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Abstract. We study finite element approximations of Riesz representa-
tives of shape gradients. First, we provide a general perspective on its
error analysis. Then, we focus on shape functionals constrained by ellip-
tic boundary value problems and H1-representatives of shape gradients.
We prove linear convergence in the energy norm for linear Lagrangian
finite element approximations. This theoretical result is confirmed by
several numerical experiments.
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1 Introduction

A shape functional is a real map defined on a set of admissible shapes. The goal of
shape optimization is to modify an initial shape so that a shape functional attains
an extremal value. A common approach is to employ steepest descent algorithms
[8, Chap. 3.4]. Shapes may be parameterized by C1-mappings acting on reference
configurations. Then the shape gradient is a linear continuous operator on the
non-reflexive Banach space C1, and the concept of steepest descent may not
be well-defined; see [7, P. 103]. A compromise is to replace “steepest descents”
with Riesz representatives of shape gradients with respect to a Hilbert space X.
Henceforth, we refer to these representatives as X-representatives.

After recalling basic definitions of shape calculus, we provide a general per-
spective on error analysis in the energy norm for finite element approximations
of X-representatives of shape gradients. Then, we zero in on shape function-
als constrained to elliptic boundary value problems. For this case, insight into
shape Hessians [12,14] suggests to select representatives of shape gradients with
respect to X = H1

0 (D), where D is a hold-all domain that encloses the initial
guess Ω; see Fig. 1. For the choice X = H1

0 (D), it is natural to consider dis-
cretization by means of linear Lagrangian finite elements [2,14,15]. We show
that linear Lagrangian finite element approximations of H1-representatives of
shape gradients converge linearly with respect to the mesh width. Additionally,
this convergence rate does not deteriorate when state and adjoint variables are
replaced by linear Lagrangian finite elements solutions. This is an improvement
on the result presented in [2], which involves approximations of state and adjoint
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variables with quadratic finite elements. Finally, we provide numerical evidence
of the linear convergence rate predicted.

Ω

D

Fig. 1. The hold-all domain D encloses the domain Ω.

2 Shape Functionals and Shape Gradients

Let Ω ⊂ R
d, d = 2, 3, be an open bounded domain with piecewise smooth

boundary ∂Ω, and let J (Ω) ∈ R be a real-valued quantity of interest associated
to it. One is often interested in shape sensitivity, which quantifies the impact of
small perturbations of ∂Ω on the value J (Ω).

We model perturbations of the domain Ω through maps of the form

TV(x) := x + V(x), x ∈ R
d, (1)

where V is a vector field in C1(Rd;Rd). It can easily be proved that the map (1)
is a diffeomorphism for ‖V‖C1 < 1 [8, Lemma 6.13].

The value J (Ω) is interpreted as the realization of a shape functional, a real
map

J : V �→ J (TV(Ω))

defined on the ball {V ∈ C1(Rd;Rd); ‖V‖C1 < 1}. Clearly, J (Ω) = J (T0(Ω)).
The sensitivity of J (Ω) with respect to the perturbation direction V is given

by the Eulerian derivative of the shape functional J in the direction V, that is,

dJ (Ω;V) := lim
s↘0

J (Ts·V(Ω)) − J (Ω)
s

. (2)

We say that the shape functional is shape differentiable if Formula (2) defines
a linear and bounded operator V �→ dJ (Ω;V). In literature, this operator is
called shape gradient [9, Chap. 9, Sect. 3.4]. As mentioned in the introduction,
X-representatives of shape gradients can be employed to solve shape optimiza-
tion problems, that is, to find

Ω∗ ∈ argmin
Ω∈Uad

J (Ω),

where Uad denotes a set of admissible shapes.
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Often, the quantity of interest takes the form

J (Ω) =
∫

B

α∇(u − g) · ∇(u − g) + β(u − g)2 dx , (3)

where the state function u is the solution of a boundary value problem stated on
Ω, B ⊂ Ω, α and β are two real constants and g is a sufficiently smooth target
function. In this work, u ∈ H1

0 (Ω) is the (weak) solution of the elliptic boundary
value problem with homogeneous Dirichlet boundary conditions

− Δu + u = f in Ω, u = 0 on ∂Ω, (4)

that is, ∫
Ω

∇u · ∇v + uv dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω), (5)

where f ∈ H1(Ω). For the sake of brevity, we set g = 0. Then, the shape
gradient of the shape functional associated to (3) and constrained to (5) reads
[4, Formula (2.9)]

dJ (Ω;V) =
∫

Ω

(
(∇f · V)p + ∇u · (DV + DVT )∇p

+ div V(fp + χB(α∇u · ∇u + βu2) − ∇u · ∇p − up)
)

dx , (6)

where the adjoint function p ∈ H1
0 (Ω) is the solution of∫

Ω

∇p · ∇v + pv dx =
∫

B

α∇u · ∇v + βuv dx for all v ∈ H1
0 (Ω). (7)

Formula (3) is a prototypical PDE-constrained shape functional. In this work,
Formula (6) is used as test case for proving convergence estimates and performing
numerical experiments.

Remark 1. Formula (6) holds even if homogeneous Dirichlet boundary conditions
in (4) are replaced by homogeneous Neumann boundary conditions, in which case
the test and the trial spaces in (5) and (7) are replaced with H1(Ω).

Remark 2. For the sake of simplicity, we restrict our considerations to homo-
geneous boundary conditions. However, we expect that the results of this work
hold true for (sufficiently regular) inhomogeneous boundary conditions, too. Note
that Formula (6) should be adjusted accordingly; see [4, Sect. 2].

3 Error Analysis for Finite Element Representatives

3.1 The General Case

Let (·, ·)X denote the inner product of a Hilbert space X, and let us assume that
the shape gradient dJ is well-defined on X. The X-representative VX of dJ can
be computed by solving

(VX ,W)X = dJ (Ω;W) for all W ∈ X.
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Next, for an index set N , we introduce a family {Xn}n∈N of finite-dimensional
subspaces of X. Let

{
VXn

}
n∈N be a sequence of approximate X-representatives

of dJ defined by

(VXn ,Wn)X = dJ (Ω;Wn) for all Wn ∈ Xn.

By Cea’s Lemma [11, Theorem 2.4.1], there exists a constant C > 0 independent
of n such that

‖VX − VXn‖X ≤ C inf
Wn∈Xn

‖VX − Wn‖X . (8)

By and large, the shape gradient of a PDE-constrained shape functional
depends also on the state and the adjoint variables u and p. These functions are
solutions of boundary value problem. Usually, only numerical approximations uh

and ph are available. In that case, the approximate X-representative VXn has to
be replaced with the solution VXn

h of

(VXn

h ,Wn)X = dJh(Ω;Wn) for all Wn ∈ Xn, (9)

where dJh is an approximation of the operator dJ obtained by replacing the
functions u and p with their numerical approximations uh and ph.

By Strang Lemma [11, Theorem 4.1.1], the estimate (8) should be corrected
by adding a consistency term, that is,

‖VX − VXn

h ‖X ≤ C

(
inf

Wn∈Xn

‖VX − Wn‖X

+ sup
Wn∈Xn

|dJ (Ω;Wn) − dJh(Ω;Wn)|
‖Wn‖X

)
(10)

for a constant C > 0 independent of n and h.

3.2 H1-Representatives and Linear Lagrangian Finite Elements

A popular approach in shape optimization consists of replacing the initial domain
Ω with a polygon/polyhedron equipped with a finite element mesh Ωh. This
mesh is used to compute linear Lagrangian finite element approximations of the
functions u and p. Then, the coordinates of the mesh nodes are (iteratively)
updated according to the shape gradient [8, Chap. 6.5]. This is equivalent to
extending Ωh to a mesh Dh that covers a hold-all domain D and choosing lin-
ear Lagrangian finite elements to construct the finite-dimensional subspace Xn.
Formula (10), standard finite element estimates, and Proposition 1 readily imply
that, for this discretization, the approximate H1-representative of (6) satisfies

‖VX − VXn

h ‖H1(D) = O(h), (11)

which is the main result of this work.
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Proposition 1. Let Ω ⊂ R
d be a polyhedral domain, let f ∈ W 1,4(Ω) in (5),

and let us assume that the solution u of (5) satisfies

‖u‖W 2,4(Ω) ≤ C‖f‖L4(Ω). (12)

Let (Vh)h∈(0,1] be a family of H1
0 (Ω)-conforming piecewise linear Lagrangian

finite element spaces built on a quasi-uniform family of simplicial meshes
(T h)h∈(0,1], that is, a family of meshes such that

max{diam(T ) : T ∈ T h} ≤ h diam(Ω)

and
min{diam(BT ) : T ∈ T h} ≥ ρh diam(Ω) for all h ∈ (0, 1] ,

for a ρ > 0, where BT is the largest ball contained in the simplex T [10, Defini-
tion 4.4.13]. Let uh, ph ∈ Vh be solutions of

∫
Ω

∇uh · ∇vh + uhvh dx =
∫

Ω

fvh dx for all vh ∈ Vh, (13)
∫

Ω

∇ph · ∇vh + phvh dx =
∫

B

α∇uh · ∇vh + βuhvh dx for all vh ∈ Vh, (14)

where α, β ∈ R, B ⊂ Ω, and α = 0 or B = Ω, if d = 3. Let dJh(Ω;Wn)
denote the operator defined by Formula (6) with u and p replaced by uh and ph,
respectively. Then,

sup
Wn∈Xn

|dJ (Ω;Wn) − dJh(Ω;Wn)|
‖Wn‖H1(D)

≤ C(Ω, f, u, p)h (15)

for a constant C(Ω, f, u, p) > 0 independent of n and h.

Proof. First of all, note that

dJ (Ω;Wn) − dJh(Ω;Wn) =
∫

Ω

(∇f · Wn + f div Wn)(p − ph) dx

+
∫

Ω

∇u · (DWn + DWT
n )∇p − ∇uh · (DWn + DWT

n )∇ph dx

+
∫

Ω

div Wn (∇uh · ∇ph + uhph − ∇u · ∇p − up) dx

+
∫

B

div Wn

(
α(∇u · ∇u − ∇uh · ∇uh) + β(u2 − u2

h)
)

dx . (16)

We recall that, for generic functions q0 ∈ L2(Ω) and q1, q2 ∈ L4(Ω), the Cauchy-
Schwarz inequality implies

‖q0q1q2‖L1(Ω) ≤ ‖q0‖L2(Ω)‖q1q2‖L2(Ω) ≤ ‖q0‖L2(Ω)‖q1‖L4(Ω)‖q2‖L4(Ω). (17)
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Thus, the first integral in (16) may be estimated as follows1

|
∫

Ω

(∇f · Wn + f div Wn)(p − ph) dx | ≤ C‖Wn‖H1(Ω)‖f‖W 1,4(Ω)‖p − ph‖L4(Ω).

The second integral in (16) may be estimated as follows

|
∫

Ω

∇u · (DWn + DWT
n )∇p − ∇uh · (DWn + DWT

n )∇ph dx |

= |
∫

Ω

∇(u − uh) · (DWn + DWT
n )∇p + ∇uh · (DWn + DWT

n )∇(p − ph) dx |

≤ C‖Wn‖H1(Ω)

(
‖u − uh‖W 1,4(Ω)‖p‖W 1,4(Ω) + ‖uh‖W 1,4(Ω)‖p − ph‖W 1,4(Ω)

)
.

The third and the fourth integral in (16) may be estimated similarly.
Stability of the Ritz projection with respect to W 1,4(Ω) [3]2

‖uh‖W 1,4(Ω) ≤ C‖u‖W 1,4(Ω) (18)

implies ‖u − uh‖W 1,4(Ω) = O(h). To show

‖ph‖W 1,4(Ω) ≤ C‖p‖W 1,4(Ω), (19)

which in turn implies ‖p−ph‖W 1,4(Ω) = O(h), it is necessary to repeat the proof
of (18) given in [3] tracking the consistency term

∫
Ω

∇(p−ph)·∇gz
h+(p−ph)gz

h dx =
∫

B

α∇(u−uh)·∇gz
h+β(u−uh)gz

h dx . (20)

The discrete Green’s function gz
h ∈ Vh is given in [3] and satisfies ‖gz

h‖H1(Ω) =
O(h−d/2). By the Cauchy-Schwarz inequality and standard finite element esti-
mates,

|
∫

B

α∇(u − uh) · ∇gz
h + β(u − uh)gz

h dx | = O
(
(|α|h + |β|h2)h−d/2

)
. (21)

The stability result (19) holds if (21) is bounded independently of h. For this
reason, we need to set α = 0 when d = 3, unless B = Ω. In this latter case, by
Galerkin orthogonality, (20) is bounded by ‖(β − α)(u − uh)gz

h‖L1(Ω). 
�

Remark 3. In Proposition 1, we assume W 2,4-regularity of the solution u of (5).
This assumption is made to achieve linear convergence with respect to h in
the estimate (15). However, a three-dimensional polyhedral domain must satisfy
tight geometric conditions for u to be in W 2,4 [6, Theorem 7.1]. Nevertheless,
in [5] the authors show W 1,∞-stability of the Ritz projection for general convex
polyhedral domains. Therefore, we expect that (in the latter case) the right-
hand side of (15) can be replaced with a term of order O(hα), where the rate α
depends on the regularity of u and satisfies 0 < α ≤ 1.
1 Henceforth, C denotes a positive generic constant independent of n and h.
2 The assumption Ω ⊂ R

2 made in [3] can be replaced by Ω ⊂ R
3; cf. [10, Chap. 8].



Approximate Riesz Representatives of Shape Gradients 405

Remark 4. In [4,13], the authors show that one can expect superconvergence in
the approximation of the shape gradient dJ . In particular, they show that

|dJ (Ω;W) − dJh(Ω;W)| ≤ C‖W‖W 2,4(Ω)h
2. (22)

However, in the right-hand side of (22) appears the W 2,4(Ω)-norm of W. Note
that to prove convergence in the approximation of a H1-representative of dJ ,
the upper bound of

|dJ (Ω;W) − dJh(Ω;W)|
cannot involve a norm stronger than the H1-norm; see Eq. (10).

Remark 5. By the Hadamard structure theorem [9, Chap. 9, Theorem 3.6], most
shape gradients admit representatives g(Ω) in the space of distributions Dk(∂Ω),
that is,

dJ (Ω;V) = 〈g(Ω), γ∂ΩV · n〉Dk(∂Ω), (23)

where γ∂ΩV ·n is the normal component of V on the boundary ∂Ω. For instance,
if u, p ∈ H2(Ω), Formula (6) is equivalent to [4, Formula (2.10)]

dJ (Ω;V) =
∫

∂Ω

(V · n)
(

α∇u · ∇u + βu2 +
∂p

∂n
∂u

∂n

)
dS. (24)

We advise against the use of g(Ω) (which corresponds to the L2(∂Ω)-
representative of dJ ) to define descent directions because L2-representatives
might bristle with undesirable oscillations [1].

4 Numerical Experiments

We provide numerical evidence of the estimate (11). We employ linear
Lagrangian finite elements on quasi-uniform triangular meshes. The experi-
ments are performed in MATLAB and are partly based on the library LehrFEM
developed at ETHZ. Mesh generation and uniform refinement are performed
with the functions initmesh and refinemesh of the MATLAB PDE Toolbox
[16]. The boundary of computational domains is approximated by a polygon,
which is generally believed not to affect the convergence of linear finite elements
[10, Sect. 10.2]. For domains with curved boundaries, the refined mesh is always
adjusted to fit the boundary. Integrals in the domain are computed with a
3-point quadrature rule of order 3 in each triangle and line integrals with a
6-point Gauss quadrature on each segment.

We consider three different geometries for the domain Ω (see Fig. 2):

1. A disc of radius
√

6/5 centered in (0.01,0.02).
2. A triangle with corners located at

(−
√

6/5,−
√

6/5), (
√

6/5,−
√

6/5), (−
√

6/5,
√

6/5).

3. A circular sector of radius
√

6/5 centered in (0.01, 0.02) of angle 0.9 · 2π.
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Fig. 2. The domain Ω is chosen to be either a disc or a triangle or a sector.

The source function in (5) is

f(x, y) = cos(x + π/4).

The hold-all domain D is a square with edges of length 3 centered in the origin.
The region of interest B is the whole domain Ω. We set α = 0 and β = 1 in (3).

The reference value VX is approximated by computing VXn

h on a mesh with
an extra level of refinement. In light or Remark 5, we employ both Formula (6)
and Formula (24) to evaluate the right-hand side dJh in (9). To avoid biased
results, we display convergence history of ‖VX − VXn

h ‖H1(D) both with self- and
cross-comparison.

In Fig. 3, we plot the convergence history when the domain Ω is either a
disc (first row) or a triangle (second row). As predicted by (11), we observe
linear convergence when the right-hand side in (9) is evaluated according to (6).
Interestingly, using Formula (24) seems not to affect the convergence rate. The
same behavior is observed when homogeneous Dirichlet boundary conditions
are replaced by homogeneous Neumann boundary conditions. Note that, in this
latter case, the boundary-integral counterpart of Formula (6) reads [4]

dJ (Ω;V) =
∫

∂Ω

V · n (∇u · ∇(αu − p) + u(βu − p) + fp) dS. (25)

For the sake of brevity, we omit these plots.
In Fig. 4 (first row), we plot the convergence history when the domain Ω is

a sector. This domain does not guarantee that u and p are in H2(Ω) because it
has a re-entrant corner. We observe that the convergence rates decrease to frac-
tional values. This is a consequence of the lower regularity of the functions u and
p. Additionally, the convergence rates depend on the formula used to evaluate
dJh. In particular, in the cross-comparison, the convergence line saturates when
Formula (6) is used. This may be due to a poor accuracy of the reference solu-
tion. However, we point out that Formulas (6) and (24) may not be equivalent
due to the lack of regularity of the functions u and p; cf. Remark 5. Curiously,
for homogeneous Neumann boundary conditions, the presence of the re-entrant
corner seems to have a milder impact on convergence rates; see Fig. 4 (second
row). However, note that the approximate algebraic convergence rates of

‖u − uh‖H1(Ω) and ‖p − ph‖H1(Ω)

with respect to h drop to 0.67 and 0.62, respectively.
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Fig. 3. Convergence history when Ω is a disc (first row) and a triangle (second row).
Line refers to evaluation of dJh according to Formula (6); line to Formula
(24). We observe the linear convergence rate predicted by (11).

By the Hadamard structure theorem (see Remark 5), vector fields Wn asso-
ciated to interior nodes of the mesh Ωh lie in the kernel of dJ . However, these
vector fields are not in the kernel of dJh because u and p are replaced by finite
element approximations. Schulz et al. [14] report that this numerical error might
largely affect the computation of the Riesz representative. Although we have not
experienced this issue, we have repeated the numerical experiments by setting to
zero the values of dJh(Ω;Wn) for all Wn associated to interior nodes of Ωh. We
have not observed any significative difference in the results. Thus, we acknowl-
edge that computational resources might be saved by dropping the evaluation
of dJh(Ω;Wn) for vector fields associated to interior nodes of Ωh.
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Circular Sector (Dirichlet BC)
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Circular Sector (Neumann BC)
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Fig. 4. Convergence history when Ω is a sector. Line refers to evaluation of dJh

according to Formula (6); line to Formula (24)(in the first row) and to Formula
(25) (in the second row). For Dirichlet boundary conditions, convergence rates decay
to fractional values.

5 Conclusion

Most shape optimization algorithms rely on Riesz representatives of shape gradi-
ents with respect to a chosen Hilbert space. Numerical discretization is inevitable
when the shape functional is constrained to a boundary value problem. Formula
(10) indicates how to estimate the discretization error when the Riesz represen-
tative is computed on a finite-dimensional trial space and the shape gradient can
be evaluated only approximately.

For linear Lagrangian approximations of H1-representatives, Proposition 1
implies that the discretization error decays linearly with respect to the mesh
width h. This convergence behavior is observed in several numerical experiments.

As a consequence of the Hadamard structure theorem, most shape gradi-
ents can be equivalently formulated as boundary or volume integrals. Although
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Proposition 1 relies on the volume formulation of the shape gradient, we have
observed linear convergence independently of the formula employed to evaluate
dJ . However, we advise to rely on the volume-based formula because it imposes
lower regularity assumptions on the state and the adjoint variables [4,9,15].
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mization based on Steklov–Poincaré-type metrics. SIAM J. Optim. 26(4), 2800–
2819 (2016). doi:10.1137/15M1029369

15. Laurain, A., Sturm, K.: Domain expression of the shape derivative and application
to electrical impedance tomography. WIAS Preprint No. 1863 (2013)

16. MATLAB and Partial Differential Equation Toolbox (R2015a), The MathWorks
Inc., Natick, Massachussets, United States (2015)

http://dx.doi.org/10.1137/15M1029369

	Approximate Riesz Representatives of Shape Gradients
	1 Introduction
	2 Shape Functionals and Shape Gradients
	3 Error Analysis for Finite Element Representatives
	3.1 The General Case
	3.2 H1-Representatives and Linear Lagrangian Finite Elements

	4 Numerical Experiments
	5 Conclusion
	References


