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Abstract. We present T-Rex (from the words Threshold and REtineX),
a new Milano Retinex implementation, based on an intensity threshold-
ing strategy. Like all the algorithms of the Retinex family, T-Rex takes
as input a color image and processes its channels separately. For each
channel, T-Rex re-scales the chromatic intensity of each pixel x by the
average of a set of pixels whose intensity, weighted by a function of the
distance from x, exceeds the intensity of x. The main novelty of this
approach is devised by the usage of the pixel intensity as a threshold
for selecting the pixels relevant to Retinex. Here we show an application
of T-Rex as image enhancer, showing that, as a member of the Retinex
family, it equalizes the dynamic range of any input picture and makes
its details more evident.

1 Introduction

The Retinex theory [7] provides a computational model to estimate the human
color sensation. It is based on the empirical evidence that, in the human vision
system, the color signal is firstly processed separately by the retina photorecep-
tors, and then by the cortex. This latter re-works the color information taking
into account the spatial arrangement of the other colors present in the observed
scene. Therefore, the color sensation we derive when observing a point, depends
not only on the photometric properties of that point but also on those of the
surrounding regions.

According to this principle, the Retinex algorithm estimates the color sensa-
tion from a color digital picture as follows. The chromatic channels of the image
are processed separately. For each channel, the chromatic intensity of each pixel
x is re-scaled by a local white reference. This is an intensity level obtained by
re-working the intensities of the pixels in a neighborhood of x, with the general
prescription that the intensity of the pixels closer to x influences more the color
sensation at x than the intensity of the pixels far away [2,12,19]. This procedure
outputs an enhanced color image with better visible details. This image, that
we refer to as filtered, differs from the actual color sensation in a set of pre- or
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post- LUT calibrations, that adjust the color gamut of the device in order to
estimate the actual color sensation [20].

Two key points of Retinex implementation are (i) the definition of the
sampling figure, i.e. of the neighboring pixels relevant to color sensation, and
(ii) the determination of the local white reference. Despite the importance of
these issues, the original Retinex description does not provide specific details
about them. This has led to many different Retinex implementations [12,13,21].
For instance, the original Retinex algorithm [7] scans the neighborhood of any
pixel x by a set of paths, traveling randomly over the image and ending at x: the
sampling figure at x is the union set of the pixels lying along these paths. Each
chromatic intensity at x in the filtered image is obtained by computing, over
each path, the product of the intensity ratios of adjacent pixels, and then by
averaging these products over the number of paths (division by zero is avoided).
This path-based approach has been adopted by many subsequent Retinex imple-
mentations, e.g. [5,9,14,15,22,23], which mainly impose some constraints on the
path shape in order to improve the spatial exploration of the image. The meth-
ods in [1,3,6,8,16] define the neighborhood of any pixel x as a spray, i.e. a
set of pixels distributed around x with radial density. They compute the local
white reference through the equation of the so-called Milano Retinex algorithms
[10,11], mathematically formalized in [15] and implemented with sprays in [16]:
for each x, a set of sprays is generated and the local white reference is computed
as the mean value of the maximum intensity over the sprays, averaged over the
number of sprays.

In this work, we present T-Rex, a novel method belonging to the Milano
Retinex family [17]. In T-Rex, for each image channel, the sampling figure of
any image pixel x is the set of the image pixels whose intensity value exceeds
the intensity value of x. The local white reference is obtained by averaging the
intensity of the sampled pixels, weighted by their spatial distance from x. The
intensity at x acts as a threshold for defining the pixels relevant for estimating
the color sensation. The name T-Rex just comes from the keywords Threshold
and REtineX, which characterize this approach.

The main novelty of T-Rex is the definition of a sampling figure specific for
each pixel and based on a self-regulating intensity threshold. T-Rex shares with
the spray based methods [1,3,4,6,8,16] the idea of defining the neighborhood of
any pixel x as a 2D set of points and to compute the local white reference by re-
working pixel intensities greater than the intensity at x. Nevertheless, differently
from these spray based approaches, which are characterized by a radial distrib-
ution around the center, the sampling figure of T-Rex at any pixel x does not
have any specific geometric structure: it may strongly vary from pixel to pixel,
according to the intensity at x and to the spatial weights. Unlike the meth-
ods employing a random sampling, such as the original Retinex implementation,
the path-based methods mentioned above, and many spray-based approaches,
the exploration of the image performed by T-Rex is deterministic. This is an
advantage because the random sampling may introduce in the filtered image
chromatic noise, that is usually removed a posteriori or mitigated by repeat-
ing many times the image sampling and then averaging the results. Finally,
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in T-Rex, the sampled intensities do not correspond to intensity extrema over
the pixel neighborhood (as in [1,3,6,8,16]), and their selection is performed in
an unsupervised manner, without requiring the user to input any threshold on
intensity (as is done instead in [4]).

In this work, we do not consider any pre- or post- LUT calibration, and
thus we employ and evaluate T-Rex as an image enhancer, not as a model of
human vision [20]. The experiments, carried out on real world color pictures,
show that, as a member of the family of Milano Retinex algorithms, T-Rex
improves the readability of images captured with unbalanced exposures, increas-
ing their brightness and contrast and equalizing their dynamic range.

The rest of the paper is organized as follows: Sect. 2 describes T-Rex in
details; Sect. 3 reports the experiments, and Sect. 4 outlines our conclusions and
future work.

2 T-Rex

Let us introduce the notation used hereafter. We indicate a RGB image by I
and any chromatic channel of I by I. For numerical reasons, we rescale the
intensity values of I over [0, 1]. Moreover, in order to avoid division by zero, for
any x ∈ S such that I(x) = 0 we set I(x) := 10−6. Then, we represent I as a
function I : S → (0, 1], where S denotes the image support, i.e. the set of pixels
coordinates, and |S| is the size of S. We denote the filtered version of I by L
and any chromatic channel of L by L.

T-Rex takes as input a RGB image I. According to the Retinex theory, it
processes its channels independently. For each channel I and for each pixel x ∈ S,
T-Rex implements the following operations:

1. Modeling the color spatial interaction: T-Rex defines the function vx :
S → R such that

vx(y) = I(y) exp[−λd(x, y)2] (1)

where d(x, y) is the Euclidean spatial distance between x and y, normalized
in order to range over [0, 1]. Precisely:

d(x, y) =
‖ x − y ‖

D
(2)

where D is the length of the diagonal of S. The parameter λ is a positive
real number, weighting the importance of the distance term versus the inten-
sity. As suggested by the subscript, vx varies from pixel to pixel. It is intro-
duced to model the spatial interaction among colors. The multiplicative term
exp[−λd(x, y)2] acts as a penalty term: the intensity of the pixels close to x
are weighted more than that of the pixels further from x. This is in line with
the studies in [12], reporting about the influence of the distance on the color
sensation.

2. Defining the Sampling Figure: T-Rex scans the neighborhood of x to
find out the sampling figure N(x) at x. We refer to x as the center of N(x).
Precisely, a pixel y of S belongs to N(x) iff
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(a) vx(y) > I(x)
(b) d(x, y) = min{d(u, x) : u ∈ S and vx(u) = vx(y)}.
The sampling figure N(x) is defined by thresholding the function vx by the
intensity value I(x) (condition (a)). The pixels of N(x) are the closest to
x among the pixels satisfying the condition in (a) (condition (b)). The size
and the geometry of N(x) depends on the parameter λ. Differently from the
sampling set of the path-based approaches, which is simply connected, the
sampling figure of N(x) is usually not connected. Moreover, N(x) may also
be empty. In this case, the local white reference is I(x), as explained next.

3. Computing the Local White Reference: the local white reference is
computed as follows:

w(x) =

{
1∑

y∈N(x) exp[−λd(x,y)2]

∑
y∈N(x) vx(y) if N(x) �= ∅

I(x) otherwise
(3)

and the L(x) is given by

L(x) =
I(x)
w(x)

. (4)

From Eq. (3), we have that the value of w(x) is always greater or equal than
I(x). This is in line with the principles of the Milano Retinex algorithms, that
select as local white reference an intensity values equal to or greater than I(x).

Fig. 1. On top: the green circles indicate the pixels of the figure sampling at the pixel
highlighted on a grey level image by the red circle for λ = 0.5 (left) and λ = 1.5 (right).
On bottom: the corresponding T-Rex filtered images. (Color figure online)



72 M. Lecca et al.

The T-Rex algorithm requires as input an image and a value for the para-
meters λ. When λ = 0, no penalty is applied to the image intensities and the
sampling figure of T-Rex includes all the image pixels with intensity higher than
I(x). When λ → +∞, vx(y) tends to zero, thus if I(x) �= 0, the set N(x) is
empty, and w(x) = I(x). Therefore, different values of λ produce different figure
samplings and lead to different color filtering (see for instance Fig. 1).

3 Experiments

In Subsect. 3.1 we define the measures used for evaluating the T-Rex perfor-
mance, while in Subsect. 3.2 we describe the dataset used in the experiments
and the results, including also a comparison with two other Milano Retinex
approaches.

3.1 Evaluation Measures

We evaluate the performance of T-Rex in terms of image enhancement. We
observe that in the literature, there are not agreed measures for assessing the
quality and/or the accuracy of image enhancement algorithms. In this frame-
work, we consider three measures, already employed for analysing Retinex per-
formance, e.g. [8,9]. These measures are suitable to describe numerically the
variations of visual features related to the readability of an image: its brightness,
its details and its dynamic range. These features are modified by Retinex, that
usually increases the brightness and the details visibility (i.e. the contrast) and
equalizes the dynamic range of the input image.

Given a color image I with support S, we compute its brightness BI as the
1-channel image defined on S such that

BI(x) =
1
3

3∑
i=1

Ii(x).

Here we do not normalize their intensity values over [0, 1]: the variability range
of Ii (1 ≤ i ≤ 3) is thus the discrete set {0, . . . , 255}. For each pixel x, the value
BI(x) is cast to an integer number between 0 and 255.

The three measures employed for evaluating the image enhancement perfor-
mance of T-Rex are:

1. Mean brightness f0: it is the average of the values of BI over the number of
pixels:

f0 =
1

|S|
∑
x∈S

BI(x). (5)

2. Multi-resolution Contrast f1: this measure, introduced in [18], is defined by
building up a pyramid of K (>0) images B1, . . . , BK , where B1 = BI , and,
for each 1 < k ≤ K, Bk is computed by rescaling Bk−1 by 0.5. The value of
f1 is then obtained by the following steps:
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– Computing the mean local contrast on each pyramid image: for each k ∈
{1, . . . , K}, for each x in the support Sk of Bk, we compute the local
contrast

ck(x) =
1
8

∑
u∈N (x)

|Bk(u) − Bk(x)| (6)

where N (x) indicates the 3× 3 window centered at x. Then, we compute
the mean value

ck =
1

|Sk|
∑

x∈Sk

ck(x), (7)

where |Sk| is the cardinality of Sk;
– Computing the multi-resolution contrast on the pyramid: we average of

the values ck’s over the number of images Bk’s:

f1 =
1
K

K∑
k=1

ck. (8)

3. Histogram Flatness f2: it measures how much the dynamic range of the image
brightness has been stretched by the T-Rex filtering. Let H be the histogram
of BI normalized in order to range over [0, 1]; let U be the discrete uniform
probability density function defined over the set {0, . . . , 255}. The histogram
flatness is the L1 distance between H and U , i.e.

f2 =
1

255

255∑
b=0

|H(b) − U(b)|. (9)

An image enhancer “usually” increases the values of f0 and f1, while
decreases the value of f2. We have quoted the word usually because the amount of
the variations of f0, f1, f2 depends on the input image. In particular, we observe
that the increment of f0 and f1 and the reduction of f2 are more evident when
the input image is dark and its details are poorly visible, than when the image
is already clear.

3.2 Results

For our experiments, we consider a dataset of 20 real-world color pictures, depict-
ing both indoor and outdoor environments. Despite its small size, this dataset is
of interest because its images have been mainly captured under bad illuminant
conditions, so they appear quite dark and with poorly visible details. Moreover,
they display dark and bright regions with different size, proportion, and location.
These cues make this image set suitable to evaluate the performance of T-Rex as
image enhancer, also from a qualitative point of view. Some examples are shown
in Fig. 2.

Table 1 reports the evaluation measures when no filtering is applied (NONE)
and when T-Rex (with λ = 1.0) is applied. In addition, this table also reports
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Fig. 2. Some images used for evaluating T-Rex performance.

Table 1. Evaluation of T-Rex performance in comparison with RSR-P and QBRIX
(local and global).

Algorithm f0 f1 f2[×10−3]

NONE 50.02 12.81 4.53

T-Rex 79.39 17.52 3.44

RSR-P 70.05 17.55 3.63

L-QBRIX 88.48 21.84 2.93

G-QBRIX 77.22 19.15 3.46

the performance of two other Milano Retinex algorithms (QBRIX [4] and RSR-
P [3]). We have chosen to compare these approaches with T-Rex because they
present some similarities with T-Rex. Precisely: (a) QBRIX and RSR-P are
Milano Retinex implementations; (b) as Milano Retinex implementations, they
normalize the intensity I(x) of any pixel x with an intensity level greater than
I(x); (c) like T-Rex, they are deterministic approaches.

Both QBRIX and RSR-P derive from the algorithm Random Spray Retinex
(RSR) [16], that works as follows. Given an image channel I and a pixel x,
RSR re-scales the intensity I(x) with the maximum intensity over a spray, i.e.
a cloud of n pixels randomly sampled around x with radial density. In order to
remove - as much as possible - the chromatic noise due to the random sampling,
many sprays are generated and the final value L(x) is obtained by averaging
the contribution from each spray. The size n of the spray and the number N of
sprays are input by the user. When n equals the number of image pixel, RSR
behaves like the scale-by-max algorithm.

QBRIX proposes an approximated, probabilistic version of RSR. It is based
on the observation that the colors rarely occurring in the image do not influence
the color sensation, thus they can be ignored by the color filtering process. There
are two implementations of QBRIX. The first one is a global filter (G-QBRIX):
for each channel, it re-scales the chromatic intensity of each pixel by a local
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white reference IQ, corresponding to a quantile QG of the probability density
function (pdf) of the intensities of that channel. The local white reference is
thus the same for each pixel, determined by the value QG input by the user.
The second implementation is a local filter (L-QBRIX): in this case, the local
white reference IL depends on the pixel, and it corresponds to a quantile QL of
the pdf of the channel intensities, weighted by a function accounting for their
spatial arrangement in the image. The value QL is fixed by the user.

RSR-P re-writes the random sampling procedure of RSR in a deterministic,
noise free, population based approach. In RSR, the local white reference is the
average of the maximum intensities selected from random sprays. In RSR-P, the
same local white reference is determined by re-working suitable quantities from
the pdf of the chromatic intensities, without performing any random sampling.
These quantities are basically related to the probability that a given pixel has
the maximum intensity over a set of n samples where, as in RSR, n is an user
input. Differently from the RSR approximation provided by QBRIX, RSR-P is
an exact mapping of RSR into a population based approach. In particular, when
N → +∞, RSR and RSR-P yield the same results.

T-Rex enhances the brightness and the contrast of the input pictures, pro-
ducing higher values of f0 and f1, while it equalizes the brightness histogram,
so that the value of f2 decreases. The algorithms QBRIX and RSR-P exhibit a
similar behaviour. In these experiments, the quantiles QG and QL are set up to
0.99, while in RSR-P n has been set up to 250.

Figure 3 shows some visual examples of color filtering produced by T-Rex,
RSR-P, QBRIX (local and global).

On average, the T-Rex outputs are close to those obtained by RSR-P and G-
QBRIX. The highest (lowest, resp.) values of brightness and contrast (flatness,
resp.) are obtained by L-QBRIX: this is because L-QBRIX weights the contribu-
tion of the distance versus the intensity much more than the other algorithms.
Precisely, in the pdf computation performed by L-QBRIX, for any pixel x, the
intensity value I(y) of any image pixel y �= x is weighted by the quantity[‖ x − y ‖

D

]−α

where D is the length of the image support diagonal, while α determines the
metric adopted for modeling the spatial interaction among color, and here α = 2.

The spatial weight introduced in L-QBRIX is similar to that expressed by the
term exp[−λd(x, y)2] in the Eq. (1) of T-Rex. We observe that a high value of λ
(and a low value of α in L-QBRIX) may produce a loss of the image local details,
and even introduce artifacts: in particular, as already mentioned in Sect. 2, for
λ → +∞, the local reference is the pixel intensity itself, so that the final lightness
is a white image. This is illustrated in Fig. 4, showing a gray level image and its
T-Rex filtered versions for increasing values of λ: for λ > 1.00, an over-enhanced
region is visible on the upper left corner of the image. This effect is emphasized
in the color version of this image (see first row in Fig. 5). In general, the value
of λ giving a “satisfactory” output in terms of image enhancement depends on
the input image. For instance, for the image shown in the second row of Fig. 5,
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Fig. 4. In clock-wise order: an input image and its T-Rex filtered versions with λ =
0.50, 0.75, 1.00, 1.25, 1.50, 2.00, 2.25, 2.50.

Fig. 5. Two input images and their T-Rex filtered versions for λ = 0, 50, 1.00, 2.00. For
the input image in the first row, varying the λ parameter yields very different outputs.
This does not happen for the input image in the second row.

all the values λ = 0.5, 1.0, 2.0 produce good results. The dependency of the
parameter tuning on the image content, at a first quick analysis can appear
as an unwanted characteristic, but on the contrary it is a positive one. First,
it is exactly a characteristic of the HVS, that has no fixed response and thus
cannot be modeled as a static filter, second, due to the image variability and
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complexity, a fixed thresholding usually means good results only for a subset
of the input images. This characteristic is in fact common for the whole spatial
color algorithms family [20].

4 Conclusions

In this paper, we have presented T-Rex, a novel, deterministic Milano Retinex
implementation. It is based on the definition of a sampling figure through a
self-adaptive intensity thresholding strategy. The experiments, conducted on a
set of real-world color pictures, captured with unbalanced exposure, show that,
in agreement with the principles of the Retinex theory, T-Rex works as image
enhancer: it equalizes the dynamic range of the input image and improves the
visibility of its details. The experiments also show that the final output depends
on the value of λ. For instance, a very large value of λ may produce a loss
of the image details. In the current implementation of T-Rex, the value of λ
is input by the user. Our future work will address a more detailed analysis of
the dependence of the T-Rex output on λ, and the development of a technique
for an unsupervised estimation of a variability range of λ suitable for image
enhancement.

References

1. Banic, N., Loncaric, S.: Light random sprays retinex: exploiting the noisy illumi-
nation estimation. IEEE Signal Process. Lett. 20(12), 1240–1243 (2013)

2. Creutzfeldt, O., Lange-Malecki, B., Wortmann, K.: Darkness induction, retinex
and cooperative mechanisms in vision. Exp. Brain Res. 67(2), 270–283 (1987)

3. Gianini, G., Lecca, M., Rizzi, A.: A population based approach to point-sampling
spatial color algorithms. J. Opt. Soc. Am. A 33(12), 2396–2413 (2016)

4. Gianini, G., Manenti, A., Rizzi, A.: QBRIX: a quantile-based approach to retinex.
J. Opt. Soc. Am. A 31(12), 2663–2673 (2014)

5. Gianini, G., Rizzi, A., Damiani, E.: A retinex model based on absorbing markov
chains. Inf. Sci. 327, 149–174 (2016)

6. Kol̊as, Ø., Farup, I., Rizzi, A.: Spatio-temporal retinex-inspired envelope with sto-
chastic sampling: a framework for spatial color algorithms. J. Imaging Sci. Technol.
55(4), 40503-1–40503-10 (2011)

7. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 1, 1–11
(1971)

8. Lecca, M., Rizzi, A.: Tuning the locality of filtering with a spatially weighted
implementation of random spray retinex. JOSA A 32(10), 1876–1887 (2015)

9. Lecca, M., Rizzi, A., Gianini, G.: Energy-driven path search for termite retinex.
JOSA A 33(1), 31–39 (2016)

10. Marini, D., Rizzi, A.: Color constancy and optical illusions: a computer simula-
tion with Retinex theory. In: ICIAP 1993 7th International Conference on Image
Analysis and Processing, Monopoli, Italy, pp. 657–660 (1993)

11. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image
Vis. Comput. 18(13), 1005–1014 (2000)



T-Rex: A Milano Retinex Implementation Based on Intensity Thresholding 79

12. McCann, J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley, New York
(2011)

13. McCann, J.J., (ed.): Special session on retinex at 40. J. Electron. Imaging 13(1),
6–145 (2004)

14. Montagna, R., Finlayson, G.D.: Constrained Pseudo-Brownian motion and its
application to image enhancement. J. Opt. Soc. Am. A 28(8), 1677–1688 (2011)

15. Provenzi, E., De Carli, E., Rizzi, A., Marini, D.: Mathematical definition and analy-
sis of the retinex algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(12),
2613–2621 (2005)

16. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random
spray retinex: a new retinex implementation to investigate the local properties of
the model. Trans. Img. Proc. 16(1), 162–171 (2007)

17. Rizzi, A.: Designator retinex, milano retinex and the locality issue. Electron. Imag-
ing 2016(6), 1–5 (2016)

18. Rizzi, A., Algeri, T., Medeghini, G., Marini, D.: A proposal for contrast measure in
digital images. In: CGIV 2004 - Second European Conference on Color in Graphics,
Imaging, and Vision and Sixth International Symposium on Multispectral Color
Science, Aachen, pp. 187–192 (2004)

19. Rizzi, A., McCann, J.J.: Computer algorithms that mimic human vision must
respond to the spatial content in images. In: SPIE Electronic Imaging & Signal
Processing (2007)

20. Rizzi, A., McCann, J.J.: On the behavior of spatial models of color. In: Proceedings
of SPIE - The International Society for Optical Engineering, San Jose, CA, vol.
6493 (2007)

21. Rizzi, A., McCann, J.J., Bertalmio, M., Gianini, G. (eds.): Retinex at 50. Special
issue on Journal of Electronic Imaging, vol. 26(3) (2017)

22. Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite retinex: a
new implementation based on a colony of intelligent agents. J. Electron. Imaging
23(1), 013006 (2014)

23. Simone, G., Cordone, R., Lecca, M., Serapioni, R.P.: On edge-aware path-based
color spatial sampling for retinex: from termite retinex to light-energy driven ter-
mite retinex. J. Electron. Imaging 26(3), 031203 (2017). Special Issue, Retinex at
50


	T-Rex: A Milano Retinex Implementation Based on Intensity Thresholding
	1 Introduction
	2 T-Rex
	3 Experiments
	3.1 Evaluation Measures
	3.2 Results

	4 Conclusions
	References


