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Abstract. Current tactical unmanned aerial systems receive their guidance and
tasking information predominantly via radio links. To be able to communicate
with these systems specific electronic devices are required. This work builds on
the concept of visual communication of UAS to allow a person on ground
commanding a nearby airborne vehicle to perform a specific reconnaissance task
via gestures. A procedure to collect the necessary gestural command components
is presented as well as a prototype image processing flow which is able to distin‐
guish between neutral poses, static and dynamic 2D gestures. Prototype experi‐
ments prove the applicability of the proposed method on real life data from an
airborne platform.
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1 Introduction

Nowadays tactical unmanned aerial systems (UAS) utilize radio links to receive mission
relevant information from a ground control station, a mobile control device or from other
manned aircrafts. As technical devices are required to communicate with airborne systems,
there is currently no option to transfer the authority of the UAS to third parties lacking
adequate equipment. For example infantryman on ground who require a temporal access to
an asset for an up to date overview of the situation and processed image intelligence results
in their area of operation. For such use case new ways of interaction have to be found.

A promising candidate for such new paradigm is given by visual communication, which,
however, is constrained by narrow information bandwidth at only close distance. Hereby
flags, light signals and hand gestures are commonly used tools to transmit information by
optical means in general. The latter is thereby of peculiar interest, as this enables the aban‐
donment of any additional equipment on ground. For that, the movements and gestures of a
person on ground have to be captured with a suitable imaging sensor on board the UAV.
Further this data has to be processed by a gesture recognition system to classify the gestural
movements and finally translate them into commands to generate a complete task descrip‐
tion. For this a performant computational system that can operate in real time is necessary
to enable a low latency communication. The processed and interpreted data can then be used
to generate a flight path and if applicable a plan of action for the mission sensors deploy‐
ment. A downstream flight management system (FMS) will use this information for the
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flight guidance of the unmanned aerial vehicle. An overview of the necessary system
components is shown in Fig. 1.
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Fig. 1. System components for a gesture based commanding

Modern pose and gesture recognition system have reached a high level of reliability
and accuracy [1–5]. But the majority of those systems were designed for indoor use and
a static mounting of the sensor. Recognizing gestures from a flying platform outdoors,
however, is a more challenging task, where the system has to deal with several
constraints and uncertainties:

• Available additional weight and energy allowances are limited on aerial platforms, hence
only lightweight and low power consuming components can be used.

• Concerning data processing, the sensor is in non-stop motion, so classical background
subtraction methods can be applied only to a certain amount to detect movements of the
operator. Therefore a more robust and reliable person detection and tracking is required.

• The gesture sensor does not always work in its optimal range, as the distance to the user
changes constantly leading to a varying data accuracy.

Ongoing work on suitable and intuitive gestures for human drone interactions [6–8] is
increasing thus confirming the rising demand for more natural interfaces. A concept for a
bidirectional communication and a gestural commanding of a UAS for reconnaissance
purposes has been presented recently [9]. The following chapters give a brief introduction
to this concept and focus on the specifics of the used gestural syntax. A method to allow the
discrimination of static and dynamic gestures needed for the commanding is presented there
as well. Lastly a prototypical implementation of the proposed concepts components will be
evaluated on real life data from an airborne platform.

2 Approach

The concept for the visual communication with UAS suggests a syntax for gestural
commands, that is composed of the four mandatory components task declaration, direc‐
tion, distance, post-task behavior and the optionally component time constraint. In the
intended application a serial execution of gestures that represent these components defines
a specific reconnaissance task typical for a UAV mission. To obtain this information, two
operational modes are recommended: a detection mode to spot potential interaction request
of an operator on ground from medium altitudes using a thermal imager and an interaction
mode that receives the actual gestural commands from a closer distance using a depth
sensor. This work focuses on the systemic components that are necessary to realize the
acquisition of the command components in the latter.
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2.1 Gestural Syntax

The gestural components of the proposed syntax can be transmitted without a specific order
basically. However some commands require a subsequent gesture of a specific type for
definitions or specifications. For instance, if the surveillance task is to detect an object, the
system must be informed on the object type of interest (humans, vehicles, etc.). Therefore
each gestural command component is encapsulated into a gestural sequence that is passed
along all processing blocks of the system and contains the information about possible
dependencies. The structure of such a container is shown in the following Table 1.

Table 1. Structure of a gestural sequence container

Gestural command
component

Dependence flag Subsequent gesture
type

The gestural sequence contains the component itself (task declaration, direction,
distance, etc.). It is followed by a flag that represents the dependency to a subsequent
gesture and a type definition for the following gesture. The gestural command components
direction and distance are independent of other gestures, but the components task declara‐
tion, post-task behavior and time constraint determine the succeeding gestures. Table 2
gives a brief overview.

Table 2. Overview of gestural command components and their dependencies

Task declaration Direction Distance Post-Task
behavior

Time
constraint

Dependent on subsequent
gesture

Yes No No Yes Yes

Subsequent gesture type Static, Dynamic - - Static,
Dynamic

Static

Following subcomponent Object definition - - Directional Numerical

Gesture Separation Signals
The gesture recognition system needs to recognize when one gesture ends and the next
one begins. Therefore two criteria have been selected to prompt the separation. A sepa‐
ration signal gets triggered, once the operator’s movement remains under a definable
lateral threshold for a particular time. It can be assumed that the operator is then either
in a neutral pose (no input), is pointing somewhere (directional input or object type
definition) or is showing something (e.g. numerical information). The correct sizing of
both thresholds is essential for the reliability of the method. Therefore these thresholds
have to be designed adaptively in regard to the individual pace of the operator.

The separation signal will also be trigged, if the operator enters or leaves the so called
neutral pose space. This space is a three-dimensional box that covers the operator
completely for that case, when both of his arms are close to his body. To consider potential
uncertainties introduced by noisy depth data or inaccurate body part position estimation, this
space is slightly larger than the actual body dimensions. This principle is shown in Fig. 2.
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Neutral pose space

Additional space buffer
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Fig. 2. Schematic frontal (a) and top view (b) of operator within the three-dimensional neutral
pose space

2.2 Classifying Gestures

In gesture recognition systems the separation signals play an important function for the
routing of the internal processing flow. The command components can be grouped in three
classes: neutral pose, static gestures and dynamic gestures. The detection of each gesture
class is subject to different processing flows that produce distinct computational expenses.

For instance, to detect a neutral pose, it takes here the lowest computational cost, as the
processing flow only needs to find the position of the operator and to check, whether all of
his body parts are inside the created neutral pose space. Static gestures like pointing include
more computational load, since the appropriate body part (left arm, right arm) has to be
found and its pointing direction needs to be estimated. Detecting a dynamic gesture demands
the highest computational costs in this context. In addition to the processing steps for a static
gesture detection, the temporal progression of the moving body part has to be considered and
analyzed as well. For that purpose the following adaptive gestural command aggregation
approach is proposed. It consists of different processing modules that enable a variable data
processing based on the demand for gestural command components:

2D Person Tracker
This module detects a person in the raw two-dimensional input stream and delivers the
position of the operator as a region of interest (ROI) for the subsequent blocks.

3D Body Tracker
This module utilizes the ROI from the 2D person tracker to detect the operator’s body
in the depth data stream and to create a body model and to perform a position estimation
for the body parts, e.g. head, feet and arms.

Gesture Separator
The gesture separator is the first analysis block that can detect a neutral pose and inform
the downstream modules about a gesture change, for instance a change from a gesture
to a neutral pose and vice versa.

176 A. Schelle and P. Stütz



Processing Flow Composer
The processing flow composer is the control center of the gesture recognition system.
It sets up the demand for one or more specific gestural command components and their
optional dependencies. The basis for the decision-making is the received input from the
gesture separator (gesture change) and the feedback from the task validator (missing
information). The generated demand is then send to the gesture type selector.

Gesture Type Selector
Based on the demand from the processing flow composer this module starts the appro‐
priate processing flow to gather the requested gestural command component.

Task Validator
The task validator receives and validates all detected and recognized gestural command
components. It has to check all inputs for plausibility and feasibility. If command
components are missing, this module gives feedback to the processing flow composer.

This setup enables an adaptive demand-driven and processing flow to contemplate only
those processing steps that are needed for the information aggregation. A system overview
of all proposed modules and their connections is illustrated in Fig. 3.

Adaptive Gestural Command Composition

2D Person 
Tracker

3D Body Tracker

Infrared

Color

Depth Gesture 
Seperator

Processing Flow
Composer

Gesture Type 
Selector

Processing Flow for 
Static Gestures

Processing Flow for
Dynamic Gestures 

Finds and tracks 
person in 2D 
images.

Keeps track of 
extreme and joint 
points of operator’s 
body.

Region of Interest (ROI)

Detects gesture 
changes and 
triggers 
processing.

Sets up demand for 
gestural command 
component type and 
controls gestural 
sequence dependencies.

Decides which 
processing flows to start 
to obtain the demanded 
gestural command 
component.

Directional Components

Numerical Components

Task

Post-Task Behaviour

ActivationBody Demand Task 
Validator

Feedback about missing information

Validates received 
command components. 
Gives feedback about 
missing information.

Fig. 3. Overview of the adaptive gestural command aggregation approach
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Fig. 4. Exemplary overview of the processing flow for the detection of static gestures
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Exemplary Processing Flow for Static Gestures
The demand-driven principle of the approach from the previous chapter can be applied
to both of the processing flows for static and dynamic gestures as well. For example, if
the operator performs a pointing gesture (“Go east”) followed by a counting gesture
(“500 m”), the directional command component flow (Fig. 4) can be excluded since the
directional information is already transmitted and the costly face position estimation can
be excluded, which is needed for reference.

3 Experimental Validation

The following chapter covers the first module implementation of the proposed approach
for a discrimination between static and dynamic gestures from an airborne platform and
its validation on real life data.

3.1 Implementation

The Intel RealSense R200 camera was selected for the data acquisition. Its advantage is
the multisensory all-in-one solution that features besides a high resolution color sensor
also two infrared sensitive sensors in a stereoscopic setup to generate its depth data
making it suitable for outdoor applications. The gesture recognition in interaction mode
relies predominantly on the data of one of the two infrared sensors and the depth data
of the mentioned camera. This data can be represented in two ways. On one side it can
be seen as a grayscale image where the depth information is coded into the intensity
value of each pixel. This so called 2.5D representation allows the integration of the data
in existing image processing algorithms.

On the other side its data can also be processed in a three dimensional representation.
Using the intrinsic and extrinsic camera parameters of the camera, the depth data can
be transformed into a world coordinate system creating a specific position for each point
of the image in 3D space. The result of this transformation is known as point cloud. Both
representation forms are shown in Fig. 5 for comparison.

The second variant is computationally more expensive, but enables elaborated possi‐
bilities for gesture recognition. For this the point cloud representation was favored first.

Fig. 5. Two representations of the depth data in comparison: 2D-matrix (left) and point cloud
(right)
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However, later experiments have revealed the sensors maximum depth range of about
10 m, but also its rapidly decreasing depth accuracy on that far end of the operational
area. The integration of computationally highly expensive multi-stage filtering methods
in the implementation would be necessary and therefore inhibits a real time execution.
Figure 6 illustrates the noisy depth data from three different viewpoints. The image on
the right side (Fig. 6c) shows the prominent quantization artefacts from the stereoscopic
approach that manifest as thin plates along the z-axis.

For that reason the 2.5D representation has been chosen for the prototypical gesture
recognition implementation.

2D Person Detection and Tracking
The implemented method for person detection and tracking adapted from previous work
as describe in [9], namely a combination of a HOG based object detector [10] and a
modified correlation tracker [11]. This applies for the utilized UAV and deployed sensor
of the experimental setup as well (Fig. 7).

Fig. 7. Utilized UAV with multisensory camera system and experimental setup in interaction
mode

Body Part Estimation
Based on the result of the upstream 2D person detector and tracker, the region of interest
is first enlarged to fit all body parts within it (the HOG detector is learned only on the
silhouette of persons) and then extracted from the depth stream (Fig. 8a, b). The lower
part is removed in the next step, which includes noisy and interfering depth data from
the ground (Fig. 8c). After that, the background is removed as well, based on the median
distance of the operator to the camera (Fig. 8d). A conversion to a lower bitrate followed

Fig. 6. Operator in point cloud representation from three viewpoints: (a) front, (b) front right, (c)
right
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by a binarization step creates then a suitable base for a subsequent contour analysis
(Fig. 8e).

Fig. 8. Involved processing steps for body part estimation (see text for detailed description), (h)
shows the detected extreme points and the related body parts: green = left arm, red = right arm,
blue = legs, white = head (Color figure online)

This process consist of a blob and contour detection that looks for large connected
objects of a given minimum and maximum size and perimeter. Empty regions with no
depth data inside the body shape (black spots on the operator’s right side in Fig. 8a‒e)
can be challenging for this processing step as they sometimes divide body parts from
the corpus and lead to incorrect detections of the arms, for instance. But this hurdle can
be overcome by a preceding blob group analysis and connection.

Extreme points in depth image

Estimated body center

Result of HOG based person detection in infrared image
Result of contour analysis in depth image

Fig. 9. Schematic illustration for the estimation of extreme points
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The found contours are represented as a list of connected 3D points (2D position
plus distance from the camera) (Fig. 8f). The 2D information is then used to find and
mark those candidates that show the largest distance to the estimated body center, called
extreme points (see Fig. 9). A following plausibility check (feet are under the body
center, head is over it, etc.) assigns then each candidate the appropriate body part
(Fig. 8h). These found positions are passed through a Kalman-Filter to smooth outliers
from the detection caused by noisy depth data. The white rectangle in Fig. 8g–h repre‐
sents the calculated neutral pose space for the following neutral pose detection.

3.2 Classification

Once the position of the extremities is found, the movements of the person can be already
grouped in three classes: static gestures, dynamic gestures and a neutral pose. Static
gestures include low or no fluctuations of the body position data whereas dynamic
gestures involve more body movements.

Here a neutral pose is recognized, when the operator keeps his arms down and close
to his body and therefore leaving them inside the neutral pose space. Every time he raises
his arms out of this space, a new gesture separation signal is send to the system that
triggers the following processing steps to look for static and dynamic gestures.

The position of each detected body part is stored in a vector of a defined length, in
this case 30 elements. A static gesture signal is triggered if two conditions are true:

1. All positions within the vector are valid (no missed detections) and
2. 50% of all positions are within a defined tolerance area

If both criteria are met, the pointing direction in reference to the head position is then
estimated and a (static) pointing gesture signal is emitted.

Classification of Dynamic Gestures
To perform a classification of dynamic gestures, more processing steps are necessary.
To take in account the temporal progression of the extreme points, their lateral change
can be represented as a two dimensional trajectory (Fig. 10).

a) b)

Fig. 10. Schematic figure of a waving operator (a) with the corresponding motion history image
(b)
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a) b) c) d)

Fig. 11. Gestures represented as motion history images: (a) waving with both arms sideways, (b)
movement from top to bottom with both arms, (c) circling with one arm above the head, d) waving
with one arm above the head
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Fig. 12. Overall processing flow for the prototypical gesture recognition implementation

If we plot every position of an extreme point over time as an intensity value into a sepa‐
rate image, we can use the result as an input for a learned image based object detector to
assign a motion image to a specific dynamic gesture. These resulting images are named here
as motion history images (Fig. 11).

Besides the already used HOG detector for the person detection, a trained convolu‐
tional neural network (CNN) [12, 13] would qualify for this task as well. As the expected
image size of the motion history images is rather small (not more than 100 by 100 pixels) the
necessary number of feature layers should be relatively low and hence computationally
cheap. But this point hast to be investigated in the next works. An overview for the
complete image processing flow with implemented and scheduled steps is shown in Fig. 12.
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3.3 Results

The implementations has been executed on a mainstream Intel i7 powered system without
GPU acceleration and heavy software optimization using the recorded on board data from
the real flight experiment. Despite the recorded frame rate being 60 Hz, the processing rate
dropped to only about 35 Hz, still qualifying as real time. One reason is the early extraction
of the ROI hence reducing the effective image dimension to about 155 by 115 pixel for the
processing and therefore reducing the computational load. Furthermore the integrated high
resolution color stream has not been part of the processing flow at this stage.

The deployed method to detect and track the operator within the infrared image stream
performed well without losses through the whole video sequence (Operator Sequence 1,
frames 539 – 1854). The neutral pose could be detected best (true positive rate
TPR = 91.8%) followed by the detection of static gestures (TPR = 79.5%). Dynamic
gestures could be detected in most cases by a motion analysis with a TPR of 70.5%. Only the
recognition of dynamic gestures using a learned HOG detector on the motion images did not
work as expected and showed poor detection rates. One reason might have been the very low
effective resolution of 30 by 30 pixel of the used motion images for learning of the detector.
A scaling and interpolation of the included body part positions might improve the detection
rate. A temporal comparison of the performed gestures featuring the ground truth and the
detections is shown in Fig. 13.

Fig. 13. Overview of the detection results of the recorded video sequence including the ground
truth (GT)

4 Conclusion

This work proposed a method to collect gestural command components for the
commanding of airborne UAS. An adaptive command component composition
approach has been presented that is capable of distinguishing between different gesture
types as well as an exemplary processing flow for the demand-driven information gath‐
ering of static 2D gestures. Lastly the gesture separation part of the proposed method
has been evaluated on real life data from an airborne platform with a prototypical imple‐
mentation. The used multisensory camera system performed well in the infrared domain
but showed deficiencies in the depth stream at the given distances. Other sensor systems
have to be considers in the next development steps. Future work will gradually
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implement all proposed concept parts into the system to establish an operational proto‐
type for a complete gesture based UAS tasking.
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