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Abstract. This paper concerns the problem of aircraft control during
the takeoff roll in the presence of severe wind gusts. It is assumed that
the aircraft moves on the runway with a constant axial acceleration from
a stationary position up to a specific speed at which the aircraft can go
into flight. The lateral motion is controlled by the steering wheel and
the rudder and affected by side wind. The aim of control is to prevent
rolling out of the aircraft from the runway strip. Additionally, the lateral
deviation, lateral speed, yaw angle, and yaw rate should remain in cer-
tain thresholds during the whole takeoff roll. The problem is stated as
a differential game with state constraints. A grid method for computing
the value function and optimal feedback strategies for the control and
disturbance is used. The paper deals both with a nonlinear and linearized
models of an aircraft on the ground. Simulations of the trajectories are
presented.

Keywords: Aircraft runway · Lateral runway model ·
Differential game · Grid method

1 Introduction

Control of aircraft on the ground is a very complicated problem because of
nonlinear effects playing a significant role in the dynamics of aircraft. Moreover,
severe wind gusts may lead to rolling out from the runway, especially during
high-speed roll.

The following investigations are devoted to the enhancement of aircraft-on-
ground models and to the development of controllers providing safe ground oper-
ations, including taxing and takeoff run.

In the report [1], a detailed explanation of essential requirements and basic
assumptions for aircraft modeling is given, including a description of various
elements needed in the model structure. The main focus lies on the description
of the interface between the aircraft and the runway pavement.
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In paper [2] a bifurcation analysis of steady-state solutions and a transient
analysis are applied to the study of the behavior of aircraft on the ground. A
general approach to assess an aircraft’s performance during taxiway manoeuvres
is introduced. This allows to the author to find maximal loads during taxiway
manoeuvres, which is important for assessing existing regulations for the certi-
fication of aircraft.

The work [3] presents results and interpretations from the analytical analysis
aimed to uncover the dominant directional characteristics of the aircraft. Three
mathematical models, of growing complexity, of the aircraft on the ground are
used. Some fundamental dynamic characteristics such as e.g. the yaw rate to
steering command transfer function are determined.

Paper [4] presents the study of a yaw rate control of the aircraft on the
ground. A highly nonlinear realistic model of the aircraft is used, and the con-
trol design is based on the feedback linearization technique aimed to design a
non-linear controller that forces the system output to follow a linear reference
behavior. This approach supposes that the linear reference model perfectly cor-
responds to the real system. It should be noted that wind disturbances are not
included into the study.

Paper [5] uses a simplified LFT (Linear Fractional Transformation) model
of an aircraft on the ground. In particular, the nonlinear lateral ground forces
are reduced to saturation-type nonlinearities. A robust anti-windup control tech-
nique is applied to the simplified model to improve lateral control laws to exclude
oversteer when working against lateral wind step inputs.

The works [6,7] are devoted to modeling of the takeoff and landing phases
for an unmanned aerial vehicle. The investigation is aimed to the development
of an automatic takeoff and landing control system reducing effects of human
pilot errors. The main attention is concentrated on the takeoff phase and, in
particular, on aircraft’s lateral motion during the takeoff roll. The authors apply
transfer function techniques to a linearized model of the aircraft on the ground
to design a controller. This approach does not provide safety against worst-case
disturbances.

Paper [8] concerns the application of differential game theory (see e.g. [9])
to the aircraft takeoff roll. A linearized model of aircraft’s lateral motion on the
runway is considered there, and a conflict control problem, differential game, is
formulated. It is assumed that the first player, autopilot, uses feedback strate-
gies to minimize the objective functional of the form J = σ

(
y(T ), ẏ(T )

)
, where

y is the lateral deviation, and T is a fixed termination time. The second player,
side wind, strives to maximize the objective functional using all possible con-
strained non-anticipative strategies. Thus, the lateral position and velocity of
the aircraft are evaluated only at the termination time T , which is insufficient
from the technical point of view. The reason to use such a simplified functional
is that the authors could solve only two-dimensional games that time, and this
simplification allowed the authors to reduce the original differential game to a
two-dimensional one using a variable transformation. The main result of this
paper is the construction of optimal feedback strategies of the autopilot in the
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form of switch lines that divide the reduced two-dimensional state space into
components where certain constant values of control are prescribed. A similar
representation of optimal strategies of side wind is also found.

The following limitations of this investigation should be mentioned. First,
the transformation reducing the original differential game to a two-dimensional
one is of course not invertible, and therefore imposing state constraints in the
original problem is impossible. Second, the strategies found from the linearized
model were not tested in the original nonlinear system. All these reasons give
rise to the motivation to investigate the problem with modern tools for solving
nonlinear state constrained differential games.

The current paper deals with the problem of aircraft control during the take-
off roll and enhances the work [8]. The modification consists in the application of
modern grid methods for solving nonlinear differential games (see [10,11]) to a
nonlinear lateral motion runway model derived in [6,7]. These methods allow us
to solve nonlinear differential games of a relative high dimension with accounting
for state constraints. Speaking more certainly, it is now possible to consider the
objective functional of the form J = maxτ∈[0,T ] σ

(
x1(τ), ..., xn(τ)

)
, n = 4 or 5,

and therefore to constrain all state variables for all time instants. This allows
us to develop a control law that prevents rolling out of the airplane from the
runway.

The model parameters are fitted to the characteristics of Boeing-727.

2 Model Equations

Consider an aircraft during the takeoff roll (see Fig. 1).

y

z

W

W

U

Fig. 1. Aircraft during the takeoff roll under wind gusts.

Let the state variables be defined as follows: y is the lateral deviation, V the
lateral velocity, ψ the yaw angle, and R the yaw rate. The model derived in [6]
reads:

ẏ = V,

V̇ = −UR + (Fu + Fa)/m,

ψ̇ = R,

Ṙ = (Mu + Ma)/Iz.

(1)

Here, U = at is the axial velocity increasing linearly with time t according
to the acceleration a; Fu and Mu are the undercarriage forces and moments,
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respectively; Fa and Ma are aerodynamic forces and moments, respectively; m
is the aircraft mass, and Iz is the z-axis moment of inertia. The expressions for
the forces and moments are given by the formulas

Fu = NsCαα

[
arctan

V + lsR

U
− δs

]
cos δs − Nsμf sin δs

+ NlCαα arctan
V − lmR

U + lw/2R
+ NrCαα arctan

V − lmR

U − lw/2R
,

Mu = lsNsCαα

[
arctan

V + lsR

U
− δs

]
cos δs − lsNsμf sin δs

− lmNlCαα arctan
V − lmR

U + lw/2R
− lmNrCαα arctan

V − lmR

U − lw/2R
,

(2)

Fa = q · S · (Cyββ + b/(2Va)CyrR + Cyδrδr),

Ma = b · q · S · (Cnββ + b/(2Va)CnrR + Cnδrδr).
(3)

Here, Va =
√

U2 + (V − W )2 is the air speed, W the velocity of side wind;
q = 1/2ρV 2

a the dynamic pressure; β = arcsin
(
(V − W )/Va

)
the sideslip angle;

δs the steering wheel deflection; and δr the rudder deflection. It is assumed
that δs = 1/3δr for balanced manoeuvres. The control variable, u, and the
disturbance, v, are introduced as follows:

u := δr ∈ [−25, 25] deg, v := W ∈ [−17, 17]m/s. (4)

The following notation for the components of the state vector is used below:

x1 := y, x2 := V, x3 := ψ, x4 := R. (5)

The coefficients appearing in (1), (2), and (3) are listed in Table 1. The model is
considered on the time interval t ∈ [0, T ], where T = 34 s.

The linearized, non-stationary, model reads:

ẋ1 = x2,

ẋ2 = a22(t)x2 + a23(t)x3 + a24(t)x4 + a25(t)u + c2(t)v,

ẋ3 = x4,

ẋ4 = a42(t)x2 + a43(t)x3 + a44(t)x4 + a45(t)u + c4(t)v,

u̇ = −k(u − ū).

(6)

Here, an artificial control ū that may have instantaneous jumps is introduced.
The physical control u (= δr) smoothly tracks ū with a time lag depending on
the parameter k. The artificial control is constrained just as u in (4).
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Table 1. Model coefficients approximately corresponding to Boeing-727.

Notation Name Value Units

CG Center of gravity - -

μf Coefficient of kinetic friction 0.5 -

ρ Air density 1.207 kg/m3

m Aircraft mass 288773 kg

S Wing area 511 m2

b Wing span 60 m

Iz z-axis moment of inertia 67.38e6 kg · m2

ls Distance from CG to steering wheel along x 28.36 m

lm Distance from CG to main wheels along x 1.64 m

ll, lr Distance from CG to left/right main wheel along y 6 m

lw Distance between main wheels (lw = ll + lr) 12 m

lL Distance from steering to main wheels (lL = ls + lm) 30 m

Ns Normal reactions at steering wheel 154.863 kN

Nl, Nr Normal reactions at main wheels 1338.99 kN

Cαα Tire cornering coefficient 0.25 1/rad

Cyβ Output of y-force due to sideslip angle −0.9 1/rad

Cyr Output of y-force due to yaw rate 0 1/rad

Cyδr Output of y-force due to rudder deflection 0.120 1/rad

Cnβ Output of yawing moment due to sideslip angle 0 1/rad

Cnr Output of yawing moment due to yaw rate −0.280 1/rad

Cnδr Output of yawing moment due to rudder deflection −0.1 1/rad

The coefficients appearing in (6) are defined by the formulas

a22(t) = 0.229(1 − 100/ξ) − 0.345 · 10−2ξ,

a23(t) = 0.12 · 10−3 ξ2 − 0.8(1 − 0.01ξ),

a24(t) = −0.138 · 10−2(1 − 100/ξ),

a25(t) = −0.2 · 10−4 ξ2 + 0.32 · 10−1(1 − 0.01ξ),

a42(t) = −0.132 · 10−1ξ, a43(t) = −0.464 · 10−3 ξ2,

a44(t) = 0.715 · 10−1(1 − 100/ξ),

a45(t) = −0.164 · 10−3 ξ2 − 0.3(1 − 0.01ξ),

c2(t) = 0.345 · 10−2ξ, c4(t) = 0.132 · 10−1ξ, ξ := t + 1, k = 4.

(7)

The model is considered on the time interval t ∈ [0, T ], where T = 34 s.
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3 Numerical Method

Let us shortly outline the solution method that is applicable both to linear and
nonlinear problems. The description will be given in terms of general nonlinear
differential games, see [9,12,13].

3.1 Differential Game and Value Function

Consider the differential game

ẋ = f(t, x, u, v), x ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq, (8)

where u and v are control parameters of the first and second player, respectively.
The sets P and Q are given compacts. The game starts at t0 ∈ [0, T ] and finishes
at T . The aim of the first (resp. second) player is to minimize (resp. maximize)
an objective functional of the form:

J
(
x(·)) = max

{
σ0

(
x(T )

)
, max
τ∈[t0,T ]

σ
(
x(τ)

)
}

, (9)

where σ0 and σ : Rn → R are given functions.

The value function, W, is informally defined by the relation

W(t, x) = max
Vc

min
U

J(x(·)) = min
U

max
Vc

J(x(·)),

where the minimum is taken over all admissible feedback strategies of the first
player, and the maximum is computed over the so-called feedback counter-
strategies of the second player (see [9]). This means that the second player
(e.g. wind) can measure the current choice of the first player (e.g. the ruder
deflection), which makes the second player more dangerous.

It should be noted that the strong definition of the value function (see [9]) is
more complicated than that, because the strategies are in general discontinuous
functions of x, and therefore cannot be directly substituted into (8) in place of
u and v.

The value function plays a very important role, representing the guaranteed
result of the players. For example, let the game starts from a position (t0, x0),
and W(t0, x0) ≤ 0. Then, there exists a feedback strategy U such that, for all
trajectories x(·) generated by U and any Vc, the inequalities σ0(x(T )) ≤ 0 and
σ(x(t)) ≤ 0, t ∈ [t0, T ], hold. This can be interpreted as obtaining a guaranteed
gain at the termination time T and keeping the object inside of prescribed state
constraints at any time instant. Moreover, as the Subsect. 3.3 shows, optimal
strategies of the players can be constructed in the course of computing the value
function. Besides, an optimal feedback counter-strategy of the second player is
directly derived from the value function.
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It is established, see [10,14,15], that the value function is a viscosity solution
of the following Hamilton-Jacobi equation:

Wt + H(t, x,Wx) = 0, where H(t, x, p) = min
u∈P

max
v∈Q

〈f(t, x, u, v), p〉. (10)

This correspondence has given rise to numerical methods for computing value
functions. The next subsection describes a grid method developed for computing
viscosity solutions of (10) and, therefore, value functions in the differential game
(8)–(9).

3.2 Grid Method for Computing the Value Function

To compute the value function, the following finite difference scheme is used, see
[10–13].

Let h1, ..., hn, and τ be space and time discretization step lengths.
Set L = T/τ , t� = 	τ, 	 = 0, 1, ..., L, and denote

W�(xi1 , . . . , xin) = W(	τ, i1h1, . . . , inhn),

σh
0 (xi1 , . . . , xin) := σ0(i1h1, . . . , inhn), σh(xi1 , . . . , xin) := σ(i1h1, . . . , inhn).

Let c be a grid function. Assume that the variable x runs over all grid nodes and
define the following upwind operator:

F (c; t, τ, h1, ..., hn)(x) = c(x) + τ min
u∈P

max
v∈Q

n∑

i=1

(pR
i f+

i + pL
i f−

i ),

where fi = fi(t, x, u, v) are the right hand sides of the control system, and

a+ = max {a, 0}, a− = min {a, 0},

pR
i = [c(x1, ..., xi + hi, ..., xn) − c(x1, ..., xi, ..., xn)]/hi,

pL
i = [c(x1, ..., xi, ..., xn) − c(x1, ..., xi − hi, ..., xn)]/hi.

An approximate solution is the output of the following backward in time
finite-difference scheme:

W�−1 = max
{
F (W�; t�, τ, h1, ..., hn), σ�

}
, WL = σh

0 , 	 = L,L − 1, ..., 0. (11)

This algorithm is proposed and analyzed in [10–13]. It was stated there that
its convergence rate is of order

√
τ if τ/hi = c, i = 1...n, where c is a small

enough constant. This convergence rate is not improvable when applying grid
methods to Hamilton-Jacobi equations arising from differential games.
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3.3 Control Design

When running the algorithm (11), the minimizing grid values of the control,

u�
i1i2...in = arg

u
min
u∈P

max
v∈Q

n∑

i=1

(pR
i f+

i + pL
i f−

i ),

are stored on a hard disk for each grid multi index i1i2...in and each time sam-
pling index 	. The control at a time instant t� and the current state x(t�) is
computed as Lh[u�]

(
x(t�)

)
, where u� denotes the grid function u�

i1i2...in
, and Lh

is an interpolation operator.
A counter-strategy of the second player is defined as follows. Let

(
t�, x(t�)

)

be the current position of the game, and a control u of the first player is chosen.
Then the second player chooses its control as

v = arg
v

max
v∈Q

Lh[W�]
(
x(t�) + τf(t�, x(t�), u, v)

)
,

where W� is the grid approximation of the value function at the time instant t�,
computed by formula (11).

4 Simulation Results

This section describes simulation results for the models (1)–(4) and (6)–(7). In
both cases, the objective functional of the form (9) with the functions

σ0(x) = max
{ |x1|

10
,
|x2|
5

,
|x3|
10

,
|x4|
5

}
−1, σ(x) = max

{ |x1|
15

,
|x2|
5

,
|x3|
15

,
|x4|
5

}
−1

is used. Thus, the controls u and ū, see (4) and the last equation of (6), strive
to satisfy the conditions

σ0(x(T )) ≤ 0 and σ(x(t)) ≤ 0, t ∈ [0, T ],

for any realization of the disturbance v constrained as in (4). In other words, u
(resp. ū) strives to satisfy the conditions

|y(T )| ≤ 10m, |V (T )| ≤ 5m/s, |ψ(T )| ≤ 10 deg, |R(T )| ≤ 5 deg/s

at the termination time T = 34 s and to keep the state constraints

|y(t)| ≤ 15m, |V (t)| ≤ 5m/s, |ψ(t)| ≤ 15 deg, |R(t)| ≤ 5 deg/s

for all time instants. According to the problem statement, this is possible if the
value function, see Sect. 3.1 and the explanation there, is non-positive at the
initial state {t = 0, y = 0, V = 0, ψ = 0, R = 0}.

Differential games (1)–(4) and (6)–(7) are solved using numerical methods
outlined in Sect. 3. The calculations are performed on a Linux SMP-computer
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with 8xQuad-Core AMD Opteron processors (Model 8384, 2.7 GHz) and shared
64 Gb memory. The programming language C with OpenMP (Open Multi-
processing) support is used. The efficiency of the parallelization is up to 80%.

When solving the differential game related to the linear model (6)–(7), a
rectangular 40 × 20 × 40 × 20 × 30 grid is chosen. In the case of the nonlinear
model (1)–(4), a rectangular 40 × 20 × 40 × 20 is used.

Figure 2 shows the simulation of the linear model (6)–(7) with an opti-
mal feedback control strategy and the corresponding optimal feedback counter-
strategy for wind. The horizontal axes measure the traveled distance in meter,
the vertical axes measure the lateral deviation y (meter), the yaw angle ψ
(degree), the rudder deflection δr (degree), and the velocity of side wind
(meter/sec), respectively. The vertical bold bars, drawn to the right in the first
two graphs, show the admissible interval for the terminal values of y and ψ,
respectively. It is seen that the terminal and state constraints are satisfied for y
and ψ. It should also be noted that the other two variables, V and R (not shown
here), satisfy their terminal and state constraints too.

Figure 3 presents the simulation of the nonlinear model (1)–(4) using the
optimal feedback control strategy found for the linear model (6)–(7), whereas the
disturbance is formed using the optimal feedback counter-strategy for wind taken
from the nonlinear model. It is seen that the terminal and state constraints are
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Fig. 2. Simulation of the linear model (6)–(7).
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Fig. 3. Simulation of the nonlinear model (1)–(4) with the optimal feedback control
strategy found for the linear model (6)–(7), whereas the optimal feedback counter-
strategy for wind is taken from the nonlinear model.
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Fig. 4. Simulation of the nonlinear model (1)–(4).

violated. This means that the linearized model (6)–(7) does not properly reflect
the dynamical properties of the real nonlinear plant. Thus, the construction of
controllers based on linearized models is questionable.

Figure 4 shows the simulation of the nonlinear model (1)–(4) with the opti-
mal feedback control strategy and the corresponding optimal feedback counter-
strategy for wind, found from the four-dimensional nonlinear differential game
(1)–(4). During the simulation of trajectories, the output, u, of the optimal con-
trol strategy is smoothed with the filter δ̇r = −4 (δr − u). It is seen that the
terminal and state constraints are satisfied for y and ψ. The other two variables,
V and R (not shown here), satisfy the terminal and state constraints too.
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The simulation results show that the control strategy found from the linear
differential game associated with the models (6)–(7) works perfectly in the linear
model, and does not work in the nonlinear one.

The control strategy found from the nonlinear differential game (1)–(4) works
perfectly in the real nonlinear model against very severe wind disturbances com-
parable with hurricane. It should be noted that none conventional control sys-
tem cannot apparently keep the aircraft on the runway in the presence of smart
wind gusts obtained from the nonlinear differential game. However, our control
strategies ensure the desired terminal and state constraints (see Figs. 2 and 4).
Moreover, the strategies work stable in a wide range of discretization parameters
such as time sampling and spatial steps in the algorithm (11), which is checked in
numerous test runs. Finally, these strategies can be physically implemented on
board, because all state variables used in them are available for measurements.

5 Conclusion

The current investigation shows that methods based on the theory of differential
games can be successfully applied to nonlinear conflict control problems related
to aircraft’s takeoff roll under severe wind gusts. The paper demonstrates the
following advantages: A very detailed nonlinear model of aircraft’s takeoff roll
is used. The corresponding highly nonlinear differential games are solved using
a novel grid method, and optimal control strategies ensuring a safe takeoff roll
are designed. It is planned to test them on a flight simulator providing a fully
realistic model of an aircraft.
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