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Abstract. As image gains much wider importance in our society, image
processing has found various applications since the 60’s: biomedical
imagery, security and many more. A highly common issue in those
processes is the presence of an uncontrolled and destructive perturba-
tion generally referred to “noise”. The ability of an algorithm to resist
to this noise has been referred to as “robustness”; but this notion has
never been clearly defined for image processing techniques. A wide bib-
liographic study showed that this term “robustness” is largely mixed
up with others as efficiency, quality, etc., leading to a disturbing confu-
sion. In this article, we propose a completely new framework to define
the robustness of image processing algorithms, by considering multiple
scales of additive noise. We show the relevance of our proposition by
evaluating and by comparing the robustness of recent and more classic
algorithms designed to two tasks: still image denoising and background
subtraction in videos.

1 Introduction

As image gains much wider importance in our society, image processing has found
various applications since the 60’s [1]: visual inspection systems, remote satellite
image interpretation, biomedical imagery, surveillance and security, astronomy,
etc. As well established in many fields of research [31,32], image processing is car-
ried out thanks to a series of algorithms applied on the input image after acquisi-
tion, sampling and quantization. It consists of two major steps: improvement by
pre-processing treatments, as denoising filtering for example, and segmentation.
More complex operations are driven afterwards on the image, such as object
recognition, people identification, etc., addressed as computer vision techniques.

A highly common issue in those processes, whatever the field, is the pres-
ence of an uncontrolled and destructive perturbation on the image, coming from
diverse sources (medical images perturbed by artefacts coming from the acqui-
sition system, videos jittered by the camera movement due to the wind, etc.),
which is generally referred to noise.

The ability of an algorithm to resist to this noise (i.e. that the algorithm’s
output has been experimentally or theoretically approved to be independent
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to this noise) has been referred as robustness. This robustness is a key issue
in image processing, since it ensures that the developed algorithm satisfies the
final user of the application. A wide bibliographic study around “robustness” in
image processing demonstrated that it is largely mixed up with other terms as
efficiency, quality, performance, persistence, etc., leading to a highly disturbing
confusion [3,14,23]. This lack of model for the robustness thus blocks its for-
mal integration in algorithms designed for image processing tasks as filtering,
segmentation, or even compression.

The formal definition of a robust algorithm in the field of computer vision
comes initially from the researches and formulations of Peter Meer [26,27]. In
this work, robust techniques, as RANSAC [13] or the Hough transform [17],
are based on robust statistics tools [33]. Noise is considered as an additive per-
turbation of the input data, under a known or estimated scale. This can be
summarized as follows: “Robustness in computer vision cannot be achieved with-
out having access to a reasonably correct value of the scale [of the noise]”. This
work has a large impact upon computer vision tasks, which are machine learn-
ing algorithms [7] using robust statistical tools [6,8,29] and devoted to character
recognition, object classification, people tracking, etc. When the targeted noise
cannot be represented theoretically or do not fit into a statistical model, the
challenge is to gather a sufficient amount of data to test, to evaluate the com-
puter vision algorithms, and to increase their robustness: this data gathering is
a key of Big Data [35].

Unfortunately, in the particular field of image processing, this definition of
robustness, and also its evaluation, has not been further modelled in such a way.
In this article, concurrently with these works in machine learning, we propose
to solve the problem of robustness assessment in image processing tasks, thanks
to a novel definition introduced in Sect. 2, based on multiple scales of noises.
To the best of our knowledge, no formal definition of the robustness has been
designed in the literature to evaluate image processing algorithms with such a
formulation. We then propose to employ this measure, called α-robustness, to
evaluate the robustness of algorithms devoted to two tasks in Sect. 3.1: image
denoising filtering and background subtraction in videos. As a future prospect,
we hope that this generic measure will be employed to evaluate the robustness of
novel contributions in image processing and that related research communities
will seize this scientific bottleneck.

2 A Novel Definition of Robustness

We first consider that an algorithm designed in image processing may be per-
turbed, because of an input data altered with an additive noise. With similar
notations as the work of Peter Meer [26], we have:

ŷi = y0
i + δyi, yi ∈ R

q, i = 1, . . . , n, (1)

which will be shortened by ̂Y = Y0+δY when the context allows it, i.e. when the
subscripts are not necessary. In this equation, the measurement ̂Y is obtained
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from a true (and generally unknown) value Y0, corrupted by the noise δY.
In robust statistics, the objective of an algorithm is to compute and minimize
an error between (i) the estimated parameters ̂θ of the measurements ̂Y, e.g. a
set of lines constructed with a Hough transform through a cloud of noisy points,
(ii) the true parameters of the model, θ, obtained from Y0, e.g. the true line that
we should obtain (the underlying line represented by the points). In this case,
we may assume that the noise is independent and identically distributed (iid):

δyi � GI(0, σ2Cy), (2)

where σ2Cy is the covariance of the errors at the known scale σ. This formulation
leads to the definition of robustness by Peter Meer as “An estimator is considered
robust only when the estimation error is guaranteed to be less than what can be
tolerated in the application”.

As a summary, a statistical algorithm may be considered as robust if the error
generated by the constructed parameters θ is less than a given threshold, depend-
ing on the final application and on the knowledge of the noise (scale σ in Eq. 2).
This formulation represents the current challenges of designing robust computer
vision algorithms in a large amount of data. We propose now to study further these
notions of robustness and noise for the development of robust image processing.

In this article, we assume that the robustness must be assessed in a multi-
scale approach, in order to appreciate the limitations of an algorithm, and what
would even make it fail. Let A be an algorithm designed for a given image
processing application, leading to a set of values X = {xi}i=1,n (generally the
output image obtained by A). Let N be an additive noise (i.e. respecting Eq. 2)
specific to the considered application, and {σk}k=1,m a set of scales of N . Let
Q(Xk,Y0

k) be a measure of the quality of A for the scale k of N (that is, σk),

Fig. 1. Graphical illustration of our definition of robustness.
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for example, the F-measure, combining both positive true and false detections
versus negative ones in binary decisions (as in the case of binary segmentation).

The algorithm A may be considered as α-robust if the difference dY between
the result X and the ground truth Y0 is bounded, w.r.t. the increase of noise
scale dX , by the Lipschitz continuity [5] of Q:

dY
(

Q(Xk,Y0
k), Q(Xk+1,Y0

k+1)
) ≤ αdX(σk+1 − σk), 1 ≤ k < m. (3)

Figure 1 is a synthetic illustration of the use of this definition, where we have
indicated the quality score (e.g. the quality of an image segmentation algorithm
by calculating a Dice coefficient) of four fictional algorithms for multiple scales
of a given noise. In this figure, we can notice that Algorithm 2 has the best
quality, at scale σ1. We advocate that using this single scale is not sufficient
to assess the robustness of this algorithm, i.e. to guarantee the error tolerated
by the application for this algorithm, as P. Meer claimed. After increasing the
impact of noise, Algorithm 4 has the best robustness (α-robust with α = 0.02),
and Algorithm 2 the worst (α = 0.30). Finally, Algorithm 1’s behaviour is not
linear, implying a high α value, and Algorithm 3 is the best algorithm of this
synthetic test, providing a very good robustness (α = 0.05) and high performance
in term of quality. Thanks to this synthetic study, we show the gap between
classic quality assessment, as done currently in research in image processing
when considering a single scale of noise, and this novel and original notion of
robustness. We propose in the next section to compare image denoising and
video background subtraction algorithms thanks to this framework.

3 Experimental Study

3.1 Application for Image Denoising Filtering Algorithms

Image denoising has been substantially dealt since 70’s [21,22], from linear and
simple non-linear algorithms such as median filtering [18] to more sophisticated
approaches as block-matching based ones for example [25]. In the literature, algo-
rithms are generally compared with some sample images to show their respective
efficiency, without any peculiar strategy to evaluate their robustness. In this arti-
cle, we will focus our attention on some classic algorithms, and others related
to shock filters, which modify pixels by performing a dilation near local max-
ima and erosion near local minima [30]. The Laplacian of the image guides the
choice of operations: if it is negative (resp. positive), then the pixel is judged to
be located near a maximum (resp. minimum). Using an iterative discretization
of a PDE, the shock filter produces local segmentations in inflection zones:

{

Δf t−1(pi, qj) < 0 ⇒ f t(pi, qj) = f t−1(pi, qj) ⊕ D ;
Δf t−1(pi, qj) > 0 ⇒ f t(pi, qj) = f t−1(pi, qj) � D,

(4)

for each pixel f t(pi, qj) of a 2-D image {f t(pi, qj)}i=1,M ;j=1,N at iteration t,
where Δf t(pi, qj) is the Laplacian computed at pixel (pi, qj), D is a disk-shaped
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structuring element of radius 1, and ⊕ and � are the symbols of classic dilation
and erosion operators. Please also note that f0(pi, qj) = f(pi, qj), the first input
image of the algorithm.

In [37], we have proposed to enhance this filter by using local smoothed his-
tograms, which have the property to produce smoothed dilations and smoothed
erosions, hence replacing the classic operators depicted in Eq. 4. The smoothed
local histogram of the neighborhood Vij = V((pi, qj)) of a pixel f(pi, qj) is mod-
eled as:

hf(pi,qj)(sn) =
∑

(pk,ql)∈Vij

K(f(pi, qj) − sk)W (|| (pk, ql) − (pi, qj) ||2), (5)

where k ∈ {1, nb}, K,W are generally Gaussian kernels and sn is the n-th bin of
the histogram. We have also shown that this algorithm is capable of enhancing
segmentation further processes in [38].

Fig. 2. Set of images used in our test.

We propose to show the application of our definition in comparing the robust-
ness of our approach with several other related image denoising filtering algo-
rithms of the literature. As depicted in Fig. 2, our material is a set of 13 classic
images well-known in the field of image processing ( ̂Y in Eq. 1) perturbated
by additive white Gaussian noises with increasing standard deviations, i.e. the
scales {σk}k=1,5 = {5, 10, 15, 20, 25}. We compare our algorithm with the classic
median filter [18]; the bilateral filter [36]; the original shock filter [30]; its com-
plex extension proposed by [15]; the enhanced version from [4]; the coherence
filter introduced by [40] and the smoothed median filter proposed by [21]. To
do so, we employ the SSIM (Structural Similarity) quality measure [39], ranging
between 0 and 1, which assesses the similarity between any output image and
the original image without any noise (ground truth, Y0 in Eq. 1). Our study of
robustness is illustrated in Fig. 3-a, wherein a plot represents the SSIM values
obtained for all algorithms (averaged over all images), at each noise scale. The
Gaussian noise alteration is also plotted as a reference with a black dotted line.



80 A. Vacavant

(a)

Algorithm Ref. α

Median [18] 0.15
Coherence [40] 0.15
OriginalShock [30] 0.14
EnhancedShock [4] 0.14
ComplexShock [15] 0.12
Bilateral [36] 0.11
SmoothedMedian [21] 0.05
SmoothedShock [37] 0.05

(b)

Fig. 3. (a) Graphical evaluation of robustness for image denoising filtering algorithms.
(b) Evaluation of α-robustness for each algorithm.

For a clear comparison of numerical values obtained, evaluation of α-robustness
is summarized in Fig. 3-b.

We can first observe that the original shock filtering method, the classic
median filter and the coherence filter are not able to filter accurately the noisy
images, since it even worsen the alteration originally impacted by the noise.
At the first scale σ1, several algorithms compete to achieve the first rank with
high values of SSIM, but a further analysis of the α-robustness shows that our
contribution, with smoothed median filtering are the most robust methods, being
α-robust with α = 0.05, while most of other algorithms achieve a higher value
(α > 0.10). We also show in Fig. 4 a visual comparison of the results obtained
by means of several robust algorithms. This comparison confirms visually that
our method enhances efficiently the structures in the image, as measured by the
SSIM.

3.2 Application for Background Subtraction in Urban Videos

Background subtraction is a crucial step in many computer vision systems, and
consists of detecting moving objects within videos by subtracting the background
from the filmed scene, without any a priori knowledge about the foreground [10].
This technique has been widely investigated since the 90’s, mainly for video-
surveillance applications, but also for many others as compression, medecine,
etc.

In [34], we have proposed a comprehensive review of background subtraction
techniques, and compared classic and modern algorithms thanks to real and syn-
thetic urban videos. The comparison of these approaches by averaging quality
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Noisy image

ComplexShock

SmoothedMedian

SmoothedShock

Fig. 4. Outputs of some robust algorithms from this test for the Lena image.

measures upon a given data-set has shown some limitations, and it is difficult to
separate them, when F-measure is always greater than 0.9 for the best methods
in particular. To explore robustness evaluation in this article, we have kept the
best algorithms of this survey (whose names afterwards are similar to those cho-
sen in [34]): a simple adaptive background learning method explained in [34]; the
fuzzy algorithm based on Choquet integral [12]; the single Gaussian distribution
background model in [41]; the representation with mixture of Gaussian distrib-
utions from [19]; the type-2 fuzzy based approach [9]; the multi-layer algorithm
employing color and texture [42]; the pixel based adaptive segmenter [16]; eigen
values based background model introduced by [28] and a method that employs
self-organizing maps [24].

A still open challenge of background subtraction is to take into account light-
ing variations in videos. Therefore, to compare those methods, we have generated
synthetic videos with variable lighting perturbations by means of a real-time 3-D
urban simulator produced by the 4D-Virtualiz company1. From a single scenario
of 4500 frames long (i.e. 3 min) we have generated 4 videos, wherein an ambi-
ent light noise has been modeled in a multi-scale way, by perturbating lighting
during the sequence. We have calculated this data-set by adapting ambient illu-
mination in the rendering equation [20]. The lighting function is first modeled
in a cloudy scene as a constant power during the whole sequence (first scale σ1),
which is then perturbed by sunny periods (in the following, such a period is
denoted by S), with a higher lighting value. The probability that such periods

1 http://www.4d-virtualiz.com/en/.

http://www.4d-virtualiz.com/en/
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(a) (b)

Fig. 5. (a) Lighting power during time for the 4 scales of noise we have generated upon
a single scenario. (b) Two images with different lighting values, and associated ground
truths.

occur during the sequence P (S) increases, leading to 3 more scales of lighting
noise. We also impose that the duration of S decreases and its associated lighting
value increases while P (S) increases, which models S as a function converging
to a Dirac impulse and simulates fast lighting variations. Figure 5-a is a plot
of the lighting value during the time of the 4 videos generated by the set of
scales {σk}k=1,4, with sample images obtained by the 3-D simulator. Moving
objects in those scenes are automatically calculated, providing the ground truth
for our tests as binary images (see Fig. 5-b). To evaluate the similarity between
algorithms’ outputs (Xk in our formalism) and ground truth (Y0

k) frames, we
opt for a calculation of SSIM adapted to binary segmentation, as we proposed
in [34].

The graphical evaluation of robustness for all tested algorithms is given in
Fig. 6-a, wherein the plot represents the SSIM values obtained for all algorithms
(averaged over all video frames), at each noise scale (lighting noise impact is plot-
ted as a reference with a black dotted line). Values of α-robustness are presented
in Fig. 6-b.

This experiment permits to separate the tested algorithms into two sets.
A first one is composed of non-robust methods having high α values (α > 0.15):
PBAS, LBAdaptiveSOM and DPEigenBGS. The test failed for the two last
methods of this group, considering the plot of Fig. 6-a. The other set contains
the rest of the algorithms, the most α-robust method is MoGV1BGS with a α
value of 0.01. We present in Fig. 7 the outputs obtained by means of the most
robust algorithms of our test. The colors correspond to: black and yellow for
true and false negative (background) detections, white and red for true and
false positive (foreground) detections. Even if these are the best methods of
our study, a lot of pixels are still wrongly classified (yellow and red pixels),
which shows the complexity to take into account lighting variations in video
background subtraction. Moreover, the calculations of those elements lead to
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(a)

Algorithm Ref. α

LBAdaptiveSOM [24] 0.20
DPEigenBGS [28] 0.19
PBAS [16] 0.15
DPWrenGABGS [41] 0.06
AdaptBLearning [34] 0.03
T2FGMM UM [9] 0.03
FuzzyChoquetInt [12] 0.03
MultiLayerBGS [42] 0.02
MoGV1BGS [19] 0.01

(b)

Fig. 6. (a) Graphical evaluation of robustness for background subtraction algorithms.
(b) Evaluation of α-robustness for each algorithm.

Input image

MoGV1BGS

FuzzyChoquetInt

MultiLayerBGS

Fig. 7. Outputs of some robust background subtraction algorithms (see text for expla-
nations). (Color figure online)

the same evaluation with F-measuring each algorithm. Most of the observations
we have enumerated previously are confirmed with F-measure instead of SSIM
measure (MoGV1BGS evaluated as the most α-robust methods, and PBAS,
LBAdaptiveSOM and DPEigenBGS as the least ones).
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4 Discussion

In this article, we have proposed a novel approach to evaluate the robustness
of image processing algorithms, based on multiple scales of additive noises, to
guarantee their error towards a given application. This first research work opens
the doors to numerous investigations.

The example of image denoising filtering shows that the robustness of an
image processing approach should be assessed at several noise powers instead
of a single one, to ensure that the tested algorithm resists to this perturbation,
even in the worst configurations. Moreover, it confirms the importance to build
a sufficiently large data-set, as the current challenge of Big Data highlights.
We have to propose more complex noises related to other concrete applications
(medical image segmentation for example), and to confront image processing
algorithms to high perturbances. In Fig. 3, we can remark that our smoothed
shock filtering algorithm has still a good behaviour (SSIM greater than 0.8) for
the most aggressive noise (σ5), which invites us to increase its impact.

This first specific example we have proposed is obviously not a restric-
tion for our definition of robustness, which can be used for any other kind of
image processing algorithm. For instance, we have proposed another experiment
devoted to evaluate background subtraction techniques, for which the impact
of an increasing noise is not studied so far and robustness is not specifically
addressed. Our α-robustness measure is a relevant way to compare new meth-
ods w.r.t. state-of-the-art, by employing quality measures as the SSIM. Various
other fields can benefit from the α-robustness as medical image segmentation,
large satellite image compression, etc.

Equations 1 and 2 refer to an additive Gaussian noise alteration upon data.
Several complex noises can be assimilated to Gaussian distributions, as the
Rician noise in medical MRI acquisition system for example [2]. But as an
extension, various other noise impacts can be addressed, as Poisson noise, mul-
tiplicative Gaussian noise and so on. Moreover, it should be noted that noise
is generally modeled at the pixel’s scale, without any more global considera-
tion. Here, our framework has been applied with the representation of global
illumination changes in videos, which is still an open scientific challenge.

Gathering data to evaluate our measure of robustness implies that we are able
to reproduce or to estimate a given noise at several scales. Hence, two strategies
can be conducted. The first one consists of generating synthetic data with a
variable noise. Still in the example of background subtraction, this means that we
should ensure that a realistic simulator is capable of rendering relevant 3-D urban
scenarios, incorporating complex noises. The second option is to collect data, and
to estimate the target noise inside (δyi in Eq. 1). In our illustrative example of
medical image analysis, Rician noise can be estimated thanks to recent works
as [11], which enables sorting MRI volumes by increasing noise order.

Finally, our definition of robustness can be compared with other formula-
tions based on multiple instances of noises. Instead of using Lipschitz continuity
(imposing local linearity under a given slope, α), we could consider an algorithm
as robust by considering that the quality function Q is a linear function over the
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domain of noise σ. To compare those definitions, a supervised evaluation should
be conducted, to decide which formalism induces the best robustness, regard-
ing a given application (for example, counting people in urban scenes thanks to
background subtracted videos).

Acknowledgement. The author would like to thank the 4D-Virtualiz company for
providing realistic synthetic urban videos for this research work.
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A Novel Definition of Robustness for Image Processing Algorithms 87

39. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612
(2004)

40. Weickert, J.: Coherence-enhancing shock filters. In: Michaelis, B., Krell, G. (eds.)
DAGM 2003. LNCS, vol. 2781, pp. 1–8. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45243-0 1

41. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking
of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

42. Yao, J., Odobez, J.: Multi-layer background subtraction based on color and texture.
In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis
(2007)

http://dx.doi.org/10.1007/978-3-540-45243-0_1
http://dx.doi.org/10.1007/978-3-540-45243-0_1

	A Novel Definition of Robustness for Image Processing Algorithms
	1 Introduction
	2 A Novel Definition of Robustness
	3 Experimental Study
	3.1 Application for Image Denoising Filtering Algorithms
	3.2 Application for Background Subtraction in Urban Videos

	4 Discussion
	References


