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Abstract. We describe new cryptanalytic attacks on the candidate
branching program obfuscator proposed by Garg, Gentry, Halevi,
Raykova, Sahai and Waters (GGHRSW) using the GGH13 graded encod-
ing, and its variant using the GGH15 graded encoding as specified
by Gentry, Gorbunov and Halevi. All our attacks require very specific
structure of the branching programs being obfuscated, which in partic-
ular must have some input-partitioning property. Common to all our
attacks are techniques to extract information about the “multiplicative
bundling” scalars that are used in the GGHRSW construction.

For GGHRSW over GGH13, we show how to recover the ideal gener-
ating the plaintext space when the branching program has input parti-
tioning. Combined with the information that we extract about the “mul-
tiplicative bundling” scalars, we get a distinguishing attack by an exten-
sion of the annihilation attack of Miles, Sahai and Zhandry. Alternatively,
once we have the ideal we can solve the principle-ideal problem (PIP) in
classical subexponential time or quantum polynomial time, hence obtain-
ing a total break.

For the variant over GGH15, we show how to use the left-kernel
technique of Coron, Lee, Lepoint and Tibouchi to recover ratios of the
bundling scalars. Once we have the ratios of the scalar products, we can
use factoring and PIP solvers (in classical subexponential time or quan-
tum polynomial time) to find the scalars themselves, then run mixed-
input attacks to break the obfuscation.
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1 Introduction

General-purpose code obfuscation is an amazingly powerful technique, making
it possible to hide secrets in arbitrary running software. The first plausible con-
struction of a secure general-purpose obfuscation, described three years ago by
Garg, Gentry, Halevi, Raykova, Sahai and Waters [22] (hereafter GGHRSW),
opened up a new direction of research that transformed our thinking about
what can and cannot be done in cryptography. The GGHRSW construction
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consists of a “core component” for obfuscating branching programs, and a boot-
strapping procedure that uses the core component—in conjunction with homo-
morphic encryption and some proofs—to obfuscate arbitrary code (modeled as
a binary circuit). Many different constructions were proposed since then e.g.,
[3,4,6–8,11,12,23,24,27,31,32,34,37,39], most of which only modify the “core
component” for branching programs, then use the GGHRSW bootstrapping to
obfuscate circuits.

All known obfuscation constructions rely crucially on the underlying tool of
graded encoding schemes, for which there are (essentially) only three candidate
constructions: one due to Garg, Gentry and Halevi [21] (GGH13), another due
to Coron, Lepoint and Tibouchi [19] (CLT13), and the third due to Gentry,
Gorbunov and Halevi [26] (GGH15). However, the security properties of these
encoding schemes are poorly understood, and therefore the same holds for the
obfuscation constructions that use them.

Known Attacks. The original publications of GGH13, CLT13 and GGH15 sur-
vey several number theoretical and algebraic attacks. For the GGH13 encoding
scheme—that relies on the difficulty of the NTRU problem and the principle
ideal problem (PIP) in certain number fields—we recently saw some advances in
attacking these underlying problem [2,9,10,14,20], that may affect the choice of
parameters.

The most serious attacks on all three encoding schemes are the so-called
“zeroizing attacks”: when encodings of zero are easy to find, some secrets can be
extracted by linear algebraic techniques. The most devastating zeroizing attack is
found by Cheon, Han, Lee, Ryu and Stehl? [13] against CLT13—when the encod-
ings of zero form certain combinations, one can extract all the secret parameters.
The attack is extended by Coron et al. [16, Sect. 3.4], breaking the GGHRSW
branching-program obfuscator when instantiated using CLT13 encodings and
used to obfuscate branching programs with certain input-partitioning features.

Applying zeroizing attacks to construction based on GGH13 and GGH15
appears somewhat harder, especially in the context of obfuscation. Nonethe-
less, Miles, Sahai and Zhandry recently introduced “annihilation attack” against
many GGH13-based branching-program obfuscators, for specific types of branch-
ing programs [35]. Interestingly, these attacks do not apply to the GGHRSW
construction, due to the presence of some random entries in the encoded matri-
ces. Moreover, it was shown in [24] that such random entries (in conjunction with
other techniques) provably eliminates all known variants of zeroizing attacks.

To the best of our knowledge, no polynomial time attacks (either classical
or quantum) were known before the current work on the GGHRSW obfusca-
tor using GGH13 encoding, nor were there any attacks on any GGH15-based
branching-program obfuscators.

This Work. We describe new attacks on the GGHRSW branching-program
obfuscator, when using GGH13 and GGH15 encodings. The attacks that we
describe in this work require the underlying branching programs to satisfy
some input-partitioning features, similar to the attack on the CLT variant [16,
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Sect. 3.4]. Roughly, the indexes of the branching program can be partitioned into
two or three consecutive intervals, each contains “sufficiently many” input bits
that do not appear in the other intervals.

A common thread in our attacks is that they focus on the “multiplicative
bundling” scalars that are used in the GGHRSW construction (as protection
against “mixed-input attacks”). We show that some information about these
scalars can be extracted using zeroizing techniques, if the underlying branching
program satisfy certain input-partitioning features. We are not able to fully
recover these scalars, and hence cannot quite mount mixed-input attacks, but
we can still use the extracted information in weaker attacks.

For the GGH13-based candidates, we first apply a variant of the attacks due
to Cheon et al. and Coron et al. [13,17] to recover a basis of the ideal 〈g〉 that
defines the plaintext space, as well as some representatives of the scalars, then
use the recovered information in a distinguishing attack, using an extension of
the annihilation attack of Miles et al. [35]. Alternatively, once we have a basis for
〈g〉 we can solve PIP (in classical subexponential time or quantum polynomial
time), resulting in a total break.

For the GGH15-based candidates, we recover some rational expressions in the
bundling scalars using techniques from [17] (among others), then we can use fac-
toring and PIP solvers (in classical subexponential time or quantum polynomial
time) to recover the bundling scalars themselves from the rational expressions,
then mount mixed-input attacks.

Applicability and Extensions of Our Attacks. We stress that all our attacks rely
crucially on the input-partitioning of the branching program (in order to use the
techniques of Cheon et al. or those of Coron et al.) In particular they do not
seem to apply to “dual input” branching programs as used in many branching-
program obfuscators. Also, our GGH13 attacks cannot be used against schemes
that were proven secure in the “Weak Multilinear Map” model of Garg et al.
[24], since our first step of recovering 〈g〉 fits in that model. However, some of
our techniques do not seem to quite fit in that model (in particular Step II of the
attack, see Sect. 3.2), so they should serve as a cautionary tale about relying too
much on proofs of security in such idealized models. Also, the “immunization”
techniques against GGH13 annihilation attack from [24] by themselves do not
prevent our new attack if the branching programs are input-partitioning (see
Sect. 3.5), it is only in combination with the “dual input” technique that they
provide protection.

Finally, our techniques can potentially be combined with the recent tech-
niques of Apon et al. and Coron et al. [5,18], to attack also some non-input-
partitioned obfuscators. This seems a promising direction for future work.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let Φn be the nth cyclotomic
polynomial. The typical ring used in the paper R := Z[x]/ 〈Φn(x)〉, and the
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fractional field of Rn: Kn := Q[x]/ 〈Φn(x)〉. Below we denote matrices by bold-
face uppercase letter (e.g., A,B, . . .).

2.1 Matrix Branching Programs

We consider oblivious matrix branching programs (as usual in the obfuscation
literature). Such a branching program consists of a sequence of steps, where each
step is associated with an index of some input bit and we have two matrices
associated with each step. To evaluate such a branching program over some
input string, we choose one of the two matrices from each step, depending on
the value of the corresponding input bit, then multiply all these matrices in
order, and compare the result to the identity matrix.

Definition 1. A dimension-w, length-h branching program over �-bit inputs
consists of an index-to-input map and a sequence of pairs of 0–1 matrices,

B =
{
ι : [h] → [�], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
.

This branching program is computing the function fB : {0, 1}� → {0, 1}, defined
as

fB(x) =

{
0 if

∏
i∈[h] Bi,xι(i) = I

1 if
∏

i∈[h] Bi,xι(i) �= I

where the matrix product is carried over some implicitly set ring that includes
0,1 (e.g., the ring Rn from above).

Input Partitioning. We say (somewhat informally) that a branching pro-
gram B is input-partitioned if its set of steps can be partitioned into two or
more consecutive intervals [h] = H1||H2|| . . ., such that for each interval there
are “sufficiently many” input bits that control only steps in that interval and
nowhere else. We sometime say that B is 2-partitioned or 3-partitioned if it can
be broken to 2 or 3 intervals, respectively, and the number of bits that are unique
to each interval will vary among the different attacks that we describe (and will
typically be polylogarithmic).

When considering input-partitioned program B, we will often consider its
evaluation on inputs that differ in bits that only affect steps in one of the inter-
vals. A simple (but important) observation that underlies most of our techniques
is the following:

Lemma 1. Let B be a branching program as per Definition 1 which is input-
partitioned, [h] = H1||H2, and let x, x′ ∈ {0, 1}� be two zeros of fB that differ
only in bits that are mapped to steps in H1. Namely, fB(x) = fB(x′) = 0,
and for all i /∈ H1 we have xι(i) = x′

ι(i). Then the product of the matrices
corresponding to H1 yields the same result in the evaluation of B on x and x′,
that is

∏
i∈H1

Bi,xι(i) =
∏

i∈H1
Bi,x′

ι(i)
.

Similarly, if x, x′ are two zeros of fB that differ only in bits that are mapped
to steps in H2, then

∏
i∈H2

Bi,xι(i) =
∏

i∈H2
Bi,x′

ι(i)
.
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Proof. For the first statement, denote B :=
∏

i∈H1
Bi,xι(i) , B′ :=

∏
i∈H1

Bi,x′
ι(i)

,
and C :=

∏
i∈H2

Bi,xι(i) =
∏

i∈H2
Bi,x′

ι(i)
, where the last equality follows since

xι(i) = x′
ι(i) whenever i ∈ H2. Since fB(x) = fB(x′) = 0 then B×C = B′×C = I,

and as B,B′,C are square matrices then C must be invertible and B = B′ =
C−1. The proof of the “similarly” statement is analogous.

2.2 Overview of the GGHRSW Branching-Program Obfuscator

We briefly review the candidate branching program obfuscator of Garg et al.
[22] and its GGH15-based variant from [26, Sect. 5.2]. The GGHRSW branching-
program obfuscator applies several different randomization steps to the under-
lying branching program, and then encodes the resulting randomized matrices,
using either GGH13 or GGH15.

We defer the description of the GGH13 and GGH15 encoding schemes them-
selves to the corresponding attack sections, but just note that these schemes
let us encode matrices in a way that allows checking whether certain degree-h
polynomial expressions in these matrices evaluate to zero.

We also recall that these constructions are supposed to implement indis-
tinguishability obfuscation. In the context of branching programs, this means
that if two programs have the same length h and same input mapping function
ι : [h] → [�] and they compute the same function, then their obfuscations should
be indistinguishable. Correspondingly when attacking these constructions we
need to show two such equivalent programs for which we are able to distinguish
the obfuscated versions.

Below we let B =
{
ι : [h] → [�], {Bi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}

}
be the

branching program to be obfuscated. The obfuscation process consists of the
following steps:

0. Dummy branch. The construction begins by introducing a “dummy
branch”, which is just a length-h branching program with the same input
mapping function ι : [h] → [�], but consisting of only identity matrices of
the same dimension as the Bi,b’s. (In particular the “dummy branch” com-
putes the all-zero function.) We refer to the original branching program as
the “functional branch”, and apply the same randomization/encoding trans-
formations to both branches.

1. Random diagonal entries and bookends. Next every matrix in each of
the branches (all are w × w 0–1 matrices) is embedded inside a higher-
dimension randomized matrix. Specifically, for each i ∈ [h], b ∈ {0, 1} we
consider the matrices

B̃i,b :=
[
Vi,b

Bi,b

]
and B̃′

i,b :=
[
V′

i,b

I

]
, (1)

where Vi,b and V′
i,b are “random diagonal matrices.” In the GGHRSW con-

struction from [22], these are 2(h + 3)-by-2(h + 3) diagonal matrices with
the diagonal entries chosen uniformly at random from the plaintext space,
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whereas in the GGH15-based variant from [26] they are diagonal 2-by-2 matri-
ces with “random small entries” that are drawn from some Gaussian distri-
bution over Rn. Below we denote the dimension of these random matrices
as 2m-by-2m (so we have m = h + 3 for the original GGHRSW and m = 1
for the GGH15-based variant). When the analysis requires fine grained struc-
ture of the padded matrices, we further split the notation for each m-by-m
blocks and denote the whole as diag (Ui,b,Vi,b) and diag (U′

i,b,V′
i,b). The

construction also chooses four “bookend” vectors J,J′,L,L′ ∈ R2m+w, of the
form:

J,J′ ∈ [
0m, $m, $w

]
, L,L′ ∈ [

$m, 0m, $w
]T (2)

where the $’s stand for uniformly random elements from the plaintext space
for the original GGH13-based construction, and for “small random” elements
drawn from some Gaussian distribution for the GGH15-based candidate.
They satisfy JL = J′L′.

2. Killian-style randomization and bundling scalars. Next the construc-
tion chooses invertible matrices {Ki,K′

i ∈ R
(2m+w)×(2m+w)
n }i∈[h] and also

scalars {αi,b, α
′
i,b}i∈[h],b∈{0,1}. The scalars are chosen under the constraint

that for any input bit j ∈ [�], we have
∏

ι(i)=j

αi,0 =
∏

ι(i)=j

α′
i,0 and

∏

ι(i)=j

αi,1 =
∏

ι(i)=j

α′
i,1.

Below we sometime use the notations βj,b :=
∏

ι(i)=j αi,b

(
=

∏
ι(i)=j α′

i,b

)
.

As before, here too the scalars and matrices are chosen at random from the
plaintext space in the GGH13-based construction, and drawn from an appro-
priate Gaussian distribution with small parameters in the GGH15-based solu-
tion. Let us also denote K0 = K′

0 = I.
3. Encoding. Denote the randomized matrices by

Si,b := αi,bK−1
i−1B̃i,bKi and S′

i,b := α′
i,bK

′−1
i−1

˜B′
i,bK′

i. (3)

The obfuscation of the branching program B consists of encoding of all the
matrices Si,b and S′

i,b and also of the bookends J,J′,L,L′.

To evaluate the obfuscated branching program on some input x, we use the
operations and zero-test capabilities of the underlying encoding scheme to check
that J

(∏
i∈[h] Si,b

)
L − J′(∏

i∈[h] S
′
i,b

)
L′ = 0.

Branching Program with Input Partitioning. Let X||Y||Z = [h] be a 3-
partition of the branching program steps. In the attacks we use honest evaluation
of the branching program on many inputs of the form u(i,j,k) = x(i)y(j)z(k),
where all the bits that only affect steps in X are in the x(i) part, all the bits
that only affect steps in Y are in the y(j) part, all the bits that only affect steps
in Z are in the z(k) part, and all the other bits are fixed. This notation does not
mean that the bits of x(i), y(j), z(k) appear in this order in u(i,j,k), but it does
mean that u(i,j,k) and u(i′,j,k) can only differ in bits that affect steps in X , and
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similarly u(i,j,k) and u(i,j′,k) only differ in bits that affect steps in Y and u(i,j,k)

and u(i,j,k′) only differ in bits that affect steps in Z.
For such an input u = xyz, we denote by Sx the plaintext product matrix

of functional branch in the X interval, by Sy the plaintext product matrix of
functional branch in the the Y interval, and by Sz the plaintext product matrix
of the functional branch in the Z interval (including the bookends). We similarly
denote by S′

x, S′
y, S′

z, the plaintext product matrix of the dummy branch. Namely

Sx := J · (
∏

i∈X Si,uι(i)), Sy :=
∏

i∈Y Si,uι(i) , Sz := (
∏

i∈Z Si,uι(i)) · L,
S′

x := J′ · (
∏

i∈X S′
i,uι(i)

), S′
y :=

∏
i∈Y S′

i,uι(i)
, S′

z := (
∏

i∈Z S′
i,uι(i)

) · L′, (4)

with products over the plaintext space. In some cases we only need 2-partition
of the program, so we suppress the Sy, S′

y parts.
When we have multiple inputs of the form u(i,j,k) = x(i)y(j)z(k) that are all

zeros of the function, then by Lemma 1 the parts of the plaintext matrices that
come from the product of the branching program matrices must be the same for
the different x(i)’s (and similarly for the different y(j)’s and z(k)’s). We denote
these matrices simply by Bx, By, and Bz, independently of i, j, k. Namely we
have:

Sx(i) = αx(i) J × diag(Ux(i) ,Vx(i) ,Bx) × Ky;
S′

x(i) = α′
x(i) J′ × diag(U′

x(i) ,V′
x(i) , I) × K′

y

Sy(j) = αy(j)K−1
y × diag(Uy(j) ,Vy(j) ,By) × Kz;

S′
y(j) = α′

y(j)K′
y

−1 × diag(U′
y(j) ,V′

y(j) , I) × K′
z;

Sz(k) = αz(k)K−1
z × diag(Uz(k) ,Vz(k) ,Bz) × L;

S′
z(k) = α′

z(k)K′
z
−1 × diag(U′

z(k) ,V′
z(k) , I) × L′

(5)

where the scalars αx(i) , αy(j) , etc. are just the product of all the αi,b’s in
the corresponding (partial) branch. Moreover, we observe that all the ratios
of αx(i)/α′

x(i) , i = 1, 2, . . . (and similarly for the αy(j) and αz(k)) must also be
equal.

Lemma 2. With the notations above, we have α′
x(1)/αx(1) = α′

x(2)/αx(2) = . . .
and similarly α′

y(1)/αy(1) = α′
y(2)/αy(2) = . . . and α′

z(1)/αz(1) = α′
z(2)/αz(2) = . . ..

Proof. To prove the statement for the αx(i) ’s consider an input bit t ∈ [�] that
affect some steps in X . That bit either only affects steps in X or it affects steps in
both X and in Y,Z. In the former case, by construction we have

∏
ι(i′)=t αi′,b =∏

ι(i′)=t α′
i′,b (for b = 0, 1), so this input bit’s contribution to the ratio α′

x(i)/αx(i)

is 1 (for all i). In the latter case, this input bit has the same value (0 or 1) for
all the inputs x(i), so it contributes the same factor to the ratio α′

x(i)/αx(i) for
all i. The proof for the αy(j) and αz(k) is the same.

3 Cryptanalysis of the GGH13-Based Candidate

The GGH13 Encoding Scheme. The core secret parameter in the GGH13 encod-
ing scheme is a small g ∈ Rn (sampled from small Gaussian distribution), such
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that the inverse g−1 ∈ K is also small. Let I = 〈g〉 = gRn be the ideal generated
by g in Rn, the plaintext space of the GGH13 scheme is the quotient ring Rn/I,
and we typically choose g so that this plaintext space is isomorphic to some prime
field Fp. Other parameters of the scheme are an integer modulus q � p and the
multi-linearity degree k (which are public), and a random secret denominator
z ∈ Rn/qRn (which is kept secret). Plaintext elements are encoded relative to
levels between 0 and k.

The encoding of s ∈ Rn/I at level 0 is a short representative of the coset
of the ideal shifted by s, i.e. c ∈ s + I, ‖c‖ 	 q. To encode at level i, compute
c/zi (mod q). (There is also an “asymmetric mode” of GGH13, in which there
are many different denominators zi.) The public zero-test parameter is pzt =
η · zk/g, with ‖η‖ ≤ q1/2.1 Additions and multiplications are simply adding and
multiplying the encodings in Rn/qRn, with the restrictions that correctness only
holds when adding on the same level, or multiplying below the maximum level k.
To zero-test, multiply the (potential) top-level encoding c/zk by pzt (modulo q).
If c encodes zero then c ∈ I, hence c = c′ · g, and therefore c · pzt = ηc′, which
is small since both η and c′ are much smaller than q.

Attacking the GGH13-Based Obfuscator. When using GGH13 as the underlying
encoding scheme in the GGHRSW obfuscator, we denote the encoding of the
plaintext matrices Si,b, S′

i,b by

Ci,b = (Si,b + g · Ei,b)/z, and C′
i,b = (S′

i,b + g · E′
i,b)/z.

We also denote the encoding of the bookends by

J̃ = (J+g·EJ )/z, L̃ = (L+g·EL)/z, J̃′ = (J′+g·E′
J ′)/z, and L̃′ = (L′+g·E′

L′)/z,

where all the calculations are modulo q.
We first recover the ideal 〈g〉 adapting the zeroing attack techniques of Cheon,

Han, Lee, Ryu and Stehlé [13] and Coron, Lee, Lepoint and Tibouchi [17]. This
part requires 2-partitioning of the branching program. Once we have a basis
of 〈g〉, sub-exponential time classical algorithms [9] and polynomial-time quan-
tum algorithms [10] are known to recover a short generator of 〈g〉 [20], thus
breaking GGH13 completely [21, Sect. 6.3.3].

Alternatively, using a basis of 〈g〉 we can proceed with the zeroing attack
modulo 〈g〉 to recover (some representation of) products of the bundling scalars.
Then we can execute a simplified variant of the annihilation attack by Miles,
Sahai and Zhandry [35]. This yields a classical polynomial time attack, and
requires 3-partitioning of the branching program. We now proceed to describe
the attack in more details.

Some More Notations. Consider a 3-partitioned branching program with the
partitioning X||Y||Z = [h]. We use the same notation as in Eq. (4) for the

1 The scalar η is denoted h in [21], but we are already using h for the length of the
branching program.
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plaintext matrices, and also denote Cx,Cy,Cz and C′
x,C′

y,C′
z for the encoded

matrices. Namely

Cx := J̃ · (
∏

i∈X Ci,uι(i)), Cy :=
∏

i∈Y Ci,uι(i) , Cz := (
∏

i∈Z Ci,uι(i)) · L̃,

C′
x := J̃′ · (

∏
i∈X C′

i,uι(i)
), C′

y :=
∏

i∈Y C′
i,uι(i)

, C′
z := (

∏
i∈Z C′

i,uι(i)
) · L̃′,

with products over Rn/qRn. As before, when we only need 2-partition we ignore
the Cy’s. With these notations, for any u = xyz we can multiply, subtract, and
zero-test to get

w := pzt(CxCyCz − C′
xC

′
yC

′
z) (6)

=
η

g
· [Sx + gEx, −(S′

x + gE′
x)]

[
Sy + gEy, 0
0, S′

y + gE′
y

] [
Sz + gEz

S′
z + gE′

z

]
(mod q)

(or the without the middle matrix if we only use 2-partitioning). Moreover, if u
is a zero of the function then the final zero-tested value is an encoding of zero,
and hence Eq. 6 holds not only modulo q but also over the base ring Rn.

3.1 Step I: Recovering 〈g〉
Our first task is to recover (a basis for) the plaintext-space ideal I = 〈g〉. To that
end, we will construct two matrices M,N which are both full rank over Rn (whp),
but (after canceling some common factors) the determinant of M is divisible by
a higher power of g than the determinant of N. Computing M × N−1 over the
field of fractions Kn and multiplying by the common denominator, we get an
integral matrix whose determinant is divisible by g. Repeating this process many
times and taking the common denominator of all the resulting determinants we
obtain whp a basis for the ideal 〈g〉.

Let X||Z = [h] be a 2-partition of the branching program steps, where we
have sufficiently many input bits that only affect steps in the X interval and suf-
ficiently many other input bits that only affect steps in the Z interval. (Denote
these input bits by Jx, Jz ⊂ [�], respectively.) Moreover, we can fix all the remain-
ing input bits in such a way that for sufficiently many choices x(i) ∈ {0, 1}|Jx|,
z(j) ∈ {0, 1}|Jz| we get an input which is a zero of the function.

Finally, we assume that there are two distinguished input bits j1, j2 ∈ Jx

that we can set arbitrarily. Namely, for all the other choices of input bits as
above, we can set these two bits to 00,01,10, and 11 and all four combinations
will yield a zero of the function.

With these assumptions, let us denote by w
(i,j)
00 the zero-tested value which

was obtained by honest evaluation of the obfuscated program on the input
x
(i)
00 z(j) with the two distinguished bits set to 00, and similarly w

(i,j)
01 , w

(i,j)
10 ,

w
(i,j)
11 with these bits set to 01, 10, 11, respectively. Note that:

– For every fixed i, j, the four inputs whose evaluation yields the scalars w
(i,j)
00 ,

w
(i,j)
01 , w

(i,j)
10 , and w

(i,j)
11 differ only in the values of the distinguished input bit;
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– For every a ∈ {00, 01, 10, 11} and every fixed j, the inputs whose evaluation
yields the different {w

(i,j)
a }i only differ in bits that affect the X interval of

steps (but not the distinguished j1, j2); and
– For every a ∈ {00, 01, 10, 11} and every fixed i, the inputs whose evaluation

yields the different {w
(i,j)
a }j only differ in bits that affect the Z interval of

steps.

Using Eq. (6), we have for all i, j and a ∈ {00, 01, 10, 11},

w(i,j)
a := pzt

(
C

x
(i)
a

Cz(j) − C′
x
(i)
a

C′
z(j)

)
(7)

=
η

g
· [(S

x
(i)
a

+ gE
x
(i)
a

)(Sz(j) + gEz(j)) − (S′
x
(i)
a

+ gE′
x
(i)
a

)(S′
z(j) + gE′

z(j))
]

=
η

g
· [S

x
(i)
a

+ gE
x
(i)
a

, (−S′
x
(i)
a

− gE′
x
(i)
a

)
]
[
Sz(j) + gEz(j)

S′
z(j) + gE′

z(j)

]

with Eq. (7) holding over the base ring Rn. Fixing a ∈ {00, 01, 10, 11} and letting
i, j range over sufficiently many inputs, we get the matrices

Wa :=[w(i,j)
a ]i,j = XaZ

:=
η

g

⎡

⎣
. . .

S
x
(i)
a

+ gE
x
(i)
a

, (−S′
x
(i)
a

− gE′
x
(i)
a

)
. . .

⎤

⎦
[ · · · , Sz(j) + gEz(j) , · · ·

· · · , S′
z(j) + gE′

z(j) , · · ·
] (8)

Specifically we choose as many different x(i)’s and z(j)’s to make Xa and Z
square matrices (of dimension 2ρ, where ρ = 2m + w).

The two matrices M,N that we consider in this part of the attack are

M =
[
W00 W01

W10 W11

]
= η

g ·
[
X00 X01

X10 X11
l

]
×

[
Z

Z

]
,

N =
[
W00 0
0 W11

]
= η

g ·
[
X00 0
0 X11

]
×

[
Z

Z

] (9)

These matrices will have full rank over the base ring Rn whp due to the
“random” error matrices E in the X’s and Z. However, we show now that whp,
the determinant of M (after disregarding the common factor η

g ) is divisible by
a higher power of g than that of N.

To see that, recall that the matrices Sx from Eq. (8) are the plaintext matrices
of the GGHRSW constructions as per Eq. (5), and in particular they include
the scalars βj1,b, βj2,b for the two distinguished input bits j1, j2. To somewhat
simplify notations we use below βb := βj1,b and β′

b = βj2,b. Specifically for any
index i we have

S
x
(i)
00

= β0β
′
0 · γ(i) · J × diag(U(i)

00 ,V(i)
00 ,Bx) × Kz

= β0β
′
0 · γ(i) · [0,v(i)

00 ,b
] × Kz (mod I)

S′
x
(i)
00

= δ · β0β
′
0 · γ(i) · J′ × diag(U′(i)

00 ,V′(i)
00 , I) × K′

z

= δ · β0β
′
0 · γ(i) · [0,v′(i)

00 ,b′] × K′
z (mod I),

(10)
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where above we used δ := α
x
(i)
στ

/α′
x
(i)
στ

(which by Lemma 2 is independent of i or

the two bits σ, τ), and γ(i) is some scalar that depends on i but not on these two
bits. We use similar notations for S

x
(i)
01

, S
x
(i)
10

, S
x
(i)
11

. For any two bits σ, τ , each
row i of Xστ (mod I) has the form [S

x
(i)
στ

| − S′
x
(i)
στ

], so we can write

Xστ =
(
βσβ′

τ · X + Δστ

) × diag(Kz,K′
z) (mod I) (11)

where diag(Kz,K′
z) is invertible, X is some fixed matrix independent of σ, τ ,

and where Δστ has only few non-zero columns (i.e., the ones corresponding to
v(i)

στ and v′(i)
στ from Eq. (10)). Denoting by n the number of non-zero columns in

the Δ’s, we have (over Rn/I)

rank

(
β0β

′
0X + Δ00 β0β

′
1X + Δ01

β1β
′
0X + Δ10 β1β

′
1X + Δ11

)
≤ 2n + rank

(
β0β

′
0X β0β

′
1X

β1β
′
0X β1β

′
1X

)

= 2n + rank(X),

because β0β
′
0 · β1β

′
1 − β0β

′
1 · β1β

′
0 = 0. On the other hand, we have

rank

(
β0β

′
0X + Δ00 0
0 β1β

′
1X + Δ11

)
(whp)
= 2n + 2 · rank(X).

Since it has lower rank modulo I, then (at least heuristically2) the determinant

of
[
X00 X01

X10 X11

]
is divisible by a higher power of g than that of

[
X00 0
0 X11

]
.

Computing MN−1 over K, the common factor η/g drops out, and we are
left with a fractional matrix such that

det(MN−1) = det
(

X00 X01

X10 X11

)
/det

(
X00 0
0 X11

)
=

a multiple of g

some denominator
,

where the denominator is not divisible by g. Multiplying by the denominator we
thus get a multiple of g, as needed. Repeating this process several times with
different distinguished indexes j1, j2, we can take the GCD and whp get a basis
for some power It of the ideal I.

Finally, when I is a prime ideal then it is easy to find I from It: The norm
of It is norm(I)r, and p = norm(I) is a prime integer, and we can find p from pt

(by exhaustive search over t). The Kummer-Dedekind theorem let us compute
all the ideals of norm p in K, and one of these ideals is I.

2 Having rank(A) > rank(B) (mod g) does not always mean that det(B) is divisible
by a higher power of g than det(A), since A could have one eigenvalue which is

divisible by a high power of g, e.g., consider A =

[
g5 0
0 1

]
and B =

[
g 0
0 g

]
. For our

“random matrices”, however, this is unlikely, as confirmed by our experiments.
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3.2 Step II: Recovering Some Representatives of the Bundling
Scalars

For this step we need the branching program to be 3-partitioned. Recall that
Eq. (6) holds over R if the input u = x(i)y(b)z(j) is a zero of the function. Let i,
j ranging over 2ρ inputs, and for b ∈ {0, 1}, we get the matrices:

Wb := XYbZ

:=
η

g

⎡

⎣
. . .

Sx(i) + gEx(i) ,−(S′
x(i) + gE′

x(i))
. . .

⎤

⎦

+ ·
[
Sy(b) + gEy(b) , 0

0, S′
y(b) + gE′

y(b)

]
·
[ · · · , Sz(j) + gEz(j) , · · ·

· · · , S′
z(j) + gE′

z(j) , · · ·
]

(12)

where X, Y1, Y0, Z ∈ R2ρ×2ρ are full-rank w.h.p. due to the contribution of E
terms from different paths.

We then compute the characteristic polynomial χ of W1W−1
0 ∈ K2ρ×2ρ,

which is equal to the characteristic polynomial of Y1Y−1
0 . Considering Y1Y−1

0

modulo I we have:

Y1Y−1
0 =

[
Sy(1) + gEy(1) , 0

0, S′
y(1) + gE′

y(1)

] [
Sy(0) + gEy(0) , 0

0, S′
y(0) + gE′

y(0)

]−1

=
[
Sy(1) , 0

0, S′
y(1)

] [
Sy(0) , 0

0, S′
y(0)

]−1

(mod I) (13)

Expanding the “functional term” of Y1Y−1
0 (mod I), i.e. Sy(1)S−1

y(0) , we have:

Sy(1)S−1
y(0) =αy(1)K−1

x

⎡

⎣
Uy(1) , 0, 0

0, Vy(1) , 0
0, 0, By(1)

⎤

⎦Kz

×
⎛

⎝αy(0)K−1
x

⎡

⎣
Uy(0) , 0, 0

0, Vy(0) , 0
0, 0, By(0)

⎤

⎦Kz

⎞

⎠

−1

=
αy(1)

αy(0)
· K−1

x

⎡

⎢
⎣

Uy(1)U−1
y(0) , 0, 0

0, Vy(1)V−1
y(0) , 0,

0, 0, By(1)B−1
y(0)

⎤

⎥
⎦Kx

(14)

By Lemma 1, By(1)B−1
y(0) = Iw×w, so αy(1)/αy(0) ∈ K is an eigenvalue of Sy(1)S−1

y(0)

with multiplicity at least the dimensions of the B’s (i.e., at least w).3 Similarly
α′

y(1)/α′
y(0) is an eigenvalue of S′

y(1)S′−1
y(0) of multiplicity at least w, and by

Lemma 2 we have α′
y(1)/α′

y(0) = αy(1)/αy(0) . Hence αy(1)α−1
y(0) is the eigenvalue

3 We remark that this step of finding (the multiplicity of) an eigenvalue does not seem
to fit in the “Weak Multilinear Map” model of Garg et al. [24].
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of Y1Y−1
0 (mod I) of multiplicity at least 2w. Given a basis of I, we can solve

the characteristic polynomial χW1W
−1
0

(mod I) and obtain eigenvalues in K.
The eigenvalue of multiplicity 2w is αy(1)α−1

y(0) .

3.3 Step III: Annihilation Attack

The annihilation attacks described by Miles, Sahai and Zhandry [35] do not
extend to break GGH13-based branching program obfuscators with the padded
random diagonal entries. We show that with the knowledge of the ratios of scalars
(even if their representations are big), this attack can be extended to handle the
random diagonal entries. We begin with a brief overview of the attacks from [35].

Given many level-0 encodings {ci = si + ei · g}i, any degree-d expression in
them can be written as

c = r0 + r1 · g1 + r2 · g2 + . . . + rd · gd (mod q).

If that expression is encoded at level d, then multiplying it by the zero-test
parameter yields x = pzt · c/zd = h(r0g−1 + r1 + r2g + . . . rdg

d−1) (mod q)
(which is small if r0 = 0 and likely large when r0 �= 0).

An annihilation attack consists of collecting and zero-testing many encod-
ings with r0 = 0, getting the corresponding x(1), x(2), . . ., then applying some
carefully-selected polynomial to these x(i)’es and examining the result. Specifi-
cally, Miles et al. observed that it is possible to check whether or not the terms
that depends only on the r1 values vanish in the resulting polynomial. They also
observed that these r1 values can be expressed as very structured expressions in
the encoded secret and the error terms,

r1 = e1s2...sd + s1e2s3...sd + ... + s1s2...ed.

Using these observation, Miles et al. described in [35] a particular polynomial in
the x(i)’s that can be used to distinguish the obfuscation of equivalent branching
programs (under some contemporary obfuscators).

Introducing Our Running Example. To help describe our attack, we show below
how it can be used to distinguish between GGHRSW obfuscation of two specific
branching programs that compute the constant zero function. For this attack we
need the branching programs to be 3-partitioned with intervals X||Y||Z = [h],
and we need to have two distinguished input bit positions j1, j2 that only control
steps in the Y interval but not X or Z. In addition, we require that bit j1 controls
at least two steps (denoted u,w) in the Y interval, and that bit j2 controls (at
least) one step in between u and w (denoted v). That is, we need u, v, w ∈ Y
with u < v < w, such that ι(u) = ι(w) = j1, ι(v) = j2, and jj does not control
any steps before u or after w. As before, we shorten our notations somewhat and
denote the relevant products of the bundling constants by

β0 :=
∏

ι(i)=j1

αi,0, β1 :=
∏

ι(i)=j1

αi,1, β′
0 :=

∏

ι(i)=j2

αi,0, β′
1 :=

∏

ι(i)=j2

αi,1.
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The two branching programs in our running example will have the identity
matrix for both 0 and 1 in all the steps except for the two steps u,w controlled
by y1, and the zero matrices will be the identity also for these two steps. For the
1 matrices in these two steps, in one program they too will be the identity, and in
the other program those two matrices are a permutation matrix and its inverse
(denoted P,P−1). The two programs B and B′ are illustrated in Example 1.

Example 1. Two programs that compute the constant-zero function:

B = 0 : I . . . I I I I I . . . I
1 : I . . . I I I I I . . . I

B′ = 0 : I . . . I I I I I . . . I
1 : I . . . I P I P−1 I . . . I

Steps : X u v w Z
input bits : ∗ . . . ∗ j1 j2 j1 ∗ . . . ∗

(15)

The Attack. Recall that the GGHRSW obfuscator embeds the branching-
program matrices Bi,b (and the identity for the dummy branch) into higher-
dimension randomized matrices

B̃i,b :=
[
Vi,b

Bi,b

]
and B̃′

i,b :=
[
V′

i,b

I

]
,

where Vi,b,V′
i,b are random diagonal matrices. The B̃’s are multiplied by the

bundling scalars and Kilian randomization matrices, and then encoded to get

Ci,b = αb
iK

−1
i−1B̃i,bKi + g · Ei,b = αb

iK
−1
i−1(B̃i,b + g · Fi,b)Ki (mod q) (16)

where K−1
i−1 is the inverse of Ki−1 modulo 〈g〉, and Fi,b is the matrix satisfying

αb
iK

−1
i−1FKi = E (mod q). (We ignore the denominator z in these notations,

since it gets canceled when we apply zero-test.)
From Step II above we can obtain (some representatives of) the ratios β1/β0

and β′
1/β′

0. Namely, we can compute four scalars ν0, ν1, γ00, γ11 ∈ R such that

ν1
ν0

=
β′
1

β′
0

(mod I), and
γ11
γ00

=
β1β

′
1

β0β′
0

(mod I). (17)

(Note that we chose notations that resemble their meaning: The scalars ν0, ν1
relate to the step v in the program, and γ00, γ11 relate to the product of all
relevant steps in the y interval.) Consider some values x(i) ∈ {0, 1}|Jx| for the bits
that control steps in the X interval, τ, σ for the two distinguished bits that control
steps in the Y interval, and z(j) ∈ {0, 1}|Jz| for the bits that control steps in the
Z interval (all other bits are fixed). The resulting input is u

(i,j)
στ := x(i)στz(j),

and it is a zero of the function. Also let Eval(u(i,j)
στ ) be the scalar obtained by
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evaluating the obfuscated branching program on this input:

Eval(u) :=
η

g

⎛

⎝J(
∏

k∈[h]

Ck,uι(k))L − J′(
∏

k∈[h]

C′
k,uι(k))L

′

⎞

⎠

=
η

g

⎛

⎝
∏

k∈[h]

αk,uι(k)JL −
∏

k∈[h]

α′
k,uι(k)J

′L′ + g · r1(u) + g2 · r2(u) + . . .

⎞

⎠

(18)
where if u is a zero of the function then by construction we have

∏

k∈[h]

αk,uι(k)JL −
∏

k∈[h]

α′
k,uι(k)J

′L′ = 0.

In our attack, we choose many different x(i)’s and z(j)’s and for each i, j we
compute

ai,j := Eval(x(i)11z(j)) · γ00 · ν1ν0 − Eval(x(i)10z(j)) · γ00 · ν1ν1

− Eval(x(i)01z(j)) · γ11 · ν0ν0 + Eval(x(i)00z(j)) · γ11 · ν0ν1,
(19)

where all the operations are carried out in the base ring R. Using sufficiently
many x(i)’s and z(j)’s we get a matrix A = [ai,j ]i,j , and we check if this matrix
has full rank modulo I. We guess that the branching program is B′ if A has full
rank, and otherwise we guess that it is B.

3.4 Analysis

The Matrix H. We begin by considering the interval Y of the functional branch
only. If Y consisted of only the steps u, v, w, then for any two bits σ, τ ∈ {0, 1},
the matrix that we get in the functional branch when evaluating on input with
uj1 = σ and uj2 = τ (namely Cστ :=

∏
i∈Y Ci,uι(i)) has the form

Cστ =βσβ′
τ · K−1

u−1 ×
( :=B̃στ

Y︷ ︸︸ ︷
B̃u,σB̃v,τ B̃w,σ +g · (B̃u,σB̃v,τ (

:=F̃w,σ︷ ︸︸ ︷
Fw,σ + E′

vB̃w,σ)

+ B̃u,σ(

:=F̃v,τ︷ ︸︸ ︷
Fv,τ + E′

uB̃v,τ )B̃w,σ +

:=F̃u,σ︷︸︸︷
Fu,σ B̃v,τ B̃w,σ

)
+ g2 · Eτ,σ

)
× Kw

=βσβ′
τ · K−1

u−1 × (B̃στ
Y + g · F̃στ

Y + g2 · Eτσ
Y
)× Kw

(20)

with equality modulo q, where K,K−1’es are the Kilian randomization matrices,
and Eτσ

Y is some error matrix. (In the last line we have F̃στ
Y denoting the coeffi-

cient of g in the Y interval.) If there are more steps in the interval Y then we get
the same form, except the matrices B̃, F̃ are not single-step matrices but rather
a product of a few steps, and we have an extra scalar factor α′ (independent of
the bits σ, τ) that comes from the bundling factors in the fixed steps in Y.
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The coefficient of g in Eq. (20) is

F̃στ
Y := B̃u,σB̃v,τ F̃w,σ + B̃u,σF̃v,τ B̃w,σ + F̃u,σB̃v,τ B̃w,σ.

Let

H := F̃11
Y − F̃10

Y − F̃01
Y + F̃00

Y (21)

=
(
B̃u,1B̃v,1F̃w,1 + B̃u,1F̃v,1B̃w,1 + F̃u,1B̃v,1B̃w,1

)

− (
B̃u,1B̃v,0F̃w,1 + B̃u,1F̃v,0B̃w,1 + F̃u,1B̃v,0B̃w,1

)

− (
B̃u,0B̃v,1F̃w,0 + B̃u,0F̃v,1B̃w,0 + F̃u,0B̃v,1B̃w,0

)

+
(
B̃u,0B̃v,0F̃w,0 + B̃u,0F̃v,0B̃w,0 + F̃u,0B̃v,0B̃w,0

)
.

The crux of the analysis is to show that H has a block of zeros when evalu-
ating the program B (that has the identity matrices everywhere), but whp not
when evaluating the branching program B′ (that has P and P−1).

When evaluating B, all the Bi,b matrices are the w × w identity I, which
are then embedded in the lower-right quadrant of the higher-dimension B̃i,b’s
with the diagonal random Vb

i ’s in the upper-left quadrant. Below we also use
the notation Vστ

ii′ := Vσ
i ×Vτ

i′ for the product of two of these diagonal matrices.
We analyze separately the terms B̃B̃F̃, B̃F̃B̃, and F̃B̃B̃, in order to establish
that in this case the lower-right quadrant of H (that correspond to these identity

matrices) is 0, i.e. H ∈
[∗ ∗

∗ 0w×w

]
.

(a) F̃B̃B̃:

F̃1
uB̃

1
vB̃

1
w − F̃1

uB̃
0
vB̃

1
w − F̃0

uB̃
1
vB̃

0
w + F̃0

uB̃
0
vB̃

0
w

=F̃1
u ×

([
V11

vw 0
0 I

]
−

[
V01

vw 0
0 I

])
− F̃0

u ×
([

V10
vw 0
0 I

]
−

[
V00

vw 0
0 I

])

=F̃1
u ×

[
V11

vw − V01
vw 0

0 0

]
− F̃0

u ×
[
V10

vw − V00
vw 0

0 0

]

∈ [∗(2m+w)×2m, 0(2m+w)×w
]

(22)

(b) B̃B̃F̃:

B̃1
uB̃

1
vF̃

1
w − B̃1

uB̃
0
vF̃

1
w − B̃0

uB̃
1
vF̃

0
w + B̃0

uB̃
0
vF̃

0
w

=
[
V11

uv − V10
uv 0

0 0

]
× F̃1

w −
[
V01

uv − V00
uv 0

0 0

]
× F̃0

w ∈
[∗2m×(2m+w)

0w×(2m+w)

] (23)

(c) The most interesting term is B̃F̃B̃:

B̃1
uF̃

1
vB̃

1
w − B̃1

uF̃
0
vB̃

1
w − B̃0

uF̃
1
vB̃

0
w + B̃0

uF̃
0
vB̃

0
w

=

[ ∗ ∗
∗ I F̃1

v(LR) I

]
−
[ ∗ ∗

∗ I F̃0
v(LR) I

]
−
[ ∗ ∗

∗ I F̃1
v(LR) I

]
+

[ ∗ ∗
∗ I F̃0

v(LR) I

]

∈
[ ∗2m×2m, ∗2m×w

∗w×2m, 0w×w

] (24)
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where the subscript F̃(LR) denotes the lower-right quadrant (of dimension
w × w) in the corresponding matrix.

Adding Eqs. (22), (24) and (23), we get H ∈
[∗ ∗

∗ 0w×w

]
, as needed.

When evaluating B′, the form of the terms B̃F̃B̃ changes: Instead of Eq. (24),
in the lower-right quadrant we now get H(LR) = F̃1

v(LR) − F̃0
v(LR) −P(F̃1

v(LR) −
F̃0

v(LR))P
−1, which is unlikely to be the zero matrix.

The same analysis can be applied to the dummy branch, where we can define
the matrix H′ in the same way. In the dummy branch, however, the lower-right
quadrant of H′ is always zero, in both B and B′ (since the dummy branch always
consists of identity matrices, regardless of what the program is).

The Matrix A. We now proceed to incorporate the X ,Z intervals (including
the bookends) and analyze the matrix A = [ai,j ]i,j . For any fixed i, j, let us
denote the product of the X interval matrices in the two branches (including the

bookend) by α
(i)
x · J(B̃(i)

X + g · F̃(i)
X ) and α′(i)

x · J′(B̃′(i)X + g · F̃′(i)X ), respectively.
Similarly for the Z interval we denote the products in the two branches by
α
(j)
z (B̃(j)

Z + g · F̃(j)
Z )L and α′(j)

z (B̃′(j)Z + g · F̃′(j)Z )L′, respectively.
By construction—for the case where the Y interval includes just the steps

u, v, w—we have α
(i)
x α

(j)
z = α′(i)

x α′(j)
z , and we denote this product by α(i,j). (In

the more general case we have the same equality, except it includes also the
constants αy, α′

y due to the fixed steps in the Y interval.) With these notations,
we have

Eval
(
x(i)στz(j)

)

= α(i,j)βσβ′
τ · η

g

(
J
(
B̃(i)

X + g · F̃(i)
X

)(
B̃στ

Y + g · F̃στ
Y

)(
B̃(j)

Z + g · F̃(j)
Z

)
L

− J′(B̃′(i)X + g · F̃′(i)X
)(

B̃′στ

Y + g · F̃′στ

Y
)(

B̃′(j)Z + g · F̃′(j)Z
)
L′

)
(25)

= α(i,j)βσβ′
τ · η

(
J
(
B̃(i)

X B̃στ
Y F̃(j)

Z + B̃(i)
X F̃στ

Y B̃(j)
Z + F̃(i)

X B̃στ
Y B̃(j)

Z
)
L

− J′
(
B̃′(i)X B̃′στ

Y F̃′(j)Z + B̃′(i)X F̃′στ

Y B̃′(j)Z + F̃′(i)X B̃′στ

Y B̃′(j)Z
)
L′

)
(mod I)

where the last equality follows since x(i)στz(j) is a zero of the function, and
hence the “free term” without any factor of g is equal to zero. Using Eq. (26)
we can re-write ai,j as

ai,j = α(i,j)β1β
′
1η

( · · · )γ00ν1ν0 − α(i,j)β1β
′
0η

( · · · )γ00ν1ν1
− α(i,j)β0β

′
1η

( · · · )γ11ν0ν0 + α(i,j)β0β
′
0η

( · · · )γ11ν0ν1 (mod I)

where the (· · · )’s refer to the parenthesized expression from Eq. (26) relative to
the appropriate bits σ, τ . This is where we use the ratios that we recovered in
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Step II, by definition we have that

β1β
′
1 · γ00ν1ν0 = β1β

′
0 · γ00ν1ν1 = β0β

′
1 · γ11ν0ν0 = β0β

′
0 · γ11ν0ν1 (mod I),

so the four terms above (with i, j fixed) all have the same scalar multiple. More-
over that scalar is bilinear in i, j, so we just fold it into the matrices correspond-
ing to x(i), z(j) and ignore it from now on. Thus we can further re-write the
expression for ai,j as

ai,j =J
(
B̃(i)

X
(
B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y
)
F̃(j)

Z

+ B̃(i)
X

=H
︷ ︸︸ ︷(
F̃11

Y − F̃10
Y − F̃01

Y + F̃00
Y
)
B̃(j)

Z

+ F̃(i)
X

(
B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y
)
B̃(j)

Z

)
L

− J′
(
B̃′(i)X

(
B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

)
F̃′(j)Z

+ B̃′(i)X

=H′
︷ ︸︸ ︷(
F̃′11Y − F̃′10Y − F̃′01Y + F̃′00Y

)
B̃′(j)Z

+ F̃′(i)X
(
B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

)
B̃′(j)Z

)
L′ (mod I)

(26)

Next, we denote:

B̃Δ
Y := B̃11

Y − B̃10
Y − B̃01

Y + B̃00
Y , B̃′ΔY := B̃′11Y − B̃′10Y − B̃′01Y + B̃′00Y

xi := JB̃(i)
X , zj := B̃(j)

Z L, x′
i := J′B̃′(i)X , z′

j := B̃′(j)Z L′,

ei := JF̃(i)
X , fj := F̃(j)

Z L, e′
i := J′F̃′(i)X , f ′

j := F̃′(j)Z L′

and so we can write

ai,j = xiB̃
Δ
Y fj + xiHzj + eiB̃

Δ
Y zj︸ ︷︷ ︸

:=di,j

−x′
iB̃′ΔY f ′

j + x′
iH

′z′
j + e′

iB̃′ΔY z′
j︸ ︷︷ ︸

:=d′
i,j

(mod I). (27)

Denoting D = [di,j ]i,j and D′ = [d′
i,j ]i,j , we have A = D − D′, and so the

rank of A is at most rank(D) + rank(D′). Recalling the structure of the various
components again, we note that they contain many zeros. In particular for the
program B we have xi,x′

i ∈ (0m ∗m ∗w), zj , z′
j ∈ (∗m 0m ∗w)t, and also

B̃Δ
Y , B̃′ΔY ∈

⎛

⎝
∗m×m, 0m×m, 0m×w

0m×m, ∗m×m, 0m×w

0w×m, 0w×m, 0w×w

⎞

⎠ , H,H′ ∈
⎛

⎝
∗m×m, ∗m×m, ∗m×w

∗m×m, ∗m×m, ∗m×w

∗w×m, ∗w×m, 0w×w

⎞

⎠ ,

and for B′ we have almost the same thing except that H can be arbitrary. Our
goal is to detect this difference in the form of H given sufficiently many ai,j ’s. Let
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us analyze first only the term from the functional branch, D = [di,j ]i,j , where
we pick ζ ≥ 2m + 1 different i’s and j’s.

D = XB̃Δ
Y F + XHZ + EB̃Δ

Y Z

=
[
0 X2 X3

] ⎡⎣ B̃1,1 0 0

0 B̃2,2 0
0 0 0

⎤
⎦
⎡
⎣F1

F2

F3

⎤
⎦+
[
0 X2 X3

] ⎡⎣H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 0

⎤
⎦
⎡
⎣Z1

0
Z3

⎤
⎦

+
[
E1 E2 E3

]
⎡
⎣ B̃1,1 0 0

0 B̃2,2 0
0 0 0

⎤
⎦
⎡
⎣Z1

0
Z3

⎤
⎦

(28)

where {B̃k,�,Hk,�}k,�∈[3] are blocks of B̃Δ
Y , H with dimensions [m|m|w] ×

[m|m|w]. {Xk,Ek}k∈[3] are blocks of X, E with dimensions ζ × [m|m|w].
{Z�,F�}�∈[3] are blocks of Z, F with dimensions [m|m|w] × ζ.

Observe that many of the blocks in Eq. (28) do not contribute to the result,
since they are only multiplied by zeros in the adjacent matrices. For example,
E3 in the last term above does not contribute to the evaluation since the entries
in the 3rd blocked rows of B̃Δ

Y are all zeros. We can therefore treat these blocks
as if they were zeros themselves, so we get

D =
[
0 X2 0

]
⎡

⎣
0 0 0
0 B̃2,2 0
0 0 0

⎤

⎦

⎡

⎣
0
F2

0

⎤

⎦ +
[
0 X2 X3

]
⎡

⎣
0 0 0

H2,1 0 H2,3

H3,1 0 0

⎤

⎦

⎡

⎣
Z1

0
Z3

⎤

⎦

+
[
E1 0 0

]
⎡

⎣
B̃1,1 0 0

0 0 0
0 0 0

⎤

⎦

⎡

⎣
Z1

0
0

⎤

⎦

(29)

From there we get

D = X2B̃2,2F2 +
[
X2H2,1 + X3H3,1 0 X2H2,3

]
⎡

⎣
Z1

0
Z3

⎤

⎦ + E1B̃1,1Z1

= X2B̃2,2F2 + (X2H2,1 + X3H3,1)Z1 + X2H2,3Z3 + E1B̃1,1Z1

= X2(B̃2,2F2 + H2,3Z3) + (X2H2,1 + X3H3,1 + E1B̃1,1)Z1

(30)

The ranks of block matrices X2 and Z1 are upper-bounded by m, which
means D is the sum of two matrices of rank m, hence the maximum rank is 2m.

For B′, the rank of D is 2m + 1 whp. To see the difference in the analysis, in
Eq. (29) the potential H3,3 block is non-zero, so whp D is not decomposable to
the sum of 2 matrices of rank m like for B.

The analysis of D′ for both B and B′ is analogous to the analysis of D in B,
i.e. in both cases the rank of D′ is at most 2m. So we are able to distinguish B
and B′ by obtaining A = [ai,j ]i,j from picking ζ ≥ 4m + 1 different i’s and j’s,
and computing the rank of A.
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3.5 Discussions of Recent Immunizations

Recently Garg et al. [24] (merged from two similar proposals [25,36]) propose
immunization mechanisms against the annihilation attack. The common feature
of the immunizations is to pad random 2m-by-2m matrices instead of entries on
the diagonal (i.e. change the matrices Vi,b and V′

i,b in Eq. (1) from diagonal
to fully random), so as to encode a pseudorandom function in the noises. The
difference of the two proposals lies in the ways to instantiate the paradigm.

We observe that the immunizations do not stop the attack if the branching
program is input-partitioning. The observation does not contradict the proofs of
security in the weakened idealized model from [24], since they require dual-input
branching programs (which are not input-partitioning).

Below we briefly describe the two immunizations. In the immunization pro-
posed by Miles, Sahai and Zhandry [36], the bookend vectors are changed to

J,J′ ∈ [
02m, $w

]
, L,L′ ∈ [

$2m, $w
]T (31)

These changes do not affect the algorithms and analyses in Steps I and II. In
Step III, the analysis of the matrix H in Eq. (21) remains the same. The analysis
of the rank of D in Eq. (28) changes slightly. For program B in Example 1,

D = XB̃
Δ
Y F + XHZ + EB̃

Δ
Y Z

=
[
0 X2

]
[
B̃1,1 0

0 0

] [
F1

F2

]
+
[
0 X2

]
[
H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+
[
E1 E2

]
[
B̃1,1 0

0 0

] [
Z1

Z2

]

= 0 + X2H2,1Z1 + E1B̃1,1Z1 = (X2H2,1 + E1B̃1,1)Z1

(32)

where {B̃k,�,Hk,�}k,�∈[2] are blocks of B̃Δ
Y , H with dimensions [2m|w] × [2m|w].

{Xk,Ek}k∈[2] are blocks of X, E with dimensions ζ × [2m|w]. {Z�,F�}�∈[2] are
blocks of Z, F with dimensions [2m|w]×ζ. The rank of D is thus upper-bounded
by 2m. For program B′, the potential non-zero H2,2 contributes to an additional
term X2H2,2Z2. So the same algorithm from Sect. 3.3 distinguishes B and B′.

More changes are made in the immunization proposed by Garg, Mukherjee
and Srinivasan [25]. The plaintext space is set to be R/J where J =

〈
g2

〉
. The

encoding of s ∈ R/J is a short representative of the coset s + J. The zero-test
parameter remains the same: pzt = ηzκ/g. The bookend vectors are changed to

J,J′ :=
[
g · J1,J2

]
,
[
g · J′

1,J′
2

] ∈ [
g · $2m, $w

]

L,L′ :=
[
L1,L2

]T
,
[
L′

1,L′
2

]T ∈ [
$2m, $w

]T
.

(33)

where J2L2 = J′
2L′

2. An honest evaluation analogous to Eq. (18) can be
expressed as

Eval(u) :=
η

g

⎛

⎝J(
∏

k∈[h]

Ck,uι(k))L − J′(
∏

k∈[h]

C′
k,uι(k))L

′

⎞

⎠ (34)

=
η

g

⎛

⎝
∏

k∈[h]

αk,uι(k)J2L2 −
∏

k∈[h]

α′
k,uι(k)J

′
2L′

2 + g · r1(u) + g2 · r2(u) + . . .

⎞

⎠
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where if u is a zero of the function then
∏

k∈[h]

αk,uι(k)J2L2 −
∏

k∈[h]

α′
k,uι(k)J

′
2L′

2 = 0.

The immunization changes the coefficient of g1 into

r1 =

⎛

⎝J1

∏

k∈[h]

Vk,uι(k)L1 − J′
1

∏

k∈[h]

V′
k,uι(k)L

′
1

⎞

⎠,

and pushes all the information about the secrets up to the coefficients of higher
order terms. This is the rationale of Garg, Mukherjee and Srinivasan’s [25] immu-
nization against annihilation attacks.

Still, for branching programs with input-partitioning, these immunizations
do not affect the algorithms and the analyses in Steps I and II, except that we
obtain a basis of

〈
g2

〉
and (possibly big) representatives of scalars α in the coset

α +
〈
g2

〉
. In Step III, we analyze H and A modulo J instead of modulo I. The

feature of H remains the same. To A, the expression of each ai,j from Eq. (27)
shall be modified to (the following expression still contains coefficients of g2 that
will be removed later)

ai,j =
η

g

(
xiB̃Δ

Y zj + g2 ·
(
xiB̃Δ

Y fj + xiHzj + eiB̃Δ
Y zj

))

︸ ︷︷ ︸
:=di,j

(35)

− η

g

(
x′

iB̃′ΔY z′
j + g2

(
x′

iB̃′ΔY f ′
j + x′

iH
′z′

j + e′
iB̃′ΔY z′

j

))

︸ ︷︷ ︸
:=d′

i,j

(mod J ).

Examining the functional component D for B, with the same blocked dimen-
sions as Eq. (32):

D =
η

g

(
XB̃Δ

Y Z + g2 ·
(
XB̃Δ

Y F + XHZ + EB̃Δ
Y Z

))

=
η

g

[
gX1 X2

]
[
B̃1,1 0

0 0

] [
Z1

Z2

]
+ ηg

(
[
gX1 X2

]
[
B̃1,1 0

0 0

] [
F1

F2

]

+
[
gX1 X2

]
[
H1,1 H1,2

H2,1 0

] [
Z1

Z2

]
+

[
E1 E2

]
[
B̃1,1 0

0 0

] [
Z1

Z2

])

= ηX1B̃1,1Z1 + ηg(X2H2,1 + E1B̃1,1)Z1 + ηg2(. . .)

= η
(
X1B̃1,1 + g(X2H2,1 + E1B̃1,1)

)
Z1 (mod J ).

(36)

The rest of the analysis is analogous. The rank of A modulo J distinguishes B
and B′.
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4 Cryptanalysis of the GGH15-Based Candidate

4.1 The GGH15 Encoding Scheme

We use here notations similar to [29] for “GGH15 with safeguards”. The encoding
scheme from [26] is parametrized by a directed graph G = (V,E) (with a single
sink) and some integer parameters k, n, r, q (with r � k). Its plaintext space
are matrices S ∈ Rk×k (whose entries must be much smaller than q), and the
encodings themselves are matrices D ∈ (Rn/qRn)r×r, and both plaintext and
encoding matrices are associated with edges (or paths) in the graph.

For each vertex u in the graph we choose a random matrix Au ∈ Rk×r
n

together with some trapdoor information τu [1,28,33], and another random
invertible matrix Pu ∈ (Rn/qRn)r×r. For the source s and sink t we choose
random small “bookend vectors” Js and Lt and publish the two transformed
vectors J̃s := Js ·As ·P−1

s (mod q) and L̃t := Pt ·Lt, to be used for zero-testing.
To encode a matrix S ∈ Rk×k w.r.t. a path (u � v), sample a low-norm error

matrix E ∈ Rk×r
n , use the trapdoor τu to sample a small solution D to AuD =

SAv+E (mod q), and finally output the encoding matrix C := PuDP−1
v mod q.

This scheme supports adding encoded matrices relative to the same path,
and multiplying matrices relative to consecutive paths (with the result being
defined relative to the concatenation of the two paths). The encoding invariant
is that an encoding C of plaintext matrix S relative to the path u � v satisfies
Au · (P−1

u CPv) = SAv + E (mod q) where S,E and D := P−1
u CPv mod q all

have norm much smaller than q. The encoding scheme also supports a zero-test
of encoding C relative to a path s � t, by checking that J̃sCL̃t is small, which
holds when S = 0 since J̃sCL̃t = JsAsP−1

s ·C ·PtLt = Js(SAs +E)Lt = JsELt

(mod q).
Consider two consecutive paths s � u and u � t and two encoding matrices

C1,C2, encoding S1,S2 relative to these two paths, respectively. Then C1C2 is
an encoding of S1,S2 relative to s � t, which means that As · (P−1

s C1C2Pt) =
S1S2At +E′ (mod q), but we can say more about the structure of the resulting
noise E′. Specifically, it is not hard to verify that (after zero-testing) we have

J̃sC1C2L̃t = Js(S1S2At + S1E2 + E1D2︸ ︷︷ ︸
E′

)Lt

= Js · [S1|E1]
[
S2At + E2

D2

]
· Lt (mod q), (37)

where Js,Lt are the bookend vectors, E1,E2 are the error matrices correspond-
ing to the encoding C1,C2 respectively, and D2 = P−1

u C2Pt (all of which have
low norm). Similarly, if we have three intervals s � u, u � v and u � t and three
encoding matrices C1,C2,C3 for S1,S2,S3 relative to these paths, respectively,
then

J̃sC1C2C3L̃t = Js · [S1,E1]
[
S2, E2

0, D2

] [
S3At + E3

D3

]
· Lt (mod q). (38)
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The GGHRSW Obfuscator Over GGH15. When using the GGH15 encod-
ing scheme in the context of the GGHRSW obfuscator, we use a simple graph
with two parallel chains leading to a sink. One minor technical issue to reconcile
is that the plaintext space of GGH15 consists of only k × k matrices, while the
GGHRSW construction needs to also encode the bookend vectors J,L,J′,L′.
This is best handled by combining these bookends with the GGH15 bookends
Js,Lt from above. Namely we choose the bookends as matrices rather than vec-
tors (but still keep the same structure for the rows/columns of these matrices),
and then these matrices will be multiplied by the GGH15 bookends Js,Lt during
zero-test, resulting in vectors J,L,J′,L′ with the same structure as in Eq. (2).

Another technical issue is that the GGH15 plaintext matrices must be small,
whereas the GGHRSW construction requires that we multiply the plaintext
matrices by the Kilian randomization matrices K,K−1. Gentry et al. describe
in [26, Sect. 5.2.1] a method for choosing “random matrices” where both K,K−1

are small, but in fact a closer look at the error terms that we get reveals that
the construction will still work even if only K−1 was small but K was not (as
long as as we set K0 = I). We stress that the structure of K plays no role in our
attacks, so in the rest of the manuscript we ignore this issue.

4.2 Overview of Our Attacks on the GGH15-Based Obfuscator

The main ingredient in our attack on the GGH15-based branching-program
obfuscator is a method to recover some information about the scalars αi,b (and
α′

i,b) that are used in this construction. Specifically, we use a zeroing technique
adapted from the work of Coron, Lee, Lepoint and Tibouchi [17], to recover the
ratios of (the products of) these αi,b’s for some equivalent subbranches, as we
describe in Sect. 4.3 below. (Setting up the CLLT-style system of equations relies
on the input-partitioning feature of underlying branching program.)

This step is completely algebraic, and hence the ratios that we recover do
not give us a small representation of these scalars. Namely, while we learn the
ratio β/γ for some small β, γ (each of them is a product of some α’s), we do not
recover the small β, γ themselves.

One way to mount a full attack to the obfuscator is to directly use factoring
and principle-ideal-problem solvers to recover the αi,b’s from the known ratio
β/γ. Once the bundling scalars αi,b are known, we can mount an input-mixing
attack to break the obfuscation. This yields classical sub-exponential time or
quantum polynomial time attacks.

4.3 Step I: Recovering Ratios of the Bundling Scalars

Step I.1: Accumulating CLLT-Style Equations. Let X||Z = [h] be a 2-partition
of the branching program steps. Below we use honest evaluation of the branching
program on many inputs of the form u(i,j) = x(i)z(j), where all the bits that only
affect steps in X are in the x(i) part, all the bits that only affect steps in Z are in
the z(j) part, and all the other bits are fixed. This notation does not mean that
all the bits of x(i) must come before all the bits of z(j) in u(i,j), but it does mean
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that u(i,j) and u(i,j′) can only differ in bits that affect steps in Z, and similarly
u(i,j) and u(i′,j) can only differ in bits that affect steps in X .

For such an input u = xz, we denote by Sx the plaintext product matrix of
functional branch in the the X interval and by Sz the plaintext product matrix
of the functional branch in the Z interval (including the bookends), and similarly
for encodings Cx,Cz and for the dummy branch. That is, we denote

Sx := J · (
∏

i∈X Si,uι(i)), Sz := (
∏

i∈Z
Si,uι(i)) · L,

S′
x := J′ · (

∏
i∈X S′

i,uι(i)), S′
z := (

∏

i∈Z
S′

i,uι(i)) · L′,

Cx := J̃ · (
∏

i∈X Ci,uι(i)), Cz := (
∏

i∈Z
Ci,uι(i)) · L̃,

C′
x := J̃′ · (

∏
i∈X C′

i,uι(i)), C′
z := (

∏

i∈Z
C′

i,uι(i)) · L̃′

with the encoding arithmetic modulo q. We also denote by Ex,Ez,E′
x,E′

z the
error matrices in Cx,Cz,C′

x,C′
z and

Dx := CxPv, D′
x := C′

xPv′ , Dz := P−1
v Cz and D′

z := P−1
v′ C′

z

(where v, v′ are the vertices between X ,Z on the functional and dummy
branches).

Following Eq. (37) above, the honest evaluation of branching program on
input u = xz yields the element

w := CxCz − C′
xC′

z = [Sx,Ex,−S′
x,−E′

x]

⎡

⎢
⎢
⎣

SzAt + Ez

Dz

S′
zAt + E′

z

D′
z

⎤

⎥
⎥
⎦ (mod q). (39)

If u = xz is a zero of the function, then by construction we have SxSz = S′
xS

′
z =

βJL for some scalar β, and in this case Eq. (39) holds over the base ring Rn,
not just modulo q.

We begin the attack by collecting many instances of Eq. (39) for many x(i)’s
and z(j)’s for which u(i,j) = x(i)z(j) is a zero, and put the corresponding w
elements in a matrix. This yields the matrix equation:

W := XZ :=

⎡

⎢
⎢
⎢
⎢
⎣

Sx(1) , Ex(1) , −S′
x(1) , −E′

x(1)

. . . , . . . , . . . , . . .
Sx(i) , Ex(i) , −S′

x(i) , −E′
x(i)

. . . , . . . , . . . , . . .
Sx(k) , Ex(k) , −S′

x(k) , −E′
x(k)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

. . . , Sz(j)At + Ez(j) , . . .

. . . , Dz(j) , . . .

. . . , S′
z(j)At + E′

z(j) , . . .
. . . , D′

z(j) , . . .

⎤

⎥
⎥
⎦ .

(40)
Since all the inputs are zeros of the function, then Eq. (40) holds not only
modulo q but also over the base ring Rn. As discussed in [29, Sect. 5.2], the
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matrix Z is inherently non-full-rank when considered modulo q, but will have
full rank over Rn with high probability (since the Ez’s are random and the Dz’s
are chosen at random in some cosets after the Ez’s are fixed). Taking sufficiently
many z(j)’s, we can therefore ensure that the left kernel of Z is trivial, i.e.,
consisting of only the all-zero vector.4 On the other hand, by using enough x(i)’s
we can ensure that the left-kernel of W (and therefore of X) is non-trivial. The
thrust of our attack will consist of collecting many vectors in this left-kernel,
and using them to recover information about (ratios of) the αi,b’s.

Step I.2: Computing the Left-Kernel of W. The CLLT-type attack computes
the left-kernel (abbreviated as kernel in the rest of this paper) of W, i.e. vectors
p over Rn s.t. pW = 0. Since Z has full rank, then such vector p must also be
in the kernel of X, so it is orthogonal to all its columns. In our attack we only
use the fact that these vectors p are orthogonal to the S’s parts of X, namely
we denote

Q :=

⎡

⎢
⎢
⎢
⎢
⎣

Sx(1) , −S′
x(1)

. . . , . . .
Sx(i) , −S′

x(i)

. . . , . . .
Sx(k) , −S′

x(k)

⎤

⎥
⎥
⎥
⎥
⎦

(41)

and use the fact that every vector in the kernel of X must be in particular also in
the kernel of Q. We next recall the structure of Sx(i) ,S′

x(i) from Eq. (3), namely
we have

Sx(i) = αx(i)J × diag(ux(i) , vx(i) ,Bx(i)) × Kz;
S′

x(i) = α′
x(i)J′ × diag(u′

x(i) , v
′
x(i) , I) × K′

z

(42)

where Bx(i) is the product of the branching-program matrices Bi,b over the
interval X , ux(i) , vx(i) , u′

x(i) , v
′
x(i) are the random diagonal entries, αx(i) , α′

x(i) are
the products of the α’s on both the functional and dummy branches, and Kz,K′

z

are the Kilian randomization matrix at the beginning of the Z interval on the
two branches.

Importantly, since all the x(i)z(j)’s are zeros of the function, then by Lemma 1
all the Bx(i) ’s must be equal. We denote that matrix simply by B, namely we
have Sx(i) = αx(i)J × diag(ux(i) , vx(i) ,B) × Kz for all i. Moreover, all the ratios
of αx(i)/α′

x(i) , i ∈ [k] must also be equal due to Lemma 2, and below we denote
that ratio by δ.

We can therefore re-write Eq. (5) as follows:

∀i ∈ [k], [Sx(i) ,−S′
x(i) ] (43)

= αx(i) [J × diag(ux(i) , vx(i) ,B) × Kz,−δJ′ × diag(u′
x(i) , v

′
x(i) , I) × K′

z]

= αx(i) · [ 0, ṽx(i) ,b
︸ ︷︷ ︸

J×diag(u
x(i) ,v

x(i) ,B)

, 0, ṽ′
x(i) ,b′

︸ ︷︷ ︸
J′×diag(u′

x(i) ,v′
x(i) ,I)

] × K̃z︸︷︷︸
an invertible matrix

4 With typical parameters it is sufficient to use only four different z(j)’s for that
purpose.
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(recall that by design, the first columns of J and J′ are zero to erase the u and u′

terms on the diagonal). The only x(i)-sensitive terms are αx(i) , ṽx(i) , and ṽ′
x(i) ,

and thus the rank of Q is exactly 3. The Kernel of Q therefore has dimension
k − 3, and it is contained in the ((k − 1)-dimensional) space spanned by the vec-
tors [αx(2) ,−αx(1) , 0, . . . , 0], [αx(3) , 0,−αx(1) , . . . , 0], . . . [αx(k) , 0, 0, . . . ,−αx(1) ]. In
other words, every vector p = [p1, p2, . . . , pk] in this kernel must in particular
satisfy the condition

∑
i piαx(i) = 0.

Of course, the kernel of X (which is the linear space that our attack can
recover) is only a subspace of the kernel of Q, and hence it has an even
lower dimension. However, the difference in dimension between kernel(Q) and
kernel(X) is bounded by the dimensions of the error matrices Ex(i) ,E′

x(i) , which
is independent of the number of x(i)’s. Namely, the number of columns in
Ex(i) ,E′

x(i) together is only 2r, hence the dimension of kernel(X) is at least
dim(kernel(Q)) − 2r = k − 3 − 2r, where k is the number of x(i)’s. If we have
enough zeros of the branching-program, then we can take k to be much much
larger than 2r + 3.

Step I.3: Extracting the Ratios. The kernel of W (or equivalently of X) is a
subspace of dimension at least k − (2r + 3), all of which is orthogonal to the
vector of αx(i) ’s. However, we do not have enough equations to recover the αx(i) ’s
themselves, since there are k of them and we only have k − (2r + 3) equations.
Here we take advantage of the fact that the αx(i) ’s are not really k independent
variables, rather each αx(i) ’s is obtained as a subset product of the αi,b’s that
are used in the construction.

Specifically, let Jx ⊂ [�] be set of input bits that only affect steps of the
branching program in the interval X , and for any just input bit j ∈ Jx let us
denote βj,0 =

∏
ι(i′)=j αi′,0 and βj,1 =

∏
ι(i′)=j αi′,1. Also, recalling that all the

input bits outside Jx are fixed, we denote by β0 the product of the αi′,b scalars
that are used in all the steps that are not controlled by bits in Jx. Then every
αx(i) can be written as a subset product

αx(i) = β0 ·
∏

j,b

βj,b
e(i,j,b)

where the exponents e(i, j, b) are all in {0, 1}. This implies in particular that the
number of αx(i) is at most 22|Jx|.

Consider now what happens if we take all the products of two equations
from the kernel. This will give us a set of at least (k − 2r − 3)2 equations in
the product variables γi1,i2 = αx(i1) · αx(i2) . But the γi1,i2 are perhaps not all
distinct: each of them can be written as a product γi1,i2 = β2

0 ·∏j,b βj,b
e(i1,i2,j,b)

with the exponents in {0, 1, 2}, so the total number of distinct γi1,i2 is at most
32|Jx| (which is smaller than (22|Jx|)2).

More generally, we can take products of upto c of our equations, and this
will give us at least (k −2r −3)c equations, but the number of variables will still
be upper-bounded by (c + 1)2|Jx|. If for some constant c we get (k − 2r − 3)c >
(c + 1)2|Jx|, then we have more equations than variables (which heuristically
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should still be linearly independent5) and we can solve the system and recover
all the products γi1,i2,...,ic

.
For example, in the extreme case where every setting of the input bits in Jx

yields a zero of the function, we can collect as many as k = 2|Jx| equations from
the kernel. If in addition |Jx| > 1+log(2r+3) then k > 2 · (2r+3) and therefore
k − 2r − 3 > k/2 = 2|Jx|−1. In this case taking c = 7 is sufficient to get more
equations than variables, since

(k − 2r − 3)c = (k − 2r − 3)7 > 27(|Jx|−1) > 26|Jx| = 82|Jx| = (c + 1)2|Jx|

as needed. We note that in this extreme case, we can get more equations than
variables already when multiplying pairs of equations (i.e. let c = 2) from the
kernel if we are careful about which pairs to multiply.

Once we have all the γ’s, we can divide them by each other to get ratios
of smaller products of the βj,b’s from above (which are in turn products of the
αi′,b’s from the construction). In particular we can get ratios of individual β’s,
of the form βj,b/βj′,b′ , but we cannot get any better granularity. In particular
we cannot separate the different αi′,b that are multiplied to form the βj,b’s.

4.4 Step II: Attacking the Obfuscator

If we have a quantum computer, or we are willing to run a classical
subexponential-time attack, we can implement a factoring oracle and a principal-
ideal-problem solver, using [9,10,20,30,38]. Together, these solvers make it pos-
sible to recover (some of) the small scalars αi,b, αi′,b′ from the ratios βj,b/βj′,b′ .
Once we have these αi,b’s, we can use them in mixed-input attacks on the obfus-
cator. Namely, in some steps that are controlled by the j’th input bit we take
the 0 matrix, and in some other steps we take the 1 matrix, and this lets us (at
least) check if these two matrices are the same.

In GGH15 (following GGHRSW), the small bundling scalars αi,b and α′
i,b

s.t.
∏

αi,b =
∏

α′
i,b are chosen by first generating a set of random small ζk’s,

let each αi,b be a product of one or two of these ζk’s, so that each of the prod-
uct

∏
αi,b,

∏
α′

i,b correspond to the same subset of ζk’s. A factoring oracle will
recover the ideals generated by all the ζk’s that happen to be prime (which
happens with noticeable probability). Then a PIP solver will find the small ζk’s
themselves.6 As each αi,b is a product of very few of the ζk’s, we would get some
of the αi,b’s by trying all singletons and pairs of the ζk’s.
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