Skip to main content

The Endocannabinoid System in the Central Nervous System: Emphasis on the Role of the Mitochondrial Cannabinoid Receptor 1 (mtCB1R)

  • Living reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

The study of the endocannabinoid system (ECS) emerges formally from the chemical characterization of the psychoactive component of Cannabis sativa, Δ9-tetrahydrocannabinol (Δ9-THC). The ECS consists of genes encoding two well-characterized cannabinoid receptors (CB1Rs and CB2Rs), endocannabinoids (eCBs), and metabolic enzyme machinery responsible for their synthesis and degradation. The study of the ECS is of great interest for understanding CNS function due to its role in the regulation of several physiological functions. Furthermore, ECS implication in antiexcitotoxic, antioxidant, anti-inflammatory, and neuroprotective mechanisms suggests therapeutic potential for some neurological and psychiatric disorders. It is noteworthy that the presence of CB1R in the outer membrane of mitochondria seems to modulate mitochondrial energy metabolism. The high-energy demand of neurons is needed to maintain cellular homeostasis, the membrane potential, and synaptic transmission; therefore, a broad distribution of mitochondria can be found throughout the neuronal body. In addition, ATP synthesis is necessary for axonal growth and regulation of axonal transport. The characterization of a CB1R-regulated Gi/Go signaling pathway at the mitochondrial level has led to a controversial and yet not well understood finding in terms of the physiological significance and the regulated reduction in ATP levels. Although the precise physiological role that cannabinoids play in mitochondria is to be elucidated, some reports using isolated mitochondria suggest that cannabinoids may prevent the mitochondrial damage through this pathway. Here we review, update, and discuss evidence collected on the relevance of the ECS to optimal CNS function and specifically the role that mtCB1R and cannabinoids play in the regulation of mitochondrial/neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilera-Portillo G, Rangel-López E, Villeda-Hernández J, Chavarría A, Castellanos P, Elmazoglu Z, Karasu Ç, Túnez I, Pedraza G, Königsberg M, Santamaría A. The pharmacological inhibition of fatty acid amide hydrolase prevents excitotoxic damage in the rat striatum: possible involvement of CB1 receptors regulation. Mol Neurobiol. 2019;56:844–56.

    Article  CAS  PubMed  Google Scholar 

  • Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19:557–66.

    Article  CAS  PubMed  Google Scholar 

  • Avila A, Nguyen L, Rigo J-M. Glycine receptors and brain development. Front Cell Neurosci. 2013;7:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutiérrez S, Martín-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, López-Rodríguez ML, Grandes P, Rossignol R, Marsicano G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci. 2012;15:558–64.

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Sepe N, Melck D, Maurelli S, De Petrocellis L, Di Marzo V. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J. 1997;322:671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blázquez C, Chiarlone A, Bellocchio L, Resel E, Pruunsild P, García-Rincón D, Sendtner M, Timmusk T, Lutz B, Galve-Roperh I, Guzmán M. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ. 2015;22:1618–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouaboula M, Poinot-Chazel C, Marchand J, Canat X, Bourrié B, Rinaldi-Carmona M, Calandra B, Le Fur G, Casellas P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem. 1996;237:704–11.

    Article  CAS  PubMed  Google Scholar 

  • Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P. Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol. 2005;517:174–81.

    Article  CAS  PubMed  Google Scholar 

  • Cabral GA, Griffin-Thomas L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Exp Rev Mol Med. 2009;11:e3.

    Article  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51.

    Article  CAS  PubMed  Google Scholar 

  • Cardone L, de Cristofaro T, Affaitati A, Garbi C, Ginsberg MD, Saviano M, Varrone S, Rubin CS, Gottesman ME, Avvedimento EV, Feliciello A. A-kinase anchor protein 84/121 are targeted to mitochondria and mitotic spindles by overlapping amino-terminal motifs. J Mol Biol. 2002;320:663–75.

    Article  CAS  PubMed  Google Scholar 

  • Cascio MG, Gauson LA, Stevenson LA, Ross RA, Pertwee RG. Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol. 2010;159:129–41.

    Article  CAS  PubMed  Google Scholar 

  • Catanzaro G, Rapino C, Oddi S, Maccarrone M. Anandamide increases swelling and reduces calcium sensitivity of mitochondria. Biochem Biophys Res Commun. 2009;388:439–42.

    Article  CAS  PubMed  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarlone A, Bellocchio L, Blázquez C, Resel E, Soria-Gómez E, Cannich A, Ferrero JJ, Sagredo O, Benito C, Romero J, Sánchez-Prieto J, Lutz B, Fernández-Ruiz J, Galve-Roperh I, Guzmán M. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci U S A. 2014;111:8257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev. 2005;57:427–50.

    Article  CAS  PubMed  Google Scholar 

  • Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;38:4–15.

    Article  CAS  Google Scholar 

  • Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16:9–29.

    Article  PubMed  Google Scholar 

  • Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, Marsh K, Bianchi B, McDonald H, Niforatos W, Neelands TR, Moreland RB, Decker MW, Lee C-H, Sullivan JP, Faltynek CR. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci. 2006;26:9385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163:1479–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.

    CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.

    Article  CAS  PubMed  Google Scholar 

  • Djeungoue-Petga M-A, Hebert-Chatelain E. Linking mitochondria and synaptic transmission: the CB1 receptor. BioEssays 2017;1700126.

    Google Scholar 

  • Domaradzki J. The impact of Huntington disease on family carers: a literature overview. Psychiatr Pol. 2015;49:931–44.

    Article  PubMed  Google Scholar 

  • Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W. Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell. 1993;77:67–76.

    Article  CAS  PubMed  Google Scholar 

  • Dunham-Snary KJ, Wu D, Potu F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Ndufs2, a core subunit of mitochondrial complex I, is essential for acute oxygen-sensing and hypoxic pulmonary vasoconstriction. Circ Res. 2019;124:1727–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Comm. 1996;224:431–7.

    Article  CAS  PubMed  Google Scholar 

  • Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ1-42 peptide in rat hippocampal neurons. Neurochem Int. 2020;140:104817. https://doi.org/10.1016/j.neuint.2020.104817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol. 2011;21:316–21.

    Article  CAS  PubMed  Google Scholar 

  • Ghose T. Cannabinoid controversy. Scientist. 2009; http://www.the-scientist.com/news/print/55969/

  • Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A. 1997;94:2238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkany T, Horvath TL. (S)pot on mitochondria: cannabinoids disrupt cellular respiration to limit neuronal activity. Cell Metab. 2017;25:8–10.

    Article  CAS  PubMed  Google Scholar 

  • Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Christian Pagano Zottola AC, Delamarre A, Cannich A, Vincent P, Varilh M, Robin LM, Terral G, García-Fernández MD, Colavita M, Mazier W, Drago F, Puente N, Reguero L, Elezgarai I, Dupuy J-W, Cota D, Lopez-Rodriguez M-L, Barreda-Gómez G, Massa F, Grandes P, Bénard G, Marsicano G. A cannabinoid link between mitochondria and memory. Nature. 2016;539:555–9.

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Onaivi ES. Endocannabinoid system components: overview and tissue distribution. Adv Exp Med Biol. 2019;1162:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kaczocha M, Glaser ST, Deutsch DG. Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A. 2009;106:6375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci. 2017;114:11229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Nair SA, Pillai MR. Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med. 2007;7:532–40.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li H, Burstein SH, Zurier RB, Chen JD. Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol Pharmacol. 2003;63:983–92.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q-R, Pan C-H, Hishimoto A, Li C-Y, Xi Z-X, Llorente-Berzal A, Viveros M-P, Ishiguro H, Arinami T, Onaivi ES, Uhl GR. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009;8:519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q-R, Canseco-Alba A, Liang Y, Ishiguro H, Onaivi ES. Low basal CB2R in dopamine neurons and microglia influences cannabinoid tetrad effects. Int J Mol Sci. 2020;21:9763.

    Article  CAS  PubMed Central  Google Scholar 

  • Livigni A, Scorziello A, Agnese S, Adornetto A, Carlucci A, Garbi C, Castaldo I, Annunziato L, Avvedimento EV, Feliciello A. Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol Biol Cell. 2006;17:263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacAskill AF, Kittler JT. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 2009;20:102–12.

    Article  PubMed  CAS  Google Scholar 

  • Maione S, Costa B, Di Marzo V. Endocannabinoids: a unique opportunity to develop multitarget analgesics. Pain. 2013;154:S87–93.

    Article  CAS  PubMed  Google Scholar 

  • Maya-López M, Colín-González AL, Aguilera G, De Lima ME, Colpo A, Rangel-López E, Villeda-Hernández J, Rembao-Bojórquez D, Túnez I, Luna-López A, Lazzarini-Lechuga R, González-Puertos VY, Posadas-Rodríguez P, Silva-Palacios A, Königsberg M, Santamaría A. Neuroprotective effect of WIN 55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1R and NMDA receptors. Am J Transl Res. 2017;9:261–74.

    PubMed  PubMed Central  Google Scholar 

  • Maya-López M, Rubio-López L, Rodríguez-Alvarez IV, Orduño-Piceno J, Flores-Valdivia Y, Collonelo A, Rangel-López E, Túnez I, Prospero-García O, Santamaría A. A cannabinoid receptor-mediated mechanism participates in the effects of oleamide against excitotoxic damage in rat brain synaptosomes and cortical slices. Neurotox Res. 2020;37:126–35.

    Article  PubMed  CAS  Google Scholar 

  • McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005;74:411–32.

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Gaoni Y. A total synthesis of dl-Δ1-tetrahydrocannabinol, the active constituent of hashish. J Am Chem Soc. 1965;87:3273–5.

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Mironov S. ADP regulates movements of mitochondria in neurons. Biophys J. 2007;92:2944–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller GP, Driscoll WJ. Biosynthesis of oleamide. Vitam Horm. 2009;81:55–78.

    Article  CAS  PubMed  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.

    Article  CAS  PubMed  Google Scholar 

  • Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. https://doi.org/10.1016/j.redox.2020.101674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD. Novel time-dependent vascular actions of Delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma. Biochem Biophys Res Comm. 2005;337:824–31.

    Article  PubMed  CAS  Google Scholar 

  • Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocrine Metab Immune Disord Drug Targets. 2012;12:351–60.

    Article  CAS  Google Scholar 

  • Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obesity. 2006;30:S13–8.

    Article  CAS  Google Scholar 

  • Piomelli D, Beltramo M, Giuffrida A, Stella N. Endogenous cannabinoid signaling. Neurobiol Dis. 1998;5:462–73.

    Article  CAS  PubMed  Google Scholar 

  • Rangel-López E, Colín-González AL, Paz-Loyola AL, Pinzón E, Torres I, Serratos IN, Castellanos P, Wajner M, Souza DO, Santamaría A. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience. 2015;285:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Ren SY, Wang Z, Zhang Y, Chen N. Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases – focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin. 2020;41:1263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson PJ. Therapeutic potential of cannabinoid medicines. Drug Test Anal. 2014;6:24–30.

    Article  CAS  PubMed  Google Scholar 

  • Rock EM, Goodwin JM, Limebeer CL, Breuer A, Pertwee RG, Mechoulam R, Parker LA. Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology. 2011;215:505–12.

    Article  CAS  PubMed  Google Scholar 

  • Rohleder C, Müller JK. Pharmakologie von cannabis und cannabinoiden. Psychopharmakotherapie. 2020;27:105–13.

    Google Scholar 

  • Russo ER. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25:31–9.

    CAS  PubMed  Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res. 2005;30:1037–43.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Vicente-Sánchez A, Garzón J. Cannabinoid receptors couple to NMDA receptors to reduce the production of NO and the mobilization of zinc induced by glutamate. Antioxid Redox Signal. 2013;19:1766–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Front Pharmacol. 2014;4:169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanz A. Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan. Biochim Biophys Acta. 2016;1857:1116–26.

    Google Scholar 

  • Saroz Y, Kho DT, Glass M, Graham ES, Grimsey NL. Cannabinoid receptor 2 (CB2) signals via G-alpha-s and induces IL-6 and IL-10 cytokine secretion in human primary leukocytes. ACS Pharmacol Transl Sci. 2019;2:414–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature. 2016;540:602–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng Z-H. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2013;204:1087–98.

    Article  CAS  Google Scholar 

  • Skaper SD, Di Marzo V. Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367:3193–200.

    Article  CAS  Google Scholar 

  • Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol. 2000;129:227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci. 2013;110:5193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CT, Moncada S. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol. 2010;30:643–7.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 2020;188:111953.

    Google Scholar 

  • Velez-Pardo C, Jimenez-Del-Rio M, Lores-Arnaiz S, Bustamante J. Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure. Neurochem Res. 2010;35:1323–32.

    Article  CAS  PubMed  Google Scholar 

  • Warby SC, Visscher H, Collins JA, Doty CN, Carter C, Butland SL, Hayden AR, Kanazawa I, Ross CJ, Hayden MR. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet. 2011;19:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron. 2001;31:453–62.

    Article  CAS  PubMed  Google Scholar 

  • Wolin MS, Alruwaili N, Sharath K. Studies on hypoxic pulmonary vasoconstriction detect a novel role for the mitochondrial complex I subunit Ndufs2 in controlling peroxide generation for oxygen-sensing. Circ Res. 2019;124:1683–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Q, Xu F, Taylor DH, Zhao J, Wu J. The impact of cannabinoid type 2 receptors (CB2Rs) in neuroprotection against neurological disorders. Acta Pharmacol Sin. 2020;41:1507–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong W, Wu X, Li F, Cheng K, Rice KC, Lovinger DM, Zhang L. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J Neurosci. 2012;32:5200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Lv XA, Dai Q, Ge YQ, Xu J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and its role in metabolic defects and neuronal apoptosis after TBI. Mol Brain. 2016;9:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci. 2002;22:1690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

E.S.O is supported by William Paterson University and NIAAA-NIH grant AA027909. M.A. was supported by the National Institute of Environmental Health Sciences’ grants R01ES03771 and R01ES10563.

Declaration of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this chapter. The authors are responsible for content and writing of the manuscript and do not necessarily reflect the position of the US Food and Drug Administration nor do mention of trade names and commercial products constituting endorsement or recommendation for use and do not represent agency position or policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Santamaría .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maya-López, M. et al. (2021). The Endocannabinoid System in the Central Nervous System: Emphasis on the Role of the Mitochondrial Cannabinoid Receptor 1 (mtCB1R). In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-56015-1_461-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56015-1_461-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56015-1

  • Online ISBN: 978-3-319-56015-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics