference videos were used to calculate the
Difference Mean Opinion Scores (DMOS) between each compressed video and the
relating reference using the following formula:

dij = riref(j) − rij

where rij is the raw score for the i-th subject and j-th image, and riref(j) denotes the
raw quality score assigned by the i-th subject to the reference image corresponding
to the j-th distorted video [35].

Scale assessment. Internal consistency was supported by Cronbach’s alpha
(alpha = 0.969), Spearman Brown split-half value (rho = 0.932) (Cronbach’s
Alpha = 0.951 for the first half and alpha = 0.931 for the second half), meaning that all
the items of the scale measured the same dimension.

Opinion Scores. The mean opinion scores (MOS) were calculated for each subject.
The Difference Mean Opinion Scores (DMOS) were obtained by calculating the differ‐
ence between the MOS of reference videos and the MOS of the related processed videos
(H264 DMOS TOT = 15.46; saliency based compression DMOS TOT = 14.52; H264
DMOS CRF 21 = 2.90; saliency based compression DMOS CRF 21 = 0.06; H264
DMOS CRF 27 = 12.5; saliency based compression DMOS CRF 27 = 14.16).
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4.3 Phase 2. Objective Video Quality Assessment

The quality of each reference and compressed videos (used in Phase 1 to assess the
subjective perception of quality) was measured by the following VQA metrics: (1) PSNR;
(2) SSIM; (3) Sencogi-STSM.

4.3.1 Results of Objective Video Quality Assessment
Table 1 shows the total results for each objective metric (Means: PSNR = 35.898,
SSIM = 0,951, Sencogi-STSM = 3.19).

Table 1. Objective VQA metrics for compressed video
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4.4 Phase 3. Prediction Performance of Objective Models

Phase 3 consisted of four comparative analyses between the objective metrics calculated
in Phase 2 and the subjective scores calculated in Phase 1 (Fig. 4). This phase followed
the methodology recommended by the ITU Telecommunication Standardization
Sector [33].
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4.4.1 Procedure
The performance of all objective models was tested by using the following metrics:

• The Spearman Rank Order Correlation Coefficient (SROC) measures the prediction
monotonicity of an objective metric, that is to say, the index in which objective scores
are able to predict subjective scores.

• The Pearson Linear Correlation Coefficient (PLCC) measures prediction accuracy,
that is to say the capability to predict the subjective scores with low error. The Pearson
linear correlation it is usually calculated after applying a nonlinear regression with a
logistic function as recommended by the ITU Telecommunication Standardization
Sector.

• The Outlier Ratio (OR) is defined as the percentage of the predictions number that
falls outside 2 times the standard deviation of subjective DMOS.

• The Root Mean Square Error (RMSE) measures prediction accuracy like the Pearson
linear correlation [39].

Fig. 4. Comparison among correlations between DMOS and objective metrics

4.4.2 Results of Objective Video Quality Assessment
• Spearman Rank Order Correlation (SROC). Results on both CRF 21 and 27 show a

significant positive correlation between Sencogi-STSM values and DMOS values
(rho = 0.650, p < 0.01). No significant correlation between both PSNR (rho = 0.159,
p > 0.05) and SSIM (rho = 0.375, p > 0.05) values and DMOS values was found.
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• Pearson Linear Correlation Coefficient (PLCC). Results on both CRF 21 and 27
show a significant positive correlation between objective measures and DMOS
subjective scores for both Sencogi-STSM (r = 0.662, p < 0.01) and SSSIM (r = 0.466,
p < 0.05). No significant correlation between PSNR and DMOS was found (r = 0.128,
p > 0.05). Comparison of both Spearman’s (SROC) and Pearson’s (PLCC) correla‐
tion among PSNR, SSSIM and Sencogi-STSM and DMOS values.

• Outlier Ratio (OR). Only 7% of the values predicted by both SSIM (OR = 0.65) and
Sencogi-SMST (OR = 0.70) fall outside ±2 of the standard deviation of subjective
DMOS, whereas all PSNR values (OR = 1) fall outside ±2 of the SD of subjective
DMOS.

• The Root Mean Square Error (RMSE). Paired t test showed that SSIM scores
(t(10) = 10.32, p = 0.000) and Sencogi-STSM scores (t(10) = 12.66, p = 0.000) are
more statistically significant than PSNR scores. Moreover, Compared to PSNR and
SSIM, Sencogi-STSM prediction scores have significantly lower RMSE than SSIM
scores (t(10 = 2.29, p = 0.048) with Sencogi-STSM RMSE = 9.045; PSNR
RMSE = 29.898, SSIM RMSE = 10.201.

5 Discussion

Based on the analyses presented in this work, the new Sencogi-STSM metric is an
effective metric for predicting the subjective quality scores of videos. A significant
positive Spearman’s correlation uniquely between the Cogisen’s metric scores and
DMOS scores highlights that Sencogi-STSM is the only metric that was able to show
an increase of prediction associated with an increase of subjective DMOS in a statisti‐
cally relevant way, compared to PNSR and SSIM performance. Both Sencogi-STSM
and SSIM were able to predict estimates of the subjective scores with a minimum
average error, but Sencogi-STSM had a prediction accuracy that was significantly better
than both SSIM and PSNR. The improvements in prediction performance found with
Sencogi-STSM over the classic SSIM and PSNR metrics, is likely because the method
is weighted on perceptual quality, so that the most salient parts of each video-frame
affect the VQA metric more than the less salient ones.

6 Conclusion

A new Video Quality Assessment (VQA) metric was developed, called Sencogi Spatio-
Temporal Saliency Metric (Sencogi-STSM). Sencogi-STSM is based on a spatio-
temporal saliency model that is able to better predict subjective perception scores of
video compared to the most used objective VQA metrics, because it uses a saliency
model of human visual perception. Sencogi-STSM combines noise detection, the sali‐
ency within a video-frame, the saliency of the motion between video-frames, and the
delta-quality saliency indicating where a quality change man be noticed by a human
viewer. We have assessed the performance of Sencogi-STSM at predicting subjective
scores, and compared that performance with the most used VQA metrics, i.e. PSNR and
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SSIM. We found that Sencogi-STSM more accurately predicts subjective scores than
the most used objective VQA models. The difference between Sencogi-STSM and the
most used VQA models (such as PSNR and SSIM) is that Sencogi-STSM uses salience
to decide how important each part of a frame is, in terms of quality perception. Future
works could be focused on improving the saliency model by combining bottom-up
spatio-temporal saliency to top-down saliency, accordingly to task-centred and contex‐
tual factors.
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