
A SPARQL Extension for Generating RDF
from Heterogeneous Formats

Maxime Lefrançois(B), Antoine Zimmermann, and Noorani Bakerally

Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516,
42023 Saint-Étienne, France

{maxime.lefrancois,antoine.zimmermann,noorani.bakerally}@emse.fr

Abstract. RDF aims at being the universal abstract data model for
structured data on the Web. While there is effort to convert data in RDF,
the vast majority of data available on the Web does not conform to RDF.
Indeed, exposing data in RDF, either natively or through wrappers, can
be very costly. Furthermore, in the emerging Web of Things, resource
constraints of devices prevent from processing RDF graphs. Hence one
cannot expect that all the data on the Web be available as RDF anytime
soon. Several tools can generate RDF from non-RDF data, and transfor-
mation or mapping languages have been designed to offer more flexible
solutions (GRDDL, XSPARQL, R2RML, RML, CSVW, etc.). In this
paper, we introduce a new language, SPARQL-Generate, that generates
RDF from: (i) a RDF Dataset, and (ii) a set of documents in arbitrary
formats. As SPARQL-Generate is designed as an extension of SPARQL
1.1, it can provably: (i) be implemented on top on any existing SPARQL
engine, and (ii) leverage the SPARQL extension mechanism to deal with
an open set of formats. Furthermore, we show evidence that (iii) it can
be easily learned by knowledge engineers that know SPARQL 1.1, and
(iv) our first naive open source implementation performs better than the
reference implementation of RML for big transformations.

1 Introduction

We aim at lowering the overhead for web services and constrained things to
embrace the Semantic Web formalisms and tool. A usual key step is to generate
RDF from documents having various formats (or triplify). Indeed, companies
and web services store and exchange documents in a multitude of data models
and formats: the relational data model and XML (not RDF/XML) are still very
present, data portals heavily rely on CSV, and web APIs on JSON. Furthermore,
constrained things on the Web of things may be only able to support binary
formats such as EXI or CBOR. Although effort has been made to define RDF
data formats that are also compatible with the formats in use (e.g., RDF/XML
is compatible with XML, JSON-LD is compatible with JSON, any EXI version

This paper has been partly financed by the ITEA2 12004 SEAS (Smart Energy
Aware Systems) project, the ANR 14-CE24-0029 OpenSensingCity project, and a
bilateral research convention with ENGIE R&D.

c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 35–50, 2017.
DOI: 10.1007/978-3-319-58068-5 3

36 M. Lefrançois et al.

of RDF/XML is compatible with EXI, etc.), it is unlikely that these formats
will completely replace existing data formats one day. However, the RDF data
model may still be used as a lingua franca to reach semantic interoperability and
integration and querying of data having heterogeneous formats.

Several pieces of research and development focused on generating RDF from
other models and formats, and sometimes led to the definition of standards.
However, in the context of projects we participate in, we identified use cases and
requirements that existing approaches satisfy only partially. These are reported
in Sect. 2 and include:

– the solution must be expressive, flexible, and extensible to new data formats;
– the solution must generate RDF from several data sources with heterogeneous

formats, potentially in combination with a RDF dataset;
– the solution should be easy to learn and to integrate in a typical semantic web

engineering workflow, so that knowledge engineers can learn it easily to start
prototyping triplifications.

Section 3 describes existing solutions and identify their limitations. In order
to satisfy these requirements, we introduce SPARQL-Generate, an extension
of SPARQL 1.1 that answers the aforementioned requirements and combines
the following advantages: (1) it leverages SPARQL’s expressivity and flexibility,
including the standard extension mechanism for binding functions; (2) it may
be implemented on top of any existing SPARQL engine.

The rest of this paper is organized as follows. Section 4 formally specifies the
abstract syntax and semantics of the SPARQL-Generate language. These defini-
tions enable to prove in Sect. 5.1 that it can be implemented on top of any existing
SPARQL 1.1 engine, and propose a naive algorithm for this. Section 5.2 briefly
describes a first open-source implementation on top of Apache ARQ, which has
been tested on use cases from the related work and more. Finally, Sect. 5.3 pro-
poses a comparative evaluation between SPARQL-Generate and RML on two
aspects: performance of the reference implementations, and cognitive complex-
ity of the query/mapping.

2 Use-Cases and Requirements

We identified two important use cases for generating RDF from heterogeneous
data formats. They are originating from projects in which the stakeholders
require strong interoperability in consuming and exchanging data, although data
providers cannot afford the cost to move towards semantic data models.

Open Data. In the context of open data, organizations can rarely afford the cost
of cleaning and reengineering their datasets towards more interoperable linked
data. They sometimes also lack the expertise to do so. Therefore, data is pub-
lished on a best effort basis in the formats that require least labour and resources.
Yet, data consumers expect more uniform, self describing data sets that can be
easily cross-related. In the case when a knowledge model has been agreed upon,

A SPARQL Extension for Generating RDF from Heterogeneous Formats 37

it is important for the users to be able to prototype transformations to RDF from
one or more of these data sources, potentially in different formats. In addition,
the solution should be flexible enough to allow for fine-grained control on the
generated RDF and the links between data sets, and should be able to involve
contextual RDF data. The list of formats from which RDF may be generated
must be easily extended. Finally, the solution must be easily used by knowledge
engineers that know RDF and SPARQL.

Web of Things. In the emerging Web of Things, constrained devices must
exchange lightweight messages due to their inherent bandwidth, memory, stor-
age, and/or battery constraints. Yet, RDF formats have to encode a lot of tex-
tual information such as IRIs and literals with datatype IRIs. Although some
research is led to design lightweight formats for RDF (such as a CBOR version
of JSON-LD), it is likely that companies and device vendors will continue to use
and introduce new binary formats that are optimized for their usage.

From these use cases, we identify the following requirements:

R1: transform several sources having heterogeneous formats;
R2: contextualize the transformation with an RDF Dataset;
R3: be extensible to new data formats;
R4: be easy to use by Semantic Web experts;
R5: integrate in a typical semantic web engineering workflow;
R6: be flexible and easily maintainable;
R7: transform binary formats as well as textual formats.

With these requirements in mind, the next section overviews existing
solutions.

3 Related Work

Data publisher and consumer can implement ad-hoc transformation mechanisms
to generate RDF from data with heterogeneous models and formats. Although
this approach certainly leads to the most efficient solutions, it is also costly to
develop and maintain, and inflexible. Several pieces of work aimed at simplifying
this task.

Many converters to RDF have been listed by the W3C Semantic Web
Education and Outreach interest group (SWEO): https://www.w3.org/wiki/
ConverterToRdf. Most of them target a specific format or specific metadata,
such as ID3tag, BibTeX, EXIT, etc. Some like Apache Any23, datalift, or Vir-
tuoso Sponger are designed to convert multiple data formats to RDF. Direct
Mapping [1] describes a default transformation for relational data. These solu-
tions are very ad hoc, implementation specific and barely allow the control of
how RDF is generated. They do not provide a formal language that would allow
to explicit and customize the conversion to RDF. As a result, the output RDF is
often more geared towards describing the structure of the data rather than the
data itself. It is still possible to compose these solutions with SPARQL construct

https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/ConverterToRdf

38 M. Lefrançois et al.

rules that transform the generated RDF to the required RDF, but this requires
to get familiar with the vocabulary used in the output of each of these tools.
They hence do not satisfy most of the requirements listed in Sect. 2.

Other approaches propose to use a transformation or mapping language to
tune the RDF generation. However, most of these solutions target only one or
a few specific data models (e.g., the relational model) or formats (e.g., JSON).
For instance GRDDL encourages the use of XSLT and targets XML inputs [2].
XSPARQL is based on XQuery and originally targeted XML [11], as well as the
inverse transformation from RDF to XML, before being extended to the rela-
tional data model [10], then to JSON [4]. GRDDL and XSPARQL rely respec-
tively on XSLT and XQuery, that have been proven to be Turing-complete. These
languages are hence full-fledged procedural programming language with explicit
algorithmic constructs to produce RDF.

Other formalisms have been designed to generate RDF from the relational
data [7]. From these pieces of work originated R2RML [3], which proposes a
RDF vocabulary to describe mappings to RDF. Finally, CSVW [12] also adopts
this approach but targets the CSV data format.

One approach that stands out is RML [5], that extends the R2RML vocab-
ulary to describe logical sources which are different from relational database
tables. It generates RDF from JSON (exploiting JSONPath), XML (exploiting
XPath), CSV1, TSV, or HTML (exploiting CSS3 selectors). The approach is
implemented on top of Sesame2. RML satisfies at least requirements R1, R3,
R5. It would be possible to implement the support of binary data formats (R7),
and ongoing research are led to integrate RDF sources on the Web of Linked
Data (R2). Only RML and XSPARQL are specifically dedicated to the flexible
generation of RDF from various formats.

In what follows, we propose an alternative to these approaches that is based
on an extension of SPARQL 1.1, named SPARQL-Generate, that leverages its
expressiveness and extensibility, and can be implemented on top of its engines.

4 SPARQL-Generate Specification

SPARQL-Generate is based on a query language that queries the combination
of an RDF dataset and what we call a documentset, where each document is
named and typed by an IRI. For illustration purposes, Fig. 1 is an example of a
SPARQL-Generate query and the result of its execution on a RDF dataset that
contains a default graph, and on a documentset that contains two documents
identified by <position.txt> and <measures.json>. This query answers the question:
“What sensors are nearby, and what do they display?”.3 The concrete SPARQL-
Generate syntax extends that of SPARQL 1.1 with three new clauses:

1 RML is an implementation of the CSV on the Web standard [12].
2 http://rdf4j.org/.
3 Prefixes correspond to those registered at http://prefix.cc/ and are omitted to save

space.

http://rdf4j.org/
http://prefix.cc/

A SPARQL Extension for Generating RDF from Heterogeneous Formats 39

– The source clause is used to bind a variable to a document (here, ?pos and ?measures

to the documents identified by <position.txt> and <measures.json>, respectively).
– The iterator clause allows to extract bits of documents using so-called iterator
functions, duplicate a binding, and make a variable be successively bound to
these extracted bits of documents (here, function sgiter:JSONListKeys is used to
extract the set of keys of the JSON object that is bound to ?measures, and
successively bind ?sensorId to these keys).

– Finally, the generate clause replaces and extends the construct clause with
embedded SPARQL-Generate queries. This enables the modularization of
queries and the factorization of the RDF generation.

Various data formats can be supported thanks to the extensible set of
SPARQL 1.1 binding functions and SPARQL-Generate iterator functions.

Fig. 1. Example of a SPARQL-Generate query execution on a default graph and two
documents. This running example illustrates requirements R1 and R2

4.1 SPARQL-Generate Concrete Syntax

The SPARQL-generate syntax is very close to the standard SPARQL 1.1 syntax
with only slight additions to the EBNF [6, Sect. 19.8]:
[174] GenerateUnit ::= Generate
[175] Generate ::= Prologue GenerateQuery
[176] GenerateQuery ::= ‘GENERATE’ GenerateTemplate DatasetClause* IteratorOrSourceClause*

WhereClause? SolutionModifier
[177] GenerateTemplate ::= ‘{’ GenerateTemplateSub‘}’
[178] GenerateTemplateSub ::= ConstructTriples? (SubGenerateQuery ConstructTriples?)*
[179] IteratorOrSourceClause ::= IteratorClause | SourceClause
[180] IteratorClause ::= ‘ITERATOR’ FunctionCall‘AS’ Var

40 M. Lefrançois et al.

[181] SourceClause ::= ‘SOURCE’ FunctionCall (‘ACCEPT’ VarOrIri)?‘AS’ Var
[182] SubGenerateQuery ::= ‘GENERATE’ (SourceSelector | GenerateTemplate) (

IteratorOrSourceClause* WhereClause? SolutionModifier‘.’)?

While the production of SPARQL Queries and SPARQL Updates respectively
start at QueryUnit and UpdateUnit, the production of a SPARQL-Generate query
starts at rule GenerateUnit. We wanted to not rewrite any of the SPARQL 1.1
production rules, this is why we do not use construct and introduce generate
instead. This concrete syntax has two notable features.

Negotiating the Document Type. The first notable feature is in production rule
[181]. The optional part (‘ACCEPT’ VarOrIri) allows to specify a type IRI for the
document to bind in the source clause. If a SPARQL-Generate implementation
chooses to look up the IRI of a document on the Web, they may retrieve dif-
ferent actual documents corresponding to different representations of the same
resource. The optional accept component in the source clause is thought of as
a hint for the implementation to choose how to negotiate the content of that
resource. We chose to represent it as a IRI that identifies a document type,
because the concept of content negotiation here goes beyond the usual HTTP
Accept request header. It may also encompass other HTTP Accept-* parame-
ters, and it may also describe other preferences to look up IRIs not related to
the HTTP protocol. After negotiation with the server, the retrieved document
type may be different from the requested document type.

Modularization and Reuse of Queries. The second feature is in production rule
[182], and enables to modularize queries. A SPARQL-Generate sub-query (i.e., a
query in the generate part of a parent query) may contain a generate template,
including graph patterns and potentially other sub-queries. It can also refer to
a IRI. As for the documentset, implementations are free to choose how this
IRI must be looked up to retrieve the identified SPARQL-Generate query. This
feature does not need to be described in the abstract syntax, but allows in
practice (i) to publish queries on the Web and make them callable by other,
and (ii) to modularize large queries and make them more readable. Of course,
implementations need to take care about loops in query calls.

For now, SPARQL-Generate implementations are free to choose whether
and how they use these informations. Section 5.2 describes the choices we made
for our own implementation on top of Apache Jena. Let us now introduce the
abstraction of the SPARQL-Generate syntax.

4.2 Abstract Syntax

We note I, B, L, and V the pairwise disjoint sets of IRIs, blank nodes, literals,
and variables. The set of RDF terms is T = I∪B∪L. The set of triple patterns
is defined as T∪V × I∪V ×T∪V, and a graph pattern is a finite set of triple
patterns. The set of all graph patterns is denoted P. We denote F0 the set of
SPARQL 1.1 function names,4 which is disjoint from T. We write Q the set of
4 SPARQL 1.1 defines built-in functions with names IF, IRI, CONCAT, and so on.

A SPARQL Extension for Generating RDF from Heterogeneous Formats 41

SPARQL 1.1 query patterns. Finally, for any set X, we note X∗ =
⋃

n�0 Xn the
set of lists of X.

The set of function expressions is noted E and is the smallest set such that:

T ∪ V ⊆ E (e.g., <position.txt>) (1)
(F0 ∪ I) × (T ∪ V)∗ ⊆ E (e.g., CONCAT("$.",?id), sgiter:JSONListKeys(?m)) (2)
∀E ⊆ E, (F0 ∪ I) × E∗ ⊆ E (i.e., the set of nested function expressions) (3)

The abstraction of production rule [181] is the set of source clauses, and
enable to select a document in the documentset and bind it to a variable. For
instance in the query above, variable ?pos is bound to the document identified
by <position.txt>. Let us introduce a special element ω /∈ T ∪ V, that represents
null, and let us note X̂ = X ∪ {ω} the generalized set of X.

Definition 1 (source clauses). The set S of source clauses is defined by equa-
tion S = E× (Î∪V) ×V. We use notation v

source←− 〈e, a〉 ∈ S for a specific source

clause, where v ∈ V, e ∈ E, and a ∈ Î ∪ V.

In most use cases, at some point one needs a given variable to iterate over
several parts of the same document. For instance in the illustrating request,
variable ?sensorId is successively bound to the keys of the JSON object bound to
?measures: "s25" and "s26". Other examples include the results of a XPath query
evaluation over a XML document,5 or the matches of a regular expression over
a string.6 In SPARQL, binding clauses involving binding functions are the only
way through which one could extract a term from a literal. Yet, these functions
output at most one RDF term. So they cannot be used to generate more solu-
tion bindings. Consequently, we introduce a second extension, the set of iterator
clauses, which output a set of terms, and replace the current solution binding
with as many solution bindings as there are elements in that set.

Definition 2 (iterator clauses). The set of iterator clauses is defined as I =
I × E∗ × V. We use notation v

iterator←− (u, e0, . . . , ek) ∈ I for a specific iterator
clause, where v ∈ V, u ∈ I, e0, . . . , ek ∈ E, and k ∈ N.

We then extend the query pattern of SPARQL 1.1 queries Q with a list of
source and iterator clauses, in any number and any order. We purposely do not
change the definition of Q in order to facilitate the reuse of existing SPARQL
implementations.

Definition 3 (SPARQL-Generate query patterns). The set of SPARQL-
Generate query patterns is defined as a sequence of source or iterator clauses
followed by a query pattern: Q+ = (S ∪ I)∗ × Q.

5 See test case rmlproeg1 - http://w3id.org/sparql-generate/tests-reports.html.
6 See test case regexeg1 - http://w3id.org/sparql-generate/tests-reports.html.

http://w3id.org/sparql-generate/tests-reports.html
http://w3id.org/sparql-generate/tests-reports.html

42 M. Lefrançois et al.

Finally, the set of SPARQL-Generate queries augments Q+ with a basic graph
pattern, and potentially other SPARQL-Generate sub-queries.

Definition 4 (SPARQL-Generate queries). The set of SPARQL-Generate
queries is noted G, and defined as the least set such that:

P × Q+ ⊆ G (simple SPARQL-Generate queries) (4)

∀G ⊆ G,P × G∗ × Q+ ⊆ G (nested SPARQL-Generate queries) (5)

SPARQL-Generate queries defined by Eq. 4 are comparable to SPARQL
CONSTRUCT queries, where a basic graph pattern will be instantiated with
respect to a set of solution bindings. Those defined by Eq. 5 contain nested
SPARQL-Generate queries, which are used to factorize the generation of RDF.
For example, this enables to first generate RDF from the name of all the JSON
object keys, and then iterate over the values for these keys, which may be arrays.

4.3 SPARQL-Generate Semantics

This section reuses some concepts from the SPARQL 1.1 semantics, that we
redefine in an uncommon, yet equivalent, way for convenience in notations and
definitions.

Definition of the SPARQL-Generate Data Model. A SPARQL-Generate query
is issued against a data model that extends the one of SPARQL, namely RDF
dataset. An RDF dataset is a pair 〈D,N〉 such that D is an RDF graph, called
the default graph, and N is a finite set of pairs 〈u,G〉 where u is an IRI and G is
an RDF graph, such that no two pairs contain the same IRI. In order to allow the
querying of arbitrary data formats, we introduce the notion of a documentset,
analogous to RDF datasets.

Definition 5 (Documentset). A documentset is a finite set of triples Δ ⊆
I × Î × L. An element of Δ is a triple 〈u, a, 〈d, t〉〉 where: u is the name of
the document; a is the requested type for the document; literal 〈d, t〉 models the
document; and the literal datatype IRI t is the document type. Δ must be such
that no pair of distinct triples share the same two first elements.

In order to lighten formulas, we also note Δ : T̂ × T̂ → L̂ the mapping
that associates a pair 〈u, a〉 to a literal l if and only if 〈u, a, l〉 ∈ Δ, and to
ω otherwise. A set of documents can hence be stored internally, or represent
the Web: u represents where a look up (e.g., a series of HTTP GET following
redirections) must be issued, a describes how the content must be negotiated,
d is the content of the successfully obtained representation, and t describes the
representation type (its media type, language, encoding, etc.).

A SPARQL Extension for Generating RDF from Heterogeneous Formats 43

Mappings. The set of mappings is noted M, and is defined by Eq. (6) as a
function from T ∪ V to the generalized set of terms. As opposed to standard
SPARQL 1.1, we use a total function defined on the full set of terms and vari-
ables, and rely on the element ω to represent the image of unbound variables.
As in SPARQL, The domain of a mapping is the set of variables that are bound
to a term (see Eq. (7)).

μ : T ∪ V → T̂ s.t., ∀t ∈ T, μ(t) = t (6)
∀μ ∈ M, dom(μ) = {v ∈ V|μ(v) ∈ T} (7)

We introduce a distinguished set of mappings called substitution mappings,
whose domain is a singleton. i.e., ∀v ∈ V and t ∈ T̂, [v/t] is a substitution
mapping with:

∀t′ ∈ T, [v/t](t′) = t′, [v/t](v) = t, and ∀x ∈ V, x
= v, [v/t](x) = ω (8)

Then, the left composition operator � is defined such that in μ1 � μ2, any
variable that is commonly bound by μ1 and μ2 is finally bound to its value in
mapping μ1. In practice, this may be used to override bindings for variables in
source or iterator clauses.

μ1 � μ2 :

⎧
⎪⎨

⎪⎩

x �→ μ1(x) if x ∈ dom(μ1)
x �→ μ2(x) if x ∈ dom(μ2) \ dom(μ1)
x �→ ω otherwise

(9)

Binding and Iterator Function Map. Each SPARQL engine recognizes a set of
binding function IRIs Fb (e.g. here, at least sgfn:JSONPath, sgfn:SplitAtPosition, and
ex:distance). A binding function maps function expressions used in binding clauses
to their evaluation, i.e., a RDF term. Formally, for a given SPARQL engine,
Eq. (10) defines a binding functions map fb, that associates to any recognized
binding functions its SPARQL binding function. The SPARQL-Generate itera-
tor functions map is defined analogously for a SPARQL-Generate engine (e.g.
here, it recognizes at least sgiter:JSONListKeys), except the evaluation of a function
expression is a set of RDF terms. Given a set Fi of recognized iterator functions,
Eq. (11) defines the iterator functions map fi:

fb : Fb → (
T̂∗ → T̂

)
(10)

fi : Fi → (
T̂∗ → 2T̂

)
(11)

Generalized Mappings. We generalize the definition of mappings so that their
domains include the set of function expression. The set of generalized mappings
is noted M̄. It contains the generalization μ̄ of every mapping μ ∈ M, where
μ̄ : T ∪ V ∪ E → T̂ is defined recursively as follows:

∀t ∈ T ∪ V, μ̄(t) = μ(t) (12)
∀〈u, e1, . . . , en〉 ∈ E s.t. u ∈ Fb, μ̄(〈u, e1, . . . , en〉) = fb(u)(μ̄(e1), . . . , μ̄(en))

(13)

44 M. Lefrançois et al.

Evaluation of source and iterator Clauses. A source clause v
source←− 〈e, a〉 ∈ S is

used to modify the binding μ so that variable v is bound to a document in Δ (e.g.,
?pos is bound to "37.780496,-25.495157"). An iterator clause v

iterator←− 〈t, e0, . . . , ek〉 ∈ I
is typically used to extract important parts of a document: from a binding μ, it
enables, to generate several other bindings where variable v is bound to elements
of the evaluation of fi(t) over e0, . . . , ek (e.g. here, ?sensorId will be successively
bound to "s25" then to "s26"). Any number of source or iterator clauses can be
combined in a list. Let Σ ∈ (S ∪ I)n, and n � 1. The set of solution mappings
(i.e., the evaluation) for any list of source and iterator clauses �Σ�

μ
Δ can be defined

by induction as follows:

�v
source←− 〈e, a〉�μ

Δ = [v/Δ(μ̄(e), a)] � μ (14)

�v
iterator←− 〈t, e0, . . . , ek〉�μ

Δ =
{
[v/t′] � μ|t′ ∈ fi(t)(μ̄(e0), . . . , μ̄(ek))

}
(15)

�〈Σ, v
source←− e〉�μ

Δ =
{
�v

source←− e�μ′
Δ |μ′ ∈ �Σ�

μ
Δ

}
(16)

�〈Σ, v
iterator←− e〉�μ

Δ =
⋃

μ′∈�Σ�µΔ

�v
iterator←− e�μ′

Δ (17)

Evaluation of SPARQL-Generate Query Patterns. Let Q ∈ Q be a SPARQL 1.1
query pattern, D be an RDF dataset, and �Q�

μ
D be the set of solution mappings

for Q that are compatible with a mapping μ, as defined by the SPARQL 1.1
semantics. Let also Σ be a list of source and iterator clauses. Then the evaluation
of the SPARQL-Generate query pattern Q+ = 〈Σ,Q〉 ∈ (S∪I)∗ ×Q over D and
a documentset Δ is defined by Eq. (18). We introduce a special initial mapping,
μ0 : v �→ ω,∀v ∈ V. Then, the set of solution mappings of any SPARQL Generate
query Q+ over Δ and D is defined by Eq. (19).

�Q+
�
μ
Δ,D =

⋃

μ′∈�Σ�µΔ

�Q�
μ′
D (18)

�Q+
�Δ,D = �Q+

�
μ0
Δ,D (19)

Generate Part of the SPARQL Generate Query. For any graph pattern P ∈
P and any mapping μ ∈ M, we note Ãμ(P) the RDF Graph generated
by instantiating the graph pattern with respect to a mapping μ, following
[6, Sect. 16.2.1]. We then define the evaluation of SPARQL-Generate queries
recursively. Let be a simple SPARQL-Generate query 〈P,Q〉 ∈ P×Q+, another
query G = 〈P,G0, . . . , Gj , Q〉 ∈ P × G∗ × Q+, and a mapping μ. The following
three equations define the RDF graph generated by G.

Ãμ
Δ,D(〈P,Q〉) =

⋃

μ′∈�Q�µΔ,D

Ãμ′
(P) (20)

Ãμ
Δ,D(〈P,G0, . . . , Gj , Q〉) =

⋃

μ′∈�Q�µΔ,D

(
Ãμ′

(P) ∪
⋃

0≤i≤j

Ãμ′
Δ,D(Gi)

)
(21)

ÃΔ,D(G) = Ãμ0
Δ,D(G) (22)

A SPARQL Extension for Generating RDF from Heterogeneous Formats 45

5 Implementation and Evaluation

5.1 Generic Approach

It is advantageous to be able to implement SPARQL-Generate on top of any
existing SPARQL 1.1 engine. In fact, such an engine already provides us with:
(i) the binding functions map fb (thus one can know for any mapping μ ∈ M
its generalization μ̄ to any binding function expression); (ii) a function select
that takes a SPARQL 1.1 query pattern as input, and returns a set of solution
mappings; (iii) a function instantiate that takes a graph pattern P ∈ P and
a mapping μ ∈ M as input, and returns the RDF Graph corresponding to the
instantiation of P with respect to μ; (iv) the management of RDF datasets D.
Then an implementation of SPARQL-Generate would just need to provide: (1)
the management of a documentset Δ, and (2) the iterator functions map fi.

Let V = 2M be the set of inline data blocks. Then we note 〈V,Q〉 ∈ Q the
result of prefixing some SPARQL query Q ∈ Q by some inline data block V ∈ V.
Theorem 1 below allows us to design a naive algorithm7 (Algorithm 1) that can
be used to implement SPARQL-Generate on top of a SPARQL 1.1 engine.

Theorem 1. Let be a SPARQL 1.1 query Q ∈ Q, and a list of source and
iterator clauses Σ ∈ (S ∪ I)∗. The evaluation of the SPARQL-Generate query
pattern 〈Σ,Q〉 ∈ Q+ is equal to the evaluation of 〈�Σ�Δ, Q〉, where �Σ�Δ is the
evaluation of Σ.

Proof. First note that in the SPARQL 1.1 semantics, the evaluation of a
SPARQL 1.1 query pattern Q prefixed by an inline data block V is a join
between the evaluation of V (i.e., �V �D = V), and the evaluation of Q (i.e.,
�Q�D). With our notations, this translates to: �〈V,Q〉� =

⋃
μ∈V �Q�μ. Substi-

tuting V by �Σ�Δ = �Σ�
μ0
Δ and combining with Eqs. 18 and 19 leads to the

proof:

�〈�Σ�
μ0
Δ , Q〉�Δ,D =

⋃

μ′∈�Σ�
µ0
Δ

�Q�
μ′
Δ,D = �〈Σ,Q〉�μ0

Δ,D = �〈Σ,Q〉�Δ,D (23)

5.2 Implementation on Top of Apache Jena

This section overviews a first implementation of SPARQL-Generate with
Algorithm 1 over the Jena ARQ SPARQL 1.1 engine.

7 This algorithm is simplified and does not show subtleties in the management of
blank nodes, which will be the focus of a future paper. On the other hand, the
implementation already addresses this, see unit tests bnode1 and bnode2 at http://
w3id.org/sparql-generate/tests-reports.html.

http://w3id.org/sparql-generate/tests-reports.html
http://w3id.org/sparql-generate/tests-reports.html

46 M. Lefrançois et al.

Algorithm 1. Naive implementation of SPARQL-Generate on top of any
SPARQL 1.1 engine.
1: procedure generate(〈P, G0, . . . , Gj , 〈E0, . . . , En〉, Q〉, μ) � See also Def. 4
2: M ← {μ} � M is a singleton containing one mapping
3: for 0 ≤ i ≤ n do
4: if Ei = v

source←− e then � See also Def. 1
5: for all μ ∈ M do
6: μ(v) ← Δ(μ̄(e)) � See also Def. 5 and Eq. 12
7: end for
8: else if Ei = v

iterator←− 〈t, e0, . . . , ek〉 then � See also Def. 2
9: M ′ ← ∅

10: for all μ ∈ M do
11: for all t′ ∈ fi(t)(μ̄(e0), . . . , μ̄(ek)) do � See also Eq. 11
12: μ′ ← μ ; μ′(v) ← t′ ; and M ′ ← M ′ ∪ {μ′}
13: end for
14: end for
15: M ← M ′ � replace M by M ′

16: end if
17: end for
18: M ← select(〈M, Q〉) � evaluate the query pattern prefixed by the computed

inline data block
19: G ← ∅ � the empty RDF graph
20: for μ ∈ M do
21: G ← G ∪ instantiate(P, μ) � operate a RDF graph union (not merge),

i.e., do not merge blank nodes even if they share the same name
22: for 0 ≤ i ≤ j do
23: G ← G ∪ generate(Gi, μ)
24: end for
25: end for
26: return G
27: end procedure

Open-Source Code and Online Testbed. This implementation is open-source and
available on GitHub,8,9 released as a Maven dependency,10 can also be used
as an executable jar, or as a Web API. SPARQL-Generate can also be tested
online using a web form that calls the Web API.11 The SPARQL-Generate editor
uses the YASGUI library,12 which has been modified to support the SPARQL-
Generate syntax. Finally, one can load any of the library unit tests in this web
form. These unit tests cover use cases from related work and more.13

8 http://w3id.org/sparql-generate/get-started.html.
9 https://github.com/thesmartenergy/sparql-generate.

10 http://search.maven.org/#search|ga|1|sparql-generate.
11 http://w3id.org/sparql-generate/language-form.html.
12 http://yasqe.yasgui.org/.
13 http://w3id.org/sparql-generate/tests-reports.html.

http://w3id.org/sparql-generate/get-started.html
https://github.com/thesmartenergy/sparql-generate
http://search.maven.org/#search|ga|1|sparql-generate
http://w3id.org/sparql-generate/language-form.html
http://yasqe.yasgui.org/
http://w3id.org/sparql-generate/tests-reports.html

A SPARQL Extension for Generating RDF from Heterogeneous Formats 47

Supported Data Formats, and Extensibility. Binding and iterator functions are
available for the following formats: JSON and CBOR (exploiting JSONPath,
thus satisfying requirement R7), CSV and TSV (conforming to the RFC 4180, or
custom), XML (exploiting XPath), HTML (exploiting CSS3 selectors), and plain
text (exploiting regular expressions). A complete documentation of the available
binding and iterator functions is available along with the documentation of the
API.14 The implementation relies on Jena’s SPARQL binding function extension
mechanism, and copies it for iterator functions. Therefore, covering a new data
format in this implementation merely consists in implementing new binding and
iterator functions like in Jena. This satisfies requirement R3. Even what is not
covered by existing query languages can be implemented as an iterator function.
For example, iterator function iter:JSONListKeys iterates on key names of a JSON
object, which is not feasible using JSONPath. As another example, polymorphic
binding function fn:CustomCSV enables to parse a CSV document with or without a
header. Parameters guide the parsing and data extraction from CSV documents
with sparse structures, but the function itself checks for the existence of a header.
If present, it treats the parameter column as a string to refer to a column. Else, it
treats is as the column index. This function hence covers the Dialect Description
of CSVW.

Specific Implementation Choices (see Sect. 4.1). For the documentset Δ, this
implementation uses the FileLocator Jena utility. It hence looks up a IRI depend-
ing on its scheme, except if a configuration file explicitly specifies a mapping
to a local file. For now, the FileLocator does not look up for IRIs with schemes
other than http and file. The implementation still covers these cases in two ways:
(a) they may be explicitly mapped to local files, or (b) they may be provided
to the engine through some initial binding. For instance, test case named cbor-
venueeg1, featuring CBOR, uses option (a).

If the source clause accept option is set to some IANA media-type URI of the
form http://www.iana.org/assignments/media-types/text/csv, then the library
negotiates the specified media type with the server.15 In any other case, the
datatype of retrieved documents defaults to xsd:string.

Similarly, when a query calls another query with its IRI, the implementa-
tion uses the FileLocator Jena utility. If not explicitly mapped to a local file,
then the implementation uses the SPARQL-Generate registered media type
application/vnd.sparql-generate (file extension .rqg) as the Accepted media type to
fetch it on the Web.16

5.3 Evaluation

As RML is the language that most closely satisfies the identified needs, we con-
ducted a comparative evaluation of it and SPARQL-Generate. This evaluation
14 http://w3id.org/sparql-generate/functions.html.
15 There is no consensus on the mapping between URIs and Internet Media Types,

althought this is the object of a W3C TAG finding [13].
16 https://w3id.org/sparql-generate/language.html#IANA considerations..

http://www.iana.org/assignments/media-types/text/csv
http://w3id.org/sparql-generate/functions.html
https://w3id.org/sparql-generate/language.html#IANA_considerations.

48 M. Lefrançois et al.

focuses on two aspects: performances of the reference implementations, and cog-
nitive complexity of the query/mapping. For this purpose, we chose to focus on
a very simple transformation from CSV documents generated by GenerateData.com

to RDF. For every line, a few triples with the same subject, fixed predicates, and
objects computed from one column, are generated. The report and the instruc-
tions to reproduce this experiment are available online.17

Performance of the Reference Implementations. Figure 2 shows that for this
simple transformation, the execution time with sparql-generate-jena becomes faster
than RML-Processor above ∼1,500 rows, and linear. It is slightly above 3 min for
20,000 rows for sparql-generate-jena, when RML-Processor takes more than 6 min for
5,000 rows. Granted, comparing implementations does not necessarily highlight
the true qualities of the approaches since optimizations, better choices of soft-
ware libraries, and so on, could dramatically impact the results. Yet, with these
experiments, we show that a straightforward and relatively naive implementa-
tion on top of Jena ARQ we achieve competitive performances. We argue that
ease of implementation and use is the key benefit of our approach.

102 103 104 105

100

101

102

of rows

se
co
nd

s

RML
SPARQL-Generate

Fig. 2. Execution time for a simple transformation from CSV documents to RDF.
Comparison between the current RML-Processor and sparql-generate-jena implementations.

Cognitive Complexity of the Query/Mapping. We conducted a limited study of
the cognitive complexities of the languages we are comparing. On the experiment
transformations, there are 12 terms from the R2RML and RML vocabularies,
while SPARQL-Generate adds only 4 tokens to SPARQL 1.1 (source, iterator,
sgiter:CSV and sgfn:CSV). Moreover, we realized that semantic web experts that
have to carry on a triplification task usually observe the input data to identify
the parts that have to be selected and formalize it with a selection pattern, such
as a XPath or JSONPath query; then they draw an RDF graph or a graph pat-
tern where they place the selected data from the input. This closely matches the
structure of a SPARQL-generate query. The where clause contains the bindings
that correspond to the select parts of the input documents; the generate clause
contains the output graph patterns that reuse the extracted data. We also noticed

17 https://w3id.org/sparql-generate/evaluation.html.

https://w3id.org/sparql-generate/evaluation.html

A SPARQL Extension for Generating RDF from Heterogeneous Formats 49

that when RML mappings get complex, they tend to grow to larger files than
the equivalent SPARQL generate query, as can be witnessed by comparing our
equivalent test cases.18 These limitations in RML may be explained by the fact
it extends R2RML whose triple maps are subject-centric. If one requires sev-
eral triples to share the same object, then one must write several triple maps,
that would have the same object map. This limitation impacts the cognitive
complexity of the language. On the other hand, as the SPARQL-Generate con-
crete syntax is very close to that of SPARQL 1.1, we claim it makes it easy to
learn and use by people that are familiar with the Semantic Web formalisms,
satisfying requirement R4 and R5. Nevertheless, from our own experience writ-
ing SPARQL-Generate queries, we identified some syntactic sugars that could
strongly improve readability and conciseness of the queries. For instance one
could use binding functions directly in the generate pattern, or use curly-bracket
expressions instead of concatenating literals. Using such techniques, the running
example query could be simplified as follows:
GENERATE {
<http://example.com/person/{sgfn:CSV(?person,"PersonId")}> a foaf:Person ;
foaf:name sgfn:CSV(?person, "Name") ;
foaf:mbox <mailto:{sgfn:CSV(?person,"Email")}> ;
foaf:phone <tel:{sgfn:CSV(?person,"Phone")}> ;
schema:birthDate "{sgfn:CSV(?person,"Birthdate")}"^^xsd:dateTime ;
schema:height "{sgfn:CSV(?person,"Height")}"^^xsd:decimal ;
schema:weight "{sgfn:CSV(?person,"Weight")}"^^xsd:decimal .

} SOURCE <http://example.org/persons.csv> AS ?persons
ITERATOR sgiter:CSV(?persons) AS ?person

Flexibility and Extensibility of the Languages. Work has been led to make RML
be able to call external functions [8]. This is not necessary for SPARQL-Generate,
and we believe that knowledge engineers are already familiar with SPARQL 1.1
functions, filtering capabilities, and solution sequence modifiers. This satisfies
requirement R6.

6 Conclusion and Future Work

The problem of exploiting data from heterogeneous sources and formats is com-
mon on the Web, and Semantic Web technologies can help in this regard. How-
ever, adopting Semantic Web technologies does not automatically clear up those
strong integration issues. Different solutions have been proposed to generate
RDF from documents in heterogeneous formats. In this paper, we introduced a
lightweight extension of SPARQL 1.1 called SPARQL-Generate, and compared it
with the related work. We formally defined SPARQL-Generate and proved that
it is (i) easily implementable on top of existing SPARQL engines; (ii) modular
since extensions to new formats do not require a redefinition of the language
(thanks to the use of SPARQL custom functions); (iii) easy to use by knowl-
edge engineers because of its resemblance to normal SPARQL; and (iv) powerful

18 See unit tests starting with RML� at http://w3id.org/sparql-generate/tests-reports.
html.

http://w3id.org/sparql-generate/tests-reports.html
http://w3id.org/sparql-generate/tests-reports.html

50 M. Lefrançois et al.

and flexible thanks to the custom function mechanism, the filtering capabilities,
and the solution sequence modifiers of SPARQL 1.1. Our open-source imple-
mentation on top of Apache Jena covers many use cases, an is proven to be
more efficient than the reference implementation of RML on a simple use case.
Future plans consist of implementing more functions for more data formats, and
extending the implementation to enable on the fly function integration (with an
approach similar to [9]).

References

1. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of
relational data to RDF. W3C Recommendation, W3C, 27 September 2012

2. Connolly, D.: Gleaning resource descriptions from dialects of languages (GRDDL).
W3C Recommendation, W3C, 11 September 2007

3. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C Recommendation, W3C, 27 September 2012

4. Dell’Aglio, D., Polleres, A., Lopes, N., Bischof, S.: Querying the web of data
with XSPARQL 1.1. In: Proceedings of the ISWC Developers Workshop 2014,
Co-located with the 13th International Semantic Web Conference (ISWC 2014),
Riva del Garda, Italy (2014)

5. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle,
R.: RML: a generic language for integrated RDF mappings of heterogeneous data.
In: Proceedings of the Workshop on Linked Data on the Web, Co-located with
the 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea
(2014)

6. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation,
W3C, 21 March 2013

7. Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF mapping lan-
guages. In: Proceedings the 7th International Conference on Semantic Systems,
I-SEMANTICS 2011, Graz, Austria, pp. 25–32 (2011)

8. Junior, A.C., Debruyne, C., O’Sullivan, D.: Incorporating functions in mappings
to facilitate the uplift of CSV files into RDF. In: Sack, H., Rizzo, G., Steinmetz,
N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp.
55–59. Springer, Cham (2016). doi:10.1007/978-3-319-47602-5 12

9. Lefrançois, M., Zimmermann, A.: Supporting arbitrary custom datatypes in RDF
and SPARQL. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 371–386. Springer, Cham
(2016). doi:10.1007/978-3-319-34129-3 23

10. Lopes, N., Bischof, S., Polleres, A.: On the semantics of heterogeneous query-
ing of relational, XML, and RDF data with XSPARQL. In: Proceedings of the
15th Portuguese Conference on Artificial Intelligence - Computational Logic with
Applications Track (2011)

11. Polleres, A., Krennwallner, T., Lopes, N., Kopecký, J., Decker, S.: XSPARQL
language specification. W3C Member Submission, W3C, 20 January 2009

12. Tandy, J., Herman, I., Kellogg, G.: Generating RDF from tabular data on the web.
W3C Recommendation, W3C, 17 December 2015

13. Williams, S.: Mapping between URIs and internet media types. TAG Finding,
W3C, 27 May 2002

http://dx.doi.org/10.1007/978-3-319-47602-5_12
http://dx.doi.org/10.1007/978-3-319-34129-3_23

	A SPARQL Extension for Generating RDF from Heterogeneous Formats
	1 Introduction
	2 Use-Cases and Requirements
	3 Related Work
	4 SPARQL-Generate Specification
	4.1 SPARQL-Generate Concrete Syntax
	4.2 Abstract Syntax
	4.3 SPARQL-Generate Semantics

	5 Implementation and Evaluation
	5.1 Generic Approach
	5.2 Implementation on Top of Apache Jena
	5.3 Evaluation

	6 Conclusion and Future Work
	References

