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Abstract. A least-squares method is developed for estimating parame-
ters in a size-structured population model with distributed states-at-
birth from field data. First and second order finite difference schemes for
approximating the nonlinear-nonlocal partial differential equation model
are utilized in the least-squares problem. Convergence results for the
computed parameters are established. Numerical results demonstrating
the efficiency of the technique are provided.

1 Introduction

It is often the case that direct observations of vital rates of individual organisms
are not accessible and our knowledge of the vital rates is incomplete. Therefore,
the inverse problem approach often plays an important role in deducing such
information at the individual level from observation at the population level. In
recent years substantial attention has been given to inverse problems governed
by age/stage/size structured population models [1–3,6–9,12,13]. Methodologies
applied to solve such inverse problems include the least-squares approach [1,3,9]
and the fixed point iterative technique [17]. The least-squares approach has been
often used in inverse problems governed by size-structured models. For exam-
ple, in [8,9] the authors used least-squares method to estimate the growth rate
distribution in a linear size-structured population model. A similar technique
was applied to a semi-linear size-structured model in [14] where the mortality
rate depends on the total population due to competition between individuals.
Furthermore, such least-squares methodology has been applied for estimat-
ing parameters in general conservation laws [13]. Therein the author utilizes
monotone finite-difference schemes to numerically solve the conservation law
and present numerical results for estimation the flux function from numerically
generated data. And in [3], the authors solved an inverse problem governed by
structured juvenile-adult model. Therein, the least-squares approach was used
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to estimate growth, mortality and reproduction rates in the adult stage from
field data on an urban green tree frog population. The estimated parameters
were then utilized to understand the long-term dynamics of this green tree frog
population.

In this paper we consider the following nonlinear Gurtin-MacCamy type
model with distributed states-at-birth:

∂

∂t
p(x, t; θ) +

∂

∂x
(g(x, t,Q(t; θ))p(x, t; θ)) = −μ(x, t,Q(t; θ))p(x, t; θ)

+
∫ xmax

xmin

β(x, y, t,Q(t; θ))p(y, t; θ)dy, (x, t) ∈ (xmin, xmax) × (0, T ),

g(xmin, t, Q(t; θ))p(xmin, t; θ) = 0, t ∈ [0, T ],
p(x, 0; θ) = p0(x), x ∈ [xmin, xmax].

(1)
Here, θ = (g, μ, β) is the vector of parameters to be identified. The function
p(x, t; θ) is the parameter-dependent density of individuals of size x at time t.

Therefore, Q(t; θ) =
∫ xmax

xmin

p(x, t; θ)dx provides the total population at time t

which depends on the vector of parameters θ = (g, μ, β). The functions g and μ
represent the individual growth and mortality rates, respectively. It is assumed
that individuals may be recruited into the population at different sizes with
β(x, y, t,Q) representing the rate at which an individual of size y gives birth to
an individual of size x. Henceforth, we will call the model (1) Distributed Size
Structured Model and abbreviate it as DSSM.

The main goal of this paper is to develop a least-squares approach for esti-
mating the parameter θ from population data and to provide convergence results
for the parameter estimates. The paper is organized as follows. In Sect. 2, we set
up a least-squares problem and present finite difference schemes for comput-
ing an approximate solution to this least-squares problem. In Sect. 3 we provide
convergence results for the computed parameters. In Sect. 4, numerical examples
showing the performance of the least-squares technique and an application to a
set of field data on green tree frogs are presented.

2 The Least-Squares Problem and Approximation
Schemes

Let D1 = [xmin, xmax] × [0, T ] × [0,∞) and D2 = [xmin, xmax] × [xmin, xmax] ×
[0, T ] × [0,∞) throughout the discussion. Let B = C1

b (D1) × Cb(D1) × Cb(D2),
where Cb(Ω) denotes the Banach space of bounded continuous functions on Ω
endowed with the usual supremum norm and C1

b (Ω) is the Banach space of
bounded continuous functions with bounded continuous derivatives on Ω and
endowed with the usual supremum norm. Clearly, B is a Banach space when
endowed with the natural product topology. Let c be a sufficiently large positive
constant and assume that the admissible parameter space Θ is any compact
subset of B (endowed with the topology of B) such that every θ = (g, μ, β) ∈ Θ
satisfies (H1)–(H4) below.
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(H1) g ∈ C1
b (D1) with gx(x, t,Q) and gQ(x, t,Q) being Lipschitz continuous in x

with Lipschitz constant c, uniformly in t and Q. Moreover, 0 < g(x, t,Q) ≤
c for x ∈ [xmin, xmax) and g(xmax, t, Q) = 0.

(H2) μ ∈ Cb(D1) is Lipschitz continuous in x and Q with Lipschitz constant c,
uniformly in t. Also, 0 ≤ μ(x, t,Q) ≤ c.

(H3) β ∈ Cb(D2) is Lipschitz continuous in Q with Lipschitz constant c, uni-
formly in x, y and t. Also, 0 ≤ β(x, y, t,Q) ≤ c and for every partition
{xi}N

i=1 of [xmin, xmax], we have

sup
(y,t,Q)∈[xmin,xmax]×[0,T ]×[0,∞)

N∑
i=1

|β(xi, y, t, Q) − β(xi−1, y, t, Q)| ≤ c.

(H4) p0 ∈ BV ([xmin, xmax]), the space of functions with bounded total variation
on [xmin, xmax], and p0(x) ≥ 0.

We now define a weak solution to the model (1).

Definition 21. Given θ ∈ Θ, by a weak solution to problem (1) we mean a
function p(·, ·; θ) ∈ L∞([xmin, xmax] × [0, T ]), p(·, t; θ) ∈ BV ([xmin, xmax]) for
t ∈ [0, T ], and satisfies
∫ xmax

xmin

p(x, t; θ)φ(x, t)dx −
∫ xmax

xmin

p0(x)φ(x, 0)dx

=

∫ t

0

∫ xmax

xmin

p(x, τ ; θ)[φτ (x, τ) + g(x, τ, Q(τ ; θ))φx(x, τ) − μ(x, τ, Q(τ ; θ))φ(x, τ)]dxdτ

+

∫ t

0

∫ xmax

xmin

∫ xmax

xmin

β(x, y, τ, Q(τ ; θ))p(y, τ ; θ)φ(x, τ)dydxdτ.

(2)
for every test function φ ∈ C1((xmin, xmax) × (0, T )) and t ∈ [0, T ].

We are interested in the following least-squares problem: given data Xs which
corresponds to the number of individuals at time ts, s = 1, 2, · · · , S, find a
parameter θ = (g, μ, β) ∈ Θ such that the weighted least-squares cost functional

F (θ) =
S∑

s=1
|W (Q(ts; θ)) − W (Xs)|2 is minimized over the admissible parameter

space Θ, i.e., find θ∗ such that

θ∗ = arg min
θ∈Θ

F (θ) = arg min
θ∈Θ

S∑
s=1

|W (Q(ts; θ)) − W (Xs)|2 , (3)

where W ∈ C([0,∞)) is a weight function.
In order to numerically approximate the solution to the minimization prob-

lem (3), we first need to approximate the solution of model (1). To this end, we
utilize similar finite-difference approximation schemes as those developed in [5].
Suppose that the intervals [xmin, xmax] and [0, T ] are divided into N and L
subintervals, respectively. The following notations will be used throughout the
pater: Δx = (xmax − xmin)/N and Δt = T/L. The discrete mesh points are
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given by xi = xmin + iΔx, tk = kΔt for i = 0, 1, · · · , N , k = 0, 1, · · · , L.
For ease of notation, we take a uniform mesh with constant sizes Δx and Δt.
More general nonuniform meshes can be similarly considered. We shall denote by
pk

i (θ) and Qk(θ) the finite difference approximation of p(xi, tk; θ) and Q(tk; θ),
respectively. For convenience we will also use the notation pk

i and Qk without
explicitly stating their dependence on θ. We also let gk

i = g(xi, tk, Qk), μk
i =

μ(xi, tk, Qk), βk
i,j = β(xi, yj , tk, Qk). Here, Qk =

N∑
i=1

pk
i Δx.

We define the 	1, 	∞ norms and TV (total variation) seminorm of the grid
functions pk by

‖pk‖1 =
N∑

i=1

|pk
i |Δx, ‖pk‖∞ = max

0≤i≤N
|pk

i |, TV (pk) =
N−1∑
i=0

|pk
i+1 − pk

i |,

and the finite difference operators by

Δ+pk
i = pk

i+1 − pk
i , 0 � i � N − 1, Δ−pk

i = pk
i − pk

i−1, 1 � i � N.

Throughout the discussion, we impose the following CFL condition concerning
Δx and Δt:

(H5) Δt
Δx + Δt � 1

c .

We discretize model (1) using the following first order explicit upwind finite
difference scheme (FOEU):

pk+1
i −pk

i

Δt + gk
i pk

i −gk
i−1pk

i−1
Δx = −μk

i pk
i +

N∑
j=1

βk
i,jp

k
j Δx, 1 ≤ i ≤ N, 0 ≤ k ≤ M − 1,

gk
0pk

0 = 0, 0 ≤ k ≤ M,
p0i = p0(xi), 0 ≤ i ≤ N.

(4)
We could write the first equation in (4) equivalently as

pk+1
i =

Δt

Δx
gk

i−1p
k
i−1 +

(
1 − Δt

Δx
gk

i − μk
i Δt

)
pk

i +

⎛
⎝ N∑

j=1

βk
i,jp

k
j Δx

⎞
⎠ Δt,

1 ≤ i ≤ N, 0 ≤ k ≤ M − 1. (5)

It is easy to check that under assumptions (H1)–(H4) FOEU scheme con-
verges to a unique weak solution of system (1) as proved in [5]. The above
approximation can be extended to a family of functions {pΔx,Δt(x, t; θ)} defined
by pΔx,Δt(x, t; θ) = pk

i (θ) for (x, t) ∈ [xi−1, xi) × [tk−1, tk), i = 1, 2, · · · , N, k =
1, 2, · · · ,M .

Since the parameter set is infinite dimensional, a finite-dimensional approx-
imation of the parameter space is necessary for computing minimizers.
Thus, we consider the following finite-dimensional approximations of (3): Let
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QΔx,Δt(t; θ) =
∫ xmax

xmin

pΔx,Δt(x, t; θ)dx denote the finite difference approxima-

tion of the total population and consider the finite dimensional minimization
problem

arg min
θ∈Θm

FΔx,Δt(θ) = arg min
θ∈Θm

S∑
s=1

|W (QΔx,Δt(ts; θ)) − W (Xs)|2 . (6)

Here, Θm ⊆ Θ is a sequence of compact finite-dimensional subsets that approx-
imate the parameter space Θ, i.e., for each θ ∈ Θ, there exist a sequence of
θm ∈ Θm such that θm → θ in the topology of B as m → ∞.

Remark 22. If the compact parameter space Θ is chosen to be finite dimen-
sional, then the approximation space sequence can be taken to be Θm = Θ.

Since the FOEU (4) scheme is first order it would require a large number of grid
points to achieve high accuracy. Thus, we next propose a second order minmod
finite difference scheme based on MUSCL schemes [5,15,18] to approximate the
solutions of the DSSM model (1) in the least-squares problem. We begin by using
the following second order approximations for the integrals:

Qk =
N∑

i=0

�

pk
i Δx =

1
2
pk
0Δx +

N−1∑
i=1

pk
i Δx +

1
2
pk

NΔx

and
N∑

j=0

�

βk
i,jp

k
j Δx =

1
2
βk

i,0p
k
0Δx +

N−1∑
j=1

βk
i,jp

k
j Δx +

1
2
βk

i,Npk
NΔx.

Then we approximate the model (1) by

pk+1
i −pk

i

Δt
+

f̂k

i+1
2
−f̂k

i− 1
2

Δx
= −μk

i pk
i +

N∑
j=0

�
βk

i,jp
k
j Δx, i = 1, 2, · · · , N, k = 0, 1, · · · , L − 1,

gk
0pk

0 = 0, k = 0, 1, · · · , L,
p0

i = p0(xi), i = 0, 1, · · · , N.

(7)
Here, the limiter is defined as

f̂k
i+ 1

2
=

{
gk

i pk
i + 1

2 (gk
i+1 − gk

i )pk
i + 1

2gk
i mm(Δ+pk

i ,Δ−pk
i ), i = 2, · · · , N − 2,

gk
i pk

i , i = 0, 1, N − 1, N,
(8)

where mm(a, b) = sign(a)+sign(b)
2 min(|a|, |b|).

3 Convergence Theory for the Parameter Estimation
Problem Using FOEU

The results in this section pertain to the case when (1) is approximated by the
FOEU scheme (4). Our future efforts will focus on extending these theoretical
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results to case when the model (1) is approximated by the higher order SOEM
scheme (7). We establish the convergence results for the parameter estimation
problem using an approach based on the abstract theory in [8]. To this end, we
have the following theorem:

Theorem 31. Let θr = (gr, μr, βr) ∈ Θ. Suppose that θr → θ in Θ and
Δxr,Δtr → 0 as r → ∞. Let pΔxr,Δtr

(x, t; θr) denote the solution of the finite
difference scheme with parameter θr and initial condition p0, and let p(x, t; θ)
be the unique weak solution of the problem with initial condition p0(x) and
parameter θ. Then pΔxr,Δtr

(·, t; θr) → p(·, t; θ) in L1(xmin, xmax), uniformly
in t ∈ [0, T ].

Proof. Define pk,r
i = pk

i (θr). From the fact that Θ is compact and using similar
arguments as in [5], there exist positive constants c1, c2, c3 and c4 such that
‖pk,r‖1 ≤ c1, ‖pk,r‖∞ ≤ c2, TV (pk,r) ≤ c3 and

N∑
i=1

∣∣∣∣p
m,r
i − pn,r

i

Δtr

∣∣∣∣ Δxr ≤ c4(m − n),

where m > n. Thus, there exist p̂ ∈ BV ([xmin, xmax]) such that
pΔxr,Δtr

(·, t; θr) → p̂(·, t) in L1(xmin, xmax) uniformly in t. Hence, from the
uniqueness of bounded variation weak solutions which can be established using
similar techniques as in [5], we just need to show that p̂(x, t) is the weak solution
corresponding to the parameter θ.

In order to prove this, let φ ∈ C1 ([xmin, xmax] × [0, T ]) and denote the value
of φ(xi, tk) by φk

i . Multiplying Eq. (5) by φk+1
i and rearranging some terms we

have

pk+1,r
i φk+1

i − pk,r
i φk

i = pk,r
i (φk+1

i − φk
i ) + Δt

Δx [gk,r
i−1p

k,r
i−1(φ

k+1
i − φk+1

i−1 )

−(gk,r
i−1p

k,r
i−1φ

k+1
i−1 − gk,r

i pk,r
i φk+1

i )]

−μk,r
i pk,r

i φk+1
i Δt +

N∑
j=1

βk,r
i,j pk,r

j φk+1
i ΔxΔt.

(9)

Multiplying the above equation by Δx, summing over i = 1, 2, · · · , N , k =
0, 1, · · · ,M − 1, and applying pk

0 = 0 and gk
N = 0 we obtain,

N∑
i=1

(
pL,r

i φL
i − p0,r

i φ0
i

)
Δx =

M−1∑
k=0

N∑
i=1

pk,r
i

φk+1
i −φk

i

Δt ΔxΔt

+
M−1∑
k=0

N−1∑
i=0

gk,r
i−1p

k,r
i−1

φk+1
i −φk+1

i−1
Δx ΔxΔt

−
M−1∑
k=0

N∑
i=1

μk,r
i pk,r

i φk+1
i ΔxΔt

+
M−1∑
k=1

N∑
i=1

N∑
j=1

βk,r
i,j pk,r

j φk+1
i ΔxΔtΔx.

(10)

Using the fact that θr → θ as r → ∞ in Θ, passing to the limit in (10) we find
that p̂(x, t) is the weak solution corresponding to the parameter θ.
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Since W is a continuous on [0,∞), as an immediate consequence of Theorem 31,
we obtain the following.
Corollary 32. Let pΔxr,Δtr

(x, t; θr) denote the numerical solution of the finite
difference scheme with parameter θr → θ in Θ and Δxr,Δtr → 0 as r → ∞.
Then

FΔxr,Δtr
(θr) → F (θ), as r → ∞.

In the next theorem, we establish the continuity of the approximate cost func-
tional in the parameter θ ∈ Θ (a compact set), so that the computational prob-
lem of finding an approximate minimizer has a solution.
Theorem 33. Let Δx and Δt be fixed. For each θ ∈ Θ, let pΔx,Δt(x, t; θ) denote
the solution of the finite difference scheme and θr → θ as r → ∞ in Θ; then
pΔx,Δt(·, t; θr) → pΔx,Δt(·, t; θ) as r → ∞ in L1(xmin, xmax) uniformly in t ∈
[0, T ].

Proof. Fix Δx and Δt. Define pk,θr

i and pk,θ
i to be the solution of the finite

difference scheme with parameter θr and θ, respectively. Let vk,θ
i = pk,θr

i − pk,θ
i .

Then vk,θ
i satisfy the following

vk+1,θ
i = Δt

Δx

(
gk,θr

i−1 pk,θr

i−1 − gk,θ
i−1p

k,θ
i−1

)
+ (pk,θr

i − pk,θ
i ) − Δt

Δx

(
gk,θr

i pk,θr

i − gk,θ
i pk,θ

i

)

−Δt(μk,θr

i pk,θr

i − μk,θ
i pk,θ

i ) +
N∑

j=1

(
βk,θr

i,j pk,θr

j − βk,θ
i,j pk,θ

j

)
ΔxΔt,

1 ≤ i ≤ N, 0 ≤ k ≤ M − 1,

vk+1,θ
0 = pk+1,θr

0 − pk+1,θ
0 = 0, 0 ≤ k ≤ M − 1.

(11)

Here, Qk,θr

=
N∑

i=1

pk,θr

i Δx, gk,θr

i = gθr

(xi, tk, Qk,θr

) and similar notations are

used for μk,θr

i and βk,θr

i,j . Using the first equation in (11) and assumption (H5)
we obtain

N∑
i=1

|vk+1,θ
i |Δx ≤

N∑
i=1

[
1 − Δtμk,θr

i +

(
N∑

j=1

βk,θr

i,j Δx

)
Δt

]
|vk,θ

i |Δx − Δt
N∑

i=1

(
gk,θr

i |vk,θ
i |

−gk,θr

i−1 |vk,θ
i−1|
)

+ Δt
N∑

i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

+Δt
N∑

i=1

|μk,θr

i − μk,θ
i |pk,θ

i Δx + Δt
N∑

i=1

N∑
j=1

|βk,θr

i,j − βk,θ
i,j |pk,θ

j ΔxΔx.

(12)
By assumption (H1), and (11)

N∑
i=1

(
gk,θr

i |vk,θ
i | − gk,θr

i−1 |vk,θ
i−1|

)
=

(
gk,θr

N |vk,θ
N | − gk,θr

0 |vk,θ
0 |

)
= 0. (13)

By assumptions (H2) and (H3) we have
N∑

i=1

[
1 − μk,θr

i Δt +

(
N∑

j=1

βk,θr

i,j Δx

)
Δt

]
|uk,θ

i |Δx ≤ (1 + c(xmax − xmin)Δt) ‖vk,θ‖1.

(14)
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By assumption (H1),

N∑
i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

≤ supi |gk,θr

i−1 − gk,θ
i−1|

N∑
i=1

|pk,θ
i − pk,θ

i−1| +
N∑

i=1

∣∣∣∣
(

gk,θr

i −gk,θr

i−1

)
−(gk,θ

i −gk,θ
i−1)

Δx

∣∣∣∣ pk,θ
i Δx.

(15)∣∣∣∣
(

gk,θr

i −gk,θr

i−1

)
−(gk,θ

i −gk,θ
i−1)

Δx

∣∣∣∣ ≤
∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θr

)

−gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)
∣∣ dτ

+
∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)

−gθ
x(τxi−1 + (1 − τ)xi, tk, Qk,θ)

∣∣ dτ.

(16)

Assumption (H1), (15) and (16) yield

N∑
i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i | ≤ supi |gk,θr

i−1 − gk,θ
i−1|

N∑
i=1

|pk,θ
i − pk,θ

i−1|

+
N∑

i=1

[∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θr

)

−gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)
∣∣∣ dτ

+

∫ 1

0

∣∣∣gθr

x (τxi−1 + (1 − τ)xi, tk, Qk,θ)

−gθ
x(τxi−1 + (1 − τ)xi, tk, Qk,θ)

∣∣ dτ
]
pk,θ

i Δx.

(17)
Note that

|Qk,θr − Qk,θ| =

∣∣∣∣∣
N∑

i=1

(pk,θr

j − pk,θ
j )Δx

∣∣∣∣∣ ≤
N∑

i=1

|vk,θ
i |Δx = ‖vk,θ‖1. (18)

By the assumption (H1) and the equation above, (17) yields

N∑
i=1

|
(
gk,θr

i−1 − gk,θ
i−1

)
pk,θ

i−1 −
(
gk,θr

i − gk,θ
i

)
pk,θ

i |

≤ supi |gk,θr

i−1 − gk,θ
i−1|TV (pk,θ) +

(
c‖vk,θ‖1 + supi

∫ 1

0

∣∣∣gθr

x (x̄i, tk, Qk,θ)

−gθ
x(x̄i, tk, Qk,θ)

∣∣ dx
) ‖pk,θ‖1,

(19)

where x̄i = τxi−1 + (1 − τ)xi. By assumption (H2)

N∑
i=1

|μk,θr

i − μk,θ
i |pk,θ

i Δx ≤ supi |μk,θr

i − μk,θ
i |‖pk,θ‖1. (20)

And from assumption (H3) we obtain

N∑
i=1

N∑
j=1

|βk,θr

i,j − βk,θ
i,j |pk,θ

j ΔxΔx ≤ supi,j |βk,θr

i,j − βk,θ
i,j |‖pk,θ‖1. (21)
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Using (13)–(21) we arrive at

‖vk+1,θ‖1 ≤ (1 + c(xmax − xmin)Δt)‖vk,θ‖1
+Δt

[
supi |μk,θr

i − μk,θ
i |‖pk,θ‖1 + supi,j |βk,θr

i,j − βk,θ
i,j ‖pk,θ‖1

+ supi |gk,θr

i−1 − gk,θ
i−1|TV (pk,θ) +

(
c‖vk,θ‖1 + supi

∫ 1

0

∣∣∣gθr

x (x̄i, tk, Qk,θ)

−gθ
x(x̄i, tk, Qk,θ)

∣∣ dx
) ‖pk,θ‖1

]
.

(22)
Note that

|μk,θr

i − μk,θ
i | ≤ |μθr

(xi, tk, Qk,θr

) − μθr

(xi, tk, Qk,θ)| + |μθr

(xi, tk, Qk,θ)
−μθ(xi, tk, Qk,θ)|,

|gk,θr

i−1 − gk,θ
i−1| ≤ |gθr

(xi−1, tk, Qk,θr

) − gθr

(xi−1, tk, Qk,θ)| + |gθr

(xi−1, tk, Qk,θ)
−gθ(xi−1, tk, Qk,θ)|,

|βk,θr

i,j − βk,θ
i,j | ≤ |βθr

(xi, yj , tk, Qk,θr

) − βθr

(xi, yj , tk, Qk,θ)|
+|βθr

(xi, yj , tk, Qk,θ) − βθ(xi, yj , tk, Qk,θ)|.
(23)

Thus, by assumptions (H1)–(H4) and the Eqs. (23) (18), we have

supi |μk,θr

i − μk,θ
i | ≤ c‖vk,θ‖1 + supi |μθr

(xi, tk, Qk,θ) − μθ(xi, tk, Qk,θ)|,
supi |gk,θr

i−1 − gk,θ
i−1| ≤ c‖vk,θ‖1 + supi |gθr

(xi−1, tk, Qk,θ) − gθ(xi−1, tk, Qk,θ)|,
supi,j |βk,θr

i,j − βk,θ
i,j | ≤ c‖vk,θ‖1 + supi,j |βθr

(xi, yj , tk, Qk,θ) − βθ(xi, yj , tk, Qk,θ)|.
Set δk = 3c‖pk,θ‖1 + cTV (pk,θ) and

ρr
k = ‖pk,θ‖1

(
supi |μθr

(xi, tk, Qk,θ) − μθ(xi, tk, Qk,θ)| + supi,j |βθr

(xi, yj , tk, Qk,θ)

−βθ(xi, yj , tk, Qk,θ)|
+ supi

∫ 1

0

∣∣∣gθr

x (x̄i, tk, Qk,θ) − gθ
x(x̄i, tk, Qk,θ)

∣∣∣ dx

)
+ supi |gθr

(xi−1, tk, Qk,θ)

−gθ(xi−1, tk, Qk,θ)|TV (pk,θ).

Then we have

‖vk+1,θ‖1 ≤ (1 + c(xmax − xmin)Δt)‖vk,θ‖1 + Δt(ρr
k + δk)‖vk,θ‖1. (24)

Since for each k, ρr
k → 0 as r → ∞, the result follows from (24).

Next, we establish subsequential convergence of minimizers of the finite dimen-
sional problem (6) to a minimizer of the infinite dimensional problem (3).

Theorem 34. Suppose that Θm is a sequence of compact subsets of Θ. More-
over, assume that for each θ ∈ Θ, there exist a sequence of θm ∈ Θm such that
θm → θ as m → ∞. Then the function FΔx,Δt has a minimizer over Θm. Fur-
thermore, if θr

m denotes a minimizer of FΔxr,Δtr
over Θm and Δxr,Δtr → 0,

then any subsequence of θr
m has a further subsequence which convergence to a

minimizer of F .

Proof. The proof here is a direct application of the abstract theory in [10], base
on the convergence of FΔxr,Δtr

(θr) → F (θ).
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4 Numerical Results

In this section we present several numerical simulations to demonstrate the per-
formance of the parameter estimation methodology. Although the theory pre-
sented here applies for the case of infinite dimensional parameter space Θ, for
simplicity we restrict the unknown parameter space to finite-dimensional in the
examples below.

4.1 Convergence of Parameter Estimates Computed by FOEU
and SOEM in the Least-Squares Problem

In this example, we test the performance of the parameter-estimation technique
using both FOEU and SOEM approximation schemes. As a first step in gen-
erating data, we choose Δx = 0.0100,Δt = 0.0025, xmin = 0, xmax = 1, T =
1.0, g(x, t,Q) = (1−x)/2, β(x, y, t,Q) = 10 sin(4t)+10, μ(x, t,Q) = 1/4 exp(Q),
and the initial condition

p0(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.8, 0.25 ≤ x ≤ 0.45,
2.5, 0.45 < x ≤ 0.65,
0.7, 0.65 < x < 0.8,
0, else.

We then solve system (1) with this choice of parameters in MATLAB using
SOEM discretization and collect the resulting total population Q(tk) =∫ 1

0

p(x, tk)dx for tk = k/20, k = 1, · · · , 20. Observe that while p(x, t) is dis-

continuous because p0(x) is, Q(t) is a smooth function.
Assume all parameters are known except for μ = b exp(Q) with b being an

unknown parameter to be estimated. In our parameter estimation simulations,
we fixed Δx = 0.005, Δt = 0.0025 for FOEU scheme. As for the SOEM scheme,
the mesh sizes were chosen to be four times larger, that is, Δx = 0.020 and
Δt = 0.010. We began with the above-mentioned data without noise in the
least-squares problem described in Sect. 2. We then modified the data by adding
normally distributed noise with mean zero and standard deviation σ = 0.05, 0.10,
and 0.15, respectively, to the data. To solve the least-squares minimization prob-
lem we set θ = b and use the goal function

F (θ) =
S∑

s=1

|Q(ts; θ) − Xs|2,

i.e., W = 1. For each data set the least-squares minimization process was per-
formed to estimate b using both numerical schemes. Our simulation results cor-
roborate the convergence results of computed parameters. Figure 1 demonstrates
the agreement of best fit model solutions obtained using FOEU and SOEM
schemes in solving DSSM with the corresponding data sets with no noise as well
as with different noise levels. A comparison of the two finite difference methods



Parameter Estimation in a Size-Structured Population Model 53

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

Q
(t)

 

 

data without noise
fitting (FOEU)
fitting (SOEM)

(a)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

Q
(t)

 

 

data with noise (σ =0.05)

fitting (FOEU)
fitting (SOEM)

(b)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

Q
(t)

 

 

data with noise (σ =0.10)
fitting (FOEU)
fitting (SOEM)

(c)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

Q
(t)

 

 

data with noise (σ =0.15)
fitting (FOEU)
fitting (SOEM)

(d)

Fig. 1. (a) Comparison of data sets without noise and the corresponding best fit model
solution using FOEU and SOEM schemes in solving DSSM. (b) (c) (d) Comparison of
data at different noise levels (σ = 0.05, 0.10, 0.15) and the corresponding best fit model
solutions using FOEU and SOEM schemes in solving DSSM.
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performing in the least-squares parameter estimation process was provided in
Table 1. It can be seen that using the SOEM scheme for approximating DSSM
in the least-squares problem one could obtain a similar estimated value b (where
the least-squares errors are at the same scale) with less than 10% of the CPU
time compared to that using the FOEU scheme.

Table 1. Performance comparisons of FOEU and SOEM schemes in least-squares
parameter estimates process

Without noise With noise

σ = 0.05 σ = 0.10 σ = 0.15

FOEU SOEM FOEU SOEM FOEU SOEM FOEU SOEM

Estimated value of b 0.2507 0.2503 0.2674 0.2768 0.2853 0.2837 0.3033 0.3028

Least-squares error 6.33-04 3.85e-04 0.0838 0.1871 0.3112 0.2857 0.6583 0.6473

CPU time (in minutes) 285.48 20.67 264.59 16.45 367.49 22.47 368.71 15.33

4.2 Fitting DSSM Model to Green Tree Frog Population Estimates
from Field Data

In this example, we fit DSSM to a set of green tree frog population estimates
obtained from capture-mark-recapture (CMR) field data during years 2004–2009
(as shown in Fig. 2 (Left) [3]. The purpose is to estimate individual level vital
rates for adult green tree frogs, and then use these parameter estimates to gain
understanding of the dynamics of this population. In [3,4] the authors developed
a model (referred to as JA model hereafter) to describe the dynamics of green
tree frog population by dividing individuals into two stages, juveniles and adults,
and set a least-squares problem to obtain the best fitted parameters to the CMR
field data. With those estimated parameter values, they obtained the adult frog
population curve (see Fig. 2 (Left)). Due to the relative short duration for the
tadpole stage and the lack of other information regarding tadpoles, the authors
in [3] simply assumed constant vital rates for tadpole stage. To circumvent this
issue, we consider the short duration of juvenile stage as part of the reproduc-
tion process and adopt the DSSM to describe the adult frog dynamics. Here,
β(x, y, t,Q) in DSSM represents the rate at which an adult frog of size y gives
birth to tadpoles that survive to metamorphose into frogs of size x.

As in [3], we take t = 0 to be the first week in January 2004. We chose
Δt = 1/52. Since there are 52 weeks every year Δt represents one week. Let Xs,
s = 1, 2, · · · , 136, denote the observed number of frogs which was estimated sta-
tistically from CMR experiment data for 136 weeks during the breeding seasons
in this six year experiment. The growth rate and mortality rates are assumed to
take the same forms as in [3]:

g(x, t,Q) = α1(6 − x),
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and

μ(x, t,Q) =

⎧⎨
⎩

(
α2(1 − t

2 ) + α3
t
2

)
(1 + 0.00343Q) exp(α5x), 0 ≤ t ≤ 2,(

α3(2 − t
2 ) + α4( t

2 − 1)
)
(1 + 0.00343Q) exp(α5x), 2 ≤ t ≤ 4,(

α4(3 − t
2 ) + 3.093( t

2 − 2)
)
(1 + 0.00343Q) exp(α5x), 4 ≤ t ≤ 6.

Here, the mortality rate was assumed to depend linearly on density as well as
time since frogs hibernate during winter time. By monitoring program [16] the
breeding season begins around the middle of April and ends in early August.
Thus, similar to [3] the birth rate function was assumed to be

β(x, y, t,Q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α6
0.3+εγ(x, α7, α8), 0.3 ≤ t ≤ 0.6, 3 ≤ y ≤ 6,
α6(y−3+ε)

ε(0.3+ε) γ(x, α7, α8), 0.3 − ε ≤ t < 0.3, 2.7 + t < y < 6,
α6(y−3+ε)

ε(0.3+ε) γ(x, α7, α8), y − 2.7 < t < 3.6 − y, 0.3 − ε < y < 0.3,
α6(0.6+ε−t)

ε(0.3+ε) γ(x, α7, α8), 0.6 < t < 0.6 + ε, 3.6 − t ≤ y ≤ 6,

0, else.

Here, the gamma distribution density function with the shape parameter α7

and scale parameter α8, γ(x, α7, α8), was chosen to model the size distribution
of newly metamorphosed frogs. The constant ε is a positive small number that
allows β to be extended to (x, y, t) ∈ [1.5, 6] × [1.5, 6] × [0, 1] and to satisfy the
smoothness properties in (H4). We then also extend β periodically over one year
intervals [t, t + 1], t = 1, 2, · · · , 5.

We have α1, · · · , α8 as unknown constants to be estimated (i.e., θ =
(α1, · · · , α8)). We chose the initial condition in DSSM to be p(x, 0) =
615.96 exp(−0.75x) which implies Q(0) = 257.2 (cf. [3]). To solve the least-
squares minimization problem, similar to [3], we set the goal function to be

F (θ) =
S∑

s=1

| log(Q(ts; θ) + 1) − log(Xs + 1)|2.

To guarantee that the estimated parameter values are biologically relevant, we
set appropriate upper and lower bounds for each αi. That is, αi ≤ αi ≤ αi i =
1, · · · , 8. Using the vital rates determined by estimated αi, i = 1, · · · , 8 given
in Table 2, we simulated DSSM and compared the resulting adult frog popula-
tion approximations to the data as well as the population estimates from the
JA model in [3]. The comparison results are demonstrated in Fig. 2 (Left). It
shows clearly that DSSM model output agrees with the population estimates
resulting from field observations better than the JA model. Specifically, DSSM
is more accurate in capturing the population dynamics when adult frog numbers
are relatively low. Also, the DSSM fitting bears a smaller least-squares error of
33.5 compared to the JA model fitting which yielded an error of 37.8. Further-
more, the γ distribution that provided the best fit as presented in Fig. 2 (Right)
indicates that the newly metamorphosed frogs have body length between 1.5 cm
and 2 cm and approximately 99.6% of adult frogs give birth to tadpoles that
eventually metamorphose into frogs of size between 1.5 cm and 2.0 cm.
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Table 2. Parameter estimation values and corresponding standard deviation

α1 α2 α3 α4 α5 α6 α7 α8

Estimated value 0.486 2.973 0.0085 2.376 0.000 47.061 6.740 1.849

Standard deviation 0.0183 0.7044 0.1164 1.6373 0.125 2.8295 0.8000 1.4763
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Fig. 2. Left: A comparison of the total population resulting from CMR field data to
the total population resulting from model (1) and the JA model in [3]. Right: The
probability density function that an adult frog gives birth to tadpoles that eventually
metamorphose into frogs of size x.

We also applied a statistically based method to compute the variance in the
estimated model parameters θ = (α1, · · · , α8) similar to the work in [3] using
standard regression formulations [12]. Table 2 provides the standard deviation
for α′

is estimated above.
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