
Chapter 6
Railway Disturbances on Wildlife:
Types, Effects, and Mitigation Measures
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Abstract In this chapter, we review the level of disturbance caused by railways due
to noise and vibration, air, soil and water pollution, and soil erosion. There is evidence
that soil and hydrology contamination may affect vegetation and aquatic fauna while
noise can affect terrestrial vertebrates. In fact, noise, light, and vibration due to
railways have been observed to reduce the abundance and richness of some insects,
amphibians, and birds, and to cause avoidance behaviour on predators. Interestingly,
reptiles, some bird species, small mammals, and large mammals seem to ignore rail
traffic and benefit from the vegetation planted in the railway verges that provide food
and shelter. Some engineering structures have been implemented to reduce the effects
of railway disturbance: rail fastenings, rail dampers, under-sleeper pads, and noise
barriers are applied to minimize noise and vibration; washing with water and cleaning
the ballast are used to mitigate soil pollution; and grass plantation, the use of gypsum
and application of compost/mulch coverage, are applied to control soil erosion.

Keywords Noise and vibration � Air and soil pollution � Water pollution � Soil
erosion � Terrestrial vertebrates � Species richness � Avoidance effect

Introduction

The construction and operation of railways implies changes in the surrounded
landscape that alter the microclimate, soil, and hydrological dynamics, contributing
to the degradation of the natural habitat for many species (Forman and Alexander
1998; Eigenbrod et al. 2009). During operation, the main disturbances caused by
railways are air, soil and water pollution, as well as noise and vibration, which
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may alter species richness and species abundance (e.g. Penone et al. 2012;
Clauzel et al. 2013). In this chapter, we review these disturbance sources, their
effects on wildlife and the main actions to avoid or minimize their effects.

Main Railway Disturbances: Noise and Vibration, and Air,
Soil and Water Pollution

The two most known disturbances of railways are the noise and vibrations caused
by passing trains. However, railways are also responsible for a large amount of
emissions that cover a wide range of pollutants and toxic substances that affect the
atmosphere, soil and water worldwide (Plakhotnik et al. 2005). Another impact
resulting from the construction and establishment of the railways is soil erosion.
Here, we describe the main railway disturbances that can potentially affect wildlife.

Noise and Vibration

Railway noise pollution can be either from airborne sound or from
vibration-induced as a result of rail traffic (Czop and Mendrok 2011; Palacin et al.
2014). The main source of railway noise comes from freight wagons, followed by
high-speed trains and inner-urban railways (Guarinoni et al. 2012). However,
locomotives passing and accelerating, freight wagons braking, vibrations from rail
corrugation, and out-of-round wheels or vehicle coupling in shunting yards, are
other sources of noise (Clausen et al. 2010). Noise levels vary, depending on the
landscape and weather; open and flat areas allow noise to travel further than forest
or mountains areas. In mountainou areas, the effect of noise is greater within
valleys, when their width is less than the height of their walls, reducing the
attenuating effect of noise (Chiocchia et al. 2010). Frost can make the ground hard
and impede sound absorption, but fog prevents noise from dissipating.

Noise above 55 dB(A), where dB(A) is a measure that attempts to correct the
way the human ear perceives loudness, is considered noise pollution for humans,
and the sound values in the range 65–75 dB(A) cause stress to the body, leading to
arterial hypertension (high blood pressure), cardiovascular disease, and heart
attacks (Berglund et al. 1999). In Canada, the sound level of a passing train reaches
values up to 85 dB(A), but between trains the sound levels drop to 43–53 dB(A)
(CTA 2015). Measurement campaigns on high speed trains in several European
countries over 10 years revealed sound values ranging from 85.5 to 97 dB(A) when
the train speed was between 250 and 350 km/h (Gautier et al. 2008). In Japan,
Matsumoto et al. (2005) compared the noise as a function of distance and observed
a high noise level of 64 dB at 200 m from a railway in the countryside, a value
similar to that near residential areas (65.7 dB). In fact, in Japan, noise can still reach
72 dB at 50 m from the track, i.e., higher than the Japanese permissible standards of
70 dB(A) (Kanda et al. 2007).
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Air Pollution and Emission

The emission of gases from traffic constitutes an important source of environmental
pollution all over the world (Hofman et al. 2014). These emissions depend mainly
on the type of transport and fuel. Potential sources of contaminants associated with
railways include diesel exhaust, and the abrasion of brakes, wheels, and rails, as
well as dust from the transport of minerals and treated railway ties (Levengood et al.
2015).

The main pollutants emitted from the diesel-powered locomotives are carbon
dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx),
nitrous oxide (N2O), sulphur dioxide (SO2), non-methane volatile organic com-
pounds (NMVOC), particulate matter (PM) and hydrocarbon (HC) (Plakhotnik
et al. 2005; Cheng and Yan 2011). Some studies reported higher levels of PM10

(where the subscript indicates the largest diameter of the particles in microns) and
PM2.5 near railways, higher than the standard level allowed (Beychok 2011) for the
USA, Europe, and Asia (Park and Ha 2008; Kamani et al. 2014).

A growing number of monitoring studies have used bioindicator plant species as
surrogates of air pollution across railways (e.g., Rani et al. 2006; Hofman et al.
2014). For example, Rani et al. (2006) studied the micromorphology of leaf parts of
Croton bonplandianum, Cannabis sativa and Calotropis procera along a gradient
of distances from the railway and concluded that the number of stomata and epi-
dermal cells were lower near railways than at 4 kilometers away from the railway.
However, no statistical tests were used to evaluate the correlation between railway
distance and the number of stomata and epidermal cells. To the best of our
knowledge, Rybak and Olejniczak (2013) authored the only published study that
measured the accumulation of polycyclic aromatic hydrocarbons (PAH) in animal
species. Using Agelenids spider webs to collect dust suspended in the air, they
concluded that spiders are efficient indicators of PAHs in roads, but not in railway
viaducts due to heavier traffic in the former.

Soil Pollution

With the increase in the human population and vehicles, emissions arising from
transportation have become one of the most important sources of heavy metal,
PAHs and herbicides in the soil (Malawaka and Wilkomirski 2001; Böjersson et al.
2004). Fuel combustion, vehicular and track material abrasion, and leaked cargo
emit particles containing metals that are deposited in the soils, where they can
remain for many years due to their low biodegradability (Zhang et al. 2012).

As most products of vehicle emissions are neither biologically nor chemically
degraded, they can affect the growth of plants and ecosystems (Chen et al. 2014a,
b). In fact, plants and soil organisms are the first recipients of the emission pol-
lutants (Malawaka and Wilkomirski 2001). Ongoing research indicates that plant
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uptake varies among species. For example, leucaena (Leucaena leucocephala),
annual meadow grass (Poa annua), and indigofera (Indigofera amblyantha) are
known to have high translocation capacity for some metals, such as lead (Pb) and
cadmium (Cd), but limited translocation of heavy metals from the roots to the
aboveground tissues (Chen et al. 2014a, b), while others show the opposite trend
(Ge et al. 2003).

High concentration levels of heavy metals are often found in the vicinity of
railways. Wiłkomirski et al. (2011) reported the same concentration of molybdenum
(Mo) close to and approximately 2 km from the railways in Poland. For instance,
the concentration of nickel, cadmium, cobalt, and lead in the moss (Pleurozium
schreberi) was the same 30 m from the railway as it was at points near the railways
(Mazur et al. 2013). In addition, high concentrations of PAHs were found in the
aerial parts of plant species near the railway and up to distances of 30 m from the
railway (Malawaka and Wilkomirski 2001; Wiłkomirski et al. 2011). On railways,
in particular, the biodegradation of PAHs and herbicides is extremely low and can
persist over decades (Wilkomirski et al. 2012).

Water Pollution

Infrastructures associated with railways (e.g., leakages of petroleum products from
fuel storage tanks) contribute, together with pollutants, to aquatic ecosystems
(Schweinsberg et al. 1999; Vo et al. 2015). Levengood et al. (2015) documented
high concentrations of PAHs and heavy metals in waterways bisected or bordered
by railways. They showed that the PAH concentration was higher downstream than
upstream of the railway (Levengood et al. 2015). They also found that phenan-
threne and dibenzo (a, h) anthracene (a PAH element) concentrations at some sites
represented a risk to aquatic life, whereas the chromium (Cr) values were still below
the levels of concern for aquatic life (Levengood et al. 2015).

Herbicides and pesticides are other sources of water pollution. For herbicides,
Schweinsberg et al. (1999) discovered that in Germany before the 1990s, a much
higher total amount of these compounds were applied on railway tracks than in
agriculture. Recently, Vo et al. (2015) showed that many herbicides applied during
the operation of the railway are at concentrations that are lethal to most of the
aquatic fauna, particularly fish populations; they indicate that compounds such as
Imazapyr or Diuron concentrations can take 6 and 48 months, respectively, to drop
below 50% of their original levels.

Soil Erosion and Changes in Hydrology

The abrupt change of soil required to establish the railway embankment leads to
vegetation loss, compresses the soil, and compromises water drainage (Ferrell and
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Lautala 2010). Thus, soil becomes exposed and subject to an increasing runoff that
promotes its erosion (Chen et al. 2015). The erosion of rail embankments can result
in a washing out of sediments (Jin et al. 2008) that cause water pollution.
Furthermore, Gregorich et al. (1998) noted that soil erosion and deposition alter the
biological process of carbon mineralization in soil landscapes, which affects the soil
quality and, hence, the vegetation.

Railway construction parallel to streams can result in hydrological disconnec-
tions (Pennington et al. 2010) that dry the soils (Blanton and Marcus 2009). Such
disconnections can have a significant impact on the ecological function of riparian
landscapes by negatively affecting floodplain evolution, riparian ecosystem pro-
cesses, and associated biodiversity (Snyder et al. 2002). Although urban riparian
areas could harbor great diversity of native canopy and shrub species, the richness
of native canopy species was lower near railways (Snyder et al. 2002).

Effects of Railway Disturbance on Wildlife

There is evidence that disturbance from noise, lights, and vibrations associated with
the construction and operation of the railway affect some species, and this can occur
at various life cycles (van Rooyen 2009; Wiacek et al. 2015). In contrast, other
studies suggest that wildlife ignores or adapts to railway disturbances (Ghosh et al.
2010; Mundahl et al. 2013). As observed for roads, the severity of railway dis-
turbance depends on the species’ bio-ecological features and on the degree of the
disturbance (e.g., Rytwinski and Fahrig 2012). However, little is known about their
role in species viability. We now review the main findings on wildlife behaviour
responses to railway disturbance.

Insects

To the best of our knowledge, only the study by Penone et al. (2012) assessed the
impact of railways on insects. They studied Tettigoniidae (bush crickets) at railway
edges in an urban context (Penone et al. 2012), and found that species richness and
abundance was explained by a quadratic effect of train speed (described by a hump-
backed curve). This is especially true of mobile species at larger scales than on
sedentary species. However, vegetated railway verges had a significant positive effect
on most species, suggesting that suitable habitats with appropriate management can
overcome the negative effects of disturbance on larger scales (Penone et al. 2012).
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Herpetofauna

Among vertebrates, amphibians are one of the groups most affected by linear
infrastructures (e.g., Fahrig and Rytwinski 2009). Their dependence on aquatic
habitats and seasonal migrations make amphibians particularly vulnerable to the
negative impacts of these structures (Hels and Buchwald 2001; Hamer and
McDonnell 2008). However, to the best of our knowledge no studies have been
carried out on the impact of railway disturbances on amphibians.

In contrast, there have been several studies that show that reptiles ignore railway
disturbances. For example, in Belgium, all autochthonous reptile species have
colonized the railway embankments, but their presence and abundance largely
depend on the region and on the kind of railway (Graitson 2006). Railway
embankments can provide important novel habitats for reptiles, mainly in highly
human-altered landscapes (EN 2004). Some active lines in sunny areas of large
valleys and some large switchyards, as well as unused railways not dismounted, had
a particularly high richness of reptiles (Graitson 2006). In fact, those railways may
have contributed to the local dispersal of at least five species of reptiles: slow worm
(Anguis fragilis), sand lizard (Lacerta agilis), common wall lizards (Podarcis
muralis), viviparous lizard (Zootoca vivipara), and smooth snake (Coronella aus-
triaca) (Graitson 2006). Likewise, the rainbow lizard (Cnemidophorus lemnistac-
tus) was found in the weeds growing along the Florida East Coast Railway line
occupied by industrial buildings (Wilson and Porras 1983). In Switzerland, a rel-
atively great abundance of reptile species can be found in the vicinity of the
railways, especially sand lizards (Stoll 2013). However, the abundance of reptiles in
the railway banks can be affected by two key factors: the inter-specific competition
with the common wall lizard Podarcis muralis, and predation through domestic cats
Felis catus (Stoll 2013).

Birds

There have been several studies that show that railway disturbance affects bird
richness, abundance, and behaviour. Noise can affect acoustic communication
among bird species that use calls and songs to attract and bond with mates, defend
territories from rivals, maintain contact with social groups, beg for food, and warn
of danger from approaching predators (Collins 2004; Marler 2004). Noise distur-
bance was shown to alter the behaviour of many bird species, especially for
breeding birds, when territories are being defended, and during incubation (Reijnen
et al. 1995). This disturbance can cause birds to accelerate hatching, abandon their
occupied territories, nests and broods, and lead to hearing loss (Hanson 2007).

For example, noise emission from railway traffic has a negative effect on the
density of all meadow birds in the Netherlands (Waterman et al. 2002). The
threshold noise level from which densities were affected was around 42–49 dB(A)
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for the black-tailed godwit (Limosa limosa), skylark (Alauda arvensis), and gar-
ganey (Anas querquedula) (Waterman et al. 2002). There was also evidence that
successful bald eagle (Haliaeetus leucocephalus) nests were farther away from
highways and railways than unsuccessful ones (Mundahl et al. 2013).

Certain bird species seem to ignore railway disturbances. For example, brants
(Branta asp.) seem to disregard the trains passing 50 m away (Owens 1977).
Likewise, although Waterman et al. (2002) found a negative effect on the density of
birds on railways in general, they did not find differences in bird density between
quiet and busy railways. Indeed, there is evidence that bird species tolerate the
railway disturbance due to the attractiveness of numerous railway-related features.
Species whose predators show negative responses to train disturbance may also
benefit from the railway vicinity (Rytwinski and Fahrig 2012). Railway verges may
create edge effects that can increase biodiversity. In fact, special microclimates—
thanks to different temperatures or insolation and new habitat availability along the
edges—can enhance habitat heterogeneity in homogeneous landscapes (Delgado
et al. 2007). In turn, these new habitats may improve resting and foraging oppor-
tunities for some bird species (Morelli et al. 2014). Also, railways can be a useful
source for gastroliths’ digestive purposes, and a source of sand bathing locations
used by birds to clean the feathers. Ghosh et al. (2010) showed that apparently due to
the food availability, house sparrows (Passer domesticus) adapted to loud noise
(between 35 and 95 dB), being undisturbed by passing trains at the railway station
study site. Equally, Li et al. (2010) observed the abundance and richness of seven
ground-dwelling bird species, namely the Tibetan ground tit (Pseudopodoces
humilis), Tibetan lark (Melanocorypha maxima), horned lark (Eremophila alpes-
tris), white-winged snowfinch (Montifringillla nivalis), plain-backed snowfinch (M.
blandfordi), white-rumped snowfinch (M. taczanowskii), and rufous-necked snow-
finch (M. ruficollis). They found greater numbers of individuals of these species near
the Qinghai-Tibet railway (less than 300 m) than farther away (from 300 to
1,200 m), probably due to verges provide nesting sites and foraging opportunities.

The non-continuous nature of the noise near railways due to the intermittent flow of
train traffic may constitute the main reason that some birds ignore the railway. This was
hypothesized byWiacek et al. (2015) to explain the greater abundance of the breeding
community ofwoodlandbirds near a busy railway line inPolandwhen they assessed the
effect of noise at three different distances from the track (30, 280, and 530 m). Species
with low frequency calls, such as the wood pigeon (Columba palumbus) and common
cuckoo (Cuculus canorus), also occurred in large numbers near railways. Other bird
species also seem to ignore the railwaydisturbance.For example,more than90%ofbald
eagle nests were built near human infrastructures, including railways that hadmore than
1,000 railcars going by each day (Mundahl et al. 2013).
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Mammals

Railway disturbance impacts differ among mammal species. Besides the higher
intensity of light and noise (it can achieve 120 dB), small mammals can be found
near the railways if there is no grazing disturbance (Qian et al. 2009), or if the
unnatural nature of rail bed and tracks is not an obstacle to their movements (van
der Grift 1999). In fact, the richness of small mammal species was high at the
railway verge in the Atlantic forest in southern Brazil (Cerboncini 2012), probably
because the noise from the trains can force predators out of the area, which can
favor small mammals’ appearance (Cerboncini 2012). Similarly, railways may have
a positive role in maintaining the common bat populations in highly humanized
landscapes, such as intensive agriculture. In this case, railway verges seem to be
used as shelters for bat species despite the traffic noise; only Myotis sp. foraging
behaviour was negatively affected by railway verges (Vandevelde et al. 2014).

Although the response of large mammals to the effects of railway disturbance
varies among species, they seem to ignore railway disturbances. However, there is
evidence that the presence of railways had a subtle effect on some species’ behaviour.
For example, railways had little effect on the distance or direction of fox dispersal
movements (Trewhella and Harris 1990); however, the railway disturbance may have
influenced the fox movements within their territories (Trewhella and Harris 1990).
Similarly, the Canadian Pacific Railway in Banff National Park seems to redirect wolf
movements (individuals follow the railway), particularly when the snow is deep
(Paquet and Callaghan 1996), while it seems to define the boundary of bears’ home
ranges (Kaczensky et al. 2003). As detected for other species groups, changes in the
railway verges can attract large mammals. In Banff National Park, railway verges
attracted black and grizzly bears (Ursus americanus and U. arctos, respectively) due
to the berry-producing areas within the verges (Gibeau and Herrero 1998). Grain
spills along the Canadian Pacific rail line also attract bears (Gibeau and Herrero
1998), while food spills seem to increase the abundance of mice, which may attract
their predators, such as the coyote (Wells 1996).

By contrast, railways seem to be avoided by two large ungulates: Mongolian
gazelles (Procopra gutturosa) and Tibetan antelopes (Pantholops hodgsoni). No
observations of Mongolian gazelle crossings during dispersal were detected, and most
of the individuals were found 300 m from the railway (Ito et al. 2005). Likewise,
there were no Tibetan antelope crossings (Xia et al. 2007) because these antelopes
hesitated to cross the railway, most likely because of the slope of the rail bed.

Mitigation Measures to Reduce Railway Disturbances

There are several measures to reduce the main negative effects of railway distur-
bances (Schulte-Werning et al. 2008; Maeda et al. 2012; Nielsen et al. 2015).
Although some of these measures are known to effectively reduce the major

88 P.S. Lucas et al.



negative effects on biodiversity, the effectiveness has not yet been evaluated for a
few other measures. Here, we describe the commonly used measures to reduce or
minimize the impacts of railway disturbance for noise and vibration effects, and soil
pollution and erosion that are found in the literature.

Noise and Vibration

In general, there are two approaches to minimizing rail traffic noise and vibration:
(1) reduce the noise at the source, and (2) reduce its propagation (Lakušić and Ahac
2012; Tiwari et al. 2013). The reduction of noise levels can be achieved by
decreasing the speed of rail vehicles and reducing the intensity of the radiated sound
through regular maintenance in order to keep smooth rails and wheels (Lakušić and
Ahac 2012; Schulte-Werning et al. 2012). Currently, rail fastenings, rail dampers,
under-sleeper pads, and noise barriers (Fig. 6.1) are the most commonly used
techniques to directly reduce the noise and vibration in railways, techniques that are
also used in roads and motorways. The increased flexibility of railway elements
(e.g., fastenings, sleepers, ballasts), have increased their ability to absorb vibrations
generated at wheel-rail interface (Lakušić and Ahac 2012). The use of resilient rail
fastening systems are designed to decrease the low-frequency ground borne or in
structures with noise above 30 Hz and can be effective in reducing wayside noise

Fig. 6.1 Schematic drawing of a railway showing some measures to minimize noise and
vibration: rail fastenings; rail dampers; under-sleepers pads; and noise barriers (not at scale)
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radiated from steel. This structure provides noise reduction from 3 to 6 dB(A)
through the elastic elements supporting the rail, which prevents direct contact
between the rail foot and sleeper (Nelson 1997). However, systems that use con-
crete ties with spring clips may not benefit from the use of resilient fasteners,
because the spring clips already eliminate any looseness between the rail and the tie
(Nelson 1997).

Another technique is the use of rail dampers (Fig. 6.1). This structure consists of
steel components and elastomeric material that absorbs the energy of rail (springs)
vibrations (Lakušić and Ahac 2012). The damping material reduces the displace-
ment of the vibration waves along the rail, which results in the reduction of the rail
noise. Dampers are known to be an efficient way to reduce noise emission in
railway networks (Lakušić and Ahac 2012). Studies performed at the rail track
sections with rail dampers installed showed a reduction in noise from 4 to 6 dB(A),
and vibration up to 9 dB (Benton 2006; Koller et al. 2012).

Aside from rail noise, non-audible vibrations are also generated by the trains,
transmitted via the tracks, and transferred to the soil. In surface railway lines,
sleepers with elastic supports (under-sleeper pads—USPs) (Fig. 6.1) are an alter-
native with moderate costs (compared to floating slab track systems and ballast
mats) that increase track quality and achieve a significant reduction in vibrations
and railway noise (Schulte-Werning et al. 2012). USPs are resilient pads attached to
the bottom surface of sleepers to provide an intermediate elastic layer between the
sleeper and the ballast. The USPs are normally made of polyurethane elastomer
with a foam structure that includes encapsulated air voids (Johansson et al. 2008).
The use of USPs causes an average reduction of vibration of 16 dB due to the
reduction of the contact between the sleeper and the ballast, which increases
elasticity of the track (Lakušic et al. 2010; Lakušić and Ahac 2012).

Commonly used to isolate the noise on railways (and roads), noise barriers
(Fig. 6.1) can be an important tool for minimizing the negative effects of sound on
wildlife, especially for species that are extremely sensitive to it. These structures
can be constructed from soil, wood, concrete, or metal (FHWA 2011; Morgan and
Peeling 2012), or can be just the dense vegetation along the rails, which can, in
some cases, form an almost perfect noise barrier (Tiwari et al. 2013; Bashir et al.
2015). Soil verges along roads and railways can reduce, on average, 3 dB more
than vertical walls of the same height. However, the construction of soil verges can
require a huge area, especially if they are very extensive and elevated. The con-
struction of artificial walls requires less space, but they are usually limited to eight
meters in height for structural and aesthetic reasons (FHWA 2011). Vertical walls
can be applied, together with soil verges, in order to further reduce noise.

Studies by Van Renterghem and Botteldooren (2012) show that a soil verge can
reduce, on average, noise levels of 11.1 dB, and walls can reduce, on average 7.7–
8.3 dB. According to the U.S. Department of Transportation, effective noise bar-
riers can typically reduce noise levels by 5–10 dB (FHWA 2011). Noise barriers
have been mainly used to reduce the effect of noise on colonies of nesting birds
(Bank et al. 2002). However, when applied without planning, noise barriers can
cause various negative impacts on wildlife, such as the isolation of populations
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(Bank et al. 2002). Thus, it is recommended to apply noise barriers together with
wildlife passages to promote crossings between railway sides in order to maintain
dispersal processes and ensure the long-term persistence of the species (Bank et al.
2002; Schulte-Werning et al. 2012). However, reducing the noise disturbance may
reduce the ability of wildlife to perceive incoming trains, and consequently increase
the risk of collision (see Chap. 2).

Soil Pollution

Cleaning the ballast using ethylenediaminetetraacetate (EDTA) with water or
thermosetting plastic resin are techniques that allow the recycling of pollutant
components in the surroundings of the railway network. Cleaning it can typically
involve the use of products such as solvents or surfactants, which vary in efficiency
and potential environmental impacts (Anderson et al. 2002). The ballast cleaning
technology with aqueous solutions of disodium EDTA can ensure metal extraction
without altering the stones’ mechanical and physical characteristics, allowing reuse
of the ballast (Di Palma and Petrucci 2015). The use of EDTA offers a high
extraction efficiency of heavy metals (Di Palma et al. 2011); however, this chemical
agent should be administered with caution because it has low biodegradability in
the environment (Bucheli-Witschel and Egli 2001).

Using water to extract the ballast pollutants is very common in many countries
(Di Palma et al. 2012). However, this method requires a great amount of surfactant
water, and the disposal of the waste produced after cleaning must be treated
appropriately (Cho et al. 2008). Incineration, landfilling, or recycling of the waste
are the options available, with the choice depending on the solvent system and on
the nature of the waste (Anderson et al. 2002). Dry cleaning that uses thermosetting
plastic resin can successfully remove ballast pollutants in a very short time (Cho
et al. 2008). In areas with high levels of contamination, the support material should
be renovated regularly, including changing the ballast, and wood sleepers should be
replaced by concrete (Wiłkomirski et al. 2011).

Soil Erosion

There are techniques commonly used to minimize the effects of soil erosion on
railways and highways: grass plantation, use of gypsum, application of
compost/mulch coverage, use of concrete prefabricated panes, lattice plots, and
interception and drainage. There is evidence that as the grass cover level increases,
the soil erosion rate decreases (Gyasi-Agyei et al. 2001). For example, buffel grass
(Cenchrus ciliaris) is one of the preferred species for revegetation of railway
embankments in Australia (Bhattarai et al. 2008); in some of the areas (Central
Australia and Western Queensland), this grass spreads readily in soils with crumbly
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or soft surfaces, but it needs to be handled with care because it has the potential to
become a weed (Cameron 2004). This species, in combination with Japanese millet
(Echinochloa esculenta), has also been used successfully in controlling soil erosion
in the semi-arid tropics of Central Queensland. Japanese millet develop rapidly in
poor soils and can minimize the invasion of other unwanted weed species (Fox et al.
2010). However, buffel grass is an invasive weed species that poses serious threats
to biodiversity in many other environments, such as in the Australian regions
mentioned above (Marshall et al. 2012) (see Chap. 4).

The use of gypsum on calcium-deficient soil before seeding can reduce the
erosion rate by 25% (Gyasi-Agyei et al. 2001). This material has advantages, such
as low cost, availability, pH neutrality, and ease of handling (Gyasi-Agyei et al.
2001). Once applied to the soil, the gypsum will increase the porosity and water
infiltration ability. This phenomenon will avoid water runoff, thus preventing soil
erosion (Beckett et al. 1989). The use of this mineral also promotes root penetration
and the emergence of seedlings (Chen and Dick 2011).

Compost/mulch coverage is considered to be one of the best management
practices in both active construction and established areas prone to soil erosion on
roadsides (Bakr et al. 2012), and it can be used in railway verges as well. In
Louisiana, USA, Bakr et al. (2012) found that compost/mulch covers were highly
effective in reducing runoff, total suspended solids (reduction between 70 and

Fig. 6.2 Spatial responses of wildlife to railway disturbances: the length of the white bars are
proportional to the distances up to which the railway has an effect on a given taxon, while short
and black bars correspond to species’ occurrence in the railway verges
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74%), and turbidity from soils susceptible to high-intensity storms. A study per-
formed by Persyn et al. (2004) showed that the use of various compounds applied to
the soil might also reduce erosion rates. All compost treatments (biosolids, yard
waste, and bio-industrial by-products) were effective at reducing runoff and inter-rill
erosion rates under the conditions simulated in the study conducted on a highway
embankment after construction in central Iowa (Persyn et al. 2004).

There are also engineering measures, such as concrete prefabricated panes,
geocells (three-dimensional honeycomb-like structures to reduce runoff and sedi-
ment transport), or interception and drainage that can also reduce the soil loss along
highways and railways (e.g., Xu et al. 2006). These measures were effective in the
short term by decreasing between 40 and 60% of the runoff that had effectively
reduced soil loss from sideslopes of highways in the Tibetan Plateau (Xu et al.
2006). However, this measure needs to be applied with some caution, since weak
construction may lead to water leaking from improperly sealed cracks or holes,
loose contact parts, poorly rammed structures, or runoff converging along a flow
line, causing adverse effects on the road embankment and in the surrounding
environment (Xu et al. 2006).

Conclusions

There have been several studies that quantified the level of various disturbances and
their impacts on wildlife populations. Plants are, in general, the first to be described
in relation to air and soil contamination, perhaps due to the facility of realizing
experimental analysis, or of using plants as bio-indicators. Nevertheless, there is
still little scant knowledge about the mechanisms and processes underlying the
behaviour of vertebrates, because most studies concerned only a small number of
species (van der Grift 1999). There is strong evidence that noise, light, and
vibrations that can reach from 85.5 to 97 dB(A), can affect insects, amphibians and
birds (Fig. 6.2). In contrast, the availability of food and vegetation in the railway
verges seems to overcome the noise pollution and seems to attract reptiles, some
bird species, and several mammals (Fig. 6.2). There is a wide diversity of measures
to minimize railway disturbances, but further studies are needed to understand the
effectiveness of these measures in reducing railway disturbance of wildlife.
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