
Lean Kernels in Description Logics

Rafael Peñaloza1(B), Carlos Menćıa2, Alexey Ignatiev3,
and Joao Marques-Silva3

1 Free University of Bozen-Bolzano, Bolzano, Italy
penaloza@inf.unibz.it

2 University of Oviedo, Gijón, Spain
cmencia@gmail.com

3 University of Lisbon, Lisbon, Portugal
{aignatiev,jpms}@ciencias.ulisboa.pt

Abstract. Lean kernels (LKs) are an effective optimization for deriving
the causes of unsatisfiability of a propositional formula. Interestingly,
no analogous notion exists for explaining consequences of description
logic (DL) ontologies. We introduce LKs for DLs using a general notion
of consequence-based methods, and provide an algorithm for comput-
ing them which incurs in only a linear time overhead. As an example,
we instantiate our framework to the DL ALC. We prove formally and
empirically that LKs provide a tighter approximation of the set of rele-
vant axioms for a consequence than syntactic locality-based modules.

1 Introduction

Description logics (DLs) [6] are logic-based knowledge representation formalisms
characterized by having an intuitive syntax and formal, well-understood seman-
tics. These logics have been successfully used for representing the terminological
knowledge of several domains, and are the logical formalism behind OWL 2, the
standard ontology language for the Semantic Web. Along with the availability of
better editors, this had led to the creation of larger ontologies; indeed, observing
ontologies with tens of thousands of axioms is increasingly common.

Depending on the reasoning task of interest, not all axioms in an ontology
may be relevant at any given time. To improve the efficiency, or even guarantee
the feasibility of a task over large ontologies it is thus fundamental to focus only
on a subset of pertinent axioms, usually called a module [12,14]. For example, in
axiom pinpointing, where the task is to identify all the minimal subsets of axioms
that entail a given consequence (called MinAs or justifications), only a small frac-
tion of the ontology is relevant [34,37]. Similarly, error-tolerant and probabilistic
reasoning can usually be restricted to a subset of relevant axioms [26,31]. Since
the performance of reasoning methods depends on the size of the input ontology,
a useful optimization consists in computing first a small module containing all
the MinAs. Ideally, this module would contain exactly the union of all MinAs;
however, computing this set is computationally expensive [30]. Thus, different
approximations that are easy to compute have been proposed.
c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 518–533, 2017.
DOI: 10.1007/978-3-319-58068-5 32

Lean Kernels in Description Logics 519

The notion of a MinA in DLs is conceptually closely related to that of a
MUS in propositional satisfiability [10,20,24,27]. Given a propositional formula
in CNF, a MUS is a minimal subset of clauses that is still unsatisfiable. As in
DLs, computing the union of all MUSes is computationally expensive, even for
Horn formulas.1 In this context, the lean kernel has been proposed as a tight
and easier-to-compute overapproximation of the union of all MUSes [20–22].
As such, it is an effective way to improve MUS enumeration. Briefly, the lean
kernel (LK) is the set of all clauses that are used in some resolution proof for
unsatisfiability. Recent work has shown that the LK can be obtained by solving
maximum satisfiability [25] or by finding a minimal correction subset [28], thus
requiring at most a logarithmic number of calls to a witness-producing NP oracle
(e.g. a SAT solver).

Interestingly, the analogous of the lean kernel has never been studied in the
context of DLs or, to the best of our knowledge, any other ontology language.
Perhaps one reason for this is that the notion of LK depends on a specific
derivation procedure (i.e., resolution). In this paper, we introduce lean kernels for
description logics. To keep our approach as general as possible, we do not focus on
a specific DL or reasoning algorithm, but rather base our definitions on abstract
consequence-based methods, of which many instances exist in the literature. We
then present an algorithm for computing the LKs of all consequences derivable
through these methods with only a linear time overhead. As an example of our
general methods, we focus on the consequence-based algorithm for ALC, which
generalizes the well-known completion method for the light-weight DL EL+. We
compare the LKs in this setting with locality-based modules, which have been
used for optimizing axiom pinpointing in DLs, and show formally that LKs are
in general strictly smaller than those modules.

Through an empirical analysis, we show that the lean kernel is typically
smaller (in some cases much smaller) than locality-based modules. More pre-
cisely, we compute the LKs and the locality-based modules for all atomic sub-
sumption relations derivable from well-known large ontologies written in EL+.
In these instances, the size of the LK is typically less than 1% of the size of
the original ontology, and in many cases one-tenth or less of the locality-based
modules. Moreover, the time required to compute these LKs is small, and the set
obtained often coincides with the union of all MinAs. These results show that
lean kernel computation is an effective approximation of the union of all MinAs,
which can be used for solving other related reasoning problems.

2 Preliminaries

Description logics (DLs) [6] are a family of knowledge representation formalisms
that have been successfully used to handle the knowledge of many application
domains. They are also the logical formalism underlying the standard Web Ontol-
ogy Language (OWL 2). As prototypical examples, we briefly introduce ALC [32],
1 Finding the union of MUSes is at least as hard as testing MUS membership, which

is Σp
2-complete for arbitrary CNF formulas [23, Theorem 4].

520 R. Peñaloza et al.

I := ΔI

⊥I := ∅
¬CI := ΔI \ CI

(C D)I := CI ∩ DI

(C D)I := CI ∪ DI

(∃r.C)I := {d ∈ ΔI | ∃e ∈ CI .(d, e) ∈ rI}
(∀r.C)I := {d ∈ ΔI | ∀e.(d, e) ∈ rI ⇒ e ∈ CI}

Fig. 1. Interpretation of complex concepts

the smallest propositionally closed DL, and EL+ [5], the logic underlying the
OWL 2 EL profile.2

Let NC and NR be two disjoint sets of concept- and role-names, respectively.
ALC concepts are constructed via the grammar rule

C ::= A | � | ⊥ | ¬C | C � C | C � C | ∃r.C | ∀r.C, (1)

where A ∈ NC and r ∈ NR. EL concepts are obtained from the rule (1) by disal-
lowing the constructors ⊥ (bottom), ¬ (negation), � (disjunction), and ∀ (value
restrictions). Knowledge is represented by a TBox. An ALC TBox is a finite set
of general concept inclusions (GCIs) C 	 D with C,D ALC concepts. An EL+

TBox is a finite set of GCIs formed by EL concepts, and role inclusions (RIs)
r1 ◦ · · · ◦ rn 	 s, n ≥ 1, with ri, s ∈ NR. We use the term axiom to denote both
GCIs and RIs. Given an axiom α = x 	 y, we denote by siglhs(α) and sigrhs(α)
the set of all symbols from NC and NR appearing in x and y, respectively, and
sig(α) = siglhs(α) ∪ sigrhs(α).

The semantics of DLs is based on interpretations of the form I = (ΔI , ·I)
where ΔI is a non-empty domain and ·I maps every A ∈ NC to a subset
AI ⊆ ΔI and every r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . This function is
extended to arbitrary concepts as shown in Fig. 1. The interpretation I satisfies
the GCI C 	 D if CI ⊆ DI ; it satisfies the RI r1 ◦ · · · rn 	 s if rI

1 ◦ · · · rI
n ⊆ sI .

I is a model of the TBox T if it satisfies all axioms in T .
One of the main reasoning problems in DLs is subsumption between con-

cepts; that is, to decide whether every model of a TBox T also satisfies the GCI
C 	 D (denoted by C 	T D). Without loss of generality, we focus only on
atomic subsumption, where C and D are restricted to be concept names. It is
often important to determine, in addition, the axioms that are responsible for a
subsumption to follow.

Definition 1 (MinA). Let T be a TBox and A,B ∈ NC . A MinA for A 	 B
w.r.t. T is a subset M ⊆ T s.t. A 	M B and for every N � M, A �	N B.

Example 2. Consider the TBox Texa := {ax1, . . . ax6}, with

ax1 = A 	 B ax2 = A 	 ∃r.A ax3 = ∃r.B 	 B
ax4 = B 	 C ax5 = A 	 ∃s.C ax6 = ∃s.A 	 B

2 https://www.w3.org/TR/owl2-overview/.

https://www.w3.org/TR/owl2-overview/

Lean Kernels in Description Logics 521

Then A 	Texa C. Moreover, {ax1, ax4} is the only MinA for A 	 C w.r.t. Texa.

The importance of the computation of MinAs, also known as axiom pin-
pointing, for ontology debugging and repair is well-documented [8,16]. Other
applications of this task are error-tolerant [26] and context-based reasoning [7];
and probabilistic reasoning under distribution [31] and Bayesian semantics [11],
to name just a few recent examples.

One fundamental step for handling large ontologies is to extract a small
subset of axioms (or module) that preserves the relevant properties of the original
TBox. In the case of axiom pinpointing and its associated reasoning tasks, such
a module should contain all the MinAs [38].

Definition 3 (MinA-preserving module). Let T be a TBox and A,B ∈ NC .
A subset S ⊆ T is a MinA-preserving module for A 	 B if for every MinA M
for A 	 B w.r.t. T it holds that M ⊆ S.

To improve the efficiency of reasoning, one would start with the smallest pos-
sible MinA-preserving module, and extract all the MinAs from this set. Clearly,
the smallest MinA-preserving module is formed by the union of all MinAs. How-
ever, computing this union is known to be hard, even for restricted sublogics
of EL [30]. Thus, other approaches, like reachability- and locality-based mod-
ules [13,36], have been suggested to compute a small module more efficiently.

To improve readability, we introduce syntactic locality modules only for
TBoxes that are in normal form; that is, where all the GCIs are of the form

A1 � · · · � An 	 B, A 	 B1 � · · · � Bn, ∃r.A 	 B, A 	 ∃r.A, A 	 ∀r.B (2)

with n ≥ 0, Ai, A ∈ NC , and Bi, B ∈ NC . As usual, we identify the empty
conjunction with � and the empty disjunction with ⊥. Every TBox can be
transformed to normal form preserving all relevant subsumption relations in
polynomial time [5,35]. Moreover, modules obtained from a normalized TBox
can be easily mapped to modules of the original TBox preserving the same
properties [3,4].

Definition 4 (locality-based module). Let T be a TBox in normal form,
and Σ a signature. An axiom α ∈ T is ⊥-local w.r.t. Σ if siglhs(α) �⊆ Σ; it is
�-local w.r.t. Σ if sigrhs(α) �⊆ Σ. Locality is extended to sets of axioms in the
obvious way.

Let A,B ∈ NC and x ∈ {⊥,�}. The x-module for T w.r.t. A 	 B, denoted
Mx

A,B, is the smallest subset M ⊆ T s.t. T \M is x-local w.r.t. {A,B}∪sig(M).
The ⊥�∗-module for T w.r.t. A 	 B is the fixpoint reached from iteratively
extracting the ⊥- and �-modules for T w.r.t. A 	 B.

Example 5. Consider again the TBox Texa from Example 2, which is already in
normal form. Clearly, ax1, ax3, and ax5 are not ⊥-local w.r.t. {A}. Moreover,
ax3, ax4, and ax6 are not ⊥-local w.r.t. sig({ax1, ax3, ax5}). Hence, M⊥

A,C = Texa.
Similarly, M�

A,C = Texa and thus M⊥�∗
A,C = Texa.

522 R. Peñaloza et al.

In the following, the term locality-based module (LBM) refers to any of the
three kinds of modules defined above. LBMs are MinA-preserving modules that
can be computed in polynomial time. It has been shown, through various empir-
ical studies, that these modules are typically small for realistic ontologies, in
particular for EL+ [4,37]. In the next section we consider a new notion of mod-
ule that has been previously considered in the context of propositional logic.

3 Lean Kernels

Intuitively, the lean kernel for a consequence c—e.g. a subsumption relation—is
the set of all axioms that can appear in some proof for c. In general, the notion of
a proof depends not only on the logic, but also on the decision method used. We
now define lean kernels based on a general notion of consequence-based methods.

Abstracting from particularities, a consequence-based method is an algorithm
that works on a set A of assertions, and uses rules to extend this set. The
algorithm has two phases. First, the normalization phase transforms all the
axioms into a suitable normal form. The saturation phase initializes the set A
and extends it through rule applications. A rule is of the form (B0,S) → B1,
where B0,B1 are finite sets of assertions, and S is a finite set of axioms in normal
form. This rule is applicable to a set of axioms T and a set of assertions A if
B0 ⊆ A, S ⊆ T , and B1 �⊆ A. Its application extends A to A∪B1. A is saturated
if no rule is applicable to it. The method terminates if A is saturated after
finitely many rule applications. After termination, the consequences of T can be
read directly from A; that is, to decide whether a consequence c follows from
T it suffices to verify whether an assertion from the distinguished set check(c)
appears in A. The set check(c) contains the assertions that suffice for deciding
that the consequence c holds. Given a rule R = (B0,S) → B1, we will use pre(R),
ax(R) and res(R) to denote the sets B0 of premises, S of axioms that trigger R,
and B1 of assertions resulting of its applicability, respectively.

A simple example of a consequence-based method is the algorithm for rea-
soning with ALC TBoxes presented in [35]. Before describing this algorithm
we introduce some necessary notation. A literal is either a concept name or a
negated concept name. In the following, H,K denote (possibly empty) conjunc-
tions of literals, and M,N are (possibly empty) disjunctions of concept names.
For simplicity, we will often treat these conjunctions and disjunctions as sets.

The consequence-based algorithm for ALC works on assertions of the form
(H,M) and (H,N, r,K). Intuitively, these assertions express H 	T M and
H 	T N � ∃r.K, respectively. The normalization phase transforms all GCIs
to be of the form (2) introduced before. The saturation phase initializes A to
contain the assertions (H,A) for all concept names A and all conjuctions of
literals H from the normalized TBox, such that A ∈ H. The rules applied during
saturation are depicted in the upper part of Table 1. After termination, for every
two concept names A,B, it holds that A 	T B iff (A,B) ∈ A or (A,⊥) ∈ A.
Thus, in this case, if the desired consequence c is the subsumption A 	 B, then
check(c) = {(A,B)}.

Lean Kernels in Description Logics 523

Table 1. ALC and EL+ consequence-based algorithm rules (B0,S) → B1

B0 S B1

(H � ¬A,N � A) ∅ (H,N)

(H,N1 � A1), . . . , (H,Nn � An) A1 � · · · � An B (H,
⊔n

i=1 Ni � B)

(H,N � A) A ∃r.B (H,N, r,B)

(H,M, r,K), (K,N � A) ∃r.A B (H,M � B, r,K � ¬A)

(H,M, r,K), (K,⊥) ∅ (H,M)

(H,M, r,K), (H,N � A) A ∀r.B (H,M � N, r,K � B)

(A0, ∅, r1, A1), . . . (An−1, ∅, rn, An) r1 ◦ · · · ◦ rn s (A0, ∅, s, An)

We emphasize that this is only one of many consequence-based algorithms
available. The completion-based algorithm for EL+ [5] is obtained by restricting
the assertions to be of the form (A,B) and (A, ∅, r, B) with A,B ∈ NC ∪ {�}
and r ∈ NR, and adding the rule in the last row of Table 1. Other examples
include LTUR approach for Horn clauses [29], and methods for more expressive
and Horn DLs [9,18,19]. For the rest of this section, we consider an arbitrary,
but fixed, consequence-based method, that is sound and complete for deciding
consequences from a set of axioms.

For the following definition, we need to weaken the notion of applicability of
a rule. The rule (B0,S) → B1 is weakly applicable to T and A if B0 ⊆ A and
S ⊆ T . In other words, the last condition of applicability is ignored.

Definition 6 (proof). A proof for a consequence c is a finite sequence of rules
P = (R1, . . . , Rn) such that: (i) for all i, 1 ≤ i ≤ n, Ri is weakly applicable after
R1, . . . , Ri−1 have been applied, (ii) check(c) ∩ res(Rn) �= ∅, and (iii) for every
i, 1 ≤ i < n, there is a non-initial assertion b ∈ res(Ri) and a j > i where
b ∈ pre(Rj). Pf(c) denotes the set of all proofs for c.

Given a proof P = (R1, . . . , Rn), we denote by TP the set of all axioms
appearing in P; that is, TP :=

⋃n
i=1 ax(Ri). Using this notation, it is now possible

to define a general notion of the lean kernel, which corresponds to the set of all
axioms appearing in at least one proof for the consequence.

Definition 7 (lean kernel). The lean kernel for a consequence c is the set
LK(c) :=

⋃
P∈Pf(c) TP .

Notice that if there is a proof P for a consequence c, then the subset of
axioms TP already entails c. Since the consequence-based algorithm for ALC is
sound and complete for deciding subsumptions entailed by a TBox, it follows
that the lean kernel is a MinA-preserving module. In fact, this is true for any
consequence-based method C.

Theorem 8. Let T be a set of axioms, c a consequence, and C a sound and
complete consequence-based method. Then LK(c) is a MinA-preserving module
for T |= c.

524 R. Peñaloza et al.

Table 2. A proof for A C in Texa.

B0 S B1

R1 (A,A) A B (A,B)

R2 (A,A) A ∃r.A (A, ∅, r, A)

R3 (A, ∅, r, A), (A,B) ∃r.B B (A,B, r,A � ¬A)

R4 (A,B, r,A � ¬A), (A � ¬A,⊥) ∅ (A,B)

R5 (A,B) B C (A,C)

Proof. Let M be a MinA for c w.r.t. T . Then, there is a sequence of rule appli-
cations that uses only the axioms in M and eventually adds an assertion from
check(c) to A. This sequence can be minimized by iteratively removing all super-
fluous rule applications, thus yielding a proof P. If TP � M, then M cannot be
a MinA. Thus, we get that M ⊆ LK(c). ��

Example 9. In our running example, there are two proofs for A 	Texa C (modulo
reordering of the rules) w.r.t. the consequence-based algorithm: one that uses
the axioms ax1, ax4, and another one that uses ax1–ax4 as shown in Table 2. Thus
LK(A 	Texa C) = {ax1, . . . , ax4}.

Notice that the lean kernel from this example contains some axioms that
do not belong to any MinA; specifically, ax2 and ax3 are not fundamental for
deriving this consequence. On the other hand, this LK is a strict subset of the
⊥�∗-module for the same consequence (see Example 5). As we show next, this
property holds in general for ALC TBoxes in normal form.

Theorem 10. Let T be an ALC TBox and A,B ∈ NC . Then, w.r.t. the com-
pletion algorithm, LK(A 	T B) ⊆ M⊥�∗

A,B .

Proof. To obtain this result, it suffices to show that LK(A 	T B) ⊆ M⊥
A,B and

LK(A 	T B) ⊆ M�
A,B hold. Assume that LK(A 	T B) �⊆ M⊥

A,B . Then there
exists a proof P ∈ Pf(c) such that TP �⊆ M⊥

A,B ; let α be the first axiom appearing
in P such that α /∈ M⊥

A,B . Then α is ⊥-local w.r.t. Σ := sig(M⊥
A,B)∪{A,B}; i.e.,

siglhs(α) �⊆ Σ. By construction, for a rule to be weakly applicable to the axiom
α, siglhs(α) must have been already derived. (This connection between axioms
and rules is a property of this specific algorithm.) Thus, α cannot be ⊥-local. An
analogous but dual argument can be used to show that LK(A 	T B) ⊆ M�

A,B

also holds. ��

If we consider assertions and axioms as propositional variables, the rules in
a consequence-based method can be seen as implications. In particular, they
can be seen as (generalized) Horn clauses. This insight was exploited in [33] to
encode the execution of the EL+ completion algorithm in a Horn formula. In [34],
the notion of COI module was introduced based on this encoding. As formally
defined, the COI module for a given consequence is in general a superset of its

Lean Kernels in Description Logics 525

LK, as it considers also all possible derivations of initial assertions, which can
be seen as tautologies, and are disregarded by our definition of proof. However,
this notion can be adapted to correspond to the LKs defined here.

4 Computing Lean Kernels

We now describe a method for computing LKs based on modifying consequence-
based algorithms to keep track of the relevant axioms used in the derivation
of the consequences. To achieve this, we first provide a unique label to each
axiom in T , which will be used to identify it. At the normalization phase, every
normalized axiom α obtained is labeled with the set lab(α) of the original axioms
that produce it. To label all the derived assertions with the set of the relevant
axioms that generate them, we modify the rule applicability condition, as well
as the result of applying it.

First, all assertions a obtained at initialization are labeled with the empty
set lab(a) = ∅. The rule R = (B0,S) → B1 is LK-applicable to T and A if
B0 ⊆ A, S ⊆ T , and there exists some non-initial b ∈ B1 such that b /∈ A
or lab(R) :=

⋃
a∈B0

lab(a) ∪
⋃

α∈S lab(α) �⊆ lab(b). Its application extends A to
A∪B1, sets lab(b) = lab(R) for all new assertions b, and modifies the label of all
previously existing assertions b from B1 to lab(b)∪lab(R). A is LK-saturated if no
rule is LK-applicable to it. The LK of the consequence c is obtained as the union
of the labels of all assertions in check(c). Given a consequence-based algorithm,
we call the variant using these applicability conditions its LK extension.

Example 11. An example execution of the LK extension of the ALC algorithm
over Texa appears in Table 3. Each step shows the preconditions for a rule appli-
cation, along with the assertion added and its label. For simplicity, we removed
all steps that derive obvious tautologies. In step 4, the assertion (A,B) is not
added again; rather its label is extended to the set {ax1, ax2, ax3}. Notice, more-
over, that the rule at step 4 would not be applicable in the original algorithm,
but becomes LK-applicable, as more axioms are detected as potentially relevant.

It is easy to see that the LK extension of a consequence-based algorithm
has essentially the same asymptotic run-time behavior as the original algorithm.

Table 3. Execution of the LK extension over Texa.

step B0 S B1 label

1 (A,A) A B (A,B) {ax1}
2 (A,A) A ∃r.A (A, ∅, r, A) {ax2}
3 (A, ∅, r, A), (A,B) ∃r.B B (A,B, r,A � ¬A) {ax1, ax2, ax3}
4 (A,B, r,A � ¬A), (A � ¬A,⊥) ∅ (A,B) {ax1, ax2, ax3}
5 (A,B) B C (A,C) {ax1, . . . , ax4}
6 (A,A) A ∃s.C (A, ∅, s, C) {ax5}

526 R. Peñaloza et al.

Indeed, the extension generates the same set of assertions. The main difference
is that, while the original algorithm generates each assertion only once, its LK
extension may update its label several times. Notice, however, that each update
strictly extends the set of axioms in the label. Thus, each label can be updated
at most |T | times, and the run-time of the LK extension is increased by a linear
factor. Another important feature of this extension is that the resulting labels
do not depend on the order in which the rules are applied.

Theorem 12. If the LK extension of a consequence-based method is executed
until LK saturation, then lab(check(c)) is the lean kernel for c.

Proof. Let P be a proof for c. Then P is a sequence of weakly applicable rules.
Consider the LK application of the same sequence. If one rule (B0,S) → B1 is
not LK-applicable, it means that its application would not change the label of
the assertions in B1. Condition (iii) in Definition 6 guarantees that all axioms in
TP appear in the labels of the elements of check(c) obtained after the execution
of this sequence; otherwise, the rule applications in which the missing axioms
appear could be removed from the sequence. Hence, TP ⊆ lab(check(c)).

Conversely, for every axiom α ∈ lab(check(c)) there exists a sequence of rule
LK-applications that eventually adds the axiom α to this label. Since every
LK-applicable rule is also weakly applicable, such a sequence can be trivially
transformed into a proof. Thus, lab(check(c)) ⊆ LK(c). ��

Notice that the runtime behaviour of the LK extension is governed by the
underlying decision procedure. For instance, our approach would compute the
LK of all atomic subsumption relations following from an ALC TBox in exponen-
tial time. This is in contrast to LBM and other MinA-preserving modules (see
e.g. [4]), which can be computed very efficiently, at the cost of losing soundness
and potentially including many superfluous axioms.

Example 13. Let T ′
exa := Texa ∪ {∃s.A 	 Bi, Bi 	 C | i ∈ I}, where I is an

arbitrarily large set of indices and Texa is the TBox from Example 2. Then the
⊥�∗-module for T ′

exa w.r.t. A 	 C is T ′
exa, while LK(A 	T ′

exa
C) = {ax1, . . . , ax4}.

Moreover, the TBox T ′′
exa := T ′

exa \ {ax4} does not entail A 	 C, and hence
LK(A 	T ′′

exa
C) = ∅. However, the ⊥�∗-module for T ′′

exa w.r.t. A 	 C is the set
{ax1} ∪ {∃s.A 	 Bi, Bi 	 C | i ∈ I}.

This example shows that LBMs may not provide much information about
the entailments or their axiomatic causes. As we see in the following section,
this phenomenon can be observed in realistic TBoxes used in practice.

5 Experiments

We performed an experimental study aimed at assessing the sizes of the LKs
in practice, and comparing them with the ⊥-, �- and ⊥�∗-modules (see
Definition 4). A prototype for computing the different modules was implemented
in C++ for the DL EL+ and several experiments were run on a Linux cluster

Lean Kernels in Description Logics 527

Table 4. Ontologies considered in the experiments

T # GCIs # RIs |class(T)|
GENE 20465 1 164743

NCI 46800 0 252519

NOT-GALEN 3937 442 27980

FULL-GALEN 35530 1014 453674

SNOMED-CT 307692 12 5333580

(2 GHz, 128 GB) on different well-known bio-medical ontologies. These ontolo-
gies are: GENE, NCI, NOT-GALEN, FULL-GALEN and SNOMED-CT (v.
2009). Table 4 shows the number of GCIs, RIs and atomic subsumption relations
in these ontologies. For each ontology, except SNOMED, the different modules
were computed for all atomic subsumption relations entailed by the ontology. For
SNOMED, both the LK and ⊥-modules were computed for all atomic subsump-
tion relations. Computing all �-modules was infeasible; hence we considered
the 240 concept names subsuming the largest number of concepts. These yield
the �-modules for around 2.7 million subsumption relations, for which also the
⊥�∗-modules were computed.

Figure 2 compares the sizes of the LKs against the size of locality-based mod-
ules, shown as a percentage. Theorem 10 guarantees that the size of the lean ker-
nel never exceeds the size of the ⊥, � and ⊥�∗-modules. A result of 102 means
that the size of the lean kernel matches the size of the other module, with smaller
values indicating more significant size reductions. Notice that in most cases the
LK is smaller than both ⊥- and �-modules, often achieving a significant reduc-
tion. The difference is more significant w.r.t. �-modules, where the LK is usually
at least two orders of magnitude smaller. Compared to ⊥-modules, LKs are usu-
ally smaller in a factor or 2 or more. Despite their large size, �-modules appear to
be useful as shown in the sizes of ⊥�∗-modules. Recall that ⊥�∗-modules are the
fixpoint from the iterative application of ⊥- and �-modules. It is thus guaranteed
that ⊥�∗-modules will not be greater than those modules. Noticeably, for GENE
⊥�∗-modules are in general equal to the LK; only in 4.5% of the cases is the
LK strictly smaller. For NCI, ⊥�∗-modules match the LKs for all subsumption

Table 5. Module sizes

⊥ � ⊥�∗ LK

T Min Avg Max Min Avg Max Min Avg Max Min Avg Max

GENE 2 18.33 68 1 2012.04 8786 1 5.70 66 1 5.45 52

NCI 1 36.70 398 1 2431.16 11572 1 7.08 85 1 7.08 85

NOT-GALEN 1 88.06 495 1 3433.56 3796 1 23.47 300 1 13.78 80

FULL-GALEN 1 9727.15 15543 1 34244.03 35733 1 8940.2214586 1 68.90 416

SNOMED-CT 1 51.71 264 3269 216213.80 307704 1 41.46 264 1 40.19 220

528 R. Peñaloza et al.

Table 6. Running times (in seconds). For LKs, the time refers to the total time for
computing all LKs; for LBMs the time refers to each subsumption relation.

LKs ⊥ � ⊥�∗

T Min Avg Max Min Avg Max Min Avg Max

GENE 1.98 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.06

NCI 3.79 0.00 0.01 0.10 0.01 0.01 0.09 0.01 0.02 0.13

NOT-GALEN 4.22 0.00 0.01 0.02 0.00 0.02 0.04 0.00 0.01 0.03

FULL-GALEN 461.03 0.00 0.36 1.12 0.01 1.60 2.90 0.02 2.46 8.06

SNOMED-CT 11200.53 0.11 0.65 5.34 0.15 2081.77 5209.57 0.26 3.91 28.92

relations. For NOT-GALEN and FULL-GALEN, LKs are significantly smaller
than ⊥�∗-modules, especially in the latter case. Regarding SNOMED, the reduc-
tion w.r.t. ⊥-modules is slightly smaller than in other cases: LKs are usually
75% of the ⊥-modules. �-modules are in general quite large, and ⊥�∗-modules
improve over ⊥-modules, getting close to the LKs in most cases.

These results are confirmed in Table 5, which shows, for each ontology the
minimum, average and maximum size of each module over the selected 2.7 million
instances of SNOMED and all the atomic subsumptions of the other ontologies.
Observe that �-modules usually represent a large fraction of the ontology, while
⊥-modules, and especially ⊥�∗-modules, are quite small for GENE, NCI, and
SNOMED representing in general less than one percent of the ontology. For
NOT-GALEN and FULL-GALEN, ⊥- and ⊥�∗-modules are not so small; in the
latter case representing around half of the ontology in most cases. Noticeably,
LK modules are in general a small fraction of the ontologies, representing less
than 1% of it in most cases.

For the five ontologies we computed the 99.9% confidence interval for the
mean size of the LKs and ⊥�∗-modules. In all cases, excepting only NCI, these
intervals do not overlap. Thus, we can conclude that the difference in size between
LKs and ⊥�∗-modules is highly statistically significant (p < 0.001). In NCI, this
difference does not exist as both kinds of modules coincide.

In order to get a more detailed view on the ability of the different mod-
ules to approximate the union of MinAs (UMinAs), we computed UMinAs
for all the atomic subsumption relations of GENE and NOT-GALEN using
BEACON [1]. The results show that LKs match UMinAs for all subsumption
relations in GENE, whereas ⊥�∗-modules match UMinAs in 95.49% of the cases,
being in average around 3.26% larger than UMinAs. For NOT-GALEN, both the
LKs and the ⊥�∗-modules equal UMinAs for a similar percentage of the sub-
sumption relations (43.78% and 41.28% respectively), and in average LKs are
around 154.41% larger than UMinAs whereas ⊥�∗ modules are around 362.06%
larger than UMinAs. These experiments confirm earlier results on the accuracy
of locality-based modules, and reveal that LKs constitute tighter and more stable
approximations.

Lean Kernels in Description Logics 529

(a) GENE (b) NCI

(c) NOT-GALEN (d) FULL-GALEN

(e) SNOMED-CT (all) (f) SNOMED-CT (ß2.7M)

Fig. 2. LK module size w.r.t. locality-based modules (in percentage)

530 R. Peñaloza et al.

The time required to compute the modules, after parsing the ontology, is
shown in Table 6. In the case of �-modules for SNOMED, only the selected
instances are reported. Recall that the LK algorithm computes the LKs for all
atomic subsumptions simultaneously. Thus, e.g., it takes less than 2s. to obtain
the LKs of all 16743 consequences from GENE. In contrast, the times for ⊥-
and �-modules are for each concept name appearing in either the left or the
right-hand side of any atomic subsumptions respectively. The times for ⊥�∗-
modules consider each of the subsumption relations. In some cases, computing
⊥�∗-modules took less time than computing the corresponding �-modules (espe-
cially in SNOMED). The reason is that in these cases, �-modules are large and
expensive to compute for the whole ontology, but in the computation of ⊥�∗-
modules, we compute �-modules of usually small subsets of the ontologies. Our
results show that it is feasible to compute all LKs for very large ontologies. In
addition, the LK computation could be performed as a preprocessing step for
enhancing other reasoning services. The columns for ⊥-, �-, and ⊥�∗-modules
show the minimum, average, and maximum time required to compute these
modules. Notice that, in the case of GENE, it takes over 185s. to compute all
the ⊥-modules and over 1647s. to compute all the ⊥�∗-modules (amortizing the
parsing time over all of them). For the larger ontologies, i.e. FULL-GALEN and
SNOMED, computing ⊥�∗ modules is, in average, significantly more time con-
suming than computing ⊥-modules. If one is interested in analyzing only one
consequence from an ontology, a better strategy would be to first compute the
⊥-module, and then find the LKs for the consequences of that subontology. This
goal-directed approach yields LKs in very short time.

6 Conclusions

We have introduced the notion of lean kernels for description logics, as an effec-
tive way to approximate the union of all MinAs for a given consequence. Our
definition of LKs is based on a general notion of a consequence-based algorithm,
and is thus applicable to a large variety of logical formalisms and reasoning
approaches. We have shown how the consequence-based decision method can be
transformed into a procedure for computing LKs, with only a linear overhead. As
an example for our formalism, we have instantiated the definitions to well-known
reasoning algorithms for the DLs ALC and EL+.

From a theoretical point of view, we have shown that LKs based on these
methods are MinA-preserving modules; i.e., they contain all the axioms appear-
ing in some MinA for a given consequence. More interestingly, they are contained
in the different versions of locality-based modules that have been proposed in the
literature. While the computation of LKs for an ALC ontology requires expo-
nential time in the worst case, the EL+ completion algorithm can be adapted to
find the lean kernels of all atomic subsumptions entailed from an EL+ ontology
in polynomial time.

To evaluate the effectiveness of LKs as a means to approximate the union
of all MinAs, we computed the LKs and the three variants of locality-based

Lean Kernels in Description Logics 531

modules for all atomic subsumptions derivable from large bio-medical ontologies
that are commonly used as benchmarks for EL+ systems. Overall, more than 6
million subsumption relations were analyzed. Our experiments show that LKs
are often (much) smaller than LBMs, and in most cases only a small fraction of
the original ontology. Interestingly, for the Gene Ontology LKs in fact coincide
with the union of all MinAs. Moreover, they can be effectively computed. Thus,
lean kernel computation can improve the runtime of axiom pinpointing and other
related reasoning tasks. In future work we will analyze the practical benefits of
computing these modules for those tasks.

It is known that syntactic LBMs are also MinA preserving, and can be
computed in polynomial time even for very expressive DLs where reasoning is
2ExpTime-hard [2–4,17]. However, an additional reasoning step is required to
verify whether the consequence follows from the ontology. Following our app-
roach, we can compute the LKs of all relevant consequences of an ontology
simultaneously, while reasoning. In that sense, LKs are more closely related to
semantic locality-based modules [13]. It has been observed in [15] that the differ-
ence between syntactic and semantic LBMs is not statistically significant. Our
results thus suggest that the size difference between semantic LBMs and LKs
is also statistically significant, although a full empirical analysis is needed to
justify this conclusion.

Acknowledgements. We would like to thank Beatriz Peñaloza for her help on sta-
tistical methods. Carlos Menćıa is supported by grant TIN2016-79190-R.

References

1. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva,
J.: BEACON: An efficient SAT-based tool for debugging EL+ ontologies. In: SAT,
pp. 521–530 (2016)

2. Romero, A.A.: Ontology module extraction and applications to ontology classifi-
cation. Ph.D. thesis, University of Oxford, UK (2015)

3. Romero, A.A., Kaminski, M., Grau, B.C., Horrocks, I.: Ontology module extraction
via datalog reasoning. In: AAAI, pp. 1410–1416 (2015)

4. Romero, A.A., Kaminski, M., Cuenca Grau, B., Horrocks, I.: Module extraction in
expressive ontology languages via datalog reasoning. JAIR 55, 499–564 (2016)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, pp. 364–369
(2005)

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

7. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and
consequences of semantic web ontologies. J. Web Semant. 12–13, 22–40 (2012)

8. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED (2008)

9. Bate, A., Motik, B., Grau, B.C., Simancik, F., Horrocks, I.: Extending consequence-
based reasoning to SRIQ. In: KR, pp. 187–196 (2016)

10. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

532 R. Peñaloza et al.

11. Ceylan, İİ., Peñaloza, R.: The bayesian description logic BEL. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 480–494.
Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 37

12. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: Extract-
ing modules from ontologies. In: WWW, pp. 717–726 (2007)

13. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. Artif. Intell. Res. (JAIR) 31, 273–318 (2008)

14. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting modules
from ontologies: A logic-based approach. In: Stuckenschmidt, H., Parent, C.,
Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 159–186.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01907-4 8

15. Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.: Empiri-
cal study of logic-based modules: Cheap is cheerful. In: Alani, H., Kagal, L., Fokoue,
A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz,
K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 84–100. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-41335-3 6

16. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 267–280.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 20

17. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog
programs and its applications to ontology reasoning. In: AAAI, pp. 1077–1083
(2014)

18. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In:
Boutilier, C. (ed.) IJCAI 2009, pp. 2040–2045 (2009)

19. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. JAR 53(1), 1–61 (2014)

20. Büning, H.K., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press (2009)

21. Kullmann, O.: Investigations on autark assignments. Discrete Appl. Math.
107(1–3), 99–137 (2000)

22. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg
(2006). doi:10.1007/11814948 4

23. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

24. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

25. Liffiton, M., Sakallah, K.: Searching for autarkies to trim unsatisfiable clause sets.
In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 182–195.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79719-7 18

26. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic EL. In:
JELIA, pp. 107–121 (2014)

27. Marques-Silva, J., Ignatiev, A., Menćıa, C., Peñaloza, R.: Efficient reasoning
for inconsistent horn formulae. In: Michael, L., Kakas, A. (eds.) JELIA 2016.
LNCS (LNAI), vol. 10021, pp. 336–352. Springer, Cham (2016). doi:10.1007/
978-3-319-48758-8 22

http://dx.doi.org/10.1007/978-3-319-08587-6_37
http://dx.doi.org/10.1007/978-3-642-01907-4_8
http://dx.doi.org/10.1007/978-3-642-41335-3_6
http://dx.doi.org/10.1007/978-3-540-76298-0_20
http://dx.doi.org/10.1007/11814948_4
http://dx.doi.org/10.1007/978-3-540-79719-7_18
http://dx.doi.org/10.1007/978-3-319-48758-8_22
http://dx.doi.org/10.1007/978-3-319-48758-8_22

Lean Kernels in Description Logics 533

28. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient
autarkies. In: ECAI, pp. 603–608 (2014)

29. Minoux, M.: LTUR: A simplified linear-time unit resolution algorithm for horn
formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)

30. Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the EL
family of description logics. In: KR (2010)

31. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under
the distribution semantics. Semant. Web 6(5), 477–501 (2015)

32. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

33. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009.
LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02959-2 6

34. Sebastiani, R., Vescovi, M.: Axiom pinpointing in large EL+ ontologies via SAT
and SMT techniques. Technical Report DISI-15-010, DISI, University of Trento,
Italy, April 2015. http://disi.unitn.it/rseba/elsat/elsat techrep.pdf

35. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn
ontologies. In: IJCAI 2011, pp. 1093–1098 (2011). IJCAI/AAAI

36. Suntisrivaraporn, B.: Module extraction and incremental classification: A prag-
matic approach for EL+ ontologies. In: ESWC, pp. 230–244 (2008)

37. Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. thesis, TU Dresden (2009)

38. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach
to finding all justifications for OWL DL entailments. In: Domingue, J., Anutariya,
C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89704-0 1

http://dx.doi.org/10.1007/978-3-642-02959-2_6
http://dx.doi.org/10.1007/978-3-642-02959-2_6
http://disi.unitn.it/rseba/elsat/elsat_techrep.pdf
http://dx.doi.org/10.1007/978-3-540-89704-0_1

	Lean Kernels in Description Logics
	1 Introduction
	2 Preliminaries
	3 Lean Kernels
	4 Computing Lean Kernels
	5 Experiments
	6 Conclusions
	References

