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Abstract. The re-identification of a subject among different cameras
(namely Person Re-Identification or PRID) is a task that implicitly
defines ambiguities. Two individuals dressed in a similar manner or with
a comparable body shape are likely to be misclassified by a computer
vision system, especially when only poor quality images are available
(i-e. the case of many surveillance systems). For this reason we introduce
a method to find, exploit and classify ambiguities among the results of
PRID algorithms. This approach is useful to analyze the results of a
classical PRID pipeline on a specific dataset evaluating its effectiveness
in re-identification terms with respect to the ambiguity rate (AR) value.
Cumulative Matching Characteristic curves (CMC) can be consequently
split according to the AR, using the proposed method to evaluate the
performance of an algorithm in low, medium or high ambiguity cases.
Experiments on state-of-art algorithms demonstrate that ambiguity-wise
separation of results is an helpful tool in order to better understand the
effective behaviour of a PRID approach.

1 Introduction

Person re-identification (PRID) is a crucial task in modern video surveillance
systems, and concerns the retrieval of the same individual given several views
acquired by a set of non-overlapping cameras. PRID is strictly related to a num-
ber of other video surveillance topics, like cross-camera tracking, event analysis,
abandoned object retrieval, and so on; however, it is an extremely challenging
task, and has recently drawn a lot of focus by researchers with different fields of
expertise.

First of all, each camera in a surveillance system has specific hardware proper-
ties that, together with varying lighting conditions, introduce slight variations in
the captured frames which, as a consequence, have to be conducted to a common
baseline using proper image processing techniques. Furthermore, pose variations
of the subject, along with occlusion phenomena, have to be taken into account,
as they can negatively impact PRID performances hiding discriminating features
that could be otherwise exploited.
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Another challenging issue is related to the method used to evaluate the per-
formance of PRID algorithms. Normally, PRID techniques are tested against
one or more datasets, each one with specific characteristics and challenges. In
a pre-processing step, the considered dataset is split into a gallery set, which
contains exactly one view per individual, and a probe set, which contains one
or more views per subject. The algorithm compares each instance of the gallery
set against a set of views taken by the probe set, searching for the best possible
match; therefore, PRID can be seen as a multiclass classification problem, where
each subset of views related to a certain individual represents a specific class. The
task of determining meaningful features — and the proper classifier that should
be used — is non-trivial; furthermore, there is not an universal dataset (i.e. a
dataset that can be used to test methodologies against every specific issue) and,
as a consequence, an algorithm which gives good results on a certain dataset may
obtain mediocre performances on another dataset. Traditional PRID approaches
deal with these problems using a recurring scheme to which we will refer to as
PRID pipeline [1]. The first step in the PRID pipeline is image segmentation,
where significant information are extracted using proper pre-processing tech-
niques (i.e. background subtraction ([2-6]), human detection ([7,8]) and shadow
suppression ([9])). In the second step, a discriminating signature is computed
for each view, starting from robust features which can be related to appearance
(i.e. color, texture, or shape [10-13]) or to other characteristics like gait [14]. In
the third and last step, signatures extracted in the previous step are compared
to find the most similar image pairs. Classic matching methods exploited fixed
metrics, like Euclidean distance or Bhattacharyya coefficient; modern methods
employs more sophisticated approaches, as distance metric learning ([15-17]) or
machine learning ([18,19]). Recently, the whole pipeline has been replaced by
deep learning architectures ([20-22]), which automatically extract discriminat-
ing features at different levels of abstraction, combining them into a meaningful
signature, thus giving a significant boost in terms of performances.

Even the most sophisticated state of the art approaches still rely on a basic
assumption: results comparison is carried out using an agnostic method based on
the analysis of Cumulative Matching Characteristics (CMC) curves, as reported
in Fig.1. These curves describe re-identification results in terms of ranking,
that represents the number of iterations after which the PRID algorithm is able
to output the correct match. Specifically, Rank-1 represents correctly matched
subjects, Rank-2 shows how many individuals are being re-identified after one
iteration, and so on. However, this approach only allows us to understand the
recognition percentage at a specific rank, without adding any specific informa-
tion on how results have been produced. Hence, CMC curves give quantitative
results, without taking into account neither the intrinsic difficulties of a given
dataset, nor the qualitative meaning of the achieved results. For example, given
a certain rank, it is not possible to understand if the result has been achieved
comparing pair of samples which show low, medium or high ambiguity proper-
ties [24]. In case of low ambiguity, the correct match should be ideally returned
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Fig. 1. Example of overall CMC curve taken from [23].

as a Rank-1, while worst results should be expected when the algorithm faces
ambiguous observations. Normally, the most significant results should be return
within Rank-5.

Furthermore, a graphical overview of a certain number of examples taken
by VIPeR is depicted in Fig. 2. In this example, some images are categorized in
easy, ambiguous or difficult cases. It is immediate to notice that the first are cases
in which the human vision system is able to match correspondences easily, for
example the textured sweater of the first subject, or red and yellow sweatshirts in
the other images. Ambiguous cases are challenging situations even for an expert
human operator because each subject looks like many others, especially when he
is wearing dark clothes. Finally, difficult cases are always included in datasets
and represent a cluster of images in which different light conditions and subject
orientations make the correct association almost impossible. In these cases, a
correct association would be probably due to fortuity rather than the effective
recognition of features by the PRID algorithm.

With this work, we further explore the concept of Ambiguity Rate (AR)
introduced in [24] — i.e. an index that compares the results given by a PRID
algorithm on a specific dataset — evaluating the performances of state-of-the
art PRID algorithms in predetermined ambiguity ranges. The rest of the paper
is organized as follows. In Sect. 2, we will give an explanation of our method,
highlighting the algorithm used to extract the AR. In Sect. 3, we will compare
the results of three PRID approaches using AR, while in Sect. 4 conclusions and
a perspective on future works is given.



Comparative Analysis of PRID Algorithms 233

Ambiguous Difficult
, , - ‘

Fig. 2. Example of subjects from VIPeR dataset. The first row represents some query
images, while the second row contains the corresponding ground truth. In this example
pictures have been manually clustered in easy, ambiguous or difficult to recognize and
are respectively highlighted with a blue, black or red contour rectangle. (Color figure
online)

2 Methodology

2.1 Algorithm Description

The proposed approach is related to the one presented in [24] and can be sum-
marized as an enhancement of the PRID pipeline in terms of results’ analysis.
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Fig. 3. Algorithm high level block diagram.

Looking at Fig. 3 it is immediate to notice that the testing algorithms only
represent the central part of the whole approach. In fact, raw data (i.e. images
coming from a video surveillance system or a dataset) are first of all pre-processed
in order to compute the ambiguity descriptor while the ambiguity evaluation is
done as the last step, when results in terms of iterations and ranks are available
for each algorithm.

2.2 Pre-processing Step

An interesting aspect of this methodology is that the framework does not impose
strict constraints in the definition of the ambiguity descriptor ad. This entity
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numerically describes the particular scene or the specific image patch that is
going to be analyzed by a PRID algorithm using different features that can be
chosen according to the phenomenon that needs to be investigated. For example,
a dataset rich of people that wear textured clothes will probably be described in
terms of textural features, while general purpose datasets will rely on color based
descriptions. Assuming that an expert video surveillance operator evaluates the
output of a semi-automatic system by observing recurrent colors in the images,
ambiguities in this paper are defined in terms of color changes. Therefore, for
each frame of the input dataset, we define the ambiguity descriptor as an array
of color values ad = [h1, ha, ..., h,]T where n is the number of horizontal stripes
used to divide the image and hy, represents the modal value of the Hue coordinate
of the k-th stripe.

2.3 Post-processing Steps

Ambiguity can be evaluated after executing testing algorithms on the chosen
dataset. These methods basically associate a similarity score to each image pair
that combines one sample from the gallery set with all the samples from the probe
set. For example, the results obtained for a query image ¢; can be represented
as an associative array

G <= [r1,72, ., "M, -, TP] (1)

where P is the number of images in the probe set and M is a threshold used
to consider only the best results. [r1,72,..., 7] can be therefore represented in
terms of the ambiguity descriptor chosen in the pre-processing step, defining the
Ambiguity Descriptor Matrix for the query image ¢;

ADM,, = [ad,,,ady,, ..., ad,,]

hir, hiry -o. hiry, hST
h27«1 h2r2 e hng th (2)
[ S hST

where thT is the array in which the modal values of the best M frames of the j-
th stripe are stored. These rows are employed to compute percentage deviations
of color features without losing spacial information by applying the following
formula:
max(hS{) — min(hST)
256
Yoq, = : 3)
max(hST) — min(hST)
256
Finally, the AR value for g; is defined starting from the average value of the
percentage deviations

1 n
AR(M =1- E Sz:; %ql(s) (4)
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so that low variations of color percentage displacements produce high ambiguity
rate. The alternation of colors in the results, instead, are related to low AR
values. It is worth noticing that the role of M is essential for the ambiguity to
be effectively computed because useful information can be extracted only within
the best ranks. If all the images from the probe set were used to compute the
ambiguity rate, AR would be exactly the same for each query image.

Finally, CMC curves can be split according to the ambiguity rate simply
setting thresholds and filtering the results. In this paper we define three different
ambiguity ranges according to the following fuzzification rule:

Ry - 0< AR <04
Ry —04< AR <08 (5)

This way CMC curves can be drawn considering multiple contributions: the
first for low ambiguity rates, the second for medium ones and the third for high
ambiguity results.

3 Experiments and Results

Ambiguity evaluation as described in the previous sections has been performed
on three person re-identification algorithms known in literature:

— Symmetry-Driven Accumulation of Local Features (SDALF) [10],
that basically exploits color (Maximally Stable Color Regions and Weighted
Color Histograms) and texture (Recurrent High-Structured Patches) features
around pedestrian symmetry axes for extracting image signatures;

— Color Invariants for PRID (CI) [25], that exploits relationships between
different color patches extracted from each pedestrian image (usually two: one
for the upper part and the other for the lower part);

— Unsupervised Salience Learning for PRID (USL) [26], that exploits
salient features (unique and discriminative) to characterize each person. Both
color histograms and SIFT features are used to extract signatures that are
subsequently processed by a classifier (e.g. SVM or KNN).

All the algorithms have been tested on the well known VIPeR dataset [27], that
contains 632 images taken from non overlapping cameras with arbitrary view-
points. Images belonging to VIPeR have been taken under varying illumination
conditions and each one is scaled to 128 x 48 pixels. The approach presented
in this paper is mainly focused on the interpretation of results on split CMC
curves, according to the fuzzification rule presented in the previous section. Dif-
ferent curves for different ambiguity rate values help in better understanding
the algorithm capabilities and interpret if it is producing ambiguous results or
not. For this reason, the experiments presented in this section will exploit the
AR value to understand how a specific algorithm is working given a specific
ambiguity range.
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Table 1. Dataset separation for different values of the ambiguity rate.

Ambiguity rate | SDALF CI USL

LOW 16 img | 5.06% | 18 img| 5.70% | 18 img| 5.70%
MEDIUM 298 img | 94.30% | 287 img | 90.82% | 279 img | 88.29%
HIGH 2 img| 0.63%| 11 img| 3.48% | 19 img| 6.01%

First, the ambiguity descriptor is computed as described in Sect. 2.2 for each
image of the collection using 6 horizontal stripes. Then, the rest of the PRID
pipeline is executed for the chosen algorithms and finally the results are processed
in order to compute the ambiguity rate. In order to obtain a visual comparison
of the least ambiguous result and the most ambiguous one, examples of boxplot
enriched by the corresponding frames are provided in Figs.4 and 5. Each box
refers to one of the stripes used to divide the images, as noticeable in the figure,
so it is representative of ADM described in Eq.2. A boxplot with large boxes
will refer to a non ambiguous response, that should basically imply that the
algorithm is operating in an easy condition, so the correct response should be
given at the first rank. On the contrary, small boxes are related to ambiguous
responses that are likely to be mistaken. In this situation, a good PRID algo-
rithm should return the correct answer within the first ranks, but not always at
rank 1. Looking at Fig. 4, the first thing to point out is that the only algorithm
able to re-identify the query image is CI at rank 3. SDALF is not producing
the correct answer in five ranks. Images at ranks 1,2, 3 depict people with beige
trousers, but the upper part of the query image is not being considered by this
approach. The case of USL suggests that there is a consistent amount of people
that are likely to be misclassified due to extremely similar clothing. The analysis
of Fig.5 shows that images taken within the best results actually are not so
ambiguous. The first 5 returned values are different one from the other: differ-
ent colours of the shirt/dress (red, black, green, orange and gray) and different
colours of the trousers/skirt (pink, black, red, orange). In this situation, the only
algorithm that is not answering correctly is CI, while SDALF and USL achieve
a rank 1 result. Both the results of CI (for the minimum AR case) and USL
(for the maximum AR case) show how the features used by the algorithms can
not isolate easy recognizable situations for a human eye. This is probably due to
the representation of the colors in different visual systems: the human one and
the digital one. For the first, peaks on different color tones can be immediately
distinguishable, while in a digital color space the same peaks can generate values
that are likely to be classified as similar colors even if they are different. This
suggests us to investigate a methodology to quantify the global ambiguity of a
dataset and associate an ambiguity level to each query image (e.g. easy, medium
or difficult), as will be discussed in the future works section.

Figure 6 shows the ambiguity rate histogram for each response of the three
algorithms. The background of the plot helps in the visualization of the three
ranges: it is immediate to notice that a small number of responses has a
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Maximum ambiguity rate boxplot
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Fig. 4. Boxplots that represent the result with the highest ambiguity rate for each
algorithm. The plot is enriched with the visual information about both query image
and the first five results returned by the specific algorithm. The division stripes are
reported on the x-axis, while mode values of hue coordinates are plotted on the y-axis.
Small boxes are referred to high ambiguity and big boxes to low ambiguity.

corresponding low ambiguity rate (< 0.4) or a high one (> 0.8), according to
the fuzzification rule presented beforehand.

Looking at Tablel, all algorithms are isolating a small percentage of the
images in the tails of the distribution, namely the 5% of the results of the algo-
rithms has low ambiguity. The behaviour for high ambiguity rates is different:
only 2 images actually fall into this category for SDALF, 11 for CI and 19
for USL. This means that the algorithms tend to avoid extremely ambiguous
responses. A medium level ambiguity is produced most of the time, as almost
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Minimum ambiguity rate boxplot

250 — e

SDALF

I
1
|
1
1

200 }

1

1

150

100

50 ; v
[ € - = = -
L Query Five best results
£

250 T - M

I

b«

200

Five best results

T
|
I
!
5
250 F + s iy = U SL
200
150 -
T
I
100 - 1
I
I

501 1 | €
T Five best results
!

|
1
|
I

1 2 3 4 5 6

Fig. 5. Boxplots that represent the result with the lowest ambiguity rate for each
algorithm. The plot is enriched with the visual information about both query image
and the first five results returned by the specific algorithm. The division stripes are
reported on the x-axis, while mode values of hue coordinates are plotted on the y-axis.
Small boxes are referred to high ambiguity and big boxes to low ambiguity. (Color
figure online)

90% have an AR value between 0.4 and 0.8. The corresponding CMC curves
for LOW, MEDIUM and HIGH ambiguity rate values are reported in Fig.7
and are called split CMC. For each curve, the = axis reports the first 100 ranks
and the y axis shows the percentage of images that have been recognized at
the specific rank. Due to the cumulative nature of the curve, if there is a step,
it means that there are no matches at the corresponding rank. An example
of this behaviour is shown in Fig.7 (d), where there is a big step that starts
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Fig. 6. Ambiguity rate histograms on VIPeR results. The x-axis represents the ambigu-

ity rate while on the y-axis occurrences are counted. Low, medium and high ambiguity
rate ranges are respectively orange, green and yellow highlighted. (Color figure online)

Split CMC curves

LOW AR MEDIUM AR HIGH AR
100 P = [!
|_|_ ’, .......... ! - Pt . :|
D 50 ‘/i
w [
16 img (a) 298 img (b) 2img (c)
0
100 [ ] [ —— LI T ;
Q5o | g
18 img (d) 287 img (e) 11img (f)
0
100 ._._.._.‘_ ot N S N N SN Y O o S N S —— - =
A ‘ ,Irv,,. g ’l ...... 4
(V)] -~ il !
= 50 :
18 img (8) 1l 279 img (h) 19 img (i)
0
0 50 100 0 50 100 0 50 100

Fig. 7. Split cumulative matching characteristic curves obtained for the three consid-
ered algorithms.



240 V. Reno et al.

approximatively around rank 35. The easiest operating condition for an algo-
rithm, where the expected result would be a really high percentage at rank 1, is
the LOW AR. Here, the best algorithm in our experiments is SDALF because
it achieves about 50% of results at rank 1 and about 80% of results within the
first ranks. The other approaches obtain a similar result with more iterations.
The CMCs in Fig.7 (b), (e) and (h) are similar to the ones already known in
literature because they are representative of about 90% of the dataset. A final
remark should be pointed for HIGH ambiguity rates. SDALF seems to be the
best algorithm in this comparison (with 50% rank 1 responses and 100% rank
2), but the cardinality of the HIGH AR set is only 2. This means that the two
images are immediately recognized by the algorithm, even if it is working in a
challenging situation. Both CI and USL show comparable results in the middle
of curves (f) and (i), where there is a step for a recognition percentage of about
90%. CI reports a good starting point, as its rank 1 accuracy is about 50%, while
on the other hand USL is able to gain its performances within the first ranks,
passing from 20% to 70% in a couple of iterations. Independently from a partic-
ular experiment, a generic algorithm should be able to increase the number of
images that lie in the tail of its ambiguity distribution. When dealing with LOW
AR values, the recognition percentage at rank 1 should be the highest, while the
correct response can be expected within the first ranks for HIGH ambiguity
queries.

4 Conclusion

In this paper, ambiguities have been exploited in order to evaluate the accuracy
of a re-identification algorithm splitting well known CMC curves. The method-
ology basically defines an ambiguity descriptor and relies on it to compute the
AR of each query performed by an algorithm on a specific dataset, actually
enriching the state-of-art PRID pipeline. The definition of ambiguity evaluated
in this paper can be seen as a relative one, because it depends on the results
that the algorithm achieves on each query, as stated in Eq. 2. The AR histogram
(Fig. 6) graphically explains the ambiguity distribution among the images of a
specific dataset, while split CMC curves can be studied separately (ambiguous
vs. non ambiguous situations), enabling us to measure the performance of differ-
ent algorithms on the same dataset. However, the work presented in this paper
is the first step in the exploitation of ambiguities in order to understand the
capabilities of a re-identification approach. Even if relative ambiguity modelling
is certainly useful to understand the operative conditions in which an algorithm
is working, the results shown in Sect. 3 inspire future research in the direction
of an absolute ambiguity definition. This way, each image of a dataset will be
classified as easy (e.g. the only orange dressed man in a crowd of dark clothed
subjects) or difficult (e.g. a black dressed man in a crowd of dark clothed peo-
ple). Finally, exploiting both relative and absolute ambiguities, a generic rank of
a CMC will be promoted or penalized starting from the assumption that easy
cases should not be misclassified, while higher ranks can be tolerated for hard
queries.



Comparative Analysis of PRID Algorithms 241

References

10.

11.

12.

13.

14.

15.

Cardellicchio, A., D’Orazio, T., Politi, T., Reno, V.: An human perceptive model
for person re-identification. In: VISAPP-International Conference on Computer
Vision Theory and Applications-2015 (2015)

. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time

tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2. IEEE (1999)

Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtrac-
tion. In: 17th International Conference on Pattern Recognition, ICPR 2004, vol.
2, pp. 28-31 (2004)

Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.: Stel component analysis:
Modeling spatial correlations in image class structure. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2009, pp. 2044-2051. IEEE
(2009)

Reno, V., Marani, R., D’Orazio, T., Stella, E., Nitti, M.: An adaptive parallel back-
ground model for high-throughput video applications and smart cameras embed-
ding. In: Proceedings of the International Conference on Distributed Smart Cam-
eras, ICDSC 2014, pp. 30:1-30:6. ACM, New York (2014)

Spagnolo, P., Leo, M., D’Orazio, T., Distante, A.: Robust moving objects seg-
mentation by background subtraction. In: The International Workshop on Image
Analysis for Multimedia Interactive Services (WIAMIS) (2004)

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 886-893. IEEE (2005)

Corvee, E., Bak, S., Bremond, F., et al.: People detection and re-identification
for multi surveillance cameras. In: International Conference on Computer Vision
Theory and Applications, VISAPP-2012 (2012)

Lu, J., Zhang, E.: Gait recognition for human identification based on ICA and
fuzzy SVM through multiple views fusion. Pattern Recognit. Lett. 28, 2401-2411
(2007)

Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-
identification by symmetry-driven accumulation of local features. In: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2360-2367.
IEEE (2010)

Gheissari, N., Sebastian, T.B., Hartley, R.: Person re-identification using spa-
tiotemporal appearance. In: 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 2, pp. 1528-1535. IEEE (2006)

Roy, A., Sural, S., Mukherjee, J.: A hierarchical method combining gait and phase
of motion with spatiotemporal model for person re-identification. Pattern Recognit.
Lett. 33, 1891-1901 (2012)

D’Orazio, T., Guaragnella, C.: A graph-based signature generation for people re-
identification in a multi-camera surveillance system. In: VISAPP, vol. 1, pp. 414—
417 (2012)

Bauml, M., Stiefelhagen, R.: Evaluation of local features for person re-identification
in image sequences. In: 2011 8th IEEE International Conference on Advanced Video
and Signal-Based Surveillence (AVSS), pp. 291-296. IEEE (2011)

Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative
distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 649-656. IEEE (2011)



242

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

V. Reno et al.

Hirzer, M., Roth, P.M., Kostinger, M., Bischof, H.: Relaxed pairwise learned metric
for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 780-793. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33783-3_56

Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric
learning from equivalence constraints. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2288-2295. IEEE (2012)

Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification
by support vector ranking. In: BMVC, vol. 2, p. 6 (2010)

Layne, R., Hospedales, T.M., Gong, S., Mary, Q.: Person re-identification by
attributes. In: BMVC, vol. 2, p. 8 (2012)

Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network
for person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 152-159 (2014)

Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for
person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3908-3916 (2015)

Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance
comparison for person re-identification. Pattern Recogn. 48, 2993-3003 (2015)
An, L., Chen, X., Yang, S.: Person re-identification via hypergraph-based matching,.
Neurocomputing 182, 247-254 (2016)

Reno, V., Cardellicchio, A., Politi, T., Guaragnella, C., D’Orazio, T.: Exploit-
ing ambiguities in the analysis of cumulative matching curves for person re-
identification. In: ICPRAM 2016 - Proceedings of the 5th International Conference
on Pattern Recognition Applications and Methods, pp. 484-494 (2016)
Kviatkovsky, 1., Adam, A., Rivlin, E.: Color invariants for person reidentification.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 1622-1634 (2013)

Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-
identification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3586—-3593 (2013)

Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition,
reacquisition, and tracking. In: Proceedings of IEEE International Workshop on
Performance Evaluation for Tracking and Surveillance (PETS), vol. 3. Citeseer
(2007)


http://dx.doi.org/10.1007/978-3-642-33783-3_56

	Comparative Analysis of PRID Algorithms Based on Results Ambiguity Evaluation
	1 Introduction
	2 Methodology
	2.1 Algorithm Description
	2.2 Pre-processing Step
	2.3 Post-processing Steps

	3 Experiments and Results
	4 Conclusion
	References


