
Lecture Notes in Physics 936

Morten Hjorth-Jensen
Maria Paola Lombardo
Ubirajara van Kolck    Editors 

An Advanced 
Course in 
Computational 
Nuclear Physics
Bridging the Scales from Quarks to 
Neutron Stars



Lecture Notes in Physics

Volume 936

Founding Editors

W. Beiglböck
J. Ehlers
K. Hepp
H. Weidenmüller

Editorial Board

M. Bartelmann, Heidelberg, Germany
P. HRanggi, Augsburg, Germany
M. Hjorth-Jensen, Oslo, Norway
R.A.L. Jones, Sheffield, UK
M. Lewenstein, Barcelona, Spain
H. von Löhneysen, Karlsruhe, Germany
A. Rubio, Hamburg, Germany
M. Salmhofer, Heidelberg, Germany
W. Schleich, Ulm, Germany
S. Theisen, Potsdam, Germany
D. Vollhardt, Augsburg, Germany
J. Wells, Ann Arbor, USA
G.P. Zank, Huntsville, USA



The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching-quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging material
between advanced graduate textbooks and the forefront of research and to serve
three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic for-
mats, the electronic archive being available at springerlink.com. The series content
is indexed, abstracted and referenced by many abstracting and information services,
bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com

More information about this series at http://www.springer.com/series/5304

http://www.springer.com/series/5304


Morten Hjorth-Jensen • Maria Paola Lombardo •
Ubirajara van Kolck
Editors

An Advanced Course
in Computational Nuclear
Physics
Bridging the Scales from Quarks to Neutron
Stars

123



Editors
Morten Hjorth-Jensen
National Superconducting Cyclotron

Laboratory and Department of Physics
and Astronomy

Michigan State University
East Lansing, Michigan
USA

Department of Physics
University of Oslo
Oslo, Norway

Maria Paola Lombardo
INFN, Laboratori Nazionali di Frascati
Frascati Roma, Italy

Ubirajara van Kolck
Department of Physics
University of Arizona
Tucson, AZ
USA

ISSN 0075-8450 ISSN 1616-6361 (electronic)
Lecture Notes in Physics
ISBN 978-3-319-53335-3 ISBN 978-3-319-53336-0 (eBook)
DOI 10.1007/978-3-319-53336-0

Library of Congress Control Number: 2017937055

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This graduate-level text collects and synthesizes ten series of lectures on the nuclear
quantum many-body problem—starting from our present understanding of the
underlying forces with a presentation of recent advances within the field of lattice
quantum chromodynamics via effective field theories to central many-body methods
like Monte Carlo methods, coupled cluster theories, the similarity renormaliza-
tion group approach, Green’s function methods, and large-scale diagonalization
approaches.

In particular algorithmic and computational advances show promise for break-
throughs in predictive power including proper error estimates and a better under-
standing of the underlying effective degrees of freedom and of the respective forces
at play.

Enabled by recent advances in theoretical, experimental, and numerical tech-
niques, the modern and state-of-the art applications considered in this volume span
the entire range from our smallest components, quarks and gluons, as the mediators
of the strong force to the computation of the equation of state for neutron star matter.

The present lectures provide a proper exposition of the underlying theoretical
and algorithmic approaches as well as strong ties to the numerical implementation
of the exposed methods. Several of the lectures provide links to actual numerical
software and benchmark calculations, allowing eventual readers, based upon the
available material, to develop their own programs for tackling challenging nuclear
many-body problems.

East Lansing, MI, USA and Oslo, Norway Morten Hjorth-Jensen
Frascati Roma, Italy Maria Paola Lombardo
Tucson, AZ, USA and Paris, France Ubirajara van Kolck
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Chapter 1
Motivation and Overarching Aims

Morten Hjorth-Jensen, Maria Paola Lombardo, and Ubirajara van Kolck

Nuclear physics has recently experienced several discoveries and technological
advances that address the fundamental questions of the field, in particular how nuclei
emerge from the strong dynamics of quantum chromodynamics (QCD). Many of
these advances have been made possible by significant investments in frontier
research facilities worldwide over the last two decades. Some of these discoveries
are the detection of perhaps the most exotic state of matter, the quark-gluon plasma,
which is believed to have existed in the very first moments of the Universe.
Recent experiments have validated the standard solar model and established that
neutrinos have mass. High-precision measurements of the quark structure of the
nucleon are challenging existing theoretical understanding. Nuclear physicists have
started to explore a completely unknown landscape of nuclei with extreme neutron-
to-proton ratios using radioactive and short-lived ions, including rare and very
neutron-rich isotopes. These experiments push us towards the extremes of nuclear
stability. Moreover, these rare nuclei lie at the heart of nucleosynthesis processes
in the Universe and are therefore an important component in the puzzle of matter
generation in the Universe.
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2 M. Hjorth-Jensen et al.

A firm experimental and theoretical understanding of nuclear stability in terms
of the basic constituents is a huge intellectual endeavor. Experiments indicate that
developing a comprehensive description of all nuclei and their reactions requires
theoretical and experimental investigations of rare isotopes with unusual neutron-to-
proton ratios that are very different from their stable counterparts. These rare nuclei
are difficult to produce and study experimentally since they can have extremely short
lifetimes. To study theoretically these nuclear systems entails being able to solve a
complicated quantum-mechanical many-body problem in order to address important
issues such as whether we can explain from first-principle methods the existence
of magic numbers and their eventual vanishing with increasing neutron numbers,
how the binding energy of neutron-rich nuclei behaves, or the radii, neutron skins,
and many other probes that extract information about many-body correlations as
nuclei evolve towards their limits of stability. These are all fundamental questions
which, combined with recent experimental and theoretical advances, will allow us to
advance our basic knowledge about the limits of stability of matter, and, hopefully,
help us in gaining a better understanding of visible matter.

Accompanying the experimental developments, a qualitative change has swept
the nuclear theory landscape thanks to a combination of techniques that are
allowing, for the first time, to construct links between QCD and the nuclear many-
body problem. This transformation has been brought by a dramatic improvement in
the capability of numerical calculations both in QCD, via lattice simulations, and in
the nuclear many-body problem via first principle or ab initio many-body methods
that employ non-relativistic Hamiltonians. Simultaneously, effective field theories
attempt at building a bridge between the two numerical approaches, allowing
to convert the results of lattice QCD into input Hamiltonians that can be used
in ab initio methods. Furthermore, algorithmic and computational advances hold
promise for breakthroughs in predictive power including proper error estimates,
enhancing the already strong ties between theory and experiment. These advances
include better ab initio many-body methods as well as a better understanding of the
underlying effective degrees of freedom and the respective forces at play. Similarly,
we have recently witnessed a significant improvement in numerical algorithms and
high-performance computing. This provides us with important new insights about
the stability of nuclear matter and allows us to relate these novel understandings
to the underlying laws of motion, the corresponding forces and the pertinent
fundamental building blocks of nuclear matter.

It is within this framework the present set of lectures finds its rationale. This text
collects and synthesizes ten series of lectures on the nuclear many-body problem,
starting from our present understanding of the underlying forces with a presentation
of recent advances within the field of lattice QCD, via effective field theories
to central many-body methods like various Monte Carlo approaches, coupled-
cluster theory, the similarity renormalization group approach, Green’s function
methods and large-scale diagonalization methods. The applications span from our
smallest components, quarks and gluons as the mediators of the strong force to the
computation of the equation of state for infinite nuclear matter and neutron star
matter. The lectures provide a proper exposition of the underlying theoretical and
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algorithmic approaches as well as strong ties to the numerical implementation of the
exposed methods.

The next chapter, by Thomas Schäfer, aims at a brief introduction to quantum
chromodynamics (QCD), the QCD phase diagram, and non-equilibrium phenomena
in QCD. This chapter emphasizes the aspects of the theory that can be addressed
using computational methods. In Chap. 3, Tetsuo Hatsuda presents several basic
concepts and applications of lattice quantum chromodynamics (LQCD), ending
the chapter by presenting recent LQCD results on baryon-baryon interactions.
These results are extremely promising since they allow for a better understanding
of the links between QCD and effective field theories with say nucleons and
pions only. The latter provide the necessary degrees of freedom and inputs for
defining the nuclear Hamiltonians that enter the solution of the various nuclear
many-body methods discussed in Chaps. 7 through 11. Chapter 4 by Hans-Werner
Hammer and Sebastian König presents the general theoretical aspects of nuclear
effective field theories. In the two subsequent chapters by Amy Nicholson and
Dean Lee, the authors apply lattice techniques to nuclear effective field theories
involving nucleons and pions as the basic degrees of freedom. These authors give a
detailed exposure, with exercises and numerical codes, of lattice techniques applied
to effective field theory, explaining the theory and algorithms relevant to lattice
simulations of nuclear few- and many-body systems. Chapter 7 by Giuseppina
Orlandini gives an overview of several ab initio approaches currently used to
study nuclear structure properties and reactions. Chapter 8 by Justin Lietz, Sam
Novario et al. introduces a computational approach to infinite nuclear matter
employing Hartree-Fock theory, many-body perturbation theory and coupled cluster
theory, with an extensive discussion of computational topics. Many of these basic
ingredients are used in the next three chapters. Chapter 9 by Francesco Pederiva,
Alessandro Roggero and Kevin Schmidt reviews Quantum Monte Carlo methods for
solving the many-body Schrödinger equation for an arbitrary Hamiltonian ending
the discussion with the newly developed Configuration Interaction Monte Carlo
algorithm. Comparisons are made with coupled cluster theory for the equation of
state of infinite neutron star matter from Chap. 8. Chapter 10 by Heiko Hergert
et al. presents applications of the In-Medium Similarity Renormalization Group
method to studies of infinite nuclear matter. Finally Chap. 11, by Carlo Barbieri and
Arianna Carbone, presents the fundamental techniques and working equations of
many-body Green’s function theory for calculating ground state properties and the
spectral strength, with applications to infinite neutron star matter and comparisons
with the results from Chaps. 8–10.

The first five chapters are thus meant to expose the reader to the most recent
developments in our understanding of the strong interaction, linking QCD with
effective field theories. With the appropriate and pertinent effective degrees of
freedom we can in turn define various effective non-relativistic Hamiltonians and
embark on our studies of widely used methods for solving the non-relativistic
Schrödinger equation. Spanning from Monte Carlo methods to various wave
function based methods like full configuration interaction theory, coupled cluster
theory, similarity renormalization group approaches and Green’s function theory,
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Chaps. 7 through 11 aim at presenting these methods to the reader, with applications
to infinite nuclear matter in Chaps. 8 through 11. Studies of infinite matter play
a central role in nuclear physics. The determination of for example the equation
of state (EoS), which is intimately linked with our capability to solve the nuclear
many-body problem, has important consequences for neutron star properties like the
mass range, the mass-radius relationship, the thickness of the crust and the rate by
which a neutron star cools down over time. The EoS is also an important ingredient
in studies of the energy release in supernova explosions. Infinite matter offers also
several technical simplifications to the many-body problem compared with finite
nuclei, as discussed in Chaps. 8 through 11. In these chapters we provide benchmark
calculations and compare different many-body methods using a simplified model
for the nuclear forces. However, the formalism and codes we present can easily
be extended to include interaction models based on effective field theories, as well
as other systems, spanning from the homogeneous electron gas in two and three
dimensions to finite systems like nuclei. The various chapters propose exercises
meant to deepen the theoretical concepts that are discussed. Actual numerical
software allows the reader to build upon the theoretical concepts and develop her/his
own insights about these methods. These codes can serve as a starting point for
developing own programs for tackling complicated many-body problems. Proper
benchmarks for the various programs are also provided, allowing thereby potential
readers and users to check the correctness, installation and compilation of the
various programs. All codes are properly linked and available via the github link
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs.
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Chapter 2
Quantum Chromodynamics

Thomas Schäfer

2.1 Introduction

The goal of this chapter is to provide a brief summary of Quantum Chromodynamics
(QCD) and the QCD phase diagram, and to give an introduction to computational
methods that are being used to study different aspects of QCD. Quantum Chromo-
dynamics is a remarkable theory in many respects. QCD is an almost parameter free
theory. Indeed, in the context of nuclear physics QCD is completely characterized
by the masses of the up, down, and strange quark, and a reasonable caricature of
nuclear physics emerges in the even simpler case in which the up and down quark
are taken to be massless, and the strange quark is infinitely heavy. QCD nevertheless
accounts for the incredible richness of the phase diagram of strongly interacting
matter. QCD describes finite nuclei, normal and superfluid states of nuclear matter,
color superconductors, hadronic gases, quark gluon plasma, and many other states.
This rich variety of states is reflected in the large number of computational methods
that have been brought to bear on problems in QCD. This includes a large number
of methods for the structure and excitations of finite Fermi systems, quantum Monte
Carlo methods, and a variety of tools for equilibrium and non-equilibrium statistical
mechanics.

The bulk of this book is devoted to the study of few and many nucleon systems.
Summarizing everything else in one brief chapter is obviously out of the question,
both because of limitations of space and because of my limited expertise. I will
therefore be very selective, and focus on a number of very simple yet powerful
ideas. This reflects, in part, my background, which is not primarily in computational
physics. It also reflects my conviction that progress in computational physics is
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unfortunately often reflected in increasingly complicated codes that obscure the
simplicity of the underlying methods.

2.2 Path Integrals and the Metropolis Algorithm

Consider a simple quantum mechanical problem, the motion of a particle in a one-
dimensional potential. In order to be specific I will focus on the double well potential
V.x/ D �.x2 � �2/2, where � and � are parameters. The Hamiltonian is

H D p2

2m
C �.x2 � �2/2 : (2.1)

Using a change of variables I can set 2m D � D 1. This implies that there is
only one physical parameter in this problem, the barrier separation �. The regime
� � 1 corresponds to the limit in which the system has two almost degenerate
minima that are split by semi-classical tunneling events. The energy eigenstates and
wave functions are solutions of the eigenvalue problem Hjni D jniEn. Once the
eigenstates are known I can compute all possible correlation functions

˘n.t1; t2; : : : ; tn/ D h0jx.t1/x.t2/ : : : x.tn/j0i ; (2.2)

by inserting complete sets of states. An alternative to the Hamiltonian formulation of
the problem is the Feynman path integral [1]. The path integral for the anharmonic
oscillator is given by

hx1je�iHtf jx0i D
Z x.tf /Dx1

x.0/Dx0

Dx eiS; S D
Z tf

0

dt

�
1

4
Px4 � .x2 � �2/2

�
:

(2.3)
This expression contains a rapidly oscillating phase factor eiS, which prohibits any
direct numerical attempt at computing the path integral. The standard approach is
based on analytic continuation to imaginary time � D it. This is also referred to as
Euclidean time, because the Minkowski interval dx2 � dt2 turns into the Euclidean
expression dx2Cd�2. In the following I will consider the euclidean partition function

Z.T/ D
Z

Dx e�SE ; SE D
Z ˇ

0

d�

�
1

4
Px4 C .x2 � �2/2

�
; (2.4)

where ˇ D 1=T is the inverse temperature and we assume periodic boundary
conditions x.0/ D x.ˇ/. To see that Eq. (2.4) is indeed the partition function we
can use Eq. (2.3) to express the path integral in terms of the eigenvalues of the
Hamiltonian, Z.T/ D P

n exp.�En=T/. In the following I will describe numerical
simulations using a discretized version of the euclidean action. For this purpose I
discretize the euclidean time coordinate �j D ja; i D 1; : : : n where a D ˇ=n is the
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length of time interval. The discretized action is given by

S D
nX

iD1

�
1

4a
.xi � xi�1/2 C a.x2i � �2/2

�
; (2.5)

where xi D x.�i/. I consider periodic boundary conditions x0 D xn. The discretized
euclidean path integral is formally equivalent to the partition function of a statistical
system of (continuous) “spins” xi arranged on a one-dimensional lattice. This
statistical system can be studied using standard Monte-Carlo sampling methods.
In the following I will use the Metropolis algorithm [2]. Detailed numerical studies
of the Euclidean path integral can be found in [3–6].

The Metropolis method generates an ensemble of configurations fxig.k/ where
i D 1; : : : ; n labels the lattice points and k D 1; : : : ;Nconf labels the configurations.
Quantum mechanical averages are computed by averaging observables over many
configurations,

hOi D lim
Nconf !1

1

Nconf

NconfX
kD1

O .k/ (2.6)

where O .k/ is the value of the classical observable O in the configuration fxig.k/.
The configurations are generated using Metropolis updates fxig.k/ ! fxig.kC1/. The
update consists of a sweep through the lattice during which a trial update x.kC1/

i D
x.k/i C ıx is performed for every lattice site. Here, ıx is a random number. The trial
update is accepted with probability

P
�

x.k/i ! x.kC1/
i

�
D min fexp.��S/; 1g ; (2.7)

where �S is the change in the action Eq. (2.5). This ensures that the configura-
tions fxig.k/ are distributed according the “Boltzmann” distribution exp.�S/. The
distribution of ıx is arbitrary as long as the trial update is micro-reversible, i. e. is
equally likely to change x.k/i to x.kC1/

i and back. The initial configuration is arbitrary.
In order to study equilibration it is useful to compare an ordered (cold) start with
fxig.0/ D f�g to a disordered (hot) start fxig.0/ D frig, where ri is a random variable.

The advantage of the Metropolis algorithm is its simplicity and robustness. The
only parameter to adjust is the distribution of ıx. A simple choice is to take ıx
to be a Gaussian random number, and choose the width of the distribution so that
the average acceptance rate for the trial updates is around 50%. Fluctuations of O
provide an estimate in the error of hOi. The uncertainty is given by

�hOi D
s
hO2i � hOi2

Nconf
: (2.8)
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This requires some care, because the error estimate is based on the assumption that
the configurations are statistically independent. In practice this can be monitored by
computing the auto-correlation “time” in successive measurements O.fxig.k//.

I have written a simple fortran code that implements the Metropolis algorithm
for Euclidean path integrals [6]. The most important part of that code is a sweep
through the lattice with a Metropolis update on every site �j:

do j=1,n-1

nhit = nhit+1

xpm = (x(j)-x(j-1))/a
xpp = (x(j+1)-x(j))/a
t = 1.0/4.0*(xpm**2+xpp**2)
v = (x(j)**2-f**2)**2
sold = a*(t+v)

xnew = x(j) + delx*(2.0*ran2(iseed)-1.0)

xpm = (xnew-x(j-1))/a
xpp = (x(j+1)-xnew)/a
t = 1.0/4.0*(xpm**2+xpp**2)
v = (xnew**2-f**2)**2
snew = a*(t+v)
dels = snew-sold

p = ran2(iseed)
if (exp(-dels) .gt. p) then

x(j) = xnew
nacc = nacc + 1

endif

enddo

Here, sold is the local action corresponding to the initial value of x(j),
and snew is the action after the trial update. The trial update is accepted if
exp(-dels) is greater that the random variable p. The function ran2()
generates a random number between 0 and 1, and nacc/nhit measures the
acceptance rate. A typical path is shown in Fig. 2.1. An important feature of the
paths in the double well potential is the presence of tunneling events. Indeed, in
the semi-classical regime � � 1, a typical path can be understood as Gaussian
fluctuations superimposed on a series of tunneling events (instantons).

The path integral method does not provide direct access to the eigenvalues of the
Hamiltonian, but it can be used to compute imaginary time correlation functions

˘E
n .�1; : : : ; �n/ D hx.�1/ : : : x.�n/i: (2.9)

Note that the average is carried out with respect to the partition function in Eq. (2.4).
In the limit ˇ ! 1 this corresponds to the ground state expectation value. A very
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Fig. 2.1 Typical euclidean path obtained in a Monte Carlo simulation of the discretized euclidean
action of the double well potential for � D 1:4. The lattice spacing in the euclidean time direction
is a D 0:05 and the total number of lattice points is N� D 800. The blue curve shows the
corresponding smooth path obtained by running 100 cooling sweeps on the original path

important observable is the two-point function ˘E.�/ � ˘E
2 .0; �/. The euclidean

correlation functions is related to the eigenstates of the Hamiltonian via a spectral
representations. This representation is obtained by inserting a complete set of states
into Eq. (2.9). The result is

˘E.�/ D
X

n

jh0jxjnij2 exp.�.En � E0/�/; (2.10)

where En is the energy of the state jni. This can be written as

˘E.�/ D
Z

dE �.E/ exp.�.E � E0/�/; (2.11)

where �.E/ is the spectral function. In the case of the double well potential
there are only bound states and the spectral function is a sum of delta-functions.
Equation (2.10) shows that the euclidean correlation function is easy to construct
once the energy eigenvalues and eigenfunctions are known. The inverse problem is
well defined in principle, but numerically much more difficult. The excitation energy
of the first excited state �E1 D E1 � E0 is easy to extract from the exponential
decay of the two-point functions, but higher states are more difficult to compute. A
technique for determining the spectral function from Euclidean correlation functions
is the maximum entropy image reconstruction method, see [7, 8].
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The calculation of correlation functions in a Monte Carlo simulation is very
straightforward. All I need to do is multiply the values of x.�i/ for a given path,
and then average over all paths:

do ic=1,nc

ncor = ncor + 1
ip0 = int( (n-np)*ran2(iseed) )
x0 = x(ip0)

do ip=1,np
x1 = x(ip0+ip)
xcor = x0*x1
x2cor= xcor**2
xcor_sum(ip) = xcor_sum(ip) + xcor
xcor2_sum(ip) = xcor2_sum(ip) + xcor**2

enddo
enddo

The advantages of this method are that it is extremely robust, that it requires no
knowledge (or preconceived notion) of what the wave function looks like, and that
it can explore a very complicated configuration space. On the other hand, in the case
of one-dimensional quantum mechanics, the Metropolis method is very inefficient.
Using direct diagonalization in a finite basis it is not difficult to compute the energies
of the first several states in the potential in Eq. (2.1) with very high accuracy,
�E=E0 � O.10�6/ or better. On the other hand, using the Monte Carlo method,
it is quite difficult to achieve an accuracy of O.10�2/ for observable other than
.E1 � E0/=E0. The advantage of the Monte Carlo method is that the computational
cost scales much more favorably in high dimensional systems, such as quantum
mechanics of many particles, or quantum field theory.

The Monte Carlo method also does not directly provide the ground state
energy, or the partition function and free energy at finite temperature. In quantum
mechanics we can compute the ground state energy from the expectation value of
the Hamiltonian hHi D hT C Vi in the limit ˇ !1. The expectation value of the
kinetic energy is singular as a! 0, but this problem can be overcome by using the
Virial theorem

hHi D
D x

2
V 0 C V

E
: (2.12)

There is no simple analog of this method in quantum field theory. A method for
computing the free energy which does generalize to quantum field theory is the
adiabatic switching technique. The idea is to start from a reference system for which
the free energy is known and calculate the free energy difference to the real system
using Monte Carlo methods. For this purpose I write the action as

S˛ D S0 C ˛�S ; (2.13)
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where S0 is the action of the reference system, �S is defined by �S D S � S0
where S is the full action, and ˛ can be viewed as a coupling constant. The action
S˛ interpolates between the physical system for ˛ D 1 and the reference system for
˛ D 0. Integrating the relation @ log Z.˛/=.@˛/ D �h�Si˛ I find

log.Z.˛D1// D log.Z.˛D0//�
Z 1

0

d˛0 h�Si˛0 ; (2.14)

where h:i˛ is computed using the action S˛. In the case of the anharmonic oscillator
it is natural to use the harmonic oscillator as a reference system. In that case the
reference partition function is

Z.˛D0/ D
X

n

exp.�ˇE0n/ D
exp.�ˇ!0=2/
1 � exp.�ˇ!0/ ; (2.15)

where !0 is the oscillator constant. Note that the free energy F D T log.Z/ of the
anharmonic oscillator should be independent of the reference frequency !0. The
integral over the coupling constant ˛ can be calculated in a Monte Carlo simulation
by slowly changing ˛ from 0 to 1 during the simulation. Free energy calculations of
this type play an important role in quantum chemistry, and more efficient methods
for determining�F have been developed [9].

2.3 Quantum Chromodynamics

2.3.1 QCD at Zero Temperature and Density

The rich phenomenology of strong interacting matter is encoded in a deceptively
simple Lagrangian. The fundamental fields in the Lagrangian are quark fields qc

˛ f
and gluon fields Aa

�. Here, ˛ D 1; : : : ; 4 is a Dirac spinor index, c D 1; : : : ;Nc

with Nc D 3 is a color index, and f D up; down; strange; charm; bottom; top is a
flavor index. Interactions in QCD are governed by the color degrees of freedom.
The gluon field Aa

� is a vector field labeled by an index a D 1; : : : ;N2
c � 1 in the

adjoint representation. The N2
c� multiplet of gluon fields can be used to construct a

matrix valued field A� D Aa
�
�a

2
, where �a is a set of traceless, Hermitian, Nc � Nc

matrices. The QCD Lagrangian is

L D �1
4

Ga
��G

a
�� C

NfX
f

Nqf .i	
�D� � mf /qf ; (2.16)
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where Ga
�� is the QCD field strength tensor defined by

Ga
�� D @�Aa

� � @�Aa
� C gf abcAb

�Ac
� ; (2.17)

and f abc D 4i Tr.Œ�a; �b
�c/ are the SU.Nc/ structure constants. The action of the
covariant derivative on the quark fields is

iD�q D
�

i@� C gAa
�

�a

2

�
q ; (2.18)

and mf is the mass of the quarks. The terms in Eq. (2.16) describe the interaction
between quarks and gluons, as well as nonlinear three and four-gluon interactions.
Note that, except for the number of flavors and their masses, the structure of the
QCD Lagrangian is completely fixed by the local SU.Nc/ color symmetry.

A natural starting point for studying the phase diagram of hadronic matter is
to consider the light flavors (up, down, and strange) as approximately massless,
and the heavy flavors (charm, bottom, top) as infinitely massive. In this limit the
QCD Lagrangian is completely characterized by two integer valued parameters,
the number of colors Nc D 3 and flavors Nf D 3, and a single dimensionless
coupling constant g. Quantum fluctuations cause the coupling constant to become
scale dependent [10, 11]. At one-loop order the running coupling constant is

g2.q2/ D 16�2

b0 log.q2=�2
QCD/

; b0 D 11

3
Nc � 2

3
Nf ; (2.19)

where q is a characteristic momentum and Nf is the number of active flavors. The
scale dependence of the coupling implies that, as a quantum theory, QCD is not
governed by a dimensionless coupling but by a dimensionful scale, the QCD scale
parameter�QCD. This phenomenon is known as dimensional transmutation [12].

A crucial aspect of the scale dependence of the coupling in QCD is that the
effective interaction decreases as the energy or momentum scale is increased. This
feature of QCD is called asymptotic freedom [10, 11]. It implies that high energy
interactions can be analyzed using perturbative QCD. The flip side of asymptotic
freedom is anti-screening, or confinement: The effective interaction between quarks
increases with distance, and quarks are permanently confined into hadrons. The
absence of colored states in the spectrum implies that the use of perturbation theory
is subtle, even at high energy. Quantities that can be computed perturbatively either
involve a sum over many hadronic states, or allow for a factorization of perturbative
interactions and non-perturbative matrix elements.

If quarks are massless then QCD observables are dimensionless ratios like
mp=�QCD, where mp is the mass of the proton. This implies that the QCD scale is not
a parameter of the theory, but reflects a choice of units. In the real world QCD is part
of the standard model, quarks acquire masses by electroweak symmetry breaking,
and the QCD scale is fixed by value of the coupling constant at the weak scale.
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Fig. 2.2 Schematic phase diagram of QCD as a function of temperature T and baryon chemical
potential �. The quark gluon plasma phase is labeled QGP, and CFL refers to the color
superconducting phase that is predicted to occur at asymptotically large chemical potential. The
critical endpoints of the chiral and nuclear liquid-gas phase transitions, are denoted by red and
black points, respectively. The chiral pseudo-critical line associated with the crossover transition
at low temperature is shown as a dashed line. The green arrows indicate the regions of the phase
diagram that can be studied by the experimental heavy ion programs at RHIC and the LHC

Experiments determine the value of the QCD fine structure constant ˛s D g2=.4�/
at the position of the Z boson pole, ˛s.mz/ D 0:1184˙ 0:0007 [13]. The numerical
value of �QCD depends on the renormalization scheme used in computing quantum
corrections to the coupling constant. Physical observables, as well as the value of
b0, are independent of this choice. In the modified minimal subtraction (MS) scheme
the scale parameter is �QCD ' 200MeV [13].

A schematic phase diagram of QCD is shown in Fig. 2.2. In this figure I show
the phases of strongly interacting matter as a function of the temperature T and the
baryon chemical potential �. The chemical potential � controls the baryon density
�, defined as 1/3 times the number density of quarks minus the number density
of anti-quarks. In the following I will explain that the basic structure of the phase
diagram is determined by asymptotic freedom and the symmetries of QCD. For
more detailed reviews see [14–16].

At small temperature and chemical potential the interaction between quarks is
dominated by large distances and the effective coupling is strong. This implies that
quarks and gluons are permanently confined in color singlet hadrons, with masses
of order�QCD. The proton, for example, has a mass of mp D 935MeV. A simplistic
view of the structure of the proton is that it is a bound state of three constituent
quarks with effective masses mQ ' mp=3 ' �QCD. These masses should be
compared to the bare up and down quark masses which are of the order 10 MeV.
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As a consequence of strong interactions between virtual quarks and anti-quarks in
the QCD ground state a vacuum condensate of Nqq pairs is generated, hNqqi ' ��3

QCD
[17–19]. This vacuum expectation value spontaneously breaks the approximate
chiral SU.3/L � SU.3/R flavor symmetry of the QCD Lagrangian down to its
diagonal subgroup, the flavor symmetry SU.3/V . Spontaneous chiral symmetry
breaking implies the existence of Goldstone bosons, massless modes with the
quantum numbers of the generators of the broken axial symmetry SU.3/A. The
corresponding excitations in the spectrum of QCD are the � , K and � mesons. The
SU.3/L � SU.3/R symmetry is explicitly broken by quark masses, and the mass of
the charged pion is m� D 139MeV. This scale can be compared to the mass of the
lightest non-Goldstone particle, the rho meson, which has a mass m� D 770MeV.

At low energy Goldstone bosons can be described in terms of an effective field
theory in which composite � , K and � particles are treated as fundamental fields.
The Goldstone boson field can be parametrized by unitary matrices

˙ D exp.i�aa=f�/ ; (2.20)

where �a are the Gell-Mann matrices for SU.3/ flavor and f� D 93MeV is the pion
decay constant. For example, �0 D 3 and �˙ D .1˙ i2/=2 describe the neutral
and charged pion. Other components of a describe the neutral and charged kaons,
as well as the eta. The eta prime, which is the SU.3/F singlet meson, acquires a
large mass because of the axial anomaly, and is not a Goldstone boson. The axial
anomaly refers to the fact that the flavor singlet axial current, which is conserved in
massless QCD at the classical level, is not conserved if quantum effects are taken
into account. The divergence of the axial current A� D Nq	�	5q is

@�A� D g2Nf

32�2
���˛ˇGa

��G
a
˛ˇ : (2.21)

The right hand side is the topological charge density, which I will discuss in more
detail in Sect. 2.4.3.

At low energy the effective Lagrangian for the chiral field can be organized as a
derivative expansion in gradients of˙ . Higher derivative terms describe interactions
that scale as either the momentum or the energy of the Goldstone boson. Since
Goldstone bosons are approximately massless, the energy is of the same order of
magnitude as the momentum. We will see that the expansion parameter is p=.4�f�/.
At leading order in .@=f�/ there is only one possible term which is consistent with
chiral symmetry, Lorentz invariance and the discrete symmetries C;P;T. This is the
Lagrangian of the non-linear sigma model

L D f 2�
4

Tr
�
@�˙@

�˙�
	C �BTr.M˙�/C h:c:

	C : : : : ; (2.22)
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where the term proportional to B takes into account explicit symmetry breaking.
Here, M D diag.mu;md;ms/ is the quark mass matrix and B is a low energy constant
that I will fix below.

First, I will show that the parameter f� controls the pion decay amplitude. For this
purpose I have to gauge the weak SU.2/L symmetry of the non-linear sigma model.
As usual, this is achieved by promoting the derivative to a gauge covariant operator
r�˙ D @�˙ C igwW�˙ where W� is the charged weak gauge boson and gw is the
weak coupling constant. The gauged non-linear sigma model gives a pion-W boson
interaction

L D gwf�W�̇ @
��� : (2.23)

This term contributes to the amplitude A for the decay �˙ ! W˙ ! e˙�e. I get
A D gwf�q�, where q� is the momentum of the pion. This result can be compared
to the standard definition of f� in terms of the weak axial current matrix element of
the pion, h0jAa

�j�bi D f�q�ıab. This comparison shows that the coefficient of the
kinetic term in the non-linear sigma model is indeed the weak decay constant of the
pion.

In the ground state ˙ D 1 and the ground state energy is Evac D �2BTrŒM
.
Using the relation hNqqi D @Evac=.@m/ we find hNqqi D �2B. Fluctuations around
˙ D 1 determine the masses of the Goldstone bosons. The pion mass satisfies the
Gell-Mann-Oaks-Renner relation (GMOR) [17]

m2
� f 2� D �.mu C md/hNqqi (2.24)

and analogous relations exist for the kaon and eta masses. This result shows the
characteristic non-analytic dependence of the pion mass on the quark masses,
m� � pmq.

2.3.2 QCD at Finite Temperature

The structured of QCD at high temperature can be analyzed using the assumption
that quarks and gluons are approximately free. We will see that this assumption
is internally consistent, and that it is confirmed by lattice calculations. If the
temperature is large then quarks and gluons have thermal momenta p � T � �QCD.
Asymptotic freedom implies that these particles are weakly interacting, and that they
form a plasma of mobile color charges, the quark gluon plasma (QGP) [20, 21]. The
pressure of a gas of quarks and gluons is

P D �2T4

90

�
2


N2

c � 1
�C 4NcNf

7

8

�
: (2.25)
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This is the Stefan-Boltzmann law, where 2.N2
c � 1/ is the number of bosonic

degrees of freedom, and 4NcNF is the number of fermions. The factor 7/8 takes
into account the difference between Bose and Fermi statistics. The pressure of a
QGP is parametrically much bigger than the pressure of a pion gas, indicating that
the QGP at high temperature is thermodynamically stable.

The argument that the QGP at asymptotically high temperature is weakly coupled
is somewhat more subtle than it might appear at first glance. If two quarks or gluons
in the plasma interact via large angle scattering then the momentum transfer is large,
and asymptotic freedom implies that the effective coupling is weak. However, the
color Coulomb interaction is dominated by small angle scattering, and it is not
immediately clear why the effective interaction that governs small angle scattering
is weak. The basic observation is that in a high temperature plasma there is a large
thermal population (n � T3) of mobile color charges that screen the interaction
at distances beyond the Debye length rD � 1=.gT/. We also note that even in the
limit T � �QCD the QGP contains a non-perturbative sector of static magnetic
color fields [22]. This sector of the theory, corresponding to energies below the
magnetic screening scale mM �< g2T, is strongly coupled, but it does not contribute
to thermodynamic or transport properties of the plasma in the limit T !1.

The quark gluon plasma exhibits neither color confinement nor chiral symmetry
breaking. This implies that the high temperature phase must be separated from the
low temperature hadronic phase by a phase transition. The order of this transition
is very sensitive to the values of the quark masses. In QCD with massless u; d
and infinitely massive s; c; b; t quarks the transition is second order [23]. In the
case of massless (or sufficiently light) u; d; s quarks the transition is first order.
Lattice simulations show that for realistic quark masses, mu ' md ' 10MeV and
ms ' 120MeV, the phase transition is a rapid crossover [24, 25]. The transition
temperature, defined in terms of the chiral susceptibility, is Tc ' 151˙ 3˙ 3MeV
[26, 27], which is consistent with the result 154˙ 9MeV reported in [25, 28].

The phase transition is expected to strengthen as a function of chemical potential,
so that there is a critical baryon chemical potential � at which the crossover turns
into a first order phase transition [29]. This critical point is the endpoint of the
chiral phase transition. Because of the fermion sign problem, which I will discuss in
Sect. 2.4.4, it is very difficult to locate the critical endpoint using simulations on
the lattice. Model calculations typically predict the existence of a critical point,
but do not constrain its location. A number of exploratory lattice calculations
have been performed [30–35], but at the time I am writing these notes it has
not been demonstrated conclusively that the transition strengthens with increasing
baryon chemical potential [36]. The critical endpoint is important because, with
the exception of the endpoint of the nuclear liquid-gas transition, it is the only
thermodynamically stable point in the QCD phase diagram at which the correlation
length diverges. This means that the critical endpoint may manifest itself in heavy
ion collisions in terms of enhanced fluctuation observables [37].
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2.3.3 High Baryon Density QCD

The origin of the phase diagram, T D � D 0, corresponds to the vacuum state
of QCD. If we stay on the T D 0 line and increase the chemical potential � then
there is no change initially. At zero temperature the chemical potential � is the
energy required to add a baryon to the system, and QCD has a large mass gap for
baryonic states. The first non-vacuum state we encounter along the T D 0 axis of
the phase diagram is nuclear matter, a strongly correlated superfluid composed of
approximately non-relativistic neutrons and protons. Nuclear matter is self-bound,
and the baryon density changes discontinuously at the onset transition, from � D 0
to nuclear matter saturation density � D �0 ' 0:15 fm�3. The discontinuity
decreases as nuclear matter is heated, and the nuclear-liquid gas phase transition
ends in a critical point at T ' 18MeV and � ' �0=3 [38–40]. Hot hadronic
matter can be described quite accurately as a weakly interacting gas of hadronic
resonances. Empirically, the density of states for both mesons and baryons grows
exponentially. A system of this type is called a Hagedorn gas, and it is known that
a Hagedorn gas has a limiting temperature. It is also known that an exponential
density of states can be realized using the string model of hadronic resonances.

In the regime � � �QCD we can use arguments similar to those in the limit
T � �QCD to establish that quarks and gluons are weakly coupled. At low
temperature non-interacting quarks form a Fermi surface, where all states below the
Fermi energy EF ' �=3 are filled, and all states above the Fermi energy are empty.
Interactions take place near the Fermi surface, and the corresponding interaction
is weak. The main difference between cold quark matter and the hot QGP is that
the large density of states near the quark Fermi surface implies that even weak
interactions can cause qualitative changes in the ground state of dense matter. In
particular, attractive interactions between pairs of quarks .pF;�pF/ on opposite
sides of the Fermi surface leads to color superconductivity and the formation of
a hqqi diquark condensate.

Since quarks carry many different quantum numbers, color, flavor, and spin, a
variety of superconducting phases are possible. The most symmetric of these, known
as the color-flavor locked (CFL) phase, is predicted to exist at asymptotically high
density [41, 42]. In the CFL phase the diquark order parameter is

hqA
˛f q

B
ˇgi D .C	5/˛ˇ�ABC�fghı

h
C˚ ; (2.26)

where C	5 is an anti-symmetric (spin zero) Dirac matrix, and ˚ determines the
magnitude of the gap near the Fermi surface. This order parameter has a number of
interesting properties. It breaks the U.1/ symmetry associated with baryon number,
leading to superfluidity, and it breaks the chiral SU.3/L� SU.3/R symmetry. Except
for Goldstone modes the spectrum is fully gapped. Fermions acquire a BCS-pairing
gap, and gauge fields are screened by the color Meissner effect. This implies that
the CFL phase, even though it is predicted to occur in a very dense liquid of quarks,
exhibits many properties of superfluid nuclear matter.
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The CFL order parameter describes equal pair-condensates hudi D husi D hdsi
of all three light quark flavors. As the density is lowered effects of the non-zero
strange quark mass become important, and less symmetric phases are predicted to
appear [14]. Phases that have been theoretically explored include Bose condensates
of pions and kaons, hyperon matter, states with inhomogeneous quark-anti-quark
or diquark condensates, and less symmetric color superconducting phases. The
regimes of moderate baryon chemical potential in the phase diagram shown in
Fig. 2.2 is largely conjecture. Empirical evidence shows that at low � there is a
nuclear matter phase with broken chiral symmetry and zero strangeness, and weak
coupling calculations indicate that at high � we find the CFL phase with broken
chiral symmetry but non-zero strangeness. In principle the two phases could be
separated by a single onset transition for strangeness [43, 44], but model calculation
support a richer picture in which one or more first order transitions intervene, as
indicated in Fig. 2.2.

2.4 Lattice QCD

2.4.1 The Wilson Action

Symmetry arguments and perturbative calculations can be used to establish general
features of the QCD phase diagram, but quantitative results can only be obtained
using numerical calculations based on lattice QCD. The same is true for the masses
of hadrons, their properties, and interactions. Lattice QCD is based on the euclidean
path integral representation of the partition function, see the contribution by Hatsuda
and [45–49] for introductions. More detailed reviews of the lattice field theory
approach to hot and dense QCD can be found in [50, 51].

The euclidean partition function for QCD is

Z.T; �;V/ D
Z

DA�Dqf D Nqf exp.�SE/ ; (2.27)

where SE is the euclidean action

SE D �
Z ˇ

0

d�
Z

V
d3x L E ; (2.28)

ˇ D T�1 is the inverse temperature and L E is the Euclidean Lagrangian, which is
obtained by analytically continuing Eq. (2.16) to imaginary time � D it. As in the
quantum mechanical example in Eq. (2.4) the temperature enters via the boundary
condition on the fields in the imaginary time direction. Gauge fields and fermions
obey periodic and anti-periodic boundary conditions, respectively. The chemical
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potential enters through its coupling to the conserved baryon density

L E.�/ D L E.0/C �Nqf 	0qf : (2.29)

In his pioneering work Wilson proposed to discretize the action on a N� �N3
� space-

time lattice with lattice spacings a� and a� [52]. In many cases a� D a� D a,
but we will encounter an exception in Sect. 2.5.4. when we discuss the Hamiltonian
formulation of the theory.

At finite temperature we have to ensure that the spatial volume is larger than
the inverse temperature, L > ˇ. Here, ˇ D N�a� , L D N�a� , and V D L3 is
the volume. Thermodynamic quantities are determined by taking derivatives of the
partition function. The energy and baryon density are given by

E D � 1
V

@ log Z

@̌

ˇ̌
ˇ̌
ˇ�

; (2.30)

� D 1

ˇV

@ log Z

@�

ˇ̌
ˇ̌
ˇ

: (2.31)

The discretized action for the gauge fields originally suggested by Wilson is given
by

SW D � 2
g2
X

n

X
�<�

Re Tr
�
W��.n/� 1

	
(2.32)

where W��.n/ is the plaquette, the product of gauge links around an elementary loop
on the lattice,

W��.n/ D U�.n/U�.nC O�/U��.nC O�C O�/U��.nC O�/ : (2.33)

Here, n D .n� ; ni/ labels lattice sites and O� is a unit vector in the �-direction. The
gauge links U�.n/ are SU.Nc/ matrices. We can think of the gauge links as line
integrals

U�.n/ D exp.iaA�.n// ; (2.34)

and of the plaquettes as fluxes

W��.n// D exp.ia2G��.n// ; (2.35)

but the fundamental variables in the path integral are the (compact) group variables
U�, not the (non-compact) gauge potentials A�. In particular, the path integral in
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pure gauge QCD takes the form

Z D
Z Y

n;�

dU�.n/ exp.�SW/ ; (2.36)

where dU is the Haar measure on SU.Nc/. The Haar measure describes the correct
integration measure for the gauge group. Some group integrals are discussed by
Hatsuda, but part of the beauty of the Metropolis method is that we never have to
explicitly construct dU�.n/.

Using Eq. (2.34) we can check that the Wilson action reduces to continuum pure
gauge theory in the limit a ! 0. We note that the gauge invariance of QCD is
maintained exactly, even on a finite lattice, but that Lorentz invariance is only
restored in the continuum limit. We also observe that classical scale invariance
implies that the massless QCD action is independent of a. The continuum limit
is taken by adjusting the bare coupling at the scale of the lattice spacing according
to asymptotic freedom, see Eq. (2.19). In practice the lattice spacing is not small
enough to ensure the accuracy of this method, and more sophisticated scale setting
procedures are used [50, 51].

Monte Carlo simulations of the path integral Eq. (2.36) can be performed using
the Metropolis algorithm explained in Sect. 2.2:

• Initialize the link variables with random SU.Nc/ matrices. A simple algorithm is
based on writing U in terms of Nc complex row vectors ui. Take each vector to
be random unit vector and then use the Gram-Schmidt method to orthogonalize
the different vectors, ui � u�

j D ıij. This ensures that U is unitary and distributed
according to the SU.Nc/ Haar measure [53].

• Sweep through the lattice and update individual link variables. For this purpose
multiply the link variable by a random SU.Nc/matrix, U� ! RU�. Compute the
change in the Wilson action and accept the update with probability exp.��SW/.

• Compute physical observables. The simplest observable is the average plaquette
hW��i, which can be related to the equation of state, see Eq. (2.30). More
complicated observables include the correlation function between plaquettes, and
the Wilson loop

W.C / D Tr ŒL.C /
 ; L.C / D
Y

.n;�/2C
U�.n/ ; (2.37)

where L.C / is the product of link variables around a closed loop. The average
Wilson loop is related to the potential between two static charges in the
fundamental representation

V.R/ D � lim
T!1

1

T
log ŒhW.C /i
 ; (2.38)

where R � T is the area of a rectangular loop C .
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• Tune to the continuum limit a! 0 by adjusting the coupling constant according
to the asymptotic freedom formula Eq. (2.19). Note that the Lambda parameter
for the lattice regulator is quite small, �lat D � NMS=28:8 [54]. Also observe that
we have to increase N� ;N� to keep the physical volume constant as a ! 0.
Indeed, once the continuum limit a! 0 is reached we have to study the infinite
volume (thermodynamic) limit V ! 1. This is more difficult than it appears,
because a ! 0, corresponding to g ! 0, is a critical point of the partition
function (2.36), and simulations exhibit critical slowing down.

Metropolis simulations with the pure gauge Wilson action are very simple and
robust. As an illustration I provide a simple Z2 lattice gauge theory code written
by M. Creutz in the Appendix. Reasonable results for the heavy quark potential
can be obtained on fairly coarse lattices, for example an 84 lattice with a spacing
a ' 0:25 fm [55]. However, accurate results with controlled error bars require
significant computational resources. In practice the perturbative relation between
a and g2 is only valid on very fine lattices, and the scale setting has to be done
non-perturbatively. Also, determining the spectrum of pure gauge theory is difficult.
Purely gluonic states, glueballs, are quite heavy, with masses in the range m '
1:6GeV and higher. This implies that gluonic correlation functions are short range,
requiring a resolution a ' 0:1 fm or better. Finally, simulations on fine lattices are
affected by critical slowing down. Indeed, finding an efficient method for updating
gauge fields on very fine lattices, analogous to the cluster algorithms for spin models
[56], is an important unsolved problem.

2.4.2 Fermions on the Lattice

The main difficulty in lattice QCD is related to the presence of light fermions. The
fermion action is of the form

SF D a4
X
m;n

Nq.m/Dmnq.n/ : (2.39)

Formally, the integration over the fermion fields can be performed exactly, resulting
in the determinant of the Dirac operator det.D.A�; �//. Several methods exist for
discretizing the Dirac operator D, and for sampling the determinant. Different
discretization schemes differ in the degree to which chiral symmetry is maintained
on a finite lattice. The original formulation due to Wilson [52] preserves no chiral
symmetry, the staggered Fermion scheme [57] maintains a subset of the full chiral
symmetry, while the domain wall [58] and overlap methods [59] aim to preserve the
full chiral symmetry on a discrete lattice.

The central difficulty in implementing these methods is that the fermion deter-
minant is a very non-local object. While updating a single gauge link only requires
recalculating a small number of plaquettes (6 in d D 4 dimensions) in the Wilson
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action, recalculating the fermion action requires computing the determinant of a
(very sparse) matrix of size .N�N3

� / � .N�N3
� / or larger. This is clearly impractical.

Fermion algorithms rely on a number of tricks. The first is the observation that the
Dirac operator has a property called 	5-hermiticity, 	5D	5 D D�, which implies that
det.D/ is real. The determinant of a two-flavor theory is then real and positive. This
allows us to rewrite the fermion determinant as a path integral over a bosonic field
with a non-local but positive action

det.Du/ det.Dd/ D det.DD�/ D
Z

DD� exp.��.DD�/�1/ : (2.40)

The path integral over the pseudofermion field  can be sampled using a combi-
nation of deterministic methods like molecular dynamics and stochastic methods
such as the Metropolis algorithm. These combined algorithms are known as Hybrid
Monte Carlo (HMC) methods. Codes that implement the HMC algorithm for
pseudofermions are significantly more complicated than the Metropolis algorithm
for the pure gauge Wilson action discussed above, and I refer the interested reader to
the more specialized literature [60]. I also note that since these algorithms involve
the calculation of D�1 the computational cost increases as the quark masses are
lowered.

The calculation of correlation functions also differs from the bosonic case.
Consider, for example, an operator with the quantum numbers of a charged pion,
J�.x/ D Nua.x/	5da.x/. Since the fermion action is quadratic the correlation function
in a given gauge configuration can be computed exactly in terms of the fermion
propagator. The full correlation function is

˘�.x/ D hJ�.x/J�.0/i D hTr ŒS.x; 0/	5S.0; x/	5
i ; (2.41)

where S.x; y/ D hxjD�1jyi is the fermion propagator, and we have assumed exact
isospin symmetry so that the propagator of the up quark is equal to the propagator
of the down quark. Note that the interaction between quarks is encoded in the
average over all gauge fields. The one-gluon exchange interaction, for example,
corresponds to a perturbative fluctuation in the gauge field that modifies the two
quark propagators. An operator with the quantum number of the proton is �˛.x/ D
�abc.ua.x/C	�ub.x//.	�	5dc.x//˛. The correlation function is

˘˛ˇ.x/ D 2�abc�a0b0c0

D �
	�	5S

cc0

.0; x/	�	5
�
˛ˇ

Tr
h
	�Saa0

.0; x/	�C.S
bb0

.0; x//TC
i E
:

(2.42)

Note that meson correlation function involves one forward and one backward
going propagator, whereas the propagators in the baryon correlation function are
all forward going. A difficulty arises when we consider flavor singlet Nqq currents
such as J�0 D .Nua.x/	5ua.x/C Nda.x/	5da.x//=

p
2, which has the quantum numbers
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Fig. 2.3 Topological objects in lattice QCD (figure courtesy of S. Sharma, see [62]). This picture
shows a slice through a low lying eigenstate of the Dirac operator in lattice QCD

of the �0 meson. We find

˘�0.x/ D hJ�0.x/J�0.0/i D hTr ŒS.x; 0/	5S.0; x/	5
 � 2Tr ŒS.x; x/	5
Tr ŒS.0; 0/	5
i ;
(2.43)

which involve propagators S.x; x/ that loop back to the same point. These con-
tributions are known as quark-line disconnected diagrams, and difficult to treat
numerically, see [61] for a recent discussion.

2.4.3 The QCD Vacuum

It is natural to hope that lattice QCD can provide us with an intuitive picture of
what the QCD vacuum looks like, similar to the picture of the quantum mechanical
ground state shown in Fig. 2.3. This turns out to be more complicated, for a number
of reasons. The first is that the field in QCD is a SU.3/ matrix, which is hard to
visualize. The second, more important, problem is related to quantum fluctuations.
In QCD there is no obvious separation of scales that would allow us to clearly
separate perturbative fluctuations from large semi-classical fluctuations.

This has led to the idea to eliminate short range fluctuations by some kind of
filtering or smoothing algorithm. The simplest of these is known as cooling [63]. In
the cooling method we modify the Metropolis algorithm so that only updates that
reduce the action are accepted. Since the update algorithm is local, this will tend to
eliminate small structures but preserve larger objects. A modern version of cooling
is gradient flow [64]. In the gradient flow method we continue the gauge fields to a
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5th “time” dimension. In this direction the fields satisfy a differential equation

@�A� D D�G�� ; (2.44)

where A�.� D 0/ is the four-dimensional gauge field and the rhs is computed from
the gauge potentials evaluated at the flow time � . The Lorentz indices remain four-
dimensional. The rhs of the flow equations is the classical equation of motion, so that
the gradient flow tends to drive gauge fields towards the closest classical solution.
The only finite action solutions of the euclidean field equations on R4 are instantons
[65, 66]. Instantons and anti-instantons are characterized by integer values Qtop D
˙1 of the topological charge

Qtop D
Z

d4x q.x/ ; q.x/ D g2

64�2
���˛ˇGa

��G
a
˛ˇ : (2.45)

Exact higher charge solutions exist, but the QCD vacuum is dominated by config-
urations with both instantons and anti-instantons. These gauge field configurations
are only approximate solutions of the equations of motion [66]. Under cooling or
gradient flow instantons and anti-instantons will eventually annihilate and evolve to
an exact multi-instantons solution with Qtop D NI�NA , where NI;A are the numbers
of (anti)instantons. However, the NICNA topological objects are preserved for flow
times that are much longer than the decay time of ordinary quantum fluctuations, and
the total number of well separated instantons and anti-instantons can be determined.

The average topological charge is zero, but the pure gauge vacuum is character-
ized by a non-zero topological susceptibility

�top D 1

V
hQ2

topi ; (2.46)

where V is the euclidean four-volume. The topological charge can be determined
using the naive lattice discretization of Eq. (2.45), but this operator is very noisy,
and in general not an integer. This problem can be addressed using the cooling
or gradient flow algorithms discussed above. Recent lattice calculations based on
these methods give �top D .190 ˙ 5MeV/4 [67, 68]. A simple picture of the
QCD vacuum which is consistent with this value is the dilute instanton liquid
model, which assumes that the topological susceptibility is determined by Poisson
fluctuations in an ensemble of instantons and anti-instantons with an average density
.NI CNA/=V ' 1 fm�4 [66]. This is an approximate picture, and more complicated
configurations involving monopoles and fractional charges are needed to understand
the large Nc limit and the role of confinement [69].

Another important development is the use of fermionic methods to analyze the
vacuum structure of QCD. In a given gauge configuration the quark propagator can



2 Quantum Chromodynamics 25

written as

S.x; y/ D
X
�

 �.x/ 
�

�.y/

�C im
; (2.47)

where  � is an eigenvector of the Dirac operator with eigenvalue �: D � D
.� C im/ �. Note that this is not how propagators are typically determined in
lattice QCD, because the calculation of the complete spectrum is numerically very
expensive. Gamma five hermiticity implies that eigenvalues come in pairs˙�. The
quark condensate is given by

hNqqi D �i
Z

d4x hTr ŒS.x; x/
i D �
*X
�>0

2m

�2 C m2

+
: (2.48)

Here, I have ignored the contribution from exact zero modes because the density
of zero modes is suppressed by mNf . This factor comes from the determinant in
the measure. If we were to ignore the determinant (this is called the quenched
approximation), then the quark condensate would diverge as 1=m. We observe
that a finite value of the quark condensate in the chiral limit m ! 0 requires
an accumulation of eigenvalues near zero. This can be made more explicit by
introducing the density of states

�.�/ D
*X
��0

ı.� � �/
+
: (2.49)

The chiral condensate in the thermodynamic and chiral limits is given by

hNqqi D ���.0/ : (2.50)

This is known as the Banks-Casher relation [70]. Note that it is essential to take the
thermodynamic V !1 limit before the chiral limit m! 0.

Exact zero modes of the Dirac operator are related to topology. The Dirac
operator has one left handed zero mode in the field of an instanton, and a right
handed zero mode in the field of an anti-instanton. This is consistent with the
Atiyah-Singer index theorem, which states that the topological charge is equal to
the index of the Dirac operator, the difference between the number of left and right
handed zero modes, Qtop D Nf .nL � nR/. These results suggest that it is possible to
give a purely fermionic definition of the topological charge density.

On the lattice, this can be achieved for a class of Dirac operators that satisfy the
Ginsparg-Wilson relation [71]

D	5 C 	5D D aD	5D ; (2.51)
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where a is the lattice spacing. In the continuum limit we recover the expected
relation D	5C 	5D D 0 for the massless Dirac operator. The important observation
is that the fermionic topological density

qf .n/ D 1

2a3
trCD Œ	5D.n; n/
 ; (2.52)

where trCD is a color-Dirac trace, satisfies the index theorem

Qtop D a4
X

n

qf .n/ (2.53)

on a discrete lattice. Figure 2.3 shows the absolute square of qf .x/ constructed from
lying eigenmodes of the Dirac operator. We observe that fermionic operators can
indeed be used to probe the topological content of the QCD vacuum directly, without
the need for filtering or smoothing.

The existence of zero mode implies that the topological susceptibility is zero if at
least one quark flavor is massless. This is because the path integral measure contains
the fermion determinant, which is vanishes if m D 0 and Qtop ¤ 0. We can be more
precise using the chiral lagrangian Eq. (2.22). In order to keep track of topology
we add to the QCD action a topological term S� D i�Qtop. Then the topological
susceptibility is given by the second derivative of the free energy with respect to
� . Since every zero mode in the Dirac operator contributes a factor det.M/ to the
partition function we know that � enters the effective lagrangian in the combination
� C arg.det.M//. The vacuum energy is determined by

V D �BTr
�
Mei�=Nf˙�

	C h.c. ; (2.54)

and we observe that the topological susceptibility in QCD with degenerate quark
masses is proportional to mhNqqi. Note that Eq. (2.54) is consistent with the vanishing
of �top for mu D 0. If mu D 0 and md ¤ 0 then Eq. (2.54) is minimized by ˙ D
exp.i�3/ with  D �=2, and the vacuum energy is independent of � .

It is tempting to think that exact zero modes, governed by topology, and
approximate zero modes, connected to chiral symmetry breaking, are related. This
is the basis of the instanton liquid model [66]. In the instanton liquid model we
consider an ensemble of instantons and anti-instantons with no (or small) net
topology. The exact zero modes of individual instantons are lifted, and form a zero
mode zone. The density of eigenvalues in the zero mode zone determines the chiral
condensate via the Banks-Casher relation. This model predicts the correct order of
magnitude of hNqqi, but the calculation cannot be systematically improved because
chiral symmetry breaking requires strong coupling. Recently, we showed that the
connection of chiral symmetry breaking, instantons and monopoles can be made
precise in a certain limit of QCD. The idea is to compactify QCD on R3 � S1,
where the size of the circle is much smaller than ��1

QCD, and the fermions satisfy
non-thermal (twisted) boundary conditions [72].
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2.4.4 Lattice QCD at Finite Baryon Density

In Sect. 2.4.2 I discussed some of the difficulties that appear when we discretize
the Dirac operator. A separate, more serious, issue with fermions is that for � ¤ 0

the Dirac operator does not satisfy 	5-hermiticity. This implies that the fermion
determinant is no longer real, and that standard importance sampling methods fail.
This is the “sign” problem already mentioned in Sect. 2.3.2. To understand the
severity of the problem consider a generic expectation value

hOi D
R

dU det.D/O e�SR
dU det.D/ e�S

: (2.55)

If the determinant is complex I can write this as

hOi D
R

dU j det.D/jOei' e�SR
dU j det.D/j ei'e�S

� hOei'ipq

hei'ipq
; (2.56)

where h:ipq refers to a phase quenched average. This average can be computed using
the Metropolis (or HMC) algorithm. The problem is that the average phase hei'ipq

is very small. This follows from the fact that the average phase can be expressed as
the ratio of two partition functions

hei'ipq D
R

dU det.D/ e�SR
dU j det.D/j e�S

D Z

Zpq
D e�V�F ; (2.57)

where �F is the free energy density difference, and V is the volume of the system.
This shows that the phase is exponentially small, and that the ratio Eq. (2.56) is very
difficult to compute.

As a specific example consider QCD with two degenerate flavors, up and down,
and a baryon chemical potential �u D �d D �B=3. Then det.D/ D det.Du/ det.Dd/

and j det.D/j D det.Du/ det.Dd/
�. The phase quenched partition function Zpq can

be interpreted as the partition function of QCD with a non-zero isospin chemical
potential �u D ��d D �I=2. The small � behavior of both the isospin and baryon
number theories at T D 0 is easily understood. The isospin theory has a second order
phase transition at �I D m� which corresponds to the onset of pion condensation.
The baryon theory has a first order transition at �B D mp � B, where B ' 15MeV
is the binding energy of infinite nuclear matter. This implies that for � > m� the
partition functions Z and Zpq describe very different physical systems, and the sign
problem is severe.

The sign problem may manifest itself in different ways. Consider, for example,
an attempt to study the correlation function of A nucleons in a QCD ensemble
generated at �B D 0. For large A this correlation function determines the binding
energy of nuclear matter. There are two difficulties with this approach. The first
is that the operator contains 3A quark fields, so that the correlator has up to .3A/Š
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contractions. This is not prohibitive, because the number of contractions can be
reduced using symmetries and iterative algorithms. Indeed, correlators for medium
mass nuclei have been computed [49]. The second, more serious, problem is the
signal-to-noise ratio. The variance of the correlator C is

var.C/ D hCC�i � hCi2 : (2.58)

The A nucleon correlator C contains 3A forward going quark propagators, and CC�

consists of 3A forward and 3A backward propagators. This implies that CC� couples
to a state of 3A mesons. Since the lightest meson is the pion and the lightest baryon
is the proton the signal-to-noise of an A nucleon correlation function is

S

N
� exp.�A.mp � 3m�=2/�/ : (2.59)

In order to resolve the ground state with a given A we have to make � sufficiently
large so that excited states with the same A are suppressed. For A D 1 there is a
�N continuum starting an excitation energy �E D m� , and the first resonance at
�E D m� � mN ' 300MeV. This means that we have to consider � �> 1 fm.
For multi-nucleon states the situation is more complicated, because there are many
closely spaced multi-nucleon states in a finite volume. The problem is studied, for
example, in [73]. The conclusion is that different bound and scattering states are
separated by 10 s of MeV, requiring � �> 4 fm. It may be possible to improve on this
estimate by using variationally improved sources, but even for � ' 2 fm the signal
to noise is extremely poor for A �> 4. This shows that in simulations with fixed A the
sign problem manifests itself as a noise problem. This is not surprising. One way to
think about the sign problem is to view it as an overlap problem. The configurations
that contribute to Zpq have poor overlap with those that contribute to Z. The same
phenomenon is at work here. Configurations generated at �B D 0 reflect vacuum
physics, and the lightest fermionic fluctuation is a pion. Large cancellations are
required to explore the physics of multi-baryon states.

There are many attempts to find direct solutions to the sign problem, but at this
time the only regime in which controlled calculations are feasible is the regime
of small � and high T. In this region the partition function can be expanded in
a Taylor series in �=T. The corresponding expansion coefficients are generalized
susceptibilities that can be determined from lattice simulations at zero chemical
potential. The susceptibilities not only determine the equation of state at finite
baryon density, but also control fluctuations of conserved charges.

In addition to methods that are restricted to the regime � �< �T, a number of
proposals to explore QCD at high baryon density are being pursued. This includes
new approaches, like integration over Lefshetz thimbles [74, 75], as well as novel
variants of old approaches, like the complex Langevin method [76, 77], or the use
of dual variables [78]. The ultimate promise of these methods is still unclear, but the
central importance of the sign problem to computational physics continues to attract
new ideas.
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2.4.5 Real Time Properties

The basic trick in lattice QCD is the continuation of the path integral to imaginary
time. This makes it possible to calculate the path integral by importance sampling,
but it implies that we only have direct access to imaginary time correlation functions.
For many observables this is not a serious problem. Thermodynamic observables,
for example, are static quantities and no analytic continuation is necessary. The
ground state contribution to a hadron correlation function is ˘.�/ � e�mH� which
is trivially continued to ˘.t/ � e�imH t. However, difficulties arise if one studies
excited states, in particular resonances, the interaction between hadrons, or the real
time response of many body systems at finite temperature and density.

Significant progress has been made in studying scattering processes, at least in
the elastic regime. This is discussed in some of the later chapters of this book.
Here, I will concentrate on the calculation of real time response functions. The
prototypical example is the calculation of the shear viscosity of a QCD plasma using
the retarded correlation function of the stress tensor Txy,

Gxy;xy
R .!;k/ D �i

Z
dt
Z

d3x ei.!t�k�x/�.t/hŒTxy.x; t/;Txy.0; 0/
i ; (2.60)

The associated spectral function is defined by �.!;k/ D � Im GR.!;k/. The
imaginary part of the retarded correlator is a measure of dissipation. This relation
can be made more precise using fluid dynamics, which is an effective theory of the
response function in the low energy, small momentum limit [79, 80].

Linearized fluid dynamics shows that the static response function is determined
by the pressure of the fluid, and that the leading energy and momentum dependence
is governed by transport coefficients. These relations can be used to derive Kubo
formulas, expressions for the transport coefficients in terms of retarded correlation
functions. The Kubo relation for the shear viscosity is

� D lim
!!0

lim
k!0

�xy;xy.!;k/
!

; (2.61)

and similar results hold for the bulk viscosity, the thermal conductivity, and heavy
quark diffusion constants.

The spectral function contains information about the physical excitations that
carry the response. The euclidean path integral does not provide direct access to
the retarded correlator or the spectral function. Lattice calculations are based on
the relation between the spectral function and the imaginary energy (Matsubara)
correlation function

GE.i!n/ D
Z

d!

2�

�.!/

! � i!n
; (2.62)
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where !n D 2�nT is the Matsubara frequency. The imaginary time correlation
function is

GE.�/ D
Z

d!

2�
K.!; �/�.!/ ; (2.63)

where the kernel K.!; �/ is given by

K.!; �/ D coshŒ!.� � 1=.2T//


sinhŒ!=.2T/

D Œ1C nB.!/
 e

�!� C nB.!/e
!� ; (2.64)

and nB.!/ is the Bose distribution function. The imaginary time correlation function
Eq. (2.63) was studied on the lattice in [81–84]. The basic idea for calculating
transport coefficients is to numerically compute GE.�/, invert the integral transform
in Eq. (2.63) to obtain the spectral functions �.!/, and then study the limit ! ! 0.

The problem is that GE.�/ is computed on a small number of discrete lattice
sites, and that the imaginary time correlator at distances on the order of ˇ=2 is not
very sensitive to the slope of the spectral function at low energy. Recent attempts
to to address these problems and to obtain numerically stable spectral functions
and reliable error estimates are based on Bayesian methods such as the maximum
entropy method mentioned in Sect. 2.2, see [85, 86]. It is also possible to optimize
the contribution from the transport peak by measuring the correlation functions
of conserved charges, such as energy and momentum density, at non-zero spatial
momentum [87, 88]. A possible issue with lattice calculations is that effects of poor
resolution tend to bias the result towards small values of �=s, where s is the entropy
density. The finite temperature spectral function satisfies the sum rule [89]

2

�

Z
d! Œ�.!/ � �TD0.!/
 D 3

10
sT ; (2.65)

where �.!/ D �.!/=!. On the lattice it is difficult to resolve sharp features in
the spectral function. Roughly, the resolution is limited by the lowest Matsubara
frequency �T. I will therefore assume that the T ¤ 0 spectral function is a
Lorentzian with width �T

�.!/� �TD0.!/ ' �.0/.�T/2

!2 C .�T/2
: (2.66)

Then the integral on the lhs is equal to �.0/�T, and the sum rule predicts �=s �
3=.10�/, quite close to �=s D 1=.4�/. The lesson is that it is easy to obtain small
values of �=s, and much more difficult to obtain large values of �=s, predicted by
perturbative QCD [90].

The first calculation of the shear viscosity on the lattice was performed by
Karsch and Wyld [81]. More recently, the problem of computing the shear and
bulk viscosity in a pure gauge plasma near Tc was revisited by Meyer [82, 88].
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He obtains �=s D 0:102.56/ and �=s D 0:065.17/ at T D 1:24Tc. Shear viscosity
is only weakly dependent on temperature, but bulk viscosity is strongly peaked near
Tc. The value of �=s is consistent with experimental results, and with the prediction
from holographic duality, �=s D 1=.4�/ [91].

2.5 Nonequilibrium QCD

In the remainder of this chapter I will discuss a number of coarse grained
approaches to the non-equilibrium dynamics of QCD. These method are relevant
to the study of nuclear collisions, in particular in the ultra-relativistic regime. This
regime is explored experimentally at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN. A
rough time line of a heavy ion collision is shown in Fig. 2.4. Initial nucleon-nucleon
collisions release a large number of quarks and gluons. This process is described by
the full non-equilibrium quantum field theory, but there are a number of approximate
descriptions that may be useful in certain regimes. The first is a classical field theory
description in terms of highly occupied classical gluon fields. The second is a kinetic
theory in terms of quark and gluon quasi-particles. Finally, there is a new approach,
which is a description in terms of a dual gravitational theory.

Theories of the initial state demonstrate that there is a tendency towards local
equilibration. If local equilibrium is achieved then a simpler theory, fluid dynamics
is applicable. Fluid dynamics is very efficient in the sense that it deals with a
small number of variables, the conserved densities of particle number, energy and
momentum, and that it has very few parameters, an equation of state and a set
of transport coefficients. The fluid dynamic stage of a heavy ion collision has
a finite duration. Eventually the density becomes too low and local equilibrium
can no longer be maintained. At this point kinetic theory is again relevant, now

Fig. 2.4 Schematic time evolution of a heavy ion collision. Figure courtesy of S. Bass. CGC refers
to the color glass condensate, a semi-classical model of the overpopulated gluon configuration in
the initial state of a heavy ion collision. Glasma refers to the non-equilibrium evolution of this state
into a locally equilibrated plasma. Hydrodynamics is the theory of the time evolution of a locally
equilibrated fireball, and hadronic phase refers to the late time kinetic stage of the collision
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formulated in terms of hadronic quasi-particles. All the theories we have mentioned,
fluid dynamics, kinetic theory, classical field theory, and holography, have reached
a high degree of sophistication and I will point to text books and review for detailed
introductions. Nevertheless, the basic ideas are quite simple, and I will provide some
examples in the following sections.

2.5.1 Fluid Dynamics

I begin with fluid dynamics, because it is the most general and in some ways
the simplest non-equilibrium theory. It is important to remember, however, that
fluid dynamics is a very rich framework, both mathematically and in terms of the
range of phenomena that one may encounter. In the following I will focus on the
non-relativistic theory. There is no fundamental difference between the relativistic
and non-relativistic theories, but some simplifications appear in the non-relativistic
regime. Non-relativistic fluid dynamics is used in many areas of physics, including
the physics of cold atomic Fermi gases and neutron stars. The relativistic theory is
relevant to high energy heavy ion collisions and supernova explosions. Introductions
to relativistic fluid dynamics can be found in [92–94].

Fluid dynamics reduces the complicated non-equilibrium many-body problem to
equations of motion for the conserved charges. The reason that this is possible is the
separation of scales between the microscopic collision time �micro, and the relaxation
time �macro of hydrodynamic variables. A generic perturbation of the system decays
on a time scale on the order of �micro, irrespective of the typical length scale involved.
Here, �micro is determined by microscopic time scales, such as the typical collision
time between quasi-particles. A fluctuation of a conserved charge, on the other hand,
cannot decay locally and has to relax by diffusion or propagation. The relevant time
scale �macro increases with the length scale of the perturbation. As a consequence,
when we focus on sufficiently large scales we can assume �macro � �micro, and focus
on the evolution of conserved charges.

In a simple non-relativistic fluid the conserved charges are the mass density �,
the momentum density �, and the energy density E . The momentum density can
be used to define the fluid velocity, u D �=�. By Galilean invariance the energy
density can then be written as the sum of the internal energy density and the kinetic
energy density, E D E0 C 1

2
�u2. The conservation laws are

@�

@t
D �r � �; (2.67)

@�i

@t
D �rj˘ij; (2.68)

@E

@t
D �r � j�: (2.69)
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In order for these equations to close we have to specify constitutive relations for
the stress tensor ˘ij and the energy current j� . Since fluid dynamics is an effective
long wavelength theory we expect that the currents can be systematically expanded
in gradients of the hydrodynamic variables �, u and E0. At leading order the stress
tensor contains no derivatives and the structure is completely fixed by rotational
symmetry and Galilean invariance. We have

˘ij D �uiuj C Pıij C ı˘ij ; (2.70)

where P D P.�;E0/ is the equation of state and ı˘ij contains gradient terms.
The approximation ı˘ij D 0 is called ideal fluid dynamics, and the equation of
motion for � is known as the Euler equation. Ideal fluid dynamics is time reversal
invariant and the entropy is conserved. If gradient terms are included then time
reversal invariance is broken and the entropy increases. We will refer to ı˘ij as
the dissipative stresses. At first order in the gradient expansion ı˘ij can be written
as ı˘ij D ���ij � �ıijh�i with

�ij D riuj Crjui � 2
3
ıijh�i ; h�i D r � u : (2.71)

The dissipative stresses are determined by two transport coefficients, the shear
viscosity � and the bulk viscosity �. The energy current is given by

j � D uwC ıj� ; (2.72)

where w D PC E is the enthalpy. At leading order in the gradient expansion

ıj�i D ujı˘ij � �riT ; (2.73)

where � is the thermal conductivity. The second law of thermodynamics implies
that �; � and � must be positive. The equation of motion for � at first order in
gradients is known as the Navier-Stokes equation, and Eq. (2.73) is Fourier’s law of
heat conduction.

It is sometimes useful to rewrite the fluid dynamic equations using the comoving
derivatives Dt D @t C u � r . The equations are

Dt� D ��r � u ; (2.74)

Dtui D �1
�
rj


ıijPC ı˘ij

�
; (2.75)

Dt� D �1
�
ri


uiPC ıjEi

�
; (2.76)
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where � D E =� is the energy per mass. This is called the Lagrangian form of the
equations, in contrast to the Eulerian form given above. The Eulerian form is more
naturally implemented on a fixed space-time lattice, whereas the Lagrangian form
lends itself to a discretization where the computational cell is dragged along with
the fluid.

2.5.2 Computational Fluid Dynamics

The fluid dynamic equations form a set of partial differential equations (PDEs) that
can be solved in a variety of ways. I will focus here on grid based methods. The
main difficulties that a numerical method needs to address are: (1) The existence of
surfaces of discontinuity (shocks), (2) the need to implement global conservation
laws exactly, even on a coarse lattice, (3) the existence of instabilities (turbulence),
and the need to deal with solutions that involve many different length scales.

In the following I will discuss a numerical scheme that addresses these issues
in a fairly efficient way, the PPM algorithm of Collela and Woodward [95], as
implemented in the VH1 code by Blondin and Lufkin [96] and extended to viscous
fluids in [97]. The first observation is that it is sufficient to construct a 1-d algorithm.
Higher dimensional methods can be constructed by combining updates in different
directions. Note that the coordinate system can be curvilinear, for example 3-d
spherical or cylindrical coordinates, or the Milne coordinate system that is used
for longitudinally expanding quark gluon plasmas.

The basic 1-d algorithm consists of a Lagrangian time step followed by a remap
onto an Eulerian grid. I will denote the 1-d velocity by u and write the equation of
mass conservation in terms of a mass variable m

@�

@t
� @u

@m
D 0 ; (2.77)

where � D ��1 and

m.r/ D
Z r

r0

dr �.r/ : (2.78)

Here, I restrict myself to flat coordinate systems. In curvilinear coordinates
Eqs. (2.77) and (2.78) contain suitable volume factors. Equation (2.77) is solved by

dr

dt
D u .m.r/; t/ ; (2.79)
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which is the equation for the Lagrange coordinate. In terms of the mass coordinate
m.r/ the momentum and energy equations are

@u

@t
C @P

@m
D 0 ; (2.80)

@�

@t
C @.uP/

@m
D 0 ; (2.81)

where I have only written down the ideal contributions to the stress tensor and
energy current. To put these equations on a grid I focus on the mass integrated
quantities

Un
j D

1

�mj

Z mjC1=2

mj�1=2

U.m; tn/dm (2.82)

where U is any of the hydrodynamic variables .�; u; �/, �mj is the mass contained
in the cell j, and mjC1=2 D Pj

k �mk. We can now integrate the conservation laws
((2.80), (2.77)). The result is

unC1
j D un

j C
�t

�mj


 NPj�1=2 � NPjC1=2
�
; (2.83)

�nC1
j D �n

j C
�t

�mj


Nuj�1=2 NPj�1=2 � NujC1=2 NPjC1=2
�
; (2.84)

where I have introduced the cell face averages Nuj˙1=2 and NPj˙1=2. These quantities
can be obtained by parabolic interpolation from the cell integrated values. The PPM
scheme introduced in [95] uses a method for constructing cell face averages which
conserves the cell integrated variables.

This scheme addresses the second issue mentioned above. The first issue, the
existence of shocks, can be taken into account by refining the method for calculating
the cell face averages. The observation is that one can make use of exact solution of
the equations of fluid dynamics in the case of piecewise constant one-dimensional
flows, known as the Riemann problem. We can view NujC1=2 and NPjC1=2 as the
solution of a Riemann problem with left state uj;Pj and right state ujC1;PjC1. The
PPM code contains a simple iterative Riemann solver described in [95]. Using Nuj˙1=2
and NPj˙1=2 the Lagrange step is given by:

do n = nmin-3, nmax+3

! density evolution. lagrangian code, so all we have to do is
watch the

! change in the geometry.

r(n) = r(n) * ( dvol1(n) / dvol(n) )
r(n) = max(r(n),smallr)
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! velocity evolution due to pressure acceleration and forces.

uold (n) = u(n)
u(n) = u(n) - dtbdm(n)*(pmid(n+1)-pmid(n))*0.5*(amid(n+1)+amid

(n)) &
+ 0.5*dt*(fict0(n)+fict1(n))

! total energy evolution

e(n) = e(n) - dtbdm(n)*(amid(n+1)*upmid(n+1) - amid(n)*upmid(n
))

q(n) = e(n) - 0.5*(u(n)**2+v(n)**2+w(n)**2)
p(n) = max(r(n)*q(n)*gamm,smallp)

enddo

Here, r(n) is the density, u(n) is the velocity, and e(n) is the energy per
mass. The transverse components of the velocity are v(n),w(n). In cartesian
coordinates the volume and area factors dvol(n),amid(n) are equal to unity,
and the fictitious forces fict(n) vanish.

After the Lagrange step the hydrodynamic variables have to be remapped onto
a fixed Eulerian grid. This can be done using the parabolic interpolation mentioned
above. The advantage of the remap step is that it is simple to change the grid
resolution in the process. Finally, we have to specify the time step and grid
resolution. The grid resolution is determined by the requirement that .�x/rxU �
U, where �x is the cell size, and U is any of the hydrodynamic variables. Note
that there is no need to worry about discontinuities, because shocks are captured
by the Riemann solver. Also note that the PPM scheme has at least second order
accuracy, so that relatively coarse grids can be used. The time step is determined by
the Courant criterion c�x 	 �t, where c is the maximum of the speed of sound and
the local flow velocity. This criterion ensures that the domain of dependence of any
physical variable does not exceed the cell size.

In general, modern hydro codes are very fast and efficient. The main difficulty
is that 3 C 1 dimensional simulations may require a lot of memory, and that
some physical phenomena, such as turbulent convection and shock instabilities
in supernovae, require very high resolution. One of the frontiers of numerical
hydrodynamics is the problem of dealing with systems that transition from fluid
dynamics to ballistic behavior at either early or late times, or systems in which the
density varies by a very large factor. Problems of this type arise in the early and late
time dynamics of heavy ion collisions, the dilute corona of cold atomic gases, and
the transition from hydrodynamics to free streaming in the neutrino transport in a
supernova explosions. Recent progress in this direction includes the development
of the anisotropic hydrodynamics method [98–101], and applications of the lattice
Boltzmann method to problems in nuclear and atomic physics [102, 103].
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In the relativistic regime recent progress includes the development of stable
and causal viscous fluid dynamics codes [92, 94]. The problem with a naive
implementation of the relativistic Navier-Stokes equation derived by Landau is that
viscous stresses are determined by the instantaneous value of the shear strain riuj.
This leads to acausal propagation of shear waves and possible instabilities. This
is not a fundamental problem with fluid dynamics. Acausal behavior occurs in the
regime of high wave numbers in which fluid dynamics is not expected to be reliable.
However, high wave number instabilities prohibit numerical implementations. The
solution is to go to next order in the gradient expansion, which includes the finite
relaxation time of viscous stresses. In practice, second order fluid dynamics codes
are usually based on the idea of transient fluid dynamics. In this method, the shear
stresses ı˘ij are promoted to fluid dynamic variables, which satisfy separate fluid
dynamic equations, see [92, 94].

2.5.3 Kinetic Theory

Fluid dynamics is based on the assumption of local thermal equilibrium and requires
the mean free path to be small compared to the characteristic scales of the problem.
When this condition is not satisfied a more microscopic approach to the non-
equilibrium problem is required. The simplest method of this type is kinetic theory,
which is based on the existence of well defined quasi-particles. This implies, in
particular, that the width of a quasi-particle has to be small compared to its energy.
In this case we can define the phase space density f .x;p; t/ of quasi-particles. In
general, there can be many different kinds of quasi-particles, labeled by their spin,
charge, and other quantum numbers. The phase space distribution determines the
conserved densities that enter the hydrodynamic description. For example, the mass
density is given by

�.x; t/ D
Z

d� mf .x;p; t/ ; (2.85)

where d� D d3p=.2�/3. The momentum density is

�.x; t/ D
Z

d� mvpf .x;p; t/ ; (2.86)

where vp D rpEp is the quasi-particle velocity and Ep is the quasi-particle energy.
In general, the quasi-particle energy can be a functional of the phase distribution
f .x;p; t/. This takes into account possible in-medium modifications of particle
properties. If Ep is a functional of f .x;p; t/ then the total energy of the system is
not just given by the integral of Epf .x;p; t/. Instead, we must construct an energy
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density functional E Œ f 
 that satisfies [104]

Ep D ıE

ıfp
: (2.87)

The equation of motion for the distribution function is the Boltzmann equation



@t C v � r x � F � r p

�
f .x;p; t/ D CŒ f 
 ; (2.88)

where F D �r xEp is a force, and CŒ fp
 is the collision term. For dilute systems the
collision term is dominated by binary scattering and

CŒ fp
 D �
Y

iD2;3;4

� Z
d�i

�
w.1; 2I 3; 4/ . f1f2 � f3f4/ ; (2.89)

where fi D f .x;pi; t/. The transition rate is given by

w.1; 2I 3; 4/ D .2�/4ı
�X

i

Ei

�
ı
�X

i

pi

�
jA j2 ; (2.90)

where A is the scattering amplitude. For non-relativistic s-wave scattering A D
4�a=m, where a is the scattering length.

The Boltzmann equation is a 6 C 1 dimensional partial integro-differential
equation, and direct methods of integration, similar to those used in computational
fluid dynamics, are impractical. Standard methods for solving the Boltzmann
equation rely on sampling phase space using Monte Carlo methods. In nuclear
physics the test particle method for solving the Boltzmann equation was popularized
by Bertsch and Das Gupta [105]. Below, I will present a simple non-relativistic
algorithm described by Lepers et al. [106].

The main idea is to represent the distribution as a sum of delta functions

f .x;p; t/ D N

Nt

NtX
iD1
.2�/3ı.p� pi.t//ı.x� xi.t// ; (2.91)

where N is the number of particles, the integral of f .x;p; t/ over phase space, and
Nt is the number of test particles. In typical applications Nt � N, but if N is already
very large it is possible to run simulations with Nt < N. Phase space averages can
be computed as averages over test particles

NF D 1

N

Z
d3x

Z
d� f .x;p; t/F.x;p/ D 1

Nt

NtX
iD1

F.xi;pi/ : (2.92)
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In practice this requires some smoothing, and the delta functions are replaced by
Gaussian distributions

ı.p� pi/ı.x � xi/! gwp.p � pi/gwx.x � xi/ ; (2.93)

where gw.x/ is a normalized Gaussian with width w. The widths wx and wp are
chosen such that the delta function singularities are smoothed out, but physical
structures of the distribution function f .x;p; t/ are preserved.

If there is no collision term the equation of motion for the distribution function
is Hamilton’s equation for the test particle positions and momenta

dxi

dt
D pi

m
;

dpi

dt
D Fi : (2.94)

These equations can be solved with high accuracy using a staggered leapfrog
algorithm

vi.tnC1=2/ D vi.tn/C ai.tn/�t=2 ; (2.95)

ri.tnC1/ D ri.tn/C vi.tnC1=2/�t ; (2.96)

vi.tnC1/ D vi.tnC1=2/C ai.tnC1/�t=2 ; (2.97)

where ai D Fi=m is the acceleration of particle i, and�t D tnC1� tn is the time step
of the algorithm. The size of the time step depends on the specific problem, but a
good check is provided by monitoring conservation of energy.

The collision term is treated stochastically, by allowing the test particles to
collide with the scaled cross section �t D .N=Nt/� . To determine whether a
collision occurs we go through all pairs of particles and compute the relative
distance rij D ri � rj and velocity vij D vi � vj. We then determine whether on
the current trajectory the time of closest approach will be reached during the next
time step. This happens if tmin D tn � rij � vij=v2ij satisfies jtmin � tnj 	 �t=2. In that
case we compute

r2min D r2ij �
.rij � vij/

2

v2ij
(2.98)

and check if �r2min < �t. If this condition is satisfied then the collision is allowed
to take place. For an s-wave elastic collision we propagate the particles to tmin,
randomize their relative velocity vij, and then propagate them back to tn. Higher
partial wave amplitudes are easy to implement by randomizing vij with suitable
probability distributions. After all pairs have been checked we perform the velocity
and position update in Eqs. (2.95)–(2.97).
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There are a number of refinements that can be included. At low temperature
Pauli-blocking has to be taken into account. This can be done by computing
the phase space densities f .ri;pi; t/ for the collision products, and accepting the
collision with probability .1 � fi/.1 � fj/. At higher energies relativistic effects are
important. Relativistic effects in the particle propagation are easy to incorporate,
but the treatment of the collision term is more subtle. The problem is that a finite
collision cross section, treated geometrically, will lead to instantaneous interactions
at a distance. Additional difficulties arise from the treatment of resonances, pair
production and annihilation, n-body processes, etc. There are a number of codes on
the market that address these issues, and that have been tuned against existing data
on pp, pA and AA interactions in the relativistic regime. Examples include UrQMD
[107], GiBUU [108], HSD [109], and others.

At high energies the initial pp collisions are very inelastic, and one has to
rely on Monte Carlo generators developed in the high energy physics community.
A possible alternative is to use a purely partonic kinetic theory that involves
scattering between quark and gluon quasi-particles. There are some subtleties with
this approach, having to do with the problem of how to include screening and
damping of the exchanged gluons, soft gluon radiation, etc. I will not attempt to
discuss these issues here, and I refer the reader to the original literature [110, 111].

2.5.4 Classical Field Theory

An interesting simplification occurs if the occupation numbers are large, f � 1.
This is argued to happen for the gluons in the initial state of a heavy ion collision
[112]. In this limit the classical kinetic theory is equivalent to a classical field theory
[113]. Indeed, if the occupations numbers are non-perturbative, f �> 1=g, the kinetic
theory no longer applies, and we have to rely on classical field theory. In general the
classical action is not known, but in the weak coupling limit the bare QCD action
can be used.

Classical QCD simulation have been used to study a number of issues, such as
particle production from an overpopulated gluon field, and the possible approach
to thermal equilibrium. Instabilities in the classical field evolution may play an
important role in speeding up the equilibration process. Here, I will briefly describe
a method for solving classical evolution equations on a space-time lattice, following
the recent review [114].

In order to construct a Hamiltonian approach to lattice QCD I start from the
Wilson action in Minkowski space with separate coupling constants ˇ0 and ˇs in
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the temporal and spatial direction

SŒU
 D � ˇ0
2Nc

X
x

3X
iD1

Tr
�

W0i.x/CW�
0i.x/� 2

�

C ˇs

2Nc

X
x

X
i<j

Tr
�

Wij.x/CW�
ij.x/� 2

�
; (2.99)

In the continuum limit, we expect

ˇ0 D 2Nca

g2�t
; ˇs D 2Nc�t

g2a
: (2.100)

where a and �t are spatial and temporal lattice spacings. In order to construct a
Hamiltonian we have to fix the gauge freedom of the theory. Here, I will use the
temporal axial gauge, A0 D 0. In this case the canonical variables are the spatial
gauge potentials and the conjugate momenta are the electric fields. On the lattice
the gauge A0 D 0 corresponds to setting all temporal gauge links to the identity,
U0.x/ D 1. The canonical variables are given by the spatial gauge links Uj.x/, and
the conjugate momenta are the temporal plaquettes W0j.x/. In the continuum limit

Aa
j .x/ D

2i

ag
Tr
�
�aUj.x/

	
; (2.101)

Ea
j .x/ D

2i

ag�t
Tr
�
�aW0j.x/

	
: (2.102)

Varying the action Eq. (2.99) with respect to Uj.x/ gives an equation of motion for Ej

Ea
j .tC�t; x/ D Ea

j .t; x/C
i�t

ga3
X

k

n
Tr
h
�aUj.x/Uk.xC Oj/U�

j .xC Ok/U�
k .x/

i

C Tr
h
�aUj.x/U

�
k .xC Oj� Ok/U�

j .x � Ok/Uk.x � Ok/
io
: (2.103)

We note that Ea
j .tC�t; x/ is determined by the electric fields and the spatial gauge

links at time t. Using Eq. (2.102) and the electric field Ea
j at time t C �t we can

compute the temporal plaquette W0j.x/ at t C�t. This result can be used to evolve
the spacelike gauge links

Uj.tC�t; x/ D W0j.x/Uj.x/ : (2.104)

Together, Eqs. (2.103) and (2.104) describe a staggered leapfrog algorithm, similar
to Eqs. (2.95)–(2.97) above. An important constraint on the numerical evolution is
provided by Gauss law. Varying the lattice action with respect to U0 before imposing
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temporal axial gauge gives

X
j

h
Ea

j .x/� U�
j .x � Oj/Ea

j .x � Oj/Uj.x � Oj/
i
D 0 : (2.105)

This constraint is preserved by the evolution equations.
The classical field equations are exactly scale invariant and there is no depen-

dence on the coupling constant g. Physical quantities, like the energy momentum
tensor, explicitly depend on g. In practice classical field simulations require a model
for the initial conditions and the corresponding coupling. The initial conditions are
typically an ensemble of gauge fields distributed according to some distribution, for
example an anisotropic Gaussian in momentum space. The anisotropy is assumed to
be a consequence of the strong longitudinal expansion of the initial state of a heavy
ion collision. Physical observables are determined by averages the evolved fields
over the initial ensemble.

Note that a purely classical field evolution does not thermalize. A thermal
ensemble of classical fields would satisfy the equipartition law, and the total energy
would be dominated by modes near the lattice cutoff. This is the Rayleigh-Jeans
UV catastrophe. However, classical field evolution has interesting non-thermal fixed
points [115], which may play a role in thermalization.

The classical field framework has been extended in a variety of ways. One
direction is the inclusion of quantum fluctuations on top of the classical field [116].
Another problem is the inclusion of modes that are not highly populated. In the
hard thermal loop approximation one can show that hard modes can be described
as colored particles interacting with the classical field corresponding to the soft
modes [117]. The equations of motion for the colored particles are known as Wong’s
equations [118]. Numerical studies can be found in [119].

2.5.5 Nonequilibrium QCD: Holography

A new approach to quantum fields in and out of equilibrium is provided by the
AdS/CFT correspondence [120–124]. The AdS/CFT correspondence is a holo-
graphic duality. It asserts that the dynamics of a quantum field theory defined on
the boundary of a higher dimensional space is encoded in boundary correlation
functions of a gravitational theory in the bulk. The correspondence is simplest if
the boundary theory is strongly coupled and contains a large number N of degrees
of freedom. In this case the bulk theory is simply classical Einstein gravity. The
partition function of the boundary quantum field theory (QFT) is

ZQFTŒJi
 D exp .�S Œij@M D Ji
/ ; (2.106)

where Ji is a set of sources in the field theory, S is the gravitational action, i is a
dual set of fields in the gravitational theory, and @M is the boundary of AdS5. The
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fields i satisfy classical equations of motions subject to boundary conditions on
@M.

The original construction involves a black hole in AdS5 and is dual to a
relativistic fluid governed by a generalization of QCD known as N D 4 super
Yang-Mills theory. This theory is considered in the limit of a large number of colors
Nc. The gravitational theory is Einstein gravity with additional matter fields that are
not relevant here. The AdS5 black hole metric is

ds2 D .�TRa/
2

u


�f .u/dt2 C dx2
�C R2a

4u2f .u/
du2 ; (2.107)

where x; t are Minkowski space coordinates, and u is a “radial” coordinate where
u D 1 is the location of the black hole horizon and u D 0 is the boundary. T is the
temperature, Ra is the AdS radius, and f .u/ D 1 � u2.

It is instructive to check that this metric does indeed provide a solution to the
Einstein equations with a negative cosmological constant. This can be done using a
simple Mathematica script. I begin by defining the metric and its inverse:

(* metric *)
(* ------ *)
n = 5;
coord = {t, x, y, z, u};
f[u_] := 1 - u^2
metric = DiagonalMatrix[{-f[u]/u*(Pi*T*Ra)^2, (Pi*T*Ra)^2/u, (Pi

*T*Ra)^2/
u, (Pi*T*Ra)^2/u, Ra^2/(4*u^2*f[u])}]

inversemetric = Simplify[Inverse[metric]]

From the metric I compute the Christoffel symbols

�
�

˛ˇ D
1

2
g��



@˛g�ˇ C @ˇg�˛ � @�g˛ˇ

�
; (2.108)

the Riemann tensor

R��˛ˇ D @˛� �

�ˇ � @ˇ� �
�˛ C � �

�ˇ�
�
�˛ � � �

�˛�
�

�ˇ ; (2.109)

the Ricci tensor R˛ˇ D R�˛�ˇ , and the scalar curvature R D R��. Finally, I compute

the Einstein tensor G�� D R�� � 1
2
g��R.

(* Christoffel Symbols *)
(* ------------------- *)
affine := affine = Simplify[

Table[(1/2)*
Sum[(inversemetric[[i, s]])*(D[metric[[s, j]], coord[[k]]] +

D[metric[[s, k]], coord[[j]]] -
D[metric[[j, k]], coord[[s]]]), {s, 1, n}], {i, 1, n}, {j

, 1,
n}, {k, 1, n}]]
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(* Riemann Tensor *)
(* -------------- *)
riemann := riemann = Simplify[Table[

D[affine[[i, j, l]], coord[[k]]] -
D[affine[[i, j, k]], coord[[l]]] +
Sum[affine[[s, j, l]]*affine[[i, k, s]] -
affine[[s, j, k]]*affine[[i, l, s]], {s, 1, n}], {i, 1, n}

, {j,
1, n}, {k, 1, n}, {l, 1, n}]]

(* Ricci Tensor *)
(* ------------ *)
ricci := ricci = Simplify[

Table[Sum[riemann[[i, j, i, l]], {i, 1, n}], {j, 1, n}, {l,
1, n}]]

(* scalar curvature *)
(* ---------------- *)
scalar = Simplify[
Sum[inversemetric[[i, j]]*ricci[[i, j]], {i, 1, n}, {j, 1, n}

]]

(* Einstein tensor *)
(* --------------- *)
einstein = Simplify[ricci - (1/2)*scalar*metric]

Now I can check the equation of motion, G�� D �
2

g�� , where the cosmological
constant is determined by the AdS radius R.

(* Field equation with cosmological constant *)
(* ----------------------------------------- *)
lam = 12/Ra^2;
Simplify[einstein - lam/2*metric]

In the boundary theory the metric couples to the stress tensor ˘�� . Correlation
functions of the stress tensor can be found by linearizing the bulk action around
the AdS5 solution, g�� D g0�� C ıg�� . Small oscillations of the off-diagonal strain
ıgy

x are particularly simple, because the equation of motion for  � gy
x is that of a

minimally coupled scalar

1p�g
@�

p�gg��@�

� D 0 : (2.110)

The wave equation can be obtained using the metric coefficients defined above.

(* \sqrt{-g} g^{\mu\nu} \partial_{nu} \Phi(t,z,u) *)
(* -------------------------------------------- *)
SqrtG = Simplify[Sqrt[-Det[metric]], {Ra > 0, T > 0, u > 0}]
dnuPhi = Table[D[Phi[t, z, u], coord[[i]]], {i, 1, n}];
DnuPhi = SqrtG*inversemetric.dnuPhi;
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(* Laplacian, up to factor \sqrt{-g} *)
(* --------------------------------- *)
DPhi = FullSimplify[Sum[D[DnuPhi[[nu]], coord[[nu]]], {nu, 1, n}

]]

(* harmonic space and time dependence *)
(* ---------------------------------- *)
DPhiS =
DPhi /. { D[Phi[t, z, u], {z, 2}] -> -k^2*fp,
D[Phi[t, z, u], {t, 2}] -> -w^2*fp,
D[Phi[t, z, u], {u, 2}] -> fpPP, D[Phi[t, z, u], {u, 1}] ->

fpP}

In the case of harmonic dependence on the Minkowski coordinates ıgy
x D

k.u/eikx�i!t the fluctuations are governed by the wave equation

00
k .u/�

1C u2

uf .u/
0

k.u/C
!2 � k2f .u/

.2�T/2uf .u/2
k.u/ D 0 : (2.111)

This differential equation has two linearly independent solutions. The retarded
correlation function corresponds to picking a solution that is purely infalling at
the horizon [121]. The retarded correlation function GR.!; k/ defined in Eq. (2.60)
is determined by inserting the solution into the Einstein-Hilbert action, and then
computing the variation with respect to the boundary value of ıgy

x.
The infalling solution can be expressed as

k.u/ D .1 � u/�iw=2Fk.u/ (2.112)

where w D !=.2�T/ and the first factor describes the near horizon behavior. The
function Fk.u/ can be obtained as an expansion in w and k D k=.2�T/. At second
order in O.w and k the solution is [125]

Fk.u/ D 1 � iw

2
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�
1 � u

2

��
:

(2.113)

In the opposite limit, w � 1, the wave equation can be solved using a WKB
approximation [126]. For k D 0 the result is

k.u/ D �w2 up
1 � u2

�
iJ2


2w
p

u
� � Y2



2w
p

u
�	
: (2.114)
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In the intermediate regime the wave equation can be solved numerically. A standard
method is to start from the near horizon result given in Eq. (2.112) and integrate
outwards towards the boundary. The retarded correlation function is given by the
variation of the boundary action with respect to the field. For this purpose we
consider the quadratic part of the Einstein-Hilbert action and use the AdS/CFT
correspondence to express Newton’s constant in terms of gauge theory parameters.
We find

S D ��
2N2T4

8

Z
du
Z

d4x
f .u/

u
.@u/

2 C : : : : (2.115)

The boundary action follows after an integration by parts. The retarded Green
function is determined by the second variational derivative with respect to the
boundary value of the field [125, 127],

GR.w; k/ D ��
2N2T4

4

�
f .u/@uk.u/

uk.u/


u!0

: (2.116)

Finally, the spectral function is given by �.!; k/ D �!�1Im GR.!; k/. Below is a
short Mathematica script that determines the spectral function numerically.

(* equation of motion for minimally coupled scalar *)
(* with harmonic space and time dependence *)
(* ----------------------------------------------- *)
f[u_] := 1 - u^2
EomPhi = phi''[u] - (1 + u^2)/(u f[u]) phi'[u]

+ (w^2 - q^2 f[u])/(u f[u]^2) phi[u]

(* boundary solution *)
(* ----------------- *)
phiHorizon[u_] := (1-u)^(-I*w/2)

(* numerically integrate from Horizon to boundary *)
(* ---------------------------------------------- *)
SolPhi[omega_, qq_] := Block[{w = omega, q = qq},

NDSolve[
{0 == EomPhi,
phi[epsH] == phiHorizon[epsH],
phi'[epsH] == phiHorizon'[epsH]},
phi[u],
{u, epsB, epsH}]][[1, 1, 2]]

(* retarded correlator from boundary action *)
(* ---------------------------------------- *)
Gret[omega_, qq_] := (f[u]/u D[solPhi[omega, qq], u]/solPhi[

omega, qq] )
/. {u -> epsB}
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Fig. 2.5 Viscosity spectral function in a N D 4 SUSY Yang Mills plasma. The spectral function
is computed in the large Nc limit of a strongly coupled plasma using the AdS/CFT correspondence.
The figure in the left panel shows �.!/=s (blue) and the zero temperature counterpart �TD0.!/=s
(red) as a function of !. The figure in the right panel shows the finite temperature part Œ�.!/ �
�TD0.!/
=s. The figures were generated using the script described below Eq. (2.116)

The spectral function for k D 0 is shown in Fig. 2.5. This is an interesting
result because it represent a systematic calculation of a real time observable in
the strong coupling limit of a quantum field theory. As explained in Sect. 2.4.5 the
corresponding lattice calculation is very difficult, and existing results are difficult
to improve upon. We also note that the result is quite different from expectations at
weak coupling. At weak coupling we expect the spectral function to show a narrow
transport peak at zero energy [80].

So far we have only considered calculations very close to equilibrium, cor-
responding to small perturbations of the AdS5 Schwarzschild solution. In order
to address the problem of initial state dynamics and thermalization we have to
consider initial conditions that mimic colliding nuclei. Recent work focuses on
colliding shock waves in asymptotically AdS5 spaces. In the strong coupling limit
the evolution of the shock waves is a problem in numerical relativity. Special
methods have been developed to deal with problems in AdS space [129]. These
methods are quite different from the techniques employed in connection with black
hole or neutron star mergers in asymptotically flat Minkowski space time. A typical
result is shown in Fig. 2.6. The calculations demonstrate fast “hydrodynamization”,
that means a rapid decay of non-hydrodynamic modes. At somewhat longer time
scales thermal equilibration is achieved. This corresponds to the formation of an
event horizon in the bulk. In general, it was realized that there is a fluid-gravity
correspondence, an equivalence between dynamic space times containing a horizon
and solutions of the Navier-Stokes equation [130]. This correspondence can be used
to study, both analytically and numerically, difficult problems in fluid dynamics.
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E/μ4

μv μz

Fig. 2.6 Energy density of colliding shock waves in AdS5 space [128]. The figure shows the energy
density E =�4 on the boundary of AdS5 as a function of the time coordinate v and the longitudinal
direction z. The shocks are infinitely extended in the transverse direction. The parameter � sets the
overall scale

2.6 Outlook and Acknowledgments

I hope this brief review provides a flavor of the breadth of computational problems
that are related QCD. This includes many issues that are at the forefront of
computational physics, like the sign problem in euclidean QCD at finite baryon
density, and the challenge to extract real time correlation functions from the
euclidean path integral. It also includes many problems that are of great interest
to mathematicians. Both the Yang-Mills existence and mass gap as well as the
Navier-Stokes existence and smoothness problems are among the Clay Millenium
Prize problems [131, 132]. Interesting work on the Boltzmann equation was recently
recognized with a Fields medal [133], and gradient flow plays an important role in
the proof of the Poincare conjecture [134].
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Appendix: Z2 Gauge Theory

This is a simple Monte Carlo program for Z2 gauge theory written by M. Creutz
[136].

/* Z_2 lattice gauge simulation */
/* Michael Creutz <creutz@bnl.gov> */
/* http://thy.phy.bnl.gov/~creutz/z2.c */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* the lattice is of dimensions SIZE**4 */
#define SIZE 6
int link[SIZE][SIZE][SIZE][SIZE][4]; /* last index gives link

direction */

/* utility functions */
void moveup(int x[],int d) {
x[d]+=1;
if (x[d]>=SIZE) x[d]-=SIZE;
return;

}
void movedown(int x[],int d) {
x[d]-=1;
if (x[d]<0) x[d]+=SIZE;
return;

}
void coldstart(){ /* set all links to unity */
int x[4],d;
for (x[0]=0;x[0]<SIZE;x[0]++)
for (x[1]=0;x[1]<SIZE;x[1]++)
for (x[2]=0;x[2]<SIZE;x[2]++)
for (x[3]=0;x[3]<SIZE;x[3]++)
for (d=0;d<4;d++)

link[x[0]][x[1]][x[2]][x[3]][d]=1;
return;

}
/* for a random start: call coldstart() and then update once at

beta=0 */

/* do a Monte Carlo sweep; return energy */
double update(double beta){
int x[4],d,dperp,staple,staplesum;
double bplus,bminus,action=0.0;
for (x[0]=0; x[0]<SIZE; x[0]++)
for (x[1]=0; x[1]<SIZE; x[1]++)
for (x[2]=0; x[2]<SIZE; x[2]++)
for (x[3]=0; x[3]<SIZE; x[3]++)
for (d=0; d<4; d++) {
staplesum=0;
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for (dperp=0;dperp<4;dperp++){
if (dperp!=d){
/* move around thusly:

dperp 6--5
^ | |
| 1--4
| | |
-----> d 2--3 */

/* plaquette 1234 */
movedown(x,dperp);
staple=link[x[0]][x[1]][x[2]][x[3]][dperp]

*link[x[0]][x[1]][x[2]][x[3]][d];
moveup(x,d);
staple*=link[x[0]][x[1]][x[2]][x[3]][dperp];
moveup(x,dperp);
staplesum+=staple;
/* plaquette 1456 */
staple=link[x[0]][x[1]][x[2]][x[3]][dperp];
moveup(x,dperp);
movedown(x,d);
staple*=link[x[0]][x[1]][x[2]][x[3]][d];
movedown(x,dperp);
staple*=link[x[0]][x[1]][x[2]][x[3]][dperp];
staplesum+=staple;

}
}

/* calculate the Boltzmann weight */
bplus=exp(beta*staplesum);
bminus=1/bplus;
bplus=bplus/(bplus+bminus);
/* the heatbath algorithm */
if ( drand48() < bplus ){
link[x[0]][x[1]][x[2]][x[3]][d]=1;
action+=staplesum;

}
else{
link[x[0]][x[1]][x[2]][x[3]][d]=-1;
action-=staplesum;

}
}

action /= (SIZE*SIZE*SIZE*SIZE*4*6);
return 1.-action;

}

/******************************/
int main(){
double beta, dbeta, action;
srand48(1234L); /* initialize random number generator */
/* do your experiment here; this example is a thermal cycle */
dbeta=.01;
coldstart();
/* heat it up */
for (beta=1; beta>0.0; beta-=dbeta){
action=update(beta);
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printf("%g\t%g\n",beta,action);
}
printf("\n\n");
/* cool it down */
for (beta=0; beta<1.0; beta+=dbeta){
action=update(beta);
printf("%g\t%g\n",beta,action);

}
printf("\n\n");
exit(0);

}
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Chapter 3
Lattice Quantum Chromodynamics

Tetsuo Hatsuda

3.1 Introduction

In this chapter, we introduce lattice quantum chromodynamics (LQCD) originally
proposed by Wilson in 1974 [1]. What makes the LQCD unique and powerful is
that it can allow first-principle, gauge invariant and non-perturbative calculations
of strongly interacting quarks and gluons. After the first numerical attempts by
Creutz [2], LQCD simulations have been extensively applied to study heavy quark
potentials, hadron masses, hadronic matrix elements, QCD phase transition at finite
temperature, and so on. In recent years, there are also progresses in deriving the
baryon-baryon interactions, which are particularly relevant to nuclear physics and
astrophysics. Throughout this chapter, we will focus on the theoretical concepts,
numerical techniques and some applications to hadron masses and nuclear forces.
LQCD at finite temperature and/or baryon density will not be covered. The
interested readers may want to consult the following review articles for further
details, or may even want to run the open source codes or to use the open LQCD
configurations.

Review Articles Here is a list a few articles which are useful to learn more about
LQCD.

• Comprehensive review on QCD can be seen in [3].
• The origin of LQCD is discussed in [4].
• The basic concepts of LQCD are summarized in the monographs [5, 6].
• Recent progresses of LQCD can be seen in the reviews [7, 8] and references

therein.
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Open Source Codes It takes a lot of time and energy to develop the LQCD code
from scratch. To lower the bar, several source codes for LQCD simulations have
been released for public use.

• Bridge++: http://bridge.kek.jp/Lattice-code/index_e.html
• Lattice ToolKit: http://nio-mon.riise.hiroshima-u.ac.jp/LTK/
• OpenQCD: http://luscher.web.cern.ch/luscher/openQCD/index.html
• USQCD: http://usqcd-software.github.io/

LQCD Configurations Outputs of large scale LQCD simulations is a big data
called “LQCD configurations”. Physicists can study various aspects of QCD by
using these configurations. The International Lattice Data Grid (ILDG) is a project
to share the configurations around the world.

• ILDG http://plone.jldg.org/wiki/index.php/Main_Page

3.1.1 Euclidean QCD Action

LQCD is formulated on the Euclidean spacetime lattice. Observables in the
Minkowski spacetime are obtained by the analytic continuation of the imaginary-
time � to the real-time t. In terms of the time evolution operator in quantum
mechanics, it corresponds to the continuation from the imaginary time evolution,
e�H� , to the real time evolution, e�iHt, where H being the Hamiltonian of the system.
The functional integral representation of the the Euclidean QCD partition function
Z on a finite spatial box L3 and the temperature T is given by

Z .T;V; J/ D
Z
ŒdAd Nqdq
e� R 1=T

0 d�
R

L3 d3x
�
L E

QCDCJ�
�

(3.1)

where the Euclidean QCD Lagrangian in terms of quarks q˛D1;2;3 and gluons
AbD1;��� ;8
�D1;2;3;4 is given by

L E
QCD D Nq˛.��D˛ˇ

� Cmı˛ˇ/qˇ C 1

4
Gb
��G

b
��; (3.2)

Here the Euclidean version of the 	 -matrices, ��, is defined in the Appendix [Four
vectors and Dirac matrices]. The quark mass matrix in the flavor space (u; d; s; � � � )
is denoted by m with the flavor indices suppressed. The color covariant derivative is
defined by

D˛ˇ
� D @�ı˛ˇ C igA˛ˇ� ; (3.3)

with x� D .�; x/, @� D .@� ;r/ and the 3 � 3 matrix field, A� D Ab
�tb. The

explicit form of the color SU(3) generators tbD1;��� ;8 is given in the Appendix
[SU.N/ algebra]. The field strength tensor is G�� D Gb

�� t
b with Gb

�� D @�Ab
� �

@�Ab
� � g fbcdAc

�Ad
� . The arbitrary external fields (such as the external source of

http://bridge.kek.jp/Lattice-code/index_e.html
http://nio-mon.riise.hiroshima-u.ac.jp/LTK/
http://luscher.web.cern.ch/luscher/openQCD/index.html
http://usqcd-software.github.io/
http://plone.jldg.org/wiki/index.php/Main_Page
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the quarks and gluons, external electroweak fields etc) are denoted by J, while
the corresponding dynamical operators are denoted by �.A; Nq; q/. The functional
integration measure for the c-number gluons and the Grassmann-number quarks is
defined by

ŒdAd Nqdq
 �
Y

x;color;spin;flavor

dAb
�.x/d Nq˛.x/dqˇ.x/: (3.4)

See Appendix [Gaussian and Grassmann integrals] for the examples of integration
with these measures. The temporal boundary condition of the gluon (quark) field
is periodic (anti-periodic) due to its c-number (Grassmann-number) character;
Ab
�.� D 0; x/ D Ab

�.� D 1=T; x/, Nq˛.� D 0; x/ D �Nq˛.� D 1=T; x/, and
qˇ.� D 0; x/ D �qˇ.� D 1=T; x/. On the other hand, the spatial boundary
conditions are not constrained and can be taken to be either periodic or anti-periodic;
the difference should disappear in the thermodynamic limit, L ! 1. Throughout
this chapter, we take T D 1=L to study hadrons and hadron-hadron interactions at
zero temperature in the thermodynamic limit.

Further details of the functional integral formulation of the general many-body
systems of fermions and bosons can be seen in the textbook [9].

3.1.2 Quantum Fluctuations

In weak coupling perturbation theory, one assumes that the QCD coupling g is
small and expands the partition function Z in terms of a power series of g. Such a
perturbative expansion in QCD is justified, however, only in limited circumstances
such as at extreme high temperature/density or at very short distances. This is
because the renormalized QCD coupling (or often called the running coupling)
becomes small only in the processes with the energy scale much above 1 GeV. This
is called the asymptotic freedom. To calculate low-energy hadron properties below
1 GeV, we need to go beyond perturbation theory and to evaluate the functional
integral with full quantum fluctuations. The lattice QCD provides a way to carry out
this task numerically in a gauge invariant manner.

3.2 Lattice QCD: Theoretical Basis

3.2.1 Wilson Line

Let us first start with the Wilson line which is defined on a path P connecting
the point y and x in the continuous Euclidean spacetime as shown in Fig. 3.1a.
By parametrizing the path in terms of a coordinate z.s/ with z.s D 0/ D y and
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Fig. 3.1 (a) The Wilson line
in the Euclidean spacetime.
(b) Basic quark bilinears with
gauge invariance

z.s D 1/ D x, the Wilson line reads

UP.x; yIA/ D P exp

�
ig
Z

P
dz�A�

�
D P exp

�
ig
Z 1

0

ds ��A�

�

D
1X

nD0

.ig/n

nŠ

Z 1

0

ds1

Z 1

0

ds2 � � �
Z 1

0

dsn PŒ� � A.s1/ � � � � � A.sn/
;

(3.5)

where �� D dz�=ds. The path ordered symbol P is necessary because A� D Ab
�tb is

a matrix in the color space.
The Wilson line has the following properties which can be proved from the

definition of UP (Exercise 3.1) :

(i) It can be broken into parts at any arbitrary points on the path;

UP.x; yIA/ D UP2.x; z.s/IA/UP1 .z.s/; yIA/: (3.6)

(ii) It satisfies a differential equation,

d

ds
UP.z.s/; yIA/ D Œig�.s/ � A.z.s//
 UP.z.s/; yIA/: (3.7)

(iii) Under the local gauge transformation AV
�.x/ D V.x/ŒA�.x/V�.x/ �

.i=g/V.x/.@�V�.x//, it transforms covariantly,

UP.x; yIA/! UP.x; yIAV/ D V.x/UP.x; yIA/V�. y/: (3.8)

The Wilson line is useful to define the non-local and gauge-invariant objects.
In particular, the gauge-invariant quark bilinear Nq.x/UP.x; yIA/q. y/, and the gauge-
invariant Wilson loop tr UP.x; xIA/ turn out to be important building blocks to define
the QCD action on the lattice. Here “tr” implies the trace over color indices.
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3.2.2 Lattice Gluons

Let us consider a four dimensional hyper-cubic lattice with a lattice spacing a and
the four dimensional volume L4. Each lattice site is specified by n� corresponding
to the Euclidean coordinates through x� D an� (see Fig. 3.2). The link variable (the
shortest Wilson line on the lattice) is an SU(3) matrix connecting the neighboring
sites n and nC O�,

U�.n/ D exp


igaA�.n/

�
: (3.9)

Here O� implies a vector pointing the direction of � with a length a. Since it is the
minimal Wilson line, we do not need the path ordering symbol P. Also, any non-
minimal Wilson line on the lattice is represented by a product of link-variables.
For later purpose, we introduce the link variable pointing the opposite direction as
U��.nC O�/ D ŒU�.n/
�.

Let us now define the smallest closed loop;

U��.n/ D U�
�.n/U

�
�.nC O�/U�.nC O�/U�.n/: (3.10)

Under local gauge transformation (rotation under arbitrary SU(3) matrix V.n/), we
have

U�.n/! V.n/U�.n/V
�.nC O�/; U��.n/! UV

��.n/ D V.n/U��.n/V
�.n/;

(3.11)

which are the direct consequence of Eq. (3.8).

Fig. 3.2 A hypercubic lattice in Euclidean spacetime with a lattice constant a and the lattice size
L. Quarks q.n/ (gluons U�.n/ ) are defined on the sites (links)
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In the naive continuum limit where a! 0, we have

U�.n/� 1 D igaA�.n/C O.a2/; (3.12)

U��.n/� 1 D exp
�

iga2tb.Gb
��.n/C O.a3//

�
� 1 D iga2G��.n/C O.a4/;

(3.13)

tr


U��.n/ � 1

� D tr

�
iga2tb.Gb

��.n/C O.a3//� 1
2

g2a4G��.n/
2 C O.a5/



D �1
4

g2a4.Gb
��.n//

2 CO.a5/: (3.14)

Here Eq. (3.13) is obtained by using the Baker-Campbell-Hausdorff formula, expX �
expY D exp.X C Y C ŒX;Y
=2C � � �/ (Exercise 3.2).

Finally, a gluon action on the lattice, which reduces to the Yang-Mills action in
the naive continuum limit (a! 0), reads

SG D ˇ
X

Pl

�
1 � 1

Nc
Re tr U��.n/


(3.15)

D ˇa4
X

n

X
�<�

�
1 � 1

2Nc
tr
�

U��.n/C U�
��.n/

�

D 1

g2
X

n

X
�¤�

tr
�
1 � U��.n/

	 a!0���! 1

4

Z
d4x Gb

��.x/
2;

where
P

Pl is a sum over all non-oriented plaquettes (minimum square tile on the
lattice with the area a2). Note that ˇ � 2Nc

g2
with Nc being the number of colors

(Nc D 3 for QCD) should not be confused with the inverse temperature. The lattice
gluon action is not unique in the sense that one may add arbitrary non-minimal terms
which vanish in the continuum limit (a! 0).

3.2.3 Lattice Fermions

There exist three types of gauge invariant objects made of nearest neighbor fermions
as shown in Fig. 3.1b;

Nq.n/q.n/; Nq.nC O�/U�.n/q.n/; Nq.n � O�/U��.n/q.n/: (3.16)
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Here one may put any 	 -matrices between Nq and q without spoiling the color gauge
invariance. A special combination of the above terms is called the Wilson’s fermion
action

SF D a4
X

n

2
4mNq.n/q.n/� 1

2a

X
˙�
Nq.nC O�/��U�.n/q.n/

� r

2a

X
˙�


Nq.nC O�/U�.n/q.n/� Nq.n/q.n/
�
3
5

� a4
X
n0;n

Nq.n0/


mın0;n C DW.n

0; nIU/� q.n/ (3.17)

���!
a!0

Z
d4x Nq.x/

�
��D� C m � ar

2
D2
�

�
q.x/; (3.18)

where the Wilson’s Dirac operator in Eq. (3.17) with the Wilson’s parameter r reads

DW.n
0; nIU/ D � 1

2a

X
˙�

�
ın0;nC O�.rC ��/U�.n/� rın0;n

	
: (3.19)

To take the continuum limit in Eq. (3.18), we use the midpoint prescription, . f .xC
a/ � f .x � a//=2a D f 0.x/ C O.a2/ and . f .x C a/ C f .x � a/ � 2f .x//=a2 D
f 00.x/CO.a2/. One of the important properties of DW.n0; nIU/ is its �5 Hermiticity
(Exercise 3.3),

�5DW�5 D D�
W; (3.20)

where �5 is given in Appendix [Four vectors and Dirac matrices]. Note that the
Hermitian conjugate is taken for color, spin and spacetime.

The dispersion relation (relation between the energy and momentum) for free
fermion can be obtained from Eq. (3.17) by taking U� D 1 (or equivalently g D 0)

and substituting the Fourier transform, q.n/ D R �=a
��=a

d4p
.2�/4

eip�n�q. p/. This leads to

S.free/
F D R d4p

.2�/4
Nq.�p/G �1

F q. p/ with the free fermion propagator (Exercise 3.4),

GF. p/ D �i
P

� Np��� C m. p/P
� Np2� C m2. p/

; (3.21)

Np� D 1

a
sin. p�a/; m. p/ D m.0/C r

a

X
�



1 � cos. p�a/

�
: (3.22)

Since sin. p�a/ becomes zero for p�a=.0; 0; 0; 0/, .�; 0; 0; 0/,� .0; �; �; �/,
.�; �; �; �/, there arise 24 D 16 degenerate fermions if we take r D 0. This is
called the fermion doubling problem on the lattice. In fact, there is a no-go theorem
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by Nielsen and Ninomiya: The fermion doubling always exists, if the free fermion
action on the lattice has (i) bilinearity in quark field, (ii) translational invariance,
(iii) hermiticity (in the Minkowski spacetime), (iv) locality in spacetime, and (v)
exact chiral symmetry. Indeed, (i)–(v) are all satisfied for r D 0.

The doubling in the dispersion relation in the Minkowski spacetime is easily seen
by Wick rotating p4 ! iE in Eq. (3.21). As an illustration, let us take the case with
massless fermion (m.0/ D 0) in (1+1)-dimension. Then, the zero of the denominator
after the Wick rotation for small a gives,

E2. p/ '
�
1

a
sin. pa/

�2
C
� r

a
.1 � cos. pa//

�2
; (3.23)

whose positive energy solution is plotted in Fig. 3.3 for several values of r. One finds
that the unphysical massless pole at pa D � is lifted up as r increases.

In general, r ¤ 0 leads to a mass splitting of 16 fermions: m. p/ ' m.0/ .8p� !
0/ and m. p/ D m.0/ C 2r

a N� .9p� ! �=a/, where N�.D 1; 2; 3; 4/ being the
number of �’s in p�a. This implies that we can select only one light fermion by
choosing m.0/ ' 0 and all the other 15 fermions have masses of O.1=a/ for positive
r. A price to pay is that the non-vanishing r breaks chiral symmetry explicitly for
finite a, i.e. f	5;DWg ¤ 0 even for m.0/ D 0. Namely, the Nielsen-Ninomiya’s
no-go theorem is evaded by breaking the condition (v).

Better way to evade the no-go theorem is to break the condition (v) in a way
that the definition of chiral symmetry is modified. Suppose we consider a modified
chiral rotation in the flavor space,

q! e�i�A O�5q; Nq! Nqe�i�A�5 with O�5 D �5.1� 2aDGW/; (3.24)

which reduces to the standard axial rotation for a ! 0. Here DGW is a generalized
Dirac operator which is constructed so that NqDGWq is invariant under Eq. (3.24) even
for finite a;

�5DGW C DGW O�5 D 0; (3.25)

Fig. 3.3 The dispersion
relation for massless fermion
in (1+1)-dimension on the
lattice for different values of
the Wilson’s parameter r. The
linear dispersion in the
continuum (E D p) is also
shown for comparison
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or equivalently f�5;DGWg D 2aDGW�5DGW. This is called the Ginsparg-Wilson
relation. An explicit form of DGW may be constructed as

DGW D 1

2a

�
1C Xp

X�X

�
with X � D.rD1/

W �m0; (3.26)

where m0a being a dimensionless parameter of O.1/. Unlike the case of m in
the Wilson fermion, m0 is not directly related to the physical fermion mass.
Nevertheless, if we choose the region 0 < m0a < 2, there exists an exact
massless mode for N� D 0 for finite a, and other 15 modes have a large mass
.2=a/.2N� � m0a/ > 0 (Exercise 3.5).

Going back to the Wilson’s fermion action, Eq. (3.17). it can be conveniently
rewritten as

SF D
X
n0;n

N .n0/F.n0; nIU/ .n/; (3.27)

F.n0; nIU/ D ın0n � �
X
˙�

ın0;nC O�.rC ��/U�.n/; (3.28)

where we have redefined the quark field as  D a3=2q=
p
2� with � D Œ2.ma C

4r/
�1 being the hopping parameter. If the quark mass m is large, � is small and the
“hopping” to the neighboring lattice site is suppressed.

3.2.4 Partition Function on the Lattice

The functional integration over quarks and gluons in continuum QCD in Eq. (3.1)
is now transformed to the integration over quarks on each site and gluons on each
link in lattice QCD. With Eqs. (3.15) and (3.27), the partition function without the
external field (J D 0) reads

Z D
Z
ŒdUd N d 
e�SG.U/�SF. N ; ;U/D

Z
ŒdU
 Det F.U/ e�SG.U/D

Z
ŒdU
 e�Seff.U/

(3.29)

To obtain the second equality, we have explicitly carried out the integration over the
Grassmann variables, N and  , by using the formula in Appendix [Gaussian and
Grassmann integrals]. Here Det implies the determinant in spacetime, color, flavor
and spin degrees of freedom. In the third equality, the exponent is defined as

Seff.U/ � SG.U/� lnDetF.U/: (3.30)

The integration over the group element ŒdU
 D Q
�;n dU�.n/ can be defined

through the Haar measure dU which has the property, d.VLUV�
R/ D dU with VL;R
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being arbitrary group elements. Such a measure is unique for compact groups such
as SU.N/. If we parametrize the group element as U D exp.i�ata/, one can define
the distance in the group space as ds2 D gab.�/d�ad�b, where the metric is given by
gab D tr.LaLb/ D tr.RaRb/ with

La D �iU�1.@U=@�a/; Ra D �i.@U=@�a/U
�1: (3.31)

Then the Haar measure can be explicitly written as

dU D N
p

det g
Y

a

d�a; (3.32)

with an overall normalization factor N .
The followings are some examples of the SU(N) group integration, which can be

proved by the invariant property of the Haar measure (except for the first one which
determines the normalization of the measure) (Exercise 3.6):

Z
dU 1 D 1; (3.33)

Z
dU Uij D 0; (3.34)

Z
dU UijU

�

k` D
1

N
ıi`ıjk; (3.35)

Z
dU UijUk`U

�

i0j0U
�

k0`0

D ıij0ıji0ık`0ı`k0 C . j0 $ `0; i0 $ k0/
N2 � 1 � ıij0ıjk0ık`0ı`i0 C . j0 $ `0; i0 $ k0/

N
;

(3.36)Z
dU Ui1j1 � � �UiN jN D

1

NŠ
�i1 ���iN�j1 ���jN : (3.37)

Similar to the statistical systems such as the Ising model, observables are
obtained by averaging over the statistical weight as

hOi D 1

Z

Z
ŒdU
 O.U/ e�Seff.U/: (3.38)

Due to the gauge invariance of the Haar measure, gauge non-invariant quantities
have vanishing expectation values (Elitzer’s theorem). For example, consider the
expectation value of the link variable,

hU�.n/i D 1

Z

Z
ŒdU
U�.n/ e�Seff.U/ D V.n/hU�.n/i; (3.39)
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Fig. 3.4 (a) Single meson correlation representing the propagation of a meson created at point
n0 and absorbed at point n. (b) Single baryonic correlation representing the propagation of a
baryon created at point n0 and absorbed at point n. (c) Two baryon correlation which contains
the information on baryon-baryon interaction

where we have made a change of variable, U�.n/ ! V.n/U�.n/ with V.n/ being
the SU.N/ matrix, and used the gauge invariance of the Haar measure as well as
Det F.U/ and SG.U/. Since Eq. (3.39) must be true for arbitrary V.n/, we have
hU�.n/i D 0.

Some examples of the non-vanishing observables are shown in Fig. 3.4: (a)
and (b) correspond to the mesic and baryonic correlations, respectively, while (c)
is a correlation related to the baryon-baryon interactions. The filled circles are
the spacetime points where the quarks and anti-quarks are created or absorbed.
Each line with arrow indicates the quark propagator F�1.n; n0IU/ connecting two
spacetime points n and n0. Thus, the explicit forms of the mesic and baryonic
correlations are

CM.n; n
0/D 1

Z

Z
ŒdU
 F�1

˛ˇ .n; n
0IU/F�1

ˇ˛ .n
0; nIU/ e�Seff.U/; (3.40)

CB.n; n
0/D 1

Z

Z
ŒdU
 �˛ˇ	 �˛0ˇ0	 0F�1

˛˛0.n; n0IU/F�1
ˇˇ0.n; n0IU/F�1

		 0.n; n0IU/ e�Seff.U/;

(3.41)

where all the color indices are contracted so that CM and CB are gauge invariant.
Other quantum numbers such as spin and flavor associated with F�1 are not shown
explicitly. Spacetime, spin and flavor dependences of CM.n; n0/ in (a) and CB.n; n0/
in (b) have all the information on the hadronic states in various different channels,
while CBB.n;m; n0;m0/ in (c) has the information on baryon-baryon interactions.

3.2.5 Strong Coupling Expansion and Quark Confinement

One of the remarkable properties of QCD is the confinement of quarks inside
hadrons. Simplest setup to see this phenomena is to consider the potential V.R/
between an infinitely heavy quark Q and an anti-quark NQ with a fixed separation R.
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Fig. 3.5 A rectangular
Wilson loop with the
temporal (spatial) size T (R)

It corresponds to Fig. 3.5 and can be written as

hW.C/i D htr
Y

link2C

U�.n/i (3.42)

/ e�V.R/T ' exp
h
�
�

KRC bC c

R
C � � �

�
T
i
; (3.43)

where we have taken a limit T � R!1 in Eq. (3.43). Remembering the fact that
the real time t and the imaginary time � are related as � D it, the exponential falloff
of hW.C/i in � implies the temporal oscillation in t, and its R-dependent coefficient
is nothing but the interaction energy between Q and NQ.

In Eq. (3.43), K > 0 implies the existence of a string-like linear confining
potential. It also implies the area law of the Wilson loop hW.C/i � exp.�KA /

where A D R�T is the area inside the path C. In full QCD where pair creation of
light quarks are allowed, the linear rising potential becomes eventually flat at long
distances due to the breaking of the string, Q NQ! .QNq/.q NQ/.

To make the analysis simple, let us now consider the SU.Nc/ Yang-Mills theory
without light quarks: This is called the quenched approximation and corresponds to
take F.U/ D 1. In this case, the Wilson loop can be evaluated analytically in the
strong coupling regime (g!1). First of all, SG is proportional to 1=g2, so that one
can make an expansion, exp.�SG/ D 1� SG C S2G=2C � � � and finds (Exercise 3.7)

hW.C/i D 1

Z

Z
ŒdU
 tr

Y
link2C

U�.n/
1X
`D0

1

`Š
.�SG/

`: (3.44)

Only the first three integrals, Eqs. (3.33)–(3.35), are necessary to extract the
leading contribution to hW.C/i in the strong coupling. Key observation is that all
the U’s from the Wilson loop and U�’s from .�SG/

` should be paired in the leading
order of 1=g2 in Eq. (3.44). This means that the area inside the Wilson loop is tiled
up with minimum number of plaquettes as shown in Fig. 3.6. All the structures other
than the minimal surface are higher orders in 1=g2.

In the evaluation of the numerator of Eq. (3.44), each plaquette has a contribution
1=g2. Also each integration on the link gives a factor 1=Nc and the contraction of the
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Fig. 3.6 A minimum surface
in which the Wilson loop is
tiled up by the fundamental
plaquettes in the strong
coupling limit

color indices gives a factor Nc on each site. On the other hand, Z (the denominator
of Eq. (3.44) is unity in the leading order. Thus, one arrives at the formula in the
lowest order of the strong coupling expansion,

1

Nc
hW.C/i ����!

g2!1
1

Nc
�
�
1

g2

�Nplaq

�
�
1

Nc

�Nlink

� NNsite
c

D
�

1

Ncg2

� RT
a2 D exp

�
� ln Ncg2

a2
RT

�
; (3.45)

where we have used a relation, Nlink � Nsite C 1 D Nplaq and Nplaqa2 D RT D A .
Since it shows the area law, the confinement is naturally obtained in the strong
coupling with the linear rising potential,

V.R/ D KR with K D 1

a2
ln.Ncg2/: (3.46)

If we consider higher orders of the strong coupling expansion, “rough” surfaces
should be taken into account. Nevertheless, the confining feature is stable against
small perturbations in 1=g2. In fact, there exits a theorem that, for sufficiently large
g, the strong coupling expansion converges and shows confinement for all compact
gauge groups in all spacetime dimensions.

A question here is that whether the real world corresponds to the strong coupling
region discussed above. The answer is no; the real world corresponds to the weak
coupling regime. For compact QED (quantum electrodynamics formulated in terms
of the U(1) link variable), the confinement K > 0 in the strong coupling regime
changes to K D 0 in the weak coupling regime. On the other hand, in QCD in
four spacetime dimensions with Nc D 3, the confinement feature is expected to
persist even in the weak coupling regime. Indeed, there are strong evidences for this
statement from LQCD simulations. Its analytic proof, however, is still missing and
is being one of the most challenging problems in mathematical physics.
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3.2.6 Weak Coupling Expansion and Continuum Limit

Lattice QCD can be regarded as an effective field theory with an ultraviolet (UV)
cutoff in the coordinate space. The gauge coupling g is then interpreted as a bare
coupling defined at the scale a where quantum fluctuations with the wave length
shorter than a are integrated out. In non-Abelian gauge theories, it can be shown that
g.a/ decreases logarithmically as a decreases unless the number of matter fields is
not too large. This is called the asymptotic freedom, and is essential for taking the
continuum limit (a! 0) to remove the lattice artifact.

For simplicity, let us consider the case with massless fermions, where observ-
ables O such as the string tension and the hadron masses depend only on the
coupling g and the regularization scale a. Then, from the dimensional ground, one
can write

O.g.a/; a/ D a�dX.g.a//; (3.47)

where d is the mass-dimension of O and X is a dimensionless function of g. The
a-independence of the observable implies

a
dO

da
D
�

a
@

@a
� ˇLAT

@

@g

�
O.g.a/; a/ D 0; ˇLAT.g/ D �a

dg.a/

da
: (3.48)

By integrating the first equation in Eq. (3.48), we find

X.g/ D exp

�
�d

Z g dg0

ˇLAT.g0/

�
: (3.49)

Suppose that the beta-function can be expanded in terms of g for small a: ˇLAT.g/ D
�ˇ0g3 � ˇ1g5 C � � �. Here ˇ0 and ˇ1 can be shown to be independent of the
regularization scheme and are known to be

ˇ0 D 1

.4�/2

�
11Nc

3
� 2Nf

3

�
; ˇ1 D 1

.4�/4

�
34N2

c

3
� 38Nf

3

�
; (3.50)

for QCD with Nc colors and Nf fermions.
By integrating the second equation in Eq. (3.48) with the above expansion of

ˇLAT.g/, one finds

a D ��1
LAT � exp

�
� 1

2ˇ0g2

�
� .ˇ0g2/

� ˇ1

2ˇ20 � .1C O.g2//: (3.51)

Here �LAT is called the scale parameter on the lattice, and g.a/ can be expressed in
terms of a and �LAT (Exercise 3.8),

1

g2.a/
D ˇ0 ln

�
1

a2�2
LAT

�
C ˇ1

ˇ0
ln ln

�
1

a2�2
LAT

�
C � � �: (3.52)
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This is the asymptotic freedom in which g.a/ decreases as a decreases. This also
justified the assumption that the beta-function can be expanded by g.a/ for small a.

Direct way to extract the actual value of �LAT is to carry out numerical
simulations of a certain physical quantity (such as the string tension) and compare
the result with the experimental value. For example, the string tension, which has
mass-dimension two (d D 2) should behave as

Ka2 D CK exp

�
� 1

ˇ0g2

�
.ˇ0g

2/�ˇ1=ˇ20 D CK�
2
LAT; (3.53)

with CK being a dimensionless numerical constant independent of g. As can be
seen from this example, the functional form of the physical quantities for g � 0 is
severely constrained. This is called the asymptotic scaling which is used to check
whether the system is close enough to the continuum limit. Shown in Fig. 3.7 is a

Fig. 3.7 Crossover behavior of the dimensionless string tension Ka2 from the strong coupling
regime ˇ D 2Nc=g2 ! 0 to the weak coupling (asymptotic scaling) regime ˇ D 2Nc=g2 ! 1
for SU(Nc D 2) Yang-Mills theory. The figure is adapted from [2]
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historic numerical study, which shows a crossover of Ka2 from the strong coupling
regime to the weak coupling regime in SU(2) Yangs-Mills theory.

3.2.7 Running Coupling

Let us now consider an observable O which depends not only on g.a/ and a but
also on some external dimensionful parameter. For concreteness, we consider the
heavy quark potential V.RI g.a/; a/ in the quenched approximation. Since it has the
dimension of energy, one may write

V.R; g.a/; a/ D R�1 QV.R=a; g.a//: (3.54)

Then the cutoff independence of the observable, a d
da V.R; g.a/; a/ D 0, leads to

�
�
@

@�
C ˇLAT

@

@g

�
QV.�; g/ D 0; (3.55)

where we have introduced a dimensionless scaling parameter � through R D �a.
The solution of the renormalization group equation, Eq. (3.55), reads

QV.�; g.a// D QV.1; Ng.�//: (3.56)

Here Ng.�/ is called the running coupling which is a solution of

�
d Ng
d�
D �ˇLAT.Ng.�//; (3.57)

with the boundary condition, Ng.� D 1/ D g.a/. One can show that Eq. (3.56)
satisfies Eq. (3.55) explicitly by applying the partial derivatives or more generally
by the method of characteristics in Appendix [Method of characteristics]. Then, we
eventually arrive at the formula

V.R; g.a/; a/ D a

R
V.a; Ng.R=a/; a/: (3.58)

If R is in the interval, a < R � ��1
LAT, the running coupling Ng is small enough, so

that one may use the perturbative expansion of ˇLAT to obtain

Ng2.R=a/ ' g2.a/

1 � 2ˇ0g2.a/ ln.R=a/
D 1

2ˇ0 ln.1=.R�LAT//
: (3.59)
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Fig. 3.8 Perturbative running coupling 1
4�

Ng2.�/ as a function of ��1. In the short distance limit
(� D 1), the running coupling coincides with the bare coupling Ng.� D 1/ D g.a/, while, in the
long distance regime (� � 1), the running coupling grows

In Fig. 3.8, the behavior of 1
4�
Ng2.�/ as a function of ��1 is shown. The bare coupling

1
4�

g2.a/ appears as the boundary condition at shortest distance � D R=a D 1, while
1
4�
Ng2.�/ grows as � increases. The latter implies that the strong interaction has anti-

screening feature.
For R sufficiently close to a, one may evaluate the potential by using perturbation

theory as V.a; Ng.R=a/; a/ D �CF
Ng.R=a/2

4�a , so that we finally obtain

V.R; g.a/; a/ ' �CF
Ng2.R=a/

4�R
.a < R� ��1

LAT/; (3.60)

where CF D 4=3 for Nc D 3 is given in Appendix [SU(N) algebra]. Equation (3.60)
is nothing but the Coulomb potential with the running coupling constant. Note
that the left hand side is a-independent, while the right hand side has logarithmic
a-dependence through Ng. This is due to the use of perturbation theory; such a
logarithmic a-dependence is cancelled successively by higher order terms. Note also
that the similar analysis can be done for any other observables. The QCD thermal
pressure at finite temperature P.T; g.a/; a/ is a typical example, in which the weak
coupling analysis (i.e. the description by quark-gluon plasma picture) is justified
under the condition�LAT � T < a�1.
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3.3 Lattice QCD: Numerical Simulations

Suppose we have a lattice having Ns (N� ) number of sites in each spatial (temporal)
direction. Then the total number of links is N3

s �N� � 4. Therefore the total number
of gluon integrations

R
ŒdU
 for a moderate lattice size Ns D N� D 32 reads

.N3
s � N� � 4/links � 8color � 3 � 107: (3.61)

This is hopelessly a large number for standard methods of numerical integration. In
this case, the Monte Carlo (MC) integration, which is a statistical way to evaluate
the integral, plays a powerful role. For rapidly varying integrand, the MC integration
should be supplemented by the importance sampling to have better accuracy, in
which the rapidly varying part is sampled more than the slowly varying part.

3.3.1 Importance Sampling

Let us consider the general partition function Z D R
Œd
 exp.�S.//, with some

c-number field  and try to calculate an observable O by

hOi D 1

Z

Z
Œd
 O./e�S./: (3.62)

The basic procedure of the MC integration with the importance sampling consists
of two steps:

(I) Generate a set of field configurations, f.1/; .2/; � � � ; .N/g, with .n/

being arranged to appear with a probability in “equilibrium”, WeqŒ
 D
Z �1 exp.�S.//.

(II) The field configurations thus generated are used to calculate the expectation
value,

hOi D 1

N

NX
nD1

O .n/ ˙
s
�2

N
; �2 D 1

N � 1
NX

nD1
hO .n/ � hOii2; (3.63)

with O .n/ D O..n//.

3.3.2 Markov Chain Monte Carlo (MCMC)

For large number of integration variables such as Eq. (3.61), it is essential to develop
an appropriate scheme to carry out Step (I) in Sect. 3.3.1. The Markov chain Monte
Carlo (MCMC) method is one of such schemes.
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Let us consider a chain of configurations generated successively starting from an
initial configuration,

0 ! 1 ! 2 ! � � � ! i ! iC1 ! � � � ; (3.64)

where the “update” of the i-th configuration () to the .iC 1/-th configuration (0)
is governed by the conditional probability P or equivalently the transition matrix T,

P. ! 0/ D .T/0 (3.65)

which has the property,
P

0 P. ! 0/ D 1. Equation (3.64) generated by
Eq. (3.65) is called the Markov chain since it is governed by the Markov process
where the conditional probability depends only on the neighbouring pair. The
probability distribution WŒ
 (with the properties, WŒ
 
 0 and

P
 WŒ
 D 1)

is updated successively by Eq. (3.65),

W 0Œ0
 D
X


WŒ
P. ! 0/: (3.66)

If the Markov chain is irreducible (any  and 0 are connected with each other)
and aperiodic (absence of  which appears periodically),1 there exists a theorem
that the Markov chain has a unique equilibrium distribution Weq satisfying

WeqŒ
0
 D

X


WeqŒ
P. ! 0/; (3.67)

and it can be reached by T1 starting from arbitrary initial distribution. For a
heuristic proof of this theorem, see Exercise 3.9. For mathematical proof, see [10].

As is easily seen, a sufficient but not necessary condition for P to lead Weq is the
detailed balance:

WeqŒ
P. ! 0/ D WeqŒ
0
P.0 ! /: (3.68)

There also exits specific algorithm without the detailed balance in MCMC [11].
The Markov chain Eq. (3.64) takes certain thermalization time to reach equi-

libration. Also, the nearby field configurations are strongly correlated during the
autocorrelation time. To calculate the actual average in Eq. (3.63), we then need to
discard non-themalized configurations and also thin out the configurations to avoid
the autocorrelations. This is schematically shown for an observable O in Fig. 3.9.
The thermalization time can be estimated by monitoring the behavior of O under

1Rigorous definitions are as follows. (1) The Markov chain is said to be irreducible if one can find
a finite positive integer n.< 1/ such that .Tn/0 > 0 for all  and 0. (2) The period, d./, is
defined by the greatest common divisor of the set of positive integers n.� 1/ such that .Tn/ > 0

is satisfied. If d./ D 1 for all , the Markov chain is said to be aperiodic [10].
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Fig. 3.9 Schematic illustration on the behavior of O under successive update starting from certain
initial configuration. Blue crosses correspond to O.n/ to be used for the actual average in Eq. (3.63)

successive update, while the autocorrelation time can be estimated by calculating
the correlations of O for different configurations.

3.3.3 Hybrid Monte Carlo (HMC)

Most widely used method for generating configurations in LQCD is the hybrid
Monte Carlo (HMC) method [12] and its variations. The basic procedure of the
HMC can be summarized as follows: First, we rewrite the partition function by
introducing a conjugate momentum field � , so that Z is transformed to a phase
space functional integral,

Z D
Z
Œd
 e�S./ D

Z
Œd˚
 e�H.˚/; H.˚/ D 1

2
�2 C S./; (3.69)

where ˚ � .; �/ and Œd˚
 � Œdd�
. Then we follow the steps below:

1. Start with arbitrary chosen initial configuration, .
2. Generate � with the Gaussian distribution,

PG.�/ / exp.��2=2/: (3.70)

3. Evolve ˚ under transition probability PH with the reversibility condition,

PH.˚ ! ˚ 0/ D PH.˚
0
r ! ˚r/; ˚r � .;��/: (3.71)

4. Accept the configuration˚ 0 with the probability,

PA.˚ ! ˚ 0/ D min:f1; e��Hg; (3.72)

where �H D H.˚ 0/ �H.˚/. This is called the Metropolis test [13].
5. If the new configuration ˚ 0 is accepted, go to Step 2 with 0. Otherwise, keep

the original  and go to Step 2.
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The above procedure satisfies the detailed balance Eq. (3.68) with WeqŒ
 D
exp.�S.//. In fact, the Step 4 satisfies the detail balance in phase space (Exer-
cise 3.10),

e�H.˚/PA.˚ ! ˚ 0/ D e�H.˚ 0/PA.˚
0 ! ˚/: (3.73)

Then, we have

e�S./P. ! 0/ D e�S./
Z
Œd�d� 0
PG.�/PH.˚ ! ˚ 0/PA.˚ ! ˚ 0/;

D
Z
Œd�d� 0
 e�H.˚/PH.˚ ! ˚ 0/PA.˚ ! ˚ 0/;

D
Z
Œd�d� 0
 e�H.˚ 0/PH.˚ ! ˚ 0/PA.˚

0 ! ˚/;

D
Z
Œd�d� 0
 e�H.˚ 0/PH.˚

0
r ! ˚r/PA.˚

0 ! ˚/;

D
Z
Œd�d� 0
 e�H.˚ 0/PH.˚

0 ! ˚/PA.˚
0 ! ˚/;

D e�S.0/

Z
Œd�d� 0
PG.�

0/PH.˚
0 ! ˚/PA.˚

0 ! ˚/

D e�S.0/P.0 ! /; (3.74)

where we have used Eq. (3.71) to obtain the 4th line, and also used H.˚/ D H.˚r/

to obtain the 5th line.
Note that PH can be chosen to be any transition probability as long as it

satisfies Eq. (3.71). In practice, the deterministic procedure based on the Molecular
Dynamics (MD) evolution along the “computer” time s is useful:

d

ds

�


�

�
D
�
0 1

�1 0
��

ıH.; �/=ı
ıH.; �/=ı�

�
D
�

�

�ıS./=ı
�
; (3.75)

which leads to

PH.˚ ! ˚ 0/ D ı.˚ 0 �˚.s//; (3.76)

on the phase space trajectories, ˚ D ˚.0/! ˚.s/.
If we do not introduce the MD before the Metropolis test PA, the procedure is

essentially the MCMC with the Metropolis test. It becomes, however, very slow
for non-local action such as Eq. (3.30) where SG.U/ is local in spacetime while
LnDetF.U/ is non-local. The MD is a nice way to evolve the whole variables on
the lattice at once. The computer time s needs to be discretized with a step size ",
which brings inevitable numerical error in MD. However, the Metropolis test in Step
4 eliminates such error so that no extrapolation to � D 0 is required in HMC.
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There are numerical algorithms in MD to satisfy the reversibility and preserve
the phase space area exactly for finite ". The leapfrog integrator is one of
such algorithms widely used in LQCD (see Appendix [Leapfrog integrator in
molecular dynamics]). Since this conserves the Hamiltonian with 0."2) accuracy,
the acceptance rate in Step 4 can be kept high.

In LQCD simulations, we need to treat the unitary matrices U�.n/ as dynamical
variables, i.e. the MD should be performed on the SU(Nc) group manifold. The
appropriate choice of the conjugate momentum would be the element of the Lie
algebra, Pl D Ra

l ta D �i.dUl=ds/U�1
l (see Eq. (3.31)) where we have abbreviated

the link index n and site index � as l for simplicity. This leads to the equation of
motion for Ul,

dUl

ds
D iPlUl: (3.77)

The effective Hamiltonian is naturally written as

H D tr
X

l

P2l C Seff.U/; (3.78)

where tr is over color indices with the normalization given in Eq. (3.105). Then
the time-parameter independence dH

ds D 0 leads to the equation of motion for Pl

(Exercise 3.11),

dPl

ds
D �i

X
i;j

ta .taUl/ij
@Seff.U/

@.Ul/ij
: (3.79)

In the actual simulations, the lnDetF.U/ part of the effective action is treated by
introducing a set of bosonic variables (pseudofermions) through the identity,

DetF D .DetF�1/�1 D
Z
Œd��d�
 exp

 
�
X

IJ

��
I F�1

IJ �J

!
; (3.80)

where I and J stand for all possible internal and spacetime indices carried by F. For
further details of HMC (and its variations) with pseudofermions, consult the recent
review [14] and references therein.

3.3.4 Error Estimate

There are two kinds of errors in the data obtained from LQCD simulations.

Systematic Errors
They are related to the lattice spacing a, the lattice volume L3, and the quark
masses (m). During the continuum extrapolation (a ! 0) and the thermodynamic
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extrapolation (L ! 1) under the guidance of the asymptotic scaling for small a
and the finite size scaling for large L, some systematic errors are brought in. Also,
one often needs to make extrapolation to the physical quark mass by using lattice
data with heavier quark masses. This also brings some systematic errors.

Statistical Error
It originates from the importance sampling. A very useful procedure to estimate
such error commonly used in LQCD is the jackknife resampling method. (The
name originates from the “jackknife” which is an easy and portable tool for
general purposes). Let us consider the mean and the unbiased variance of a certain
quantity O ,

hOi D 1

N

NX
nD1

O .n/ ˙
s
�2.O/

N
; �2.O/ D

�
N

N � 1
�
1

N

NX
nD1
.O .n/ � hOi/2;

(3.81)

where the factor N
N�1 is called the Bessel’s correction. The jackknife samples are

obtained by

O
.n/
J D

1

N � 1
X
n0¤n

O .n0/ .n D 1; � � � ;N/: (3.82)

If we need to make a quick estimate of the mean and the variance of a function f .O/,
we have

h f .OJ/i D 1

N

NX
nD1

f .O .n/
J /˙

s
�2J . f /

N
; �2J . f / D .N � 1/

NX
nD1

. f .O .n/
J / � hf .OJ/i/2:

(3.83)

For f .O/ D O , we recover the original mean and variance; hOJi D hOi and
�2J .O/ D �2.O/ (Exercise 3.12). One can generalize this procedure by dividing
N into Nb D N=nb with the bin-size nb and create the Nb jackknife samples.
Equation (3.83) corresponds to the case with nb D 1.

3.3.5 Heavy Quark Potential

As one of the examples of the accurate inter-quark potential obtained from LQCD
simulations, we show in Fig. 3.10 the dimensionless Q NQ potential ŒV.R/�V.R0/
�
R0 as a function of R=R0 extracted from the calculation of the Wilson loop in the
quenched approximation. R is a distance between the heavy quarks and R0 is called

the Sommer scale defined by R2 dV.R/
dR

ˇ̌
ˇ
RDR0

D 1:65.
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Fig. 3.10 A dimensionless Q NQ potential as a function of a dimensionless quark�anti-quark
separation R=R0 with R0 being the Sommer scale. Different symbols correspond to different lattice
couplings g.a/ and hence different lattice spacings. The solid line shows an empirical Cornell
potential. The figure is adapted from [15]

Simulations with different lattice couplings 6=g2 correspond to different lattice
spacings a. The latter can be fixed, e.g., by taking a phenomenological value R0 '
0:5 fm. The lattice spacings in the physical unit in the figure are a D 0:094 fm
(squares: ˇ D 6=g2 D 6:0), a D 0:069 fm (circles: ˇ D 6:2) and a D 0:051 fm
(triangles:ˇ D 6:4). Since there exists no appreciable a dependence of the potential,
the system is already close enough to the continuum limit.

Figure 3.10 clearly shows that the heavy quark potential has a linear confining
part at long distance and an attractive Coulombic part at short distance. The LQCD
results agree not only qualitatively but also quantitatively with an empirical linear
+ Coulomb potential (the Cornell potential) shown by the solid line, V.r/ D Kr �
b=rC const with b D 0:295.

3.3.6 Masses of Light Hadrons

Meson masses and baryon masses can be calculated with high accuracy by LQCD
simulations with dynamical quarks. The starting point is the hadronic correlation
functions CHDM;B.n; n0/ in Eqs. (3.40), (3.41) integrated over the spatial coordinates,
n and n0,

CH.�/ D
X
n;n0

CH.n; n
0/ ����!

�!1 jZHj2e�MH� ; (3.84)
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where � D .n4 � n0
4/a is the temporal distance between the source at n0 and the sink

at n, and MH (ZH) corresponds to the mass (the pole residue) of a lightest bound
state in each channel. If the temporal extent of the lattice is infinite, one can extract
the hadron mass from the formula, MH D �.1=�/ ln CH.�/j�!1. In practice, the
effective mass defined below is more useful,

aMeff
H .�/ D ln

�
CH.�/

CH.� C a/

�
: (3.85)

The asymptotic plateau of the effective mass at large � corresponds to the hadron
mass. In actual simulations, the temporal extent is limited (0 	 �=a 	 N� ), so
that the exponential damping of Eq. (3.84) is replaced by CH ! expŒ�MH�
 ˙
expŒ�MH.N�a��/
whereC.�/ for the periodic (anti-periodic) boundary condition.

Shown in the left panel of Fig. 3.11 is the dimensionless effective masses (aMeff
H )

against �=a D .n4 � n0
4/ [16]. Data points are the effective masses for the pion .�/,

the kaon .K/, the nucleon (N), the cascade baryon (�) and the omega baryon .˝)
calculated on the lattice with a ' 0:085 fm and the pion mass M� ' 190MeV.
Reasonable plateau above �=a > 9 can be seen within the error bars.

Shown in the right panel of Fig. 3.11 is the M2
� -dependence of the N and ˝

masses for three different values of a [16]. The crosses are the values extrapolated
to the continuum limit and to the physical pion mass. The N and˝ masses predicted
from LQCD and corresponding experimental numbers are

MLQCD
N D 0:936.25/.22/ GeV; MLQCD

˝ D 1:676.20/.15/GeV; (3.86)

Mexp:
N D 0:939 GeV; Mexp:

˝ D 1:672 GeV: (3.87)

Note that the numbers in the first (second) parenthesis in Eq. (3.86) represent the
statistical (systematic) errors on the last digits.

Fig. 3.11 (Left) The effective masses of hadrons against the temporal separation between the
source and the sink. (Right) Hadron masses under the changes of the (pion mass)2 as well as
the lattice spacing a. The figures are taken from [16]
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Fig. 3.12 Mass splittings in channels that are stable under the strong and electromagnetic
interactions. �N D Mn � Mp, �˙ D M˙� � M˙C , �� D M�� � M�C , �D D MD˙ � MD0 ,
��cc D ��CC

cc ���C

cc , �CG D �N ��˙ C�� . The figure is taken from [17]

Shown in Fig. 3.12 are the high precision numerical results of the hadron mass
splittings obtained by the QCD+QED lattice simulations with dynamical u; d; s; c
quarks [17]. The horizontal lines are the experimental values and the grey shaded
regions represent the experimental errors. Red dots are the lattice results with their
uncertainties denoted by the vertical error bars. The neutron-proton mass differences
from numerical simulations and the corresponding experimental numbers are

.Mn �Mp/
LQCDCQED D �N D 1:51.16/.23/MeV; (3.88)

.Mn �Mp/
exp: D 1:29MeV: (3.89)

Since all hadrons are composite particles of quarks and gluons, there are
numerous excited states [18]. To extract the properties of the excited hadrons from
LQCD, only looking at the asymptotic form as shown in Eq. (3.84) is not sufficient,
and more sophisticated methods such as the maximal entropy method (MEM) and
the variational method are required. Interested readers should consult the reviews
[19, 20] and references there in.

3.4 Lattice QCD and Nuclear Force

Understanding of the nuclear force from QCD is one of the most challenging
problems in nuclear physics. Below the pion production threshold, the notion of
the NN potential (either in the coordinate space or in the momentum space) has
been known to be useful, since it can be used not only to describe the two-body
system but also to study nuclear many-body problems through ab-initio calculations
(Consult other chapters of this volume).

Several high precision phenomenological NN forces have been constructed to
reproduce the neutron-proton and proton-proton scattering data (about 4500 data
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points) with a �2=dof � 1. However, they have typically 20–40 fitting parameters:
e.g. the CD Bonn potential, AV18 potential and N3LO chiral effective field theory
have 38, 40, and 24 parameters, respectively [21]. If one tries to extend these to
hyperon-nucleon and hyperon-hyperon interactions, the task becomes extremely
tough since the number of parameters increases and the scattering data are scarce.

Under this situation, it is highly desirable to study baryon-baryon interactions
from first principle LQCD simulations, where all the hadronic interactions are
controlled only by the QCD coupling g and the quark mass m whose values are
pretty well determined at present by the precision QCD simulations [22].

The finite volume method (FVM), a theoretical framework to study hadron-
hadron interactions from LQCD, was first proposed by Lüscher [23]: For two
hadrons in a finite box with a spatial size L3, an exact relation between the energy
spectra in the box and the elastic scattering phase shift can be derived. If the
range of the hadronic interaction RQCD is sufficiently smaller than the size of the
box RQCD < L=2, the behavior of the equal-time Bethe-Salpeter amplitude (or
more precisely the Nambu-Bethe-Salpeter (NBS) amplitude)  .r/ in the interval
RQCD < jrj < L=2 has sufficient information to relate the phase shift and the energy
shift �E D MHH � 2MH.

The HAL QCD method was proposed as another theoretical framework to study
the hadron-hadron interactions from LQCD by Ishii et al. [24] and was further
developed by HAL QCD Collaboration [25]. The starting point is the same equal-
time NBS amplitude  .r/: Instead of looking at the amplitude outside the range
of the interaction, the internal region jrj < RQCD is considered and an energy-
independent non-local potential U.r; r0/ is deduced from  .r/. Since U.r; r0/ in
QCD is spatially localized due to the confinement of quarks and gluons, it is affected
only weakly by the finite lattice volume. Physical quantities such as the scattering
phase shifts, bound state spectra, and resonance energies can be calculated by
solving the integro-differential equation satisfied by  .r/ with U.r; r0/.

Recently, a detailed comparison between the FVM and the HAL QCD method
has been carried out: Although they agree with each other quite accurately for non-
resonant pion-pion scattering, large signal to noise ratio inherent in the effective
mass �Eeff.�/ for baryon-baryon scatterings prevents FVM to extract scattering
observables [26]. Therefore, we will focus on the HAL QCD method below.

3.4.1 Master Equation for Baryon-Baryon Interaction

Let us consider the baryon-baryon correlation in Fig. 3.4c and define the equal-time
NBS amplitude  `.r; �/ from its large � behavior:

CBB.r; �/ D
X
n0;m0

CBB.n;m; n
0;m0/

ˇ̌
n4Dm4;n

0

4Dm0

4
!
X
`

a` `.r; �/e�E`� ; (3.90)

where r D .n � m/a, � D .n4 � n0
4/a, and  `.r; �/ being the NBS wave function

for `-th scattering state on the lattice. For large lattice size, E` is very dense, so
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that it is impossible to identify each level. This causes a fatal problem in FVM as
mentioned above. On the other hand, if we define CBB.rI �/ D R.r; �/e�2MB� , the
following integro-differential equation can be derived below the inelastic threshold
(� > M�1

� ),

�
1

4MB

@2

@�2
� @

@�
� H0

�
R.r; �/ D

Z
d3r0U.r; r0/R.r0; �/; (3.91)

with H0 D �r2=MB. This is the master equation which has the correct information
of the S-matrix and hence the scattering phase shift for elastic BB scatterings [25].

If we further focus on the energies much below the inelastic threshold, the
velocity expansion of U.r; r0/ in terms of its non-locality can be adopted. In fact, the
potential with hermiticity, rotational invariance, parity symmetry, and time-reversal
invariance may be expanded as [27]

U.r; r0/ D V.r; v/ı.r� r0/; (3.92)

V.r; v/ D VC.r/C VT.r/S12„ ƒ‚ …
LO

CVLS.r/L � S„ ƒ‚ …
NLO

C O.v2/„ƒ‚…
N2LO

C � � � ; (3.93)

where v D p=.MB=2/, L D r�p, p D �ir and S12 D 3.� 1 � r/.� 2 � r/=r2�� 1 �� 2.
The central potential VC and the tensor potential VT are classified as the leading
order (LO) potentials since they are of O.v0/. The next-to-leading (NLO) potential
of O.v/ is the spin-orbit potential VLS.r/.

3.4.2 Baryon-Baryon Interaction in Flavor SU(3) Limit

To obtain qualitative understandings of the nuclear force from QCD, the S-wave
interaction between octet baryons in the flavour SU(3) limit would be a good starting
point. In this case, two baryon states with a given angular momentum are labelled
by the irreducible flavour multiplets,

8˝ 8 D 27˚ 8s ˚ 1„ ƒ‚ …
symmetric

˚ 10� ˚ 10˚ 8a„ ƒ‚ …
anti-symmetric

: (3.94)

Here “symmetric” and “anti-symmetric” stand for the symmetry under the flavour
exchange of two baryons. For the system in the orbital S-wave, the Pauli principle
between two baryons imposes 27, 8s and 1 to be spin singlet (1S0) while 10�, 10 and
8a to be spin triplet (3S1). Since there are no mixings among different multiplets in
the SU(3) limit, one may define the corresponding potentials as

1S0 W V.27/.r/; V.8s/.r/; V.1/.r/; (3.95)

3S1 W V.10�/.r/; V.10/.r/; V.8a/.r/ : (3.96)
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Fig. 3.13 The baryon-baryon potentials from LQCD simulations in the flavour SU(3) limit with
several different masses of pseudo-scalar meson. The figures are taken from [29]

The diagonal potential (B1B2 ! B1B2/ and the off-diagonal potentials (B1B2 !
B3B4) in the particle basis, are obtained by suitable combinations of V.˛/.r/ with
˛ D 27; 8s; 1; 10�; 10; 8a.

Shown in Fig. 3.13 are the results of the exploratory study of the potentials
obtained by LQCD simulations on the lattice with a ' 0:12 fm, L ' 4 fm and 3
degenerate flavours [29]. Corresponding pion mass ranges from 469 to 1171 MeV.

• The upper left panel is the central potential V.27/.r/ to which the 1S0 nucleon-
nucleon potential belongs. It has a repulsive core at short distance and an
attractive pocket at intermediate distance. As the pion mass decreases, the
repulsive core gets stronger and the attractive tail gets longer.

• As shown in the lower left panel, the structure of the potential is quite different for
V. 1/.r/ to which the flavour singlet H dibaryon (composed of uuddss) belongs.
There is no repulsive core and the attraction increases as the pion mass decreases.
Such a feature is consistent with the notion of the quark Pauli principle previous
discussed in phenomenological quark models [28].

• The upper and lower right panels of Fig. 3.13 are the central potential and the
tensor potential of V.10�/.r/, respectively. The 3S1 nucleon-nucleon potential
belongs to this channel. The central part has a similar structure as the 1S0
channel, while the tensor part has strong attraction and grows rapidly as the pin
mass decreases. The latter aspect is qualitatively consistent with the one-pion-
exchange picture at long distances.
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Fig. 3.14 (Left) Phase shifts of the NN scattering as a function of energy in the laboratory frame,
extracted from LQCD data at the pion mass 469 MeV in the flavor-SU(3) limit. The black and gray
dashed lines are the results of the partial wave analysis (PWA) of the experimental data. (Right)
Ground state energy per neutron for the pure neutron matter as a function of the Fermi momentum.
The APR with black dotted line (black solid line) corresponds to the empirical equation of state
without (with) the phenomenological three nucleon force [31]. The figures are taken from [30]

Shown in Fig. 3.14 (left) is the nucleon-nucleon scattering phase shifts in the 1S0
channel and 3S1 channel obtained by using the potentials, V.27/.r/ and V.10�/.r/, for
the pion mass 469 MeV [30]. The qualitative feature of the phase shift in the 1S0
channel is similar to the experimental one denoted by the black solid line, despite
the fact that pion mass in the simulation is more than 3 times heavier than the
physical value. In the 3S1 channel, the deuteron bound state is not formed yet due
to heavy pion mass, so that the phase shift starts from 0 at zero energy in contrast
the experimental one denoted by the black dashed line. There is however a tendency
that the attraction in the 3S1 channel is larger than the 1S0 channel even for the
heavy pion mass. Shown in Fig. 3.14 (right) is the energy per particle E=A as a
function of the fermi momentum kF for pure neutron matter calculated by using
the Brueckner-Hartree-Fock method with the neutron-neutron potential in the 1S0
channel in Fig. 3.14 (left). As the pion mass decreases, the equation of state becomes
stiffer due to the growth of the repulsive core. The APR with black dotted line
(black solid line) corresponds to the empirical equation of state without (with) the
phenomenological three nucleon force [31].

We note that calculations of the baryon-baryon interactions with (2+1)-flavour
LQCD on a large volume (L ' 8:2 fm, a ' 0:085 fm) at nearly the physical quark
mass (m� ' 146MeV, mK ' 525 MeV) are underway [32].
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3.5 Exercises

3.1 Prove the properties of the Wilson line, Eqs. (3.6)–(3.8).

3.2 Derive the expression on U��.n/�1 in Eq. (3.13) by using the Baker-Campbell-
Hausdorff formula.

3.3 Show the �5 Hermiticity of the Dirac operator in Eq. (3.20).

3.4 Derive the free fermion propagator on the lattice in the momentum representa-
tion, Eqs. (3.21) and (3.22).

3.5 Analyze the dispersion relation of the free fermion associated with the Dirac
operator, DGW in Eq. (3.26).

3.6 Derive the group integration formulas, Eqs. (3.34)–(3.37),by taking appropriate
contractions of the color indices.

3.7 Derive the formula for the Wilson loop in the strong coupling limit Eq. (3.44)
by using the group integration formulas Eqs. (3.33)–(3.35).

3.8 Derive the lattice coupling g.a/ as a function of the lattice spacing a, Eq. (3.52).

3.9 Show the convergence of WŒ
 to the equilibrium distribution WeqŒ
 under
the Markov process by introducing the distance D D P



ˇ̌
WŒ
 �WeqŒ


ˇ̌
and by

studying its behavior under update.

3.10 Prove that the Metropolis test in Eq. (3.72) satisfies the detailed balance
Eq. (3.73).

3.11 Derive the equation of motion for Pl in Eq. (3.79) from Eqs. (3.77) and (3.78).

3.12 Prove that the jackknife average and variance for f .O/ D O reduce to the
standard mean and unbiased variance, respectively.

3.13 Prove that the leapfrog integrator satisfies the reversibility Eq. (3.71) exactly.
Also prove that the leapfrog integrator preserves the phase space area exactly by
evaluate the Jacobian, d0d� 0 D Jdd� .
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Appendix

Four Vectors and Dirac Matrices

In the (3+1)-dimensional Minkowski spacetime, coordinates, derivatives and four
vectors with � D 0; 1; 2; 3 are

x� D .t; x/; @� D .@t;�r/; A� D .A0;A/: (3.97)

In the 4-dimensional Euclidean space, we define the corresponding vectors for � D
4; 1; 2; 3 as

.x�/
E D .� D it; x/; .@�/E D .@� D �i@t;r/; .A�/E D .A4 D iA0;A/:

(3.98)

In the (3+1)-dimensional Minkowski spacetime with the metric g�� D
diag.1;�1;�1;�1/, the Dirac matrices satisfy the following relations for
� D 0; 1; 2; 3,

f	�; 	�g D 2g��; .	�/� D 	0	�	0; 	5 D i	0	1	2	3 D 	5 D .	5/� : (3.99)

In the standard Dirac representation, we have

	0 D
�
1 0

0 �1
�
; 	 j D

�
0 �j

��j 0

�
; 	5 D

�
0 1

1 0

�
; (3.100)

where �j are the Pauli matrices; �1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
:

In the 4-dimensional Euclidean space with the metric ı�� D diag.1; 1; 1; 1/, we
define the Euclidean Dirac matrices as

�� �


	4 D 	0;�i�

�
; ��� � ���; and �5 � 	5; (3.101)

which satisfy the relations,

f��; ��g D 2ı��; � �
� D ��; .for � D 1; 2; 3; 4; 5/ (3.102)

SU.N/ Algebra

Let T a (a D 1; � � � ;N2�1) are the Hermitian generators of the SU.N/ group. They
satisfy the Lie algebra

�
T a;T b

	 D ifabcT
c; (3.103)
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where fabc is the structure constant being totally anti-symmetric in its indices. .T b/2

commutes with every generator T a and is called the quadratic Casimir operator.
For N D 2, fabc reduces to the anti-symmetric tensor �ijk with �123 D 1. For

N D 3, the non-vanishing components of fabc read f123 D 1; f147 D �f156 D f246 D
f257 D f345 D �f367 D 1=2; f458 D f678 D

p
3=2.

In the fundamental representation, T a is written by the N � N matrices ta as

ta D 1

2
�a; (3.104)

where �a for N D 2 reduce to the Pauli matrices �i, while those for N D 3 reduce
to the Gell-Mann matrices.

Some useful relations of ta for general N are

tr.tatb/D 1
2
ıab; ta

ijt
b
klD

1

2
.ıilıjk � 1

N
ıijıkl/; .tata/ij D CFıij; with CFD N2 � 1

2N
:

(3.105)

In the adjoint representation, T a is written by .N2�1/� .N2�1/matrices Ta as

.Ta/bc D �ifabc; (3.106)

which satisfy the relations

tr.TaTb/ D Nıab; .TaTa/bc D CAıbc; with CA D N: (3.107)

Gaussian and Grassmann Integrals

Basic Gaussian and Grassmann integrals are

Z C1

�1
dxp
2�

e�ax2=2 D 1p
a
; (3.108)

Z
dz�dz

2�i
e�bjzj2 D 1

b
; (3.109)

Z
d N�d� e�cN�� D c: (3.110)

Here x (z) is a real (complex) number, while N� and � are anti-commuting Grassmann
numbers (f�; N�g D 0, and �2 D N�2 D 0). a and b are assumed to be real and positive
numbers, while c is an arbitrary complex number. Equation (3.109) can be shown by
rewriting the integral in terms of the real and imaginary parts of z or in terms of the
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polar coordinates of z. Equation (3.110) can be shown by noting that e�cN�� D 1�c N��
and

R
d� D @=@� (integral = derivative) for Grassmann variables.

Generalization of the above results to the case of multiple variables is straightfor-
ward. For x D .x1; � � � ; xn/, z D .z1; � � � ; zn/, � D .�1; � � � ; �n/, and N� D . N�1; � � � ; N�n/

with f�k; �lg D fN�k; N�lg D f�k; N�lg D 0, we have

Z nY
lD1

dxlp
2�

e� 1
2 xAx D 1p

Det A
; (3.111)

Z nY
lD1

dz�
l dzl

2�i
e�z�Bz D 1

Det B
; (3.112)

Z nY
lD1

d N�ld�l e�N�C� D Det C: (3.113)

Here A is a non-singular and real-symmetric matrix whose eigenvalues al satisfy
al > 0 for all l. B is a non-singular complex matrix whose complex eigenvalues bl

obtained by the biunitary transformation (UBV�) satisfy Re bl > 0 for all l. C is an
arbitrary complex matrix with no conditions. Note that B and C do not have to be
Hermitian matrices. In field theories, the label “l” summarizes all possible indices
including spin, flavor, color, spacetime points etc. and “Det” denotes the determinant
for all these indices.

Method of Characteristics

We need to construct a general solution of the following partial differential equation,

�
�
@

@�
C ˇ.g/ @

@g

�
f .�; g/ D 0: (3.114)

For this purpose, we introduce the running coupling Ng.�/ through�d Ng=d� D �ˇ.Ng/
whose formal solution reads

� D exp

 
�
Z Ng.�/

g

dg0

ˇ.g0/

!
: (3.115)

Then the solution of Eq. (3.114) can be written as

f .�; g/ D f .1; Ng.�//: (3.116)
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This can be explicitly checked by applying the partial derivative on both sides,

�@�f .�; g/ D �.@� Ng/.@Ngf / D �ˇ.Ng/.@Ngf /;

ˇ@gf .�; g/ D ˇ.g/ .@Ng=@g/j� .@Ngf / D ˇ.Ng/.@Ngf /: (3.117)

where we have used the relation @Ng=@g D ˇ.Ng/=ˇ.g/ obtained from Eq. (3.115).
In general, the first-order partial differential equation (PDE) can be transformed

to a set of ordinary differential equations (ODEs) and can be solved by the method
of characteristics. As an illustration, let us consider the following PDE,

a.t; x/@tu.t; x/C b.t; x/@xf .t; x/ D c.t; x/: (3.118)

This is equivalent to the coupled ODEs,

dNt
ds
D a.Nt; Nx/; dNx

ds
D b.Nt; Nx/; df .Nt; Nx/

ds
D a.Nt; Nx/; (3.119)

where s parametrizes the “flow” of the coordinates. .Nt.s/; Nx.s//. This is called the
characteristic curve as shown in Fig. 3.15.

The function f can be obtained by integrating the last equation of Eq. (3.119) on
the characteristic curve from the initial point .ti; xi/ to the final point .tf; xf/ � .t; x/,

f .t; x/ D f .ti; xi/C h.t; x; ti; xi/ (3.120)

where h stands for an integration of the known function c.Nt; Nx/ on the characteristic
curve. Equation (3.120) implies that the desired function at .t; x/ is obtained
essential by a “pullback” of the point to .ti; xi/ along the characteristic curve. It
is a straightforward exercise to generalize the above derivation to the system with
more coordinates, .t; x/.

Fig. 3.15 Schematic
illustration of the
characteristic curve
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Leapfrog Integrator in Molecular Dynamics

Let us start with a Tayler expansion of the field :

.sC "/ D .s/C " P.s/C "2

2
R.s/C O."3/;

D .s/C "�.s/C "2

2
P�.s/C O."3/;

D .s/C "�.sC "=2/C O."3/; (3.121)

where we have used the equation of motion, P.s/ � d.s/=ds D �.s/. To evaluate
�.sC "=2/, we take the midpoint prescription which does not have O."2/ error,

�.sC "=2/ D �.s � "=2/C " P�.s/C O."3/

D �.s � "=2/� "ıS./
ı.s/

CO."3/: (3.122)

Equations (3.121) and (3.122) give a procedure to move the molecular dynamics
one-step forward, ..s/; �.s�"=2//! ..sC"/; �.sC"=2//. The initial and final
steps need to receive special care,

�."=2/ D �.0/ � 1
2
"
ıS./

ı.s/
C O."2/; �.sf/ D �.sf � "=2/� 1

2
"
ıS./

ı.sf/
C O."2/;

(3.123)

which have only O.�2/ accuracy. An illustration of this leapfrog integrator is shown
in Fig. 3.16. Since the initial and final steps introduce O."2/ error irrespective of the
length of the MD trajectory, and the intermediate steps introduce O."3/ � "�1 D
O."2/ error as a whole, one finds �H D O."2/ after one MD trajectory before the
Metropolis test.

The leapfrog integrator satisfies the reversibility and symplectic property, which
can be checked explicitly by using the above definitions (Exercise 3.13).

Fig. 3.16 The leapfrog integrator
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Chapter 4
General Aspects of Effective Field Theories
and Few-Body Applications

Hans-Werner Hammer and Sebastian König

4.1 Introduction: Dimensional Analysis and the Separation
of Scales

Effective field theory (EFT) provides a general approach to calculate low-energy
observables by exploiting scale separation. The origin of the EFT approach can
be traced to the development of the renormalization group [1] and the intuitive
understanding of ultraviolet divergences in quantum field theory [2]. A concise
formulation of the underlying principle was given by Weinberg [3]: If one starts
from the most general Lagrangian consistent with the symmetries of the underlying
theory, one will get the most general S-matrix consistent with these symmetries.
As a rule, such a most general Lagrangian will contain infinitely many terms. Only
together with a power counting scheme that orders these terms according to their
importance at low energies one obtains a predictive paradigm for a low-energy
theory.

The Lagrangian and physical observables are typically expanded in powers of a
low-momentum scale Mlo, which can be a characteristic external momentum or an
internal infrared scale, over a high-momentum scale Mhi � Mlo.1 This expansion

1Note there are often more than two scales, which complicates the power counting. Here we focus
on the simplest case to introduce the general principle.
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Fig. 4.1 Expansion of heavy-particle exchange between light particles in terms of contact
interactions between light particles. The solid and dashed lines denote light and heavy particles,
respectively. The circle and square denote contact interactions with zero and two derivatives, in
order

provides the basis for the power counting scheme. It depends on the system to which
the physical scales Mhi and Mlo correspond to.

As an example, we take a theory that is made of two particle species, light
bosons with mass Mlo and heavy bosons with mass Mhi � Mlo.2 We consider
now soft processes in which the energies and momenta are of the order of the light
particle mass (the so-called soft scale). Under such conditions, the short-distance
physics related to the heavy particles can never be resolved explicitly. However, it
can be represented by light-particle contact interactions with increasing dimension
(number of derivatives). To illustrate this, we consider the scattering of the light
particles mediated by heavy-particle exchange, with g the heavy-light coupling
constant. The corresponding interaction Lagrangian is given by

Lint D g


�� C ���� ; (4.1)

where  denotes the light boson field and � is the heavy boson field. As depicted
in Fig. 4.1, one can represent such exchange diagrams by a sum of local operators
of the light fields with increasing number of derivatives. In a symbolic notation, the
leading order scattering amplitude can be written as

T � g2

Mhi
2 � q2

D g2

Mhi
2
C g2 q2

Mhi
4
C � � � ; (4.2)

with q2 the squared 4-momentum transfer. We will come back to this example in
more detail in Sect. 4.2.

In many cases, the corresponding high-energy theory is either not known or can
not easily be solved. Still, EFT offers a predictive and systematic framework for
performing calculations in the light-particle sector. We denote by Q a typical energy
or momentum of the order of Mlo and by Mhi the hard scale where the EFT will
break down. In many cases, this scale is set by the masses of the heavy particles
not considered explicitly and thus replaced by contact interactions as in the example

2For further examples, see the lectures by Kaplan [4, 5].
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above. In such a setting, any matrix element or Green’s function admits an expansion
in the small parameter Q=Mhi [3]

M D
X
�

�
Q

Mhi

��
F

�
Q

�
; gi

�
(4.3)

where F is a function of order one (this is the naturalness assumption), � a
regularization scale (related to the UV divergences appearing in the loop graphs) and
the gi denotes a collection of coupling constants, often called low-energy constants
(LECs). These parameterize (encode) the unknown high-energy (short-distance)
physics and must be determined by a fit to data (or can be directly calculated if
the corresponding high-energy theory is known/can be solved). The counting index
� in general depends on the fields in the effective theory, the number of derivatives
and the number of loops. This defines the so-called power counting which allows to
categorize all contributions to any matrix element at a given order. It is important to
stress that � must be bounded from below to define a sensible EFT. In QCD, e.g.,
this is a consequence of the spontaneous breaking of chiral symmetry.

The contributions with the lowest possible value of � define the so-called
leading order (LO) contribution, the first corrections with the second smallest
allowed value of � the next-to-leading order (NLO) terms and so on. In contrast to
more conventional perturbation theory, the small parameter is not a dimensionless
coupling constant (like, e.g., in Quantum Electrodynamics) but rather a ratio of two
scales. Typically, one expands in the ratio of a small energy or momentum and
the hard scale Mhi. A prototype of such a perturbative EFT is chiral perturbation
theory, which exploits the strictures of the spontaneous and explicit chiral symmetry
breaking in QCD [6, 7]. Here, the light degrees of freedom are the pions, generated
through the symmetry violation. Heavier particles like e.g. vector mesons only
appear indirectly as they generate local four-pion interactions with four, six, etc.
derivatives.

In these lectures, we also consider EFTs with bound states, where certain
contributions need to resummed nonperturbatively. In Sect. 4.2, we start with some
general considerations. This is followed by the explicit discussion of an EFT for
non-relativistic bosons with short-range interactions and large scattering length in
Sect. 4.3. The extension of this framework to low-energy nucleons is presented in
Sect. 4.4. Finally, we will discuss the inclusion of long-range interactions mediated
by photon and pion exchange in Sect. 4.5.

4.2 Theoretical Foundations of Effective Field Theory

As mentioned in the introduction, effective field theories are described by writing
down Lagrangians with an infinite number of terms, restricted only by symmetry
considerations, and ordered by a scheme referred to as “power counting.” In this
section, we discuss the meaning and importance of all these ingredients.
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4.2.1 Top-Down vs. Bottom-Up Approaches

Generally, there are two different motivations for working with an EFT. Given a
known quantum field theory, which can be solved to compute a given quantity
of interest, it can be beneficial to switch to an effective description valid only
in a limited energy regime simply because carrying out the calculation is more
efficient with the effective theory. With such a solvable underlying theory, the
parameters (“low-energy constants”) of the effective theory can be computed
directly by considering some number of (simple) processes, i.e., one does not need
experimental input beyond what was needed to fix the parameters of the underlying
theory. This approach, based on a reduction of expressions from the underlying to
the effective picture is called a “top-down” approach.

An alternative procedure, somewhat closer to what we described at the outset, is
to start “bottom up,” i.e., by simply writing down the effective Lagrangian directly—
or more precisely only those terms of the infinitely many which are needed to
achieve a given desired accuracy. Being able to do that of course requires that as
a first step one has already figured out which terms are allowed and how they should
be ordered.

Our approach here is to work top down in the pedagogical sense, i.e., postpone
the discussion of the bottom-up approach and its ingredients until later in this
section, and instead dive into the matter starting with examples that show how
effective low-energy theories can arise from more fundamental ones. We assume
that the reader is familiar the material from a standard (relativistic) quantum field
theory course.

4.2.1.1 Integrating Out Exchange Particles: Part I

As was also mentioned in the introduction, the very first step in the construction of
an EFT is to identify the relevant degrees of freedom to work with, as well as those
which are irrelevant and thus do not need to be kept explicitly (with emphasis on the
last word, because implicitly the physics of left-out degrees of freedom should and
does enter in the effective description).

Let us illustrate this by showing how integrating out a “heavy” particle gives rise
to contact interactions between the remaining degrees of freedom (see the example
in Sect. 4.1). We stress that the particles which are integrated out can in fact be
lighter than what is left (like it is the case in pionless EFT)—what really matters
for the procedure is which particles are assumed to appear in asymptotic states,
and what is the typical energy/momentum scale between those. In that spirit, we
are not making explicit assumptions about the mass hierarchy of the particles in
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the following. For the illustration here, we consider two scalar fields (complex and
relativistic) with Yukawa interactions and start with a Lagrangian for two species:

L D ��
�
�C m2



�
 � ��

�
�Cm2

�

�
�C g



���C h:c:

�
: (4.4)

Suppose now we are only interested in interactions between  particles at energy
scales much smaller than m�, so that the explicit � exchange generated by the
interaction term in Eq. (4.4) cannot be resolved. In that case, we can derive a new
effective Lagrangian that only contains  degrees of freedom, a process referred
to as “integrating out” the field � (stemming from its implementation in the path-
integral formalism). In effect that amounts to using the equations of motion, which
we do here. From the Euler-Lagrange equation for ��, we directly get

� D
�
�C m2

�

��1
g : (4.5)

Defining the Klein-Gordon propagator

D�.x � y/ D
Z

d4p

.2�/4
e�ip.x�y/ i

p2 �m2
� C i"

; (4.6)

satisfying

�
�C m2

�

�
D�.x � y/ D �iı.4/.x � y/ ; (4.7)

we can write out Eq. (4.5) in configuration space as

�.x/ D ig
Z

d4y D�.x � y/.y/.y/ : (4.8)

Inserting this back into the Lagrangian (4.4), we obtain

L .x/ D ��.x/
�
�C m2



�
.x/ � ig2�.x/�.x/

Z
d4y D�.x � y/.y/.y/ ;

(4.9)

where we have written out the spacetime dependence of all fields and used Eq. (4.7)
to cancel the terms involving ��.x/. So far, we have made only exact manipulations,
but the resulting Lagrangian (4.9) is non-local, i.e., it depends on fields evaluated at
different spacetime points. To simplify it further, we want to exploit the fact that �
is considered “heavy” compared to the scales we want to describe. Mathematically,
this means that D�.x � y/ is peaked at distances that are small compared to 1=m2

�.
There are several ways to implement this knowledge. A particularly intuitive version
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Fig. 4.2 Chain of contact interactions obtained by integrating out an exchange particle

is to expand the propagator (4.6) in momentum space,

i

p2 �m2
� C i"

D �i

m2
�

 
1C p2

m2
�

C � � �
!
; (4.10)

and then Fourier-transform back to configuration space. The first term gives a simple
delta function, and terms with powers of p2 induce operators with derivatives acting
on ı.x� y/. Inserting the leading term into Eq. (4.9), we arrive at the effective local
Lagrangian

Leff.x/ D ��.x/
�
�C m2



�
.x/� g2

m2
�

�.x/�.x/ .x/ .x/C � � � : (4.11)

The ellipses contain operators with derivatives acting on .x/, obtained from those
acting on the delta functions from the propagator after integrating by parts. A
diagrammatic illustration of the procedure is shown in Fig. 4.2.

We note that an alternative derivation of the above result, discussed for example
in [8], is given by Taylor-expanding the field product .y/.y/ about y D x under
the integral and then using the properties of the propagator. This directly gives
terms with an increasing number of derivatives acting on �.x/�.x/, and those
with an odd number of derivatives are found to vanish, in agreement with Eq. (4.10)
featuring only even powers of p2.

4.2.1.2 Emergence of Many-Body Forces

We now add a third field ˚ to the Lagrangian:

L D ��
�
�C m2



�
 � ��

�
�C m2

�

�
� �˚�



�C m2

˚

�
˚

C g


���C h:c:

�C g0 
˚��C h:c:
�
: (4.12)

The new interaction term is chosen such that ˚ can “decay” into a  and a �, thus
acting like a heavier version of the . In spite of the simplicity of this bosonic
toy model, it is useful to think about  and ˚ as the nucleon and its � excitation,
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respectively, and about� as a pion field. If we first integrate out the˚ field following
the procedure described in the previous section, we find

˚.x/ D ig0
Z

d4y D˚.x � y/.y/�.y/ ; (4.13)

and thus

Leff D ��
�
�C m2



�
 � ��

�
�Cm2

�

�
�C g



���C h:c:

�C g02

m2
˚

����C � � � ;
(4.14)

where we have only kept the leading (no derivatives) induced contact interaction.
Proceeding as before for the � field, we now get

�
�C m2

�

�
� D g C g02

m2
˚

� �C � � � : (4.15)

This can no longer be solved exactly because we now have a � on the right-hand
side. However, using the general operator identify

� OA � OB��1 D OA�1 C OA�1 OB OA�1 C � � � ; (4.16)

we can write down a formal iterative solution:

� D
�
�C m2

�

��1
g C

�
�C m2

�

��1 g02

m2
˚

�
�
�C m2

�

��1
g C � � � ;

(4.17)

with each of the inverse differential operators giving a propagator when written out.
Those, in turn, each give factors of �i=m2

˚ times a delta function, plus additional
terms with derivatives.

4.1 Exercise: Derive Eq. (4.16).

Inserting the above result back into Eq. (4.14), we see that in addition to the
two-body contact operator .�/2 obtained previously, we now also get all kinds of
higher-body interactions. For example, we get a three-body force through

g02

m2
˚

����! g02g2

m2
˚m4

�

.�/3 : (4.18)
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Fig. 4.3 Emergence of a three-body contact interaction

In Fig. 4.3 it is illustrated diagrammatically how such a term arises subsequently,
starting from a diagram derived from the original Lagrangian (4.12) with three
fields.

4.2.2 Nonrelativistic Field Theory

Relativistic effects and exact Lorentz invariance are not crucial to describe systems
at low energies, where “low” means “much smaller than the particles’ rest mass.”
Based on that, one typically starts with a nonrelativistic framework and writes down
effective Lagrangians of so-called Schrödinger fields, e.g.,

L;free D �
 

i@t C r2

2m

!
 (4.19)

for a free scalar particle, where �.t; x/ is the field operator that creates a particle
at time t and position x, and .t; x/) correspondingly destroys it. Written in terms
of momentum-space ladder operators Oap,Oa�p (as they appear in standard many-body
quantum mechanics), we have

.t; x/ D
Z

d3p

.2�/3
Oap e�iEpteip�x ; (4.20)

and analogously for �.t; x/. Note that here Ep D p2=.2m/ is the kinetic
energy alone, and that creation and destruction operators are completely separated.
Intuitively, this makes perfect sense: At low energies, virtual particle-antiparticle
pairs would be highly off-shell, thus giving rise to very short-range effects that
we can simply describe as contact interactions. Other effects, such as self-energy
corrections to the particle mass, are automatically accounted for by using the
physical value for m in Eq. (4.19). With this in mind, one can proceed in the
bottom-up approach and construct an interacting theory by supplementing the free
Lagrangian with all allowed contact operators. In particular, like Eq. (4.19) they
should all be invariant under Galilei transformations, the low-energy remnant of
the Poincaré group. Before we come back to this, however, we find it instructive to
explicitly consider the low-energy limit of a relativistic theory.
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4.2.2.1 Nonrelativistic Limit of a Bosonic Field

Let us make the connection of Eq. (4.19) to a relativistic complex Klein–Gordon
field ˚ , the Lagrangian for which can be written as

L';free D �'�


@2t � r 2 Cm2

�
' : (4.21)

Using integration by parts, this can be shown to be equivalent to the more common
form written with .@�'�/.@�'/. This implies the Klein–Gordon equation for the
field operator,



@2t � r 2 C m2

�
' D 0 ; (4.22)

the most general solution of which is typically written as (with a four-vectors x D
.t; x/, p D . p0;p/, and a Lorentz-invariant integration measure)

'.x/ D
Z

d3p

.2�/3
1p
2!p

�
Oap e�ip�x C Ob�p eip�x�

ˇ̌
ˇ̌
ˇ
p0D!p

; (4.23)

where !p D
p

p2 C m2. With this convention where p0 is chosen positive, modes
created by Oa�p correspond to particles (propagating forward in time), whereas Ob�p
creates an antiparticle (positive-energy state propagating backwards in time). That
we have both stems from the fact that the complex scalar field corresponds to
two real ones (completely decoupled in the absence of interactions), each of
which comes with its own pair of creation and annihilation operators. To take the
nonrelativistic limit, we have to consider the particle and antiparticles separately.
Defining

'a.x/ D
Z

d3p

.2�/3
1p
2!p
Oap e�ip�x

ˇ̌
ˇ̌
ˇ
p0D!p

� e�imta.x/ ; (4.24)

and plugging this into the Klein–Gordon equation, we get

e�imt
�
@2t � 2im @t � r 2

	
a.x/ D 0 ; (4.25)

where the quadratic mass term has canceled. Since a.x/ D eimt'a.x/, we see from
Eq. (4.24) that in the Fourier transform each time derivative acting on a.x/ brings
down a factor

!p �m D
p

p2 C m2 � m � p2=.2m/ ; (4.26)

i.e., just the kinetic energy Ep up to corrections of higher order in 1=m. In the
nonrelativistic limit, Ep � m, so we see that we can neglect the quadratic time
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derivative in Eq. (4.25) compared to the other two terms in Eq. (4.25), and then
recover the Schrödinger equation for a:

 
i@t C r2

2m

!
a.x/ D 0 : (4.27)

This establishes the connection to our .t; x/ in Eq. (4.19) when we insert an
additional factor

p
2m in the field redefinition to account for the otherwise different

normalizations. For the antiparticles, we can carry out an analogous procedure,
except that we have to choose the opposite sign for the mass-dependent phase in
the field redefinition analogous to Eq. (4.24) because the antiparticle part of '.x/
comes with a factor eCip�x.

4.2.2.2 Nonrelativistic Fermions

For relativistic Dirac fermions, the nonrelativistic reduction can be carried out with
the help of a so-called Foldy-Wouthuysen transformation.3 The idea behind the
approach is to decouple the particle and antiparticle modes contained together in
a four-spinor  through a sequence of unitary transformations. In the following,
we demonstrate this procedure, using an interacting model theory to also illustrate
what happens to interaction terms in the nonrelativistic limit. Since it will be useful
to motivate the pionless EFT discussed in Sect. 4.4, we start with a Lagrangian of
the form

L D N 
i=@ �MN
�
 C 1

2
.@� E�/ � .@� E�/ � 1

2
m2
� E�2 C

1

2
.@��/ � .@��/ � 1

2
m2
��

2

� g N .� � i	5E� � E�/ ; (4.28)

where the nucleon field  is an isospin doublet of Dirac spinors, � is an isospin
triplet, and � is an isoscalar. A Lagrangian of this form (plus additional interaction
terms among � and �), can be obtained from a linear sigma model after spontaneous
symmetry breaking (see, for example, [8, Chap. I]) and augmented by an explicit
mass term for �.4 We denote the Pauli matrices in spin and isospin space as � D
.� i/ and � D .��/, respectively. For the gamma matrices we use the standard (Dirac)

3An alternative way to perform the nonrelativistic reduction is to introduce a “heavy fermion”
field [9]. A comparison of this formalism and the Foldy-Wouthuysen transformation can be found
in [10].
4We stress, however, that this really is a model and not a proper EFT describing QCD.
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representation:

	0 D
�

1 0

0 �1

�
, 	 i D

�
0 � i

�� i 0

�
, 	5 D

�
0 1
1 0

�
: (4.29)

To perform the nonrelativistic reduction, we start by separating odd and even
operators, which are two-by-two block matrices in Dirac space. The result is

L D  �
� OEC OO � 	0MN

�
 ; (4.30)

where

OE D
�

i@t � g� 0

0 i@t C g�

�
and OO D

�
0 �iE� � r C igE� � E�

�iE� � r � igE� � E� 0

�
:

(4.31)

Rotating the phase of the fermion field,

 ! Q D e�iMN t ; (4.32)

just like we did for the bosonic field in Eq. (4.24), we can remove the mass term for
the upper components:

L D Q �
� OEC OO � .	0 � 1/MN

� Q : (4.33)

The Foldy-Wouthuysen transformation is now constructed to (approximately)
decouple the upper from the lower components, i.e., nucleons from their
antiparticles. To achieve this, we use a sequence of further unitary redefinitions
of the fermion field. The first of these is

Q ! Q 0 D e�iOS Q with OS D � i	0 OO
2MN

: (4.34)

Let us consider this transformation up to quadratic order in 1=MN . Expanding the
exponential, we have

Q D eiOS Q 0 D
 
1C 	0 OO

2MN
C


	0 OO�2
8M2

N

CO


1=M3

N

�! Q 0 (4.35)

and likewise

Q � D Q 0�e�iOS D Q 0�
 
1 � 	0 OO

2MN
C


	0 OO�2
8M2

N

C O


1=M3

N

�!
: (4.36)
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Inserting this into Eq. (4.33) and collecting contributions up to corrections which
are O.1=M2

N/, we get a number of terms:

�	
0 OO OE
2MN

C OE	
0 OO

2MN
D 	0

� OO; OE	
2MN

; (4.37a)

OO	0 OO
2MN

� .	0 � 1/



	0 OO�2
8MN

� 	
0 OO2

2MN
C 	0 OO
2MN

.	0 � 1/
	0 OO
2MN

�


	0 OO�2
8MN

.	0 � 1/ D �	
0 OO2

2MN
;

(4.37b)

1

2
	0 OO.	0 � 1/� 1

2
.	0 � 1/	0 OO D � OO : (4.37c)

Above we have used that

�
	0; OE

	 D 0 ,
˚
	0; OO

� D 0 ; (4.38)

and .	0/2 D 1. Collecting everything, we get

L D Q 0�
 
OE � 	

0 OO2

2MN
C 	0

� OO; OE	
2MN

� .	0 � 1/MN

!
Q 0 CO.1=M2

N/ : (4.39)

The OO2
term is even and we see that the original odd operator is canceled, but we

have generated a new term � � OO; OE	. If we neglect the interaction and consider

OE D OEfree D
�

i@t 0

0 i@t

�
and OO D OOfree D

�
0 �i� � r

�i� � r 0

�
; (4.40)

we find that
� OOfree; OEfree

	 D 0 (partial derivatives commute) and thus the desired
decoupling up to O.1=M2

N/. For the interacting case, on the other hand, the
commutator does not vanish. We see, however, that the new odd contribution is
suppressed by a factor 1=MN . To push it to the next higher order, we need another
rotation:

Q 0 ! Q 00 D e�i OS0 Q ; (4.41a)

with

OS0 D � i	0 OO0

2MN
; OO0 D 	0

� OO; OE	
2MN

: (4.41b)
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After a couple of steps, we arrive at

L D Q 00�
 
OE � 	

0 OO2

2MN
� .	0 � 1/MN

!
Q 00 C O.1=M2

N/ ; (4.42)

i.e., up to O.1=M2
N/ there are now no odd terms left and the upper and lower

components of Q 00 are decoupled at this order.

4.2 Exercise: Carry out the steps that lead from the transformation (4.41) to
Eq. (4.42). Note that it suffices to expand the exponentials up to first order.

In this Lagrangian, we can now write

Q 00 D
�

N
n

�
(4.43)

and identify the upper (“large”) component N—a doublet in both spin and isospin
space—with the particle and the lower (“small”) component with the antiparticle
states. The term .	0 � 1/MN in Eq. (4.42) ensures that there is no explicit mass
term for the field N, whereas that for n comes with a factor two, corresponding to
the Dirac mass gap between particles and antiparticles. Let us now write down the
Lagrangian obtained for N, omitting the decoupled small components:

L D N�

�
i@t � g� � 1

2MN

��iE� � r C igE� � E�	 ��iE� � r � igE� � E�	
�

N C � � � :
(4.44)

To simplify this further, we use that5

.E� � r /.E� � r/ D r2 (4.45)

and, from the product rule,

.E� �r /.E� � E�/ D E� � .E� �r E�/C .E� � E�/.E� �r / D � i�a.@i�
a/C �a�a � i@i : (4.46)

In the last step we have written out all indices to clarify the meaning of the two dot
products. Collecting everything, we find that the .E� � E�/.E� � r/ terms cancel and

5Note that Eq. (4.45) is very simple because we have not included a coupling of  to the
electromagnetic field. If we had done that, the r would be a covariant derivative, D D r C ieA,
and Eq. (4.45) would generate, among other terms, the magnetic spin coupling E� � B.
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arrive at

L D N�

 
i@t C r 2

2MN

!
N � g �N�N C N�

�
g

2MN
E� � .E� � r E�/C g2

2MN
.E� � E�/2

�
N

C 1

2
.@� E�/ � .@� E�/� 1

2
m2
� E�2 C

1

2
.@��/ � .@��/ � 1

2
m2
��

2 C � � � : (4.47)

This includes the expected nonrelativistic kinetic term for the fermion field, as
well as various interactions with � and E� . Note that the latter two particles are
still relativistic and unchanged by the Foldy-Wouthuysen transformation, so that we
could simply reinstate their kinetic terms as in Eq. (4.28).

4.2.2.3 Integrating Out Exchange Particles: Part II

With Eq. (4.28) we are now also in a convenient situation to illustrate how we end up
with only contact interactions between the nonrelativistic fermions if we integrate
out the � and E� fields. Their equations of motion are



�Cm2

�

�
� D g N�N (4.48)

and



�C m2

�

�
�� D � g

2MN
r � �N�E���N

	 � g2

MN
N�.E� � E�/��N : (4.49)

The � part can be handled exactly as in Sect. 4.2.1.1, giving a leading four-nucleon
contact interaction � g2=m2

� plus a tower of operators with increasing number of
derivatives. The E� part is more interesting, but also more complicated due to the
derivative in Eq. (4.49). We thus keep the following discussion rather qualitative
and leave it as an exercise to work out the details.

In that spirit, we consider only the first term in Eq. (4.49), corresponding to
a one- E�-exchange operator when substituted back into the Lagrangian. With the
propagator D�.x � y/ defined in complete analogy to Eq. (4.6), we can write

��.x/ D � ig

2MN

Z
d4y D�.x � y/ @y

j

�
N�.y/ � j��N.y/

	C � � � ; (4.50)

and thus get

Lint �
�
N�.x/ � i��N.x/

	
@x

i

Z
d4y D�.x� y/ @y

j

�
N�.y/ � j��N.y/

	C� � � ; (4.51)

where for the time being we omit the prefactor g2=.4M2
N/. We integrate by parts to

have @y
j act on D�.x � y/. The @x

i does this already, so, with all indices written out
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for clarity:

Lint �
Z

d4y N�
˛a.x/



� i
�
˛
ˇ



��
�

a
b Nˇb.x/

h
@i

x@
j
yD�.x � y/

i
N�
	c.y/



� j
�
	
ı



��
�

c
d Nıd.y/C� � � :

(4.52)

From the definition of the propagator we find that

@x
i @

y
j D�.x � y/ D

Z
d4p

.2�/4
.ipi/.�ipj/e�ip.x�y/ i

p2 �m2
� C i"

D �@x
i @

x
j D�.x � y/ ;

(4.53)

so the partial derivatives can be written fully symmetric in i and j. The various
fermion field operators can be rearranged with the help of

Nˇb.x/N�
	c.y/ D �

1

4

h
.N�.y/N.x// ıˇ	 ı

b
c C .N�.y/��N.x// ıˇ	



��
�

b
c

C .N�.y/�kN.x//


�k
�
ˇ
	 ı

b
c C .N�.y/ ���kN.x//



�k
�
ˇ
	



��
�

b
c

i
:

(4.54)

Using also

� i� j D ıij1C i�ijk�k ; (4.55a)

� i�k� j D ıkj� i C ıki� j � ıij�k C i�ikj1 ; (4.55b)

� i� j� i D �� j ; (4.55c)

we get four terms from Eq. (4.52) decomposed into contributions symmetric and
antisymmetric in i and j, with the latter all vanishing upon contraction with @x

i @
x
j .

The simplest symmetric term comes with a ıij, yielding r 2D�.x � y/. To see what
this generates, we Taylor-expand the fermion fields that depend on y about x, e.g.,
N.y/ D N.x/C .y� x/�@�N.x/C� � � . This gives as the leading piece a combination
of four fermion operators all evaluated at x, times

Z
d4y

Z
d4p

.2�/4
e�ip�.x�y/ ip2

p2 �m2
� C i"

D
Z

d4y
Z

d3p

.3�/4

Z
dp0
2�

e�ip.x�y/ ip2

p20 � p2 � m2
� C i"

: (4.56)
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The integral over p0 can be solved via contour integration. Defining !p Dp
p2 C m2

� , we get

Z
dp0
2�

e�ip0.x0�y0/
i

p20 � p2 � m2
� C i"

D e�i!0

pjx0�y0j

2!0

p
with !0

p D !p � i"

2!p
� !p � i"0 :

(4.57)

It is important here to keep track of the small imaginary part, as it allows us to write

Z 1

�1
dy0

e�i!0

pjx0�y0j

2!0
p

D
Z 1

0

dy0
e�i!0

pjy0j

!0
p
D �i=.!0

p/
2 : (4.58)

Collecting the results up to this point, we arrive at

Z
d4y

Z
d4p

.2�/4
e�ip.x�y/ ip2

p2 �m2
� C i"

D �
Z

d3y
Z

d3p

.2�/3
eip�.x�y/ p2

p2 C m2
�

:

(4.59)

We finally obtain the desired contact interaction by expanding

p2

p2 Cm2
�

D p2

m2
�

�
1 � p2

m2
�

C � � �
�
; (4.60)

with a leading term � p2, generating a contact interaction � .N�N/r 2.N�N/.
This is of course not surprising: after all, the original interaction term in Eq. (4.47)
generating the contact operator had a single derivative r . Considering other terms
coming from Eq. (4.54), one can also find operators like .N�E� � rN/.N�E� � rN/,
and it is a useful exercise to work this out in detail. But already from our qualitative
discussion here we can infer that the resulting effective theory is an expansion in
p2=m2

� , i.e., its range of validity is determined by three-momenta—rather than the
energies—being small compared to m� .6

4.2.2.4 The Schrödinger Field

We conclude this section by looking at the nonrelativistic field theory from a more
general perspective, establishing its close connection to the “second quantized”
approach to (many-body) quantum mechanics that is used in several later chapters
of this volume.

6This is assuming m� < m� .
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Recall from the beginning of this section that the Lagrangian (4.19) for the free
Schrödinger field  is

L;free D �
 

i@t C r2

2m

!
 : (4.61)

This trivially gives the equation of motion

 
i@t C r2

2m

!
 D 0 ; (4.62)

which is formally the same as the free Schrödinger equation. However, recall that 
here is a field operator, i.e., .x/ creates a particle at x D .t; x/ from the vacuum,
so to really get an ordinary Schrödinger equation, we have to act with both sides of
Eq. (4.62) on j0i, and define the quantum-mechanical one-body state

j.t; x/i D .t; x/ j0i : (4.63)

If we add to Eq. (4.61) a term V.x/�.x/.x/, we obtain the Schrödinger equation
for a particle in a potential V.x/. Exactly as for a relativistic field we can define the
propagator

D.x � y/ D
Z

d4q

.2�/4
e�ip.x�y/ i

p0 � p2

2m C i"
; (4.64)

satisfying

 
i@t C r2

2m

!
D.x � y/ D �iı.4/.x � y/ : (4.65)

Up to a conventional factor i, this is precisely the (retarded) Green’s function7

familiar, for example, from non-relativistic scattering theory (then typically denoted
G0). This will appear again when the Lippmann–Schwinger equation is derived
using the field-theory language in Sect. 4.3.

While it is nice and reassuring that we can go back to simple quantum mechanics
from the one-body Schrödinger Lagrangian discussed so far, this feature is not very
relevant in practice. We can, however, straightforwardly generalize it to the many-
body case. To that end, consider a Lagrangian that includes a two-body interaction,

7Note that in the nonrelativistic case there is no “Feynman propagator.” Particles and particles are
decoupled, and the denominator in Eq. (4.64) only has a single pole at p0 D p2=.2m/� i". Flipping
the sign of the i" term gives the advanced Green’s function.



110 H.-W. Hammer and S. König

written in terms of a general non-local potential8:

L;2-body.x/ D �.x/
 

i@t C r 2

2m

!
.x/C

Z
d4y�.x/.x/V.x; y/ �.y/.y/ :

(4.66)

Note that this has exactly the structure that we found when we integrated out
particles in the preceding sections, before expanding the propagators to get simple
contact interactions. Such a Lagrangian (possibly including also higher-body forces)
is a convenient starting point for example for many-body perturbation theory used
to study quantum systems at finite density.

Coming back to effective field theories, we stress that these are not defined
by putting a given potential into a Lagrangian; in doing that, one merely gets a
model written in a convenient way. The EFT instead makes no assumptions on the
interaction (besides symmetry constraints). It is thus much more general and not a
model, but to be predictive it requires a number of a priori unknown parameters to
be fixed and its various terms to be ordered systematically. It is this that we turn to
next.

4.2.3 Symmetries and Power Counting

So far, we have discussed how to obtain effective low-energy Lagrangians by
integrating out “heavy” degrees of freedom, leaving only those that we want to
describe at low energies or rather—as we showed explicitly with the pseudoscalar
pion-nucleon model—low momenta. We found the contact interactions generated
this way to come with the integrated-out particle’s mass in the denominator, and
with an increasing number of derivatives as we keep more and more terms from
the expansion. These derivatives will turn into powers of momentum, which is
a small scale for external states. We furthermore showed how a nonrelativistic
reduction generates a chain of operators with an increasing power of the particle’s
mass in the denominator, thus also giving a hierarchy of terms that eventually
restore the original theory’s relativistic structure with coupling between particles
and antiparticles.

From these procedures it is clear that the terms in the effective Lagrangian
should be ordered in a natural way, with the most important ones being those
with the least number of large mass scales in the denominator and the least
number of derivatives in the numerator. It is also clear that they are restricted
in their structure. For example, if we start with a Lorentz-invariant relativistic

8A static (time-independent) potential, as it is more common in quantum mechanics, would be a
function only of x and y, and all fields in the interaction term would be evaluated at the same time t.
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theory, after the nonrelativistic reduction we will only get terms that are invariant
under “small” Lorentz boosts. More precisely, the nonrelativistic operators should
be invariant under Galilean transformations (assuming the original theory had
rotational invariance, this simply gets inherited by the effective one), and the form of
so-called “relativistic corrections” is determined by the expansion of the dispersion
relation for positive-energy solutions:

E D
p

m2 C p2 D mC p2

2m
� p4

8m3
C � � � : (4.67)

We now turn to discussing the bottom-up approach guided by these principles.
To that end, consider the effective Lagrangian for a nonrelativistic bosonic field with
contact interactions:

L D �
 

i@t C r 2

2m

!
 C � r

4

8m3
 C � � �

C g.0/2 .
�/2 C g.2s=p/

2

�
.�

$r/2 � .�/.�.$r /2/� 2.�/r 2.�/
�
C � � �

C g.0/3 .
�/3 C � � � : (4.68)

Here we have used the definition

f
$rg D f .r /g � .r f /g (4.69)

and conveniently separated the two-body terms with two derivatives into those
which contribute to S-wave (� g.2s/

2 ) and P-wave (� g.2p/
2 ) interactions, respectively.

One can of course choose different linear combinations, but a separation by partial
waves is typically a good choice for systems with rotational invariance. It is a
useful exercise to work out how the structure for the derivative interactions gives
the desired result, working in momentum space and considering contractions with
external in and out states that have center-of-mass momenta ˙k2 and ˙p=2,
respectively. The structure of the individual terms is determined by the requirement
of Galilean invariance,9 and the EFT paradigm tells us to write down all possible
terms with a given number of derivatives (with odd numbers excluded by parity
invariance).

9See for example [11, Sect. 2.1.1] for a rigorous discussion of the required transformation
properties.
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4.2.3.1 The Breakdown Scale

As mentioned in the introduction, the most important requirement to construct an
EFT is the identification of—at least two, but possibly more—separated scales,
ratios of which are used to extract a small expansion parameter. The better the
scale separation, the smaller this parameter becomes, and consequently the more
precise (and, provided all contributions have been identified correctly, accurate) the
theory becomes at any given order in the expansion. In the simplest case, there is
one low scale Q associated with the typical momentum of the physical system that
we want to describe, and a single large scale Mhi, the “breakdown scale” associated
with the physics that our EFT does not take into account—in other words: resolve—
explicitly. This is exactly the situation that we constructed when we integrated out
exchange particles from a given theory in Sects. 4.2.1.1 and 4.2.2.3. By construction,
the EFT is not appropriate to describe processes with momenta of the order of or
large than the breakdown scale. To emphasize this meaning, the breakdown scale is
sometimes also denoted by the letter � (with or possibly without some qualifying
subscript).10

As already mentioned, integrating out degrees of freedom from a given more
fundamental theory will naturally yield a breakdown scale set by that particle’s
mass. But it can also be something more general. For example, although in the
situations discussed here so far the particles we were ultimately interested in were
already present as degrees of freedom in the original theory, such a scenario is
merely a special case. The first step in writing down an effective field theory is
to identify what the appropriate—literally: effective—degrees of freedom are for
the processes one wants to describe, and they can be different from those of the
fundamental theory. This is exactly the case in nuclear physics: while the degrees
of freedom in quantum chromodynamics (QCD) are quarks and gluons, describing
the binding of nuclei with these is, although possible with state-of-the-art lattice
QCD calculations, largely inefficient to say the least. It is much more economical
to work with nucleons directly as degrees of freedom, as done in most chapters of
this volume, because a detailed knowledge of the internal structure of protons and
neutrons is not necessary to describe their binding into nuclei; it is only resolved at
much higher energies, for example in deep inelastic scattering. The reason for this
is color confinement: the low-energy degrees of freedom of QCD are not quarks and
gluons, but color-neutral hadrons. Chiral effective field theory, which we will come
back to in Sect. 4.5.3, is designed to work at momenta of the order of pion mass,
breaking down at the scale of chiral-symmetry breaking (estimated to be roughly a
GeV, but possibly lower).

Other examples are halo EFT, constructed to describe nuclear systems that have
the structure of a few nucleons weakly bound to a tight core, which can then

10We alert the reader that in the literature this is sometimes referred to as the “cutoff of the EFT.”
We do not use that language to avoid confusion with an (arbitrary) momentum cutoff introduced
to regularize divergent loop integrals (discussed).
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effectively be treated as a structureless particle. Clearly, such a theory will break
down at momenta large enough to probe the core’s internal structure. Similarly,
one can construct an effective theory for systems of ultracold atomic gases, the
constituents of which can be treated as pointlike degrees of freedom without using
QED to describe their individual structure, and much less QCD to describe their
atomic nuclei.

Whatever the breakdown scale is, once identified it can be used to systematically
order terms in the effective Lagrangian by powers of Q=Mhi � 1, and we now turn
to discussing how this ordering can be set up.

4.2.3.2 Naïve Dimensional Analysis

In our units with „ D c D 1, the action

S D
Z

d4xL .x/ (4.70)

has to be a dimensionless quantity. This, in turn, fixes the dimensions for the
individual building blocks in the Lagrangian. In a relativistic theory, mass and
energy are equivalent and one would simply express everything in terms of a generic
mass dimension. For our nonrelativistic framework, on the other hand, energies are
kinetic energies because the time dependence associated with the rest mass has been
absorbed into the field (cf. Sects. 4.2.2.1 and 4.2.2.2). This implies that energy and
mass scales—as well as time and space—should be counted separately.11 In fact, it
is more natural to consider powers of momentum. To understand what this means,
let us start with the kinetic term in Eq. (4.68): Œr 2=.2m/
 D momentum2=mass.
The time derivative has to scale in the same way, implying that for time itself we
have Œt
 D mass=momentum2, whereas Œx
 D momentum�1. Consequently, the
integration measure scales like Œd4x D dt d3x
 D mass=momentum5 (to compare, in
the relativistic theory one would simply count Œd4x
 D mass�4 D energy�4).

Since the dimension of L has to cancel that of the measure to give a dimension-
less action,we can now infer that our field has to satisfy Œ
 D momentum3=2, i.e.,
even though it is a scalar field it scales with a fractional dimension (recall that in the
relativistic case a scalar would have dimension energy1). Knowing the scaling of the
field and the measure, we can now proceed and deduce that of the various coupling
constants.

The basic idea is very simple: each term (operator) in the Lagrangian (4.68) has
2n fields and 2m derivatives, giving it a total dimension of momentum3nC2m. For
example, the .�/2 term with 2n D 4 and m D 0 has dimension momentum6.
Hence, to get the correct overall dimension momentum5=mass for L , the coupling

11This separation would be quite clear if we had not set c D 1, which would in fact be more
appropriate for a nonrelativistic system. The reason we still do it that it allows us to still energies
and momenta in the same units, e.g., in MeV, following the standard convenient in nuclear physics.
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constant g.0/2 has to be � 1=.momentum � mass/. Since it is supposed to describe
unresolved short-distance details, the momentum scale in the denominator should
be the breakdown scale, whereas the mass scale, which as we mentioned is a feature
of the nonrelativistic framework and common to all operators, is simply associated
with m . Of course, counting a single operator does not tell us much: it is the relative

order of terms that matters, so we proceed to the g.2/2 interactions. These all come
with two derivatives, which are associated with the external (small) momentum scale
Q. Hence, we have 2n D 4 and 2m D 2, and we need to compensate the two
additional powers of momentum in the numerator with two more powers of Mhi in
the denominator, finding that the g.2/2 interactions are down compared to the g.0/2
term by a factor .Q=Mhi/

2. This is exactly in line with our picture of the contact
terms gradually building up the an unresolved particle exchange through a derivative
expansion. For higher-body interactions, it is the larger number of fields that gives
a suppression by inverse powers of Mhi compared to operators with fewer fields.

This kind of analysis can be much improved if something is known about which
unresolved physics is supposed to be represented by which operator, and it is
generally more complex if the theory involves different fields. For example, in the
EFT for halo nuclei there are contact interactions associated with unresolved pion
exchange, as well as those systematically accounting for the internal structure of the
core field. Instead of merely putting generic powers of Mhi in every denominator,
it can be necessary to keep track of several high scales separately to figure out the
ordering of terms. Also, it is possible that the external momentum is not the only
relevant low-momentum scale in the problem.

This rather abstract discussion will become clearer when we finally discuss
concrete EFTs in the following Sects. 4.3 and 4.4. In that context, we will use the
scaling of the various terms in the Lagrangian to power-count diagrams as a whole,
i.e. to estimate the size of individual contributions composed of vertices and loops
to a given physical amplitude of interest. We will then also discuss how the actual
so-called scaling dimension of a field in the Lagrangian can turn out to deviate from
what we estimated here based purely on dimensional grounds.

4.2.3.3 Fine Tuning

In connection with the previous comment there is another point worth stressing
already here: naïve dimensional analysis resides at the beginning of EFT wisdom,
not at the end, and in quite a few cases it turns out to be exactly what the name says:
naïve. In other words, the actual scaling of a coupling constant can be quite different
from what one would infer by counting dimensions, a scenario that is commonly
referred to as “fine tuning.” To understand why that is, consider, for example, our
bosonic toy model from Sect. 4.2.1.1, but now assume that there already is a four-
contact interaction present prior to integrating out the � field:
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L D ��
�
�C m2
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 � ��

�
�Cm2

�

�
�C g



���C h:c:

�C h.�/2 :

(4.71)

This could, for example, come from unknown (or integrated out) short-distance
physics at a yet higher scale. When we now integrate out the �, the generated non-
derivative contact term will combine with the existing one, giving a single operator
in the effective low-energy Lagrangian (recall that on dimensional grounds h has to
have dimensions of inverse mass squared):

L D ��
�
�C m2



�
 C

 
h � g2

m2
�

!
.�/2 C � � � : (4.72)

Now suppose we had started in the bottom-up approach and simply written down
the four- contact operator with some coefficient c to be determined. According to
NDA, we would assume that its scale is set by two powers of the breakdown scale
in the denominator, and assuming we actually know about the more fundamental
theory, we might have estimated that breakdown scale to be of the order m�. From
Eq. (4.72) we see that depending on what values g and h take in the underlying
theory, the actual size of c might deviate strongly from the naïve expectation, and
it could even be set by a low-energy scale of the effective theory. But for this to
happen, there would have to be a delicate cancellation between h and g2=m2

�, which
is typically deemed unlikely given the a priori vast range of possible values these
parameters could take; thus the term “fine tuning.” The fact that coupling constants
are in fact not simple fixed numbers but get renormalized by loop effects (i.e.,
depend on a regularization scale with a behavior determined by the renormalization
group) justifies this language even more.

4.2.3.4 Loops and Renormalization

It is indeed high time we talk about loops. Our considerations in this section so
far have been limited to tree level, which is always only a first approximation in
a quantum field theory. In a perturbative theory, loop contributions from virtual
intermediate states are added to improve the accuracy of the result. To treat a
nonperturbative system such as a bound nucleus, on the other hand, they are
absolutely crucial: recall that any finite sum of diagrams in perturbation can never
produce a bound state (for example, think about poles in the S-matrix, which cannot
be generated through a finite sum of terms). In the field-theory language, this means
that an infinite number of diagrams with increasing number of loops has to be
summed to get the amplitude with the desired physical properties.
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This situation is in fact familiar already from the Schrödinger equation written in
the form

j i D OG0.E/ OV j i , OG0 D OG0.E/ D .E � OH0/
�1 ; (4.73)

which can be iterated to get j i D OG0
OV OG0
OV j i D � � � . When these operators are

written out in momentum space, each propagator OG0 corresponds to a loop. More
closely related to the amplitude written down in a nonrelativistic field theory, this
exercise can be repeated with the Lippmann-Schwinger equation for the T-matrix
and its formal solution, the infinite Born series. Exactly this will be recovered in
Sect. 4.3.

Of course, even in a nonperturbative theory we do not expect that all loop
diagrams should be summed up to infinity. Generally, we want the power counting
to tell us how to estimate the contribution from a given diagram, including loop
diagrams. To do that, we need to know not only which factors we pick up from
vertices, but also need an estimate for the integration measure d4q D dq0 d3q. Any
loop diagram contributing to an amplitude with external momenta of the order Q will
have this scale running through as a whole. It is thus natural to count the contribution
from the three-momentum as d3q � Q3 and, recalling that in the nonrelativistic
theory q0 is a kinetic energy, dq0 � Q2=m. For each Schrödinger propagator we
get, conversely, a factor m=Q2, as can be seen from Eq. (4.64). These simple rules
combined with those for the vertices give an estimate for any diagram in the theory
determined by Eq. (4.68).

What this discussion does not cover is the fact that loops in a quantum
field theory can be—and mostly are—divergent. Compared to the loops one gets
from integrating the Schrödinger or Lippmann-Schwinger equation in quantum
mechanics with a potential OV , which are typically all finite, this is different in the
EFT simply because our delta-function (contact) interactions are too singular to
make direct sense beyond tree level. Of course, this is no different than in any other
quantum field theory, and it just means that divergent loops have to be regularized
(for example, by imposing a momentum cutoff or with dimensional regularization),
and then suitable renormalization conditions have to be imposed to fix the various
coupling constants in the effective Lagrangian. These then become functions of the
renormalization scale, with a behavior governed by the renormalization group (RG).
In Sect. 4.3 this will be discussed in detail for a bosonic EFT that describes, for
example, ultracold atomic systems.

The Cutoff

What the regularization of loop integrals does is most transparent with a momentum
cutoff. We denote this by � and stress again that it has to be distinguished from
the EFT breakdown scale Mhi. The latter determines the scale beyond which we
know our EFT not to be valid. In other words, short-range dynamics corresponding
to momenta larger than Mhi are, in general, not correctly described by the EFT.
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Yet from loop integrals we get contributions from states up to the UV cutoff �.
Renormalization means to adjust the coupling constants in such a way that they
compensate the wrong high-momentum loop contributions in such a way that the
physics the EFT is supposed to describe comes out correctly. For momenta up to
Mhi, we trust the EFT, so it makes sense to keep such states in loops. Hence, one
should typically choose � > Mhi. Choosing it lower than the breakdown scale is
possible, but this can induce corrections of the order Q=� > Q=Mhi, which is not
desirable for the power counting. In the renormalized EFT, any cutoff in the interval
ŒMhi;1/ is thus an equally good choice—it does not have to be “taken to infinity.”
Instead, that phrase should be understood to mean adjusting the couplings at any
given finite cutoff. If this procedure is carried out numerically, it can be desirable
to keep the cutoff small, but one has to make sure that in principle in can be varied
arbitrarily.

4.2.4 Matching

The determination of the couplings (“low-energy constants”) in the effective
Lagrangian is done by expressing a given physical quantity (e.g., a scattering
amplitude or related observable) in terms of the couplings and then adjusting them
to reproduce a known result. This can be done using experimental input or, when
working top-down, by calculating the same amplitude in the more fundamental
theory. Generally, this procedure is referred to as “matching.” At tree level, this
is again exactly what we did by integrating out particles and found the coefficients
of the generated contact interactions in terms of the original coupling and mass
denominators. Once loop diagrams are involved, the process becomes somewhat
more complicated because (a) one has to make sure to use compatible regularization
schemes and renormalization scales and (b) loop diagrams with lower-order vertices
typically mix with higher-order tree-level diagrams. The latter is a general feature of
combined loop and derivative expansions and is thus also important when matching
to experimental input. While these comments may sound a bit cryptic here, they will
become much clearer in the next section when we finally work with a concrete EFT.

4.3 Effective Field Theory for Strongly Interacting Bosons

We will now use the insights from the previous sections to construct a local effective
field theory for identical, spinless bosons with short-range S-wave interactions.12

For the treatment of higher partial wave interactions the reader is referred to the
literature [12–14]. The most general effective Lagrangian consistent with Galilei

12See [15] for a similar discussion with a focus on applications in ultracold atoms.
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invariance can be written as

L D �
�

i@t C r
2

2m

�
 � C0

4



�

�2 � C2
4


r.�/�2 C D0

36



�

�3 C � � � :
(4.74)

where m is the mass of the particles and the ellipses denote higher-derivative and/or
higher-body interactions. The leading two- and three-body interactions are explicitly
written out. The scaling of the coefficients C0, C2, D0, : : : depends on the scales
of the considered system. Two explicit examples, corresponding to natural and
unnaturally large scattering length, are discussed below.

4.3.1 EFT for Short-Range Interactions

We start by considering natural system where all interactions are characterized by
only one mass scale Mhi that we identify with the formal breakdown scale of the EFT
introduced in the previous section. We will see below that this is indeed justified.
Since the nonrelativistic boson fields have dimension 3/2, the coupling constants
must scale as

C0 � 1

mMhi
; C2 � 1

mMhi
3
; and D0 � 1

mMhi
4
; (4.75)

such that higher dimension operators are strongly suppressed for small momenta
k � Mhi.13 We first focus on the two-body system and calculate the contribution
of the interaction terms in Eq. (4.74) to the scattering amplitude of two particles
in perturbation theory. After renormalization, the result reproduces the low-energy
expansion of the scattering amplitude for particles with relative momentum k and
total energy E D k2=m:

T2.E/ D 8�

m

1

k cot ı0.k/ � ik
D �8�a

m



1 � iakC .are=2� a2/k2 C O.k3/

�
;

(4.76)

where the effective range expansion for short-range interactions k cot ı0.k/ D
�1=aC rek2=2CO.k4/ has been used.

Since all coefficients of the effective Lagrangian are natural (scaling with inverse
powers of Mhi), it is sufficient to count the powers of small momenta Q in

13Note that coupling constants scale with the particle mass as 1=m in nonrelativistic theories. This
can be seen by rescaling all energies as q0 ! Qq0=m and all time coordinates as t ! Qtm, so
that dimensionful quantities are measured in units of momentum. Demanding that the action is
independent of m, it follows that the coupling constants must scale as 1=m.
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scattering amplitudes to determine the scaling of the amplitudes with Mlo. The
correct dimensions are made up with appropriate factors of Mhi contained in the
coupling constants [cf. Eq. (4.75)]. For a general two-body amplitude with L loops
and V2i interaction vertices with 2i derivatives, we thus have T2 � Q� where the
power � is given by

� D 3LC 2C
X

i

.2i� 2/V2i 
 0 : (4.77)

Here we have used that loop integrations contribute a factor k5 and propagators a
factor k�2 in nonrelativistic theories. The values of the coupling constants C0 and
C2 can be determined by matching to Eq. (4.76). In the lowest two orders only C0
contributes.

4.3 Exercise: Derive Eq. (4.77) using the topological identity for Feynman dia-
grams:

L D I � V C 1 ; (4.78)

with L, V , and I the total number of loops, vertices, and internal lines respectively.

The contact interactions in Eq. (4.74) are ill-defined unless an ultraviolet cutoff
is imposed on the momenta in loop diagrams. This can be seen by writing down the
off-shell amplitude for two-body scattering at energy E in the center-of-mass frame
at second order in perturbation theory:

T2.E/ � �C0� i

2
C2
0

Z
d3q

.2�/3

Z
dq0
2�

1

q0 � q2=2mC i�

1

E � q0 � q2=2mC i�
C� � � :

The two terms correspond to the first two diagrams in Fig. 4.4. The intermediate
lines have momenta˙q. The integral over q0 in Eq. (4.79) is easily evaluated using
contour integration:

T2.E/ � �C0 � 1
2

C2
0

Z
d3q

.2�/3
1

E � q2=mC i�
C � � � : (4.79)

Fig. 4.4 Diagrammatic expression for the two-body scattering amplitude T2 . The circle (square)
denotes a C0 (C2) interaction, respectively
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The integral over q diverges. It can again be regularized by imposing an ultraviolet
cutoff jqj < �. Taking the limit �� jEj1=2, the amplitude reduces to14

T2.E/ � �C0 C mC2
0

4�2

�
�� �

2

p�mE � i�
�
C � � � : (4.80)

The dependence on the ultraviolet cutoff � can be consistently eliminated
by a perturbative renormalization procedure. A simple choice is to eliminate the
parameter C0 in favor of the scattering length a, which is given by Eq. (4.76):

a � mC0
8�

�
1 � mC0�

4�2
C � � �

�
: (4.81)

Inverting this expression to obtain C0 as a function of a we obtain

C0 � 8�a

m

�
1C 2a�

�
C � � �

�
; (4.82)

where we have truncated at second order in a. Inserting the expression for C0
into Eq. (4.80) and expanding to second order in a, we obtain the renormalized
expression for the amplitude:

T2.E/ � �8�a

m

�
1C a

p�mE � i� C � � �
�
D �8�a

m
.1 � iakC � � � / : (4.83)

If we evaluate this at the on-shell point E D k2=m and insert it into Eq. (4.80), we
find that it reproduces the first two terms in the expansion of the universal scattering
amplitude in Eq. (4.76) in powers of ka. By calculating T2.E/ to higher order in
perturbation theory, we can reproduce the low-momentum expansion of Eq. (4.76)
to higher order in ka. At the next order, the C2 term will contribute at tree level while
C0 will contribute at the two-loop level. Thus a perturbative treatment of the EFT
reproduces the low-momentum expansion of the two-body scattering amplitude.
The perturbative approximation is valid only if the momentum satisfies k� 1=a.

A more interesting case occurs when the scattering length is large, but all other
effective range coefficients are still determined by the scale Mhi: k � 1=jaj � Mlo �
Mhi � 1=re. This scenario is able to support shallow bound states with binding
momentum of order 1=a and is relevant to ultracold atoms close to a Feshbach
resonance and to very low-energy nucleons. The scaling of the operators is then

14 If the calculation was carried out in a frame in which the total momentum of the two scattering
particles was nonzero, the simple cutoff jqj < � would give a result that does not respect Galilean
invariance. To obtain a Galilean-invariant result requires either using a more sophisticated cutoff
or else imposing the cutoff jqj < � only after an appropriate shift in the integration variable q.
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modified to:

C0 � 1

mMlo
; C2 � 1

mMlo
2Mhi

; and D0 � 1

mMlo
4
: (4.84)

The factors of Mlo in amplitudes can now come from small momenta and from the
coupling constants. Above we adjusted the scaling of the three-body coupling D0 as
well, foreclosing a result discussed below Eq. (4.98).

With the scaling as in Eq. (4.84), the power counting expression in Eq. (4.77) is
therefore modified to

� D 3LC 2C
X

i

.i� 3/V2i 
 �1 : (4.85)

If we are interested in two-body observables involving energy E � 1=a2, such
as shallow bound or virtual states, we must resum the diagrams involving only
C0 interactions to all orders [16, 17]. Without this resummation, our EFT would
break down not at Mhi, but already at the much smaller scale 1=jaj � Mlo. In the
scenario assumed here, all higher-derivative two-body interactions (C2 and beyond)
still involve inverse powers of Mhi and are thus perturbative.

The resummation of C0 interactions is most easily accomplished by realizing that
the corresponding Feynman diagrams in Fig. 4.4 form a geometric series. Summing
the geometric series, the exact expression for the amplitude is

T2.E/ D �C0

�
1C mC0

4�2

�
� � �

2

p�mE � i�
��1

: (4.86)

Alternatively, we can use the fact that summing the C0 diagrams in Fig. 4.4 is
equivalent to solving the following integral equation:

T2.E/ D �C0 � i

2
C0

Z
d3q

.2�/3

Z
dq0
2�

1

q0 � q2=2mC i�

1

E � q0 � q2=2mC i�
T2.E/ :

(4.87)

The integral equation is expressed diagrammatically in Fig. 4.5. Since the function
T2.E/ is independent of q and q0, it can be pulled outside of the integral in Eq. (4.87).

Fig. 4.5 Integral equation for the two-body scattering amplitude T2 at leading order in the case of
large scattering length. Notation as in Fig. 4.4
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The integral can again be regularized by imposing an ultraviolet cutoff �. The
equation is then trivial to solve and the solution is given in Eq. (4.86).

The expression for the resummed two-body amplitude in Eq. (4.86) depends
on the parameter C0 in the Lagrangian and on the ultraviolet cutoff �. As in the
perturbative case, renormalization can be implemented by eliminating C0 in favor
of a low-energy observable, such as the scattering length a. Matching the resummed
expression to the effective range expansion for T2, we obtain

C0 D 8�a

m

�
1 � 2a�

�

��1
: (4.88)

Given a fixed ultraviolet cutoff �, this equation prescribes how the parameter C0
must be tuned in order to give the scattering length a. Note that for �� 1=jaj, the
coupling constant C0 is always negative regardless of the sign of a. Eliminating C0
in Eq. (4.86) in favor of a, we find that the resummed amplitude reduces to

T2.E/ D 8�

m

1

�1=aCp�mE � i�
; (4.89)

which reproduces the effective range expansion of the scattering amplitude by
construction. In this simple case, we find that our renormalization prescription
eliminates the dependence on� completely. In general, we should expect it to only
be suppressed by powers of 1=.a�/ or mE=�2. A final step of taking the limit�!
1 would then be required to obtain results that are completely independent of �.
The first correction to Eq. (4.89) is given by the C2 interaction. The corresponding
diagrams are shown in Fig. 4.6. After the matching, the final result for the scattering
amplitude at next-to-leading order is

T2.E/ D 8�

m

�
1

�1=aCp�mE � i�
C remE=2

.�1=aCp�mE � i�/2

�
; (4.90)

where re is the effective range. The derivation of this expression will be left as an
exercise.

4.4 Exercise: Derive the next-to-leading order correction in Eq. (4.90) by calculat-
ing the loop diagrams in Fig. 4.6. Neglect all terms that vanish as�!1. Introduce
a next-to-leading order piece of C0 to cancel the cubic divergence.

Fig. 4.6 Next-to-leading order correction to T2. Notation as in Fig. 4.4
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4.3.2 Dimer Field Formalism

In applications to systems with more than two particles, it is often useful to rewrite
the EFT for short-range interactions specified by the Lagrangian (4.74) using so-
called dimer fields d [18]:

L D �
�

i@t C r
2

2m

�
 C g0d

�d C g2d
�

�
i@t C r

2

4m

�
dC � � �

� y
�

d�2 C �2d
�
� d0d

�d� C � � � :
(4.91)

One important feature of this Lagrangian is that there is no direct two-body
contact interaction term .�/2. All interactions between  particles are mediated
via exchange of a dimer field d, i.e., we have effectively performed a Hubbard–
Stratonovich transformation. Eliminating the dimer field d by using its equations
of motion, it can be shown that the physics of this EFT is equivalent to the
Lagrangian (4.74).

Note that the Lagrangian (4.91) contains one more free parameter than the
Lagrangian (4.74). Thus some parameters are redundant. For the leading-order case
(gn D 0 for n 
 2), e.g., we find explicitly,

C0 D 4y2

g0
; (4.92)

such that y and g0 are not independent. Higher-order corrections can be obtained
by including a kinetic-energy term for the dimer field. The constants g0 and y then
become independent and can be related to combinations of C0 and C2 in the theory
without dimers. Here, we only discuss the leading-order case.

4.5 Exercise: Derive Eq. (4.92) using the classical equation of motion for d.

The bare propagator for the dimer field is simply the constant i=g0, which
corresponds to no propagation in space or time. However, there are corrections
to the dimer propagator from the diagrams in Fig. 4.7a which allow the dimer to
propagate. This is completely analogous to the geometric series we found we had

a

b

Fig. 4.7 Diagrammatic equations for the full dimer propagator iD.P0;P/. Thin (thick) solid lines
represent particle (full dimer) propagators. Double lines indicate bare dimer propagators. (a)
perturbative expansion in powers of y, (b) integral equation summing the geometric series in (a)
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to sum to obtain the leading-order scattering amplitude. In Feynman diagrams, we
represent the full dimer propagator iD.P0;P/ by a thick solid line. We can calculate
the full dimer propagator by solving the simple integral equation shown in Fig. 4.7b.
The loop on the right side is just the integral in Eq. (4.79), with E replaced by
P0 � P2=.4m/, where P0 and P are the energy and momentum of the dimer. The
solution for the full dimer propagator is

iD.P0;P/ D 2�i

y2m

�
2�g0
y2m

C 2

�
��

p
�mP0 C P2=4 � i�

�1
; (4.93)

where as before� is a cutoff on the loop momentum in the bubbles. Using Eq. (4.92)
and making the substitution given in Eq. (4.88), the expression for the complete
dimer propagator is

iD.P0;P/ D � 2�i

y2m

h
�1=aC

p
�mP0 C P2=4� i�

i�1
: (4.94)

Note that all the dependence on the ultraviolet cutoff is now in the multiplicative
factor 1=y2. The complete dimer propagator differs from the off-shell two-body
amplitude T2 in Eq. (4.89) only by a multiplicative constant. For a > 0, it has a pole
at P0 D �1=.ma2/C P2=4 corresponding to a dimer of momentum P and binding
energy B2 D 1=.ma2/. As P0 approaches the dimer pole, the limiting behavior of
the propagator is

D.P0;P/ �! ZD

P0 � .�1=.ma2/C P2=4/C i�
; (4.95)

where the residue factor is

ZD D 4�

am2y2
: (4.96)

If we regard the composite operator d as a quantum field that annihilates and creates
dimers, then ZD is the wave function renormalization constant for that field. The
renormalized propagator Z�1

D D.P0;P/ is completely independent of the ultraviolet
cutoff.

4.3.3 Three-Body System

We now study the amplitude for particle-dimer scattering T3. The simplest diagram
we can write down involving only two-body interactions is the exchange of a particle
between in- and outgoing dimers. With the scaling of low-energy constants as in
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Fig. 4.8 The integral equation for the three-body amplitude T3 . Thin (thick) solid lines represent
particle (full dimer) propagators. External lines are amputated

Eq. (4.84), the power counting implies that all diagrams that are chains of such
exchanges are equally important, i.e., they have to be summed up nonperturbatively.
Just like in the two-body case, this can be written as an integral equation. Also
including the three-body interaction (note D0 ! d0 in the Lagrangian with dimer
fields), we get the result that is shown diagrammatically in Fig. 4.8.15

Omitting the three-body interaction, this is exactly the well-known Skorniakov-
Ter-Martirosian (STM) integral equation [19], which the EFT with Lagrangian (4.91)
reproduces by construction. In addition, EFT provides a clear method to renormalize
this equation with a three-body interaction and thus remove its pathologies
(discussed below).

In Fig. 4.8, all external lines are understood to be amputated. It simply gives
the non-perturbative solution of the three-body problem for the interaction terms
proportional to g0, y, and d0 in Eq. (4.91).

The two tree diagrams on the right side of Fig. 4.8 constitute the inhomogeneous
term in the integral equation. An iterative ansatz for the solution of this equation
shows that all diagrams with the g0, y, and d0 interactions are generated by the
iteration. Note also that the thick black lines in Fig. 4.8 represent the full dimer
propagator given in Eq. (4.94).

In the center-of-mass frame, we can take the external momenta of the particle
and dimer to be �p andCp for the incoming lines and �k andCk for the outgoing
lines. We take their energies to be EA and E � EA for the incoming lines and E0

A and
E�E0

A for the outgoing lines. The amplitude T3 is then a function of the momenta p
and k and the energies E, EA and E0

A. The integral equation involves a loop over the
momentum�q and energy q0 of a virtual particle. Using the Feynman rules encoded

15Note that this amplitude is well defined even if a < 0 and there is no two-body bound state. In
this case particle lines must be attached to the external dimer propagators to obtain the 3-particle
scattering amplitude.
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in the Lagrangian (4.91), we obtain

T3. p; kIE;EA;E
0
A/ D �

�
4y2

E � EA � E0
A � . pC k/2=.2m/C i�

C d0



C 2�i

my2

Z
dq0
2�

Z
d3q

.2�/3

�
4y2

E � EA � q0 � . pC q/2=.2m/C i�
C d0



� 1

q0 � q2=.2m/C i�

T3.q; kIE; q0;E0
A/

1=a�p�m.E � q0/C q2=4 � i�
: (4.97)

The integral over q0 can be evaluated by contour integration. This sets q0 D
q2=.2m/, so the amplitude T3 inside the integral has the incoming particle on-shell.

We obtain a simpler integral equation if we also set the energies of both the
initial and final particles in T3 on-shell: EA D p2=.2m/, E0

A D k2=.2m/. Thus only
the dimer lines have energies that are off-shell. The resulting integral equation is

T3

�
p; kIE; p2

2m
;

k2

2m

�
D �4my2

�
1

mE � . p2 C p � kC k2/C i�
C d0
4my2



� 8�
Z

d3q

.2�/3

�
1

mE � . p2 C p � qC q2/C i�
C d0
4my2



� T3.q; kIE; q2=.2m/; k2=.2m//

�1=aCp�mEC 3q2=4� i�
: (4.98)

This is an integral equation with three integration variables for an amplitude T3
that depends explicitly on seven independent variables. There is also an additional
implicit variable provided by an ultraviolet cutoff jqj < � on the loop momentum.

If we set d0 D 0 and ignore the ultraviolet cutoff, the integral equation in
Eq. (4.98) is equivalent to the Skorniakov-Ter-Martirosian (STM) equation, an
integral equation for three particles interacting via zero-range two-body forces
derived by Skorniakov and Ter-Martirosian in 1957 [19]. It was shown by Danilov
that the STM equation has no unique solution in the case of identical bosons [20]. He
also pointed out that a unique solution could be obtained if one three-body binding
energy is fixed. Kharchenko was the first to solve the STM equation with a finite
ultraviolet cutoff that was tuned to fit observed three-body data. Thus the cutoff was
treated as an additional parameter [21]. When we discuss the running of d0, we will
see that this ad hoc procedure is indeed justified and emerges naturally when the
three-body equation is renormalized [22].

Here we restrict our attention to the sector of the three-body problem with total
orbital angular momentum L D 0 where the three-body interaction contributes.
For higher L, the original STM equation has a unique solution and can be solved
numerically without complication.

The projection onto L D 0 can be accomplished by averaging the integral
equation over the cosine of the angle between p and k: x D p � k=. pk/. It is also
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convenient to multiply the amplitude T3 by the wave function renormalization factor
ZD given in Eq. (4.96). We will denote the resulting amplitude by T03 :

T03 . p; kIE/ � ZD

Z 1

�1
dx

2
T3


p; kIE; p2=.2m/; k2=.2m/

�
: (4.99)

Furthermore, it is convenient to express the three-body coupling constant in the form

d0 D �4my2

�2
H.�/ : (4.100)

Since H is dimensionless, it can only be a function of the dimensionless variables
a� and�=��, where�� is a three-body parameter defined below. We will find that
H is a function of �=�� only.

The resulting integral equation is:

T03 . p; kIE/ D 16�

ma

�
1

2pk
ln

�
p2 C pkC k2 � mE � i�

p2 � pkC k2 � mE � i�

�
C H.�/

�2



C 4

�

Z �

0

dq q2
�
1

2pq
ln

�
p2 C pqC q2 � mE � i�

p2 � pqC q2 � mE � i�

�
C H.�/

�2



� T03 .q; kIE/
�1=aCp3q2=4� mE � i�

: (4.101)

Note that the ultraviolet cutoff � on the integral over q has been made explicit.
A change in the endpoint � of the loop integral should be compensated by the �-
dependence of the function H in Eq. (4.101). More specifically, H must be tuned as a
function of� so that the cutoff dependence of the solution T03 . p; kIE/ of Eq. (4.101)
decreases as a power of �. This will guarantee that T03 . p; kIE/ has a well-behaved
limit as � ! 1. The renormalization group behavior of H will be discussed in
detail below. In the next subsection, we show how different three-body observables
can be obtained from the solution T03 . p; kIE/ of Eq. (4.101).

4.6 Fill in the gaps in the above derivation of Eq. (4.101) and generalize the
derivation to arbitrary angular momentum L.

4.3.4 Three-Body Observables

The solution T03 . p; kIE/ to the three-body integral equation (4.101) encodes all
information about three-body observables in the sector with total orbital angular
momentum quantum number L D 0. In particular, it contains information about the
binding energies B.n/3 of the three-body bound states [23]. For a given ultraviolet
cutoff�, the amplitude T03 . p; kIE/ has a finite number of poles in E corresponding
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to the bound states whose binding energies are less than about �2. As � increases,
new poles emerge corresponding to deeper bound states. In the limit � ! 1, the
locations of these poles approach the energies�B.n/3 of the three-body bound states.
The residues of the poles of T03 . p; kIE/ factor into functions of p and functions of
k:

T03 . p; kIE/ �! B.n/. p/B.n/.k/

EC B.n/3
; as E! �B.n/3 : (4.102)

Matching the residues of the poles on both sides of Eq. (4.101), we obtain the bound-
state equation

B.n/. p/ D 4

�

Z �

0

dq q2
�
1

2pq
ln

p2 C pqC q2 �mE � i�

p2 � pqC q2 � mE � i�
C H.�/

�2



�
h
�1=aC

p
3q2=4� mE � i�

i�1
B.n/.q/ :

(4.103)

The values of E for which this homogeneous integral equation has solutions are the
energies�B.n/3 of the three-body states. For a finite ultraviolet cutoff�, the spectrum

of B.n/3 is cut off around�2.
The S-wave phase shifts for particle-dimer scattering can be determined from

the solution T03 . p; kIE/ to the integral equation (4.101). The T-matrix element for
the elastic scattering of an particle and a dimer with momenta k is given by the
amplitude T03 evaluated at the on-shell point p D k, E D �B2 C 3k2=.4m/ and

multiplied by a wave function renormalization factor Z1=2D for each dimer in the
initial or final state. It can be represented by the Feynman diagram in Fig. 4.9a.
The blob represents the amplitude T3 or equivalently Z�1

D T03 . The external double
lines are amputated and correspond to asymptotic dimers and are associated with
factors Z1=2D

The S-wave contribution to the T-matrix element is

T0PD!PD D T03 .k; kI 3k2=.4m/� 1=.ma2// ; (4.104)

a b c

Fig. 4.9 Amplitudes for (a) particle-dimer scattering, (b) three-body recombination, and (c) three-
body breakup. Diagrams (b) [(c)] should be summed over the three pairs of particles that can
interact first [last]. Notation as in Fig. 4.8
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where B2 D 1=.ma2/ has been used. Note that the factors of ZD multiplying T03
cancel. The differential cross section for elastic particle-dimer scattering is

d�PD!PD D 2m

3k
jTPD!PD.k/j2 km

6�2
d˝ : (4.105)

The flux factor 2m=.3k/ is the inverse of the relative velocity of the particle and
the dimer. The phase space factor kmd˝=.6�2/ takes into account energy and
momentum conservation and the standard normalization of momentum eigenstates:

Z
d3pA

.2�/3
d3pD

.2�/3
.2�/4ı3. pA C pD/ı. p2A=.2m/C p2D=.4m/ � E/ D m

6�2
.4mE=3/1=2

Z
d˝ :

(4.106)

The S-wave phase shift for particle-dimer scattering is related to the T-matrix
element via

1

k cot ıPD
0 .k/� ik

D m

3�
T03 .k; kI 3k2=.4m/� 1=.ma2// : (4.107)

In particular, the particle-dimer scattering length is given by

aPD D � m

3�
T03 .0; 0I �1=.ma2// : (4.108)

The threshold rate for three-body recombination can also be obtained from
the solution T03 . p; kIE/ to the three-body integral equation in Eq. (4.101). This is
possible only at threshold, because a 3-particle scattering state becomes pure L D 0
only in the limit that the energies of the particles go to zero. The T-matrix element for
the recombination process can be represented by the Feynman diagram in Fig. 4.9b
summed over the three pairs of particle lines that can attach to the dimer line.
The blob represents the amplitude Z�1

D T03 evaluated at the on-shell point p D 0

k D 2=.
p
3 a/, and E D 0. The solid line represents the dimer propagator iD.0; 0/

evaluated at zero energy and momentum 2=.
p
3 a/, which is given by Eq. (4.93).

The factor for the particle-dimer vertex is �i2y. The wave function renormalization
factor Z1=2D for the final-state dimer is given by Eq. (4.96). In the product of factors
multiplying T03 , the dependence on y and � can be eliminated in favor of the
scattering length a. Taking into account a factor of 3 from the three Feynman
diagrams, the T-matrix element is

TPPP!PD D 6
p
�a3 T03 .0; 2=.

p
3a/I 0/ : (4.109)
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The differential rate dR for the recombination of three particles with energies small
compared to the dimer binding energy can be expressed as

dR D jTPPP!PDj2 km

6�2
d˝ ; (4.110)

where k D 2=.
p
3a/. The threshold rate for three-body breakup can be obtained in

a similar way from the Feynman diagram in Fig. 4.9c
The inhomogeneous integral equation for the off-shell particle dimer amplitude,

Eq. (4.101), and the homogeneous equation, Eq. (4.103), for the three-body binding
energies afford no analytical solution. They are usually solved by discretizing the
integrals involved and solving the resulting matrix problems numerically.

4.3.5 Renormalization Group Limit Cycle

The form of the full renormalized dimer propagator in Eq. (4.94) is consistent with
the continuous scaling symmetry

a �! �a ; E �! ��2E ; (4.111)

for any positive real number �. In the integral equation (4.101), this scaling
symmetry is broken by the ultraviolet cutoff on the integral and by the three-body
terms proportional to H=�2. To see that the cutoff and the three-body terms are
essential, we set H D 0 and take �!1. The resulting integral equation has exact
scaling symmetry. We should therefore expect its solution T03 . p; kIE/ to behave
asymptotically as p ! 1 like a pure power of p. Neglecting the inhomogeneous
term, neglecting E and 1=a2 compared to q2, and setting T03 � ps�1, the integral
equation reduces to [20]

ps�1 D 4p
3�p

Z 1

0

dq qs�1 ln
p2 C pqC q2

p2 � pqC q2
: (4.112)

Making the change of variables q D xp, the dependence on p drops out, and we
obtain

1 D 4p
3�

Z 1

0

dx xs�1 ln
1C xC x2

1� xC x2
: (4.113)

The integral is a Mellin transform that can be evaluated analytically. The resulting
equation for s is

1 D 8p
3s

sin.�s=6/

cos.�s=2/
: (4.114)
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The solutions with the lowest values of jsj are purely imaginary: s D ˙is0, where
s0 � 1:00624. The most general asymptotic solution therefore has two arbitrary
constants:

T03 . p; kIE/ �! AC p�1Cis0 C A� p�1�is0 ; as p!1 : (4.115)

The inhomogeneous term in the integral equation (4.101) will determine one of the
constants. The role of the three-body term in the integral equation is to determine
the other constant, thus giving the integral equation a unique solution.

By demanding that the solution of the integral equation (4.101) has a well-defined
limit as � ! 1, Bedaque et al. deduced the �-dependence of H and therefore of
d0 [22]. The leading dependence on � on the right side of the three-body integral
equation in Eq. (4.101) as � ! 1 is a log-periodic term of order �0 that comes
from the region q � �. There are also contributions of order 1=� from the region
jaj�1; k; jEj1=2 � q� �, which have the form

8

�
p
3

Z �

dq

�
1

q2
C H.�/

�2

�
.AC qCis0 C A� q�is0 / : (4.116)

The sum of the two terms will decrease even faster as 1=�2 if we choose the function
H to have the form

H.�/ D AC�is0=.1 � is0/C A���is0=.1C is0/

AC�is0=.1C is0/C A���is0=.1� is0/
: (4.117)

The tuning of H that makes the term in Eq. (4.116) decrease like 1=�2 also
suppresses the contribution from the region q � � by a power of 1=� so that it goes
to 0 in the limit �!1. By choosing A˙ D .1C s20/

1=2�
�is0� =2 in Eq. (4.117), we

obtain [22]

H.�/ � cosŒs0 ln.�=��/C arctan s0


cosŒs0 ln.�=��/ � arctan s0

: (4.118)

This equation defines a three-body scaling-violation parameter�� with dimensions
of momentum. The value of �� can be fixed from a three-body datum. All other
three-body observables can then be predicted. If Eq. (4.118) is substituted back into
the three-body equation (4.101) for numerical calculations, it must be multiplied by
a normalization factor b � 1 the precise value of which depends on the details of
the regularization [24].

Note that H is a �-periodic function of s0 ln.�=��/, so �� is defined only up to
a multiplicative factor of .e�=s0 /n, where n is an integer. Thus the scaling symmetry
of Eq. (4.111) is broken to the discrete subgroup of scaling transformations with
multiples of the preferred scaling factor � D e�=s0 . This discrete scaling symmetry
is, e.g., evident in the geometric spectrum of three-body Efimov states [23] in the



132 H.-W. Hammer and S. König

Fig. 4.10 Unrenormalized three-body energies B3 as a function of the momentum cutoff � (solid
lines). The dotted line indicates the cutoff where a new three-body state appears at the particle-
dimer threshold (dash-dotted line). The dashed line shows a hypothetical renormalized energy.
The inset shows the running of the three-body force d0.�/ � �H.�/ with�

unitary limit (1=a D 0) that naturally emerge in this EFT:

B.n/3 � 0:15�2.n��n/ �
2�

m
; (4.119)

where n� an integer labeling the state with binding energy 0:15�2�=m.16 The
discrete scaling symmetry becomes also manifest in the log-periodic dependence
of three-body observables on the scattering length. This log-periodic behavior is
the hallmark signature of a renormalization group limit cycle. It has been observed
experimentally in the three-body recombination spectra of ultracold atomic gases
close to a Feshbach resonance [25, 26].

The physics of the renormalization procedure is illustrated in Fig. 4.10 where we
show the unrenormalized three-body binding energies B3 in the case of positive
scattering length as a function of the cutoff � (solid line). As the cutoff � is
increased, B3 increases asymptotically as �2. At a certain cutoff (indicated by the
dotted line), a new bound state appears at the boson-dimer threshold. This pattern
repeats every time the cutoff increases by the discrete scaling factor exp.�=s0/.
Now assume that we adopt the renormalization condition that the shallowest state
should have a constant energy given by the dashed line. At small values of the
cutoff, we need an attractive three-body force to increase the binding energy of
the shallowest state as indicated by the arrow. As the cutoff is increased further, the
required attractive contribution becomes smaller and around �a D 1:1 a repulsive

16For a detailed discussion of the Efimov effect for finite scattering length and applications to
ultracold atoms, see [15].
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three-body force is required (downward arrow). Around �a D 4:25, a new three-
body state appears at threshold and we cannot satisfy the renormalization condition
by keeping the first state at the required energy anymore. The number of bound
states has changed and there is a new shallow state in the system. At this point
the three-body force turns from repulsive to attractive to move the new state to the
required energy. The corresponding running of the three-body force with the cutoff
� is shown in the inset. After renormalization, the first state is still present as a
deep state with large binding energy, but for threshold physics its presence can be
ignored. This pattern goes on further and further as the cutoff is increased [27].

4.4 Effective Field Theory for Nuclear Few-Body Systems

4.4.1 Overview

Depending on the physics one wishes to describe, there are several effective field
theories for low-energy nuclear physics to choose from. They differ in the set of
effective degrees of freedom, their expansion point (typical low-energy scale) and
range of applicability. Chiral effective field theory includes nucleons and pions and
is designed as an expansion about the so-called “chiral limit,” i.e., the scenario where
the quark masses are exactly zero such that the pions emerge as exactly massless
Goldstone bosons from the spontaneous breaking of chiral symmetry. In reality, the
quark-masses are nonzero such that the pions become “pseudo-Goldstone” bosons
with a small (compared to typical QCD scales like m� or MN) mass m� . Chiral EFT
takes this as a typical low scale so that its power counting is designed for momenta
of the order Q � m� ; we come back to this in Sect. 4.5.3.

For momenta much smaller than m� , explicit pion exchange cannot be resolved
such that these can be regarded as integrated out, much like we did explicitly for
the pseudoscalar toy model in Sect. 4.2.2.3. The resulting “pionless” theory has,
up to long-range forces that we consider in Sect. 4.5.1) only contact interactions
between nucleons left. These contact interactions parameterize not only unresolved
pion exchange, but also that of heavier mesons, for which contact terms already
exist in Chiral EFT. Pionless EFT is formally very similar to the few-boson EFT
discussed in Sect. 4.3, and it despite its simplicity it gives rise to surprisingly rich
physics, as we will show in this section.

4.4.2 Pionless Effective Field Theory

The neutron-proton S-wave scattering lengths are experimentally determined to
be about 5:4 fm in the 3S1 channel, and �23:7 fm in the 1S0 channel. What is
special about these numbers is that they are large compared to the typical nuclear
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length scale determined by the pion Compton wavelength, m�1
� � 1:4 fm. This

estimate comes from the long-range component of the nuclear interaction being
determined by one-pion exchange. Naïvely, if we consider the low-energy limit
(NN center-of-mass momentum going to zero) we expect that we can integrate
out the pions and end up with a contact interaction scaling with the inverse pion
mass, and thus a perturbative EFT reproducing natural-sized scattering lengths. The
fact that this is not the case is typically interpreted as nature “choosing” the fine-
tuned scenario outlined in Sect. 4.2.3.3. In this case, pion exchange17 combines
with shorter range interactions to yield the large S-wave scattering lengths (and
the deuteron as an unnaturally shallow bound state), implying that nuclear physics
is a strongly coupled—and thus nonperturbative—system at low energies. This is
what allows us to write down an EFT that is closely related to the one that describes
strongly interacting bosons. What governs the physics of low-energy observables is
to a good appropriation just the fact that the scattering lengths are large, so we end
up with a short-range EFT much like the one for bosons encountered in Sect. 4.3.
Some rather technical new features arise from the fact that nucleons are fermions
with spin and isospin.

4.4.3 The Two-Nucleon S-Wave System

The leading-order Lagrangian for pionless EFT can be written as

L D N�

 
i@0 C r 2

2MN
C � � �

!
N � C0;s.N

T OPsN/
�.NT OPsN/� C0;t.N

T OPtN/
�.NT OPtN/C � � � ;

(4.120)

with projectors

. OPt/
i D �2� i�2=

p
8 , . OPs/

� D �2�2��=p8 (4.121)

such that C0;s and C0;t refer to the 1S0 and 3S1 NN channels, respectively. As in
previous sections of this chapter, we use � i to denote the Pauli matrices in spin
space, and write



� i
�
˛
ˇ to refer to their individual entries (with the upper index

referring to the row). Conversely, we use the notation


��
�

a
b in isospin space.

With the usual cartesian indices i; � D 1; 2; 3 the projectors for given i or
� give somewhat unusual combinations of individual states. For example, np
configurations are completely contained in the � D 3 isospin component, whereas
nn and pp are obtained from linear combinations 1 ˙ i2, In other words, in order
to separate the physical states (and likewise to get spin-1 states with m D 0;˙1

17As discussed in Sect. 4.5.3 this actually has to be the exchange of two or more pions, as one-pion
exchange does not contribute to S-wave scattering at zero energy.
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quantum numbers) one should work instead with a spherical basis. For example,
if one wants to include isospin-breaking terms, it is convenient to work with the
projectors

. QPs/
�1 D 1p

2

h
. OPs/

1 � i. OPs/
2
i

, . QPs/
0 D . OPs/

3 , . QPs/
C1 D � 1p

2

h
. OPt/

1 C i. OPs/
2
i
:

(4.122)

Otherwise, since the difference is a unitary rotation, the choice of basis is arbitrary.

4.4.3.1 Spin and Isospin Projection

To understand why the projectors have been defined as in Eq. (4.121), it is instructive
to calculate the tree-level contribution to the amplitude in a given channel. With all
spin and isospin vertices written out, the Feynman rule for the four-nucleon vertex
in the 3S1 channel is

� i
C0;t
8



� i�2

�
˛
ˇ



�2
�

a
b


�2� i

�
	
ı



�2
�

c
d ; (4.123)

which is obtained by simply writing out the . OPt/
i from Eq. (4.121). Furthermore, this

diagram has an associated combinatorial factor 4 because there are two possibilities
each to contract the in- and outgoing legs with external nucleon fields.

In order to calculate the T-matrix, we have to write out the Lippmann–Schwinger
equation with all indices (and symmetry factors) and then apply the appropriate pro-
jectors. For 3S1 and isospin 0, the result should have two free spin-1 indices, which
we label k and j for the in- and outgoing side, respectively. The inhomogeneous term
is just the vertex (4.123) with an additional factor 4. Applying the projectors, we get

1p
8



�2� j�ˇ

˛



�2
�b

a � 4 � i
C0;t
8
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˛
ˇ



�2
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�2
�c
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Tr


� j� i�Tr



�2�2
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Tr


� i� k�Tr



�2�2

� D iC0;t ı
jk ; (4.124)

where we have used the well-known of the Pauli matrices. This is exactly the
expected result: the projectors (4.121) have been constructed to give this. The
projection of other, more complicated diagram works in the same way. Albeit
somewhat tedious, it is technically straightforward. For higher partial waves, one of
course has to take into account the coupling of spin and orbital angular momentum.
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4.4.3.2 Dibaryon Fields

Just like for bosons, it is convenient to introduce auxiliary dimer—now called
dibaryon—field for each of the NN S-wave states. This is done by rewriting the
Lagrangian (4.120) as

L D N�

 
i@0 C r 2

2MN
C � � �

!
� ti�

"
gt C

 
i@0 C r 2

4MN

!#
ti C yt

�
ti�


NT Pi

tN
�C h:c:

	

� s��
"

gs C
 

i@0 C r2

4MN

!#
s� C ys

�
s��


NTP�s N

�C h:c:
	C � � � ; (4.125)

where t (s) denotes a 3S1 (1S0) dibaryon field and the projection operators Ps;t are
as defined in Eq. (4.121). The “bare” dibaryon propagators are just i=gs;t, while
the full leading-order expressions are obtained by summing up all nucleon bubble
insertions. This resummation, which without dibaryon fields gives the NN T-matrix
as a bubble chain, reflects the fact we need to generate shallow states (the bound
deuteron and the virtual 1S0 state) to account for the unnaturally large NN scattering
lengths. Pionless EFT is designed to capture this feature.

Omitting spin-isospin factors for simplicity, the resummed propagators are

i�s;t. p0;p/ D �i

gs;t C ys;t
2I0. p0;p/

; (4.126)

where
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is the familiar bubble integral regularized with a momentum cutoff. The cutoff
dependence is absorbed into the parameters ys;t and gs;t to obtain the renormalized
propagators. Attaching external nucleon legs gives the NN T-matrix,

iTs;t.k/ D .iys;t/
2 i�s;t



p0 D k2=MN ;p D 0

� D 4�

MN

i

k cot ıs;t.k/ � ik
; (4.128)

so we can match to the effective range expansions for kıs;t.k/. At leading order, the
renormalization condition is to reproduce k cot ıs;t.k/ D �1=as;t C O.k2/, which
gives

4�gs;t

MNys;t
2
D � 1

as;t
C 2�

�
: (4.129)
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Instead of this standard choice of the expansion around the zero-energy threshold, it
is convenient to expand the 3S1 channel around the deuteron pole.18 This is

k cot ıt.k/ D 	t C �t

2



k2 C 	2t

�C � � � ; (4.130)

where 	t D
p

MNBd ' 45:7 is the deuteron binding momentum and �t ' 1:765 is
the “deuteron effective range.” This choice, which sets

4�gt

MNyt
2
D �	t C 2�

�
; (4.131)

gets the exact deuteron pole position right at leading order, but is equivalent to the
choice in Eq. (4.129) up to range corrections.

Wavefunction Renormalization

The residue at the deuteron pole gives the deuteron wavefunction renormalization.
We find
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for the renormalization as in Eq. (4.131). If we directly consider the (off-shell)
T-matrix near the pole, we find
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(4.133)
Comparing to the standard factorization at the pole,19

T.k; pIE/ D �B�.k/B. p/

EC EB
C terms regular at E D �EB ; (4.134)

18The shallow deuteron bound-state pole is within the radius of convergence of the effective
range expansion. The deuteron binding momentum is 	t D 1at C � � � , where the ellipses include
corrections from the effective range (and higher-order shape parameters).
19The minus sign in Eq. (4.134) is a consequence of the convention we use here for the T-matrix.
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Fig. 4.11 Nd quartet-channel integral equation. Nucleons and deuterons are represented as single
and double lines, respectively. The blob represents the T-matrix

we can read off from Eq. (4.133) that

B. p/ D
s
8�	t

M2
N

D yt

p
Zt ; (4.135)

independent of momentum at this order.

4.4.4 Three Nucleons: Scattering and Bound States

As done in Sect. 4.3.3 for bosons, the dimer/dibaryon formalism allows for a
particularly intuitive and simple description of the three-body system. Looking at
nucleon-deuteron S-wave scattering,20 we find that the spin 1 of the deuteron can
couple with the spin 1=2 of the nucleon to a total spin of either 3=2 or 1=2. These
two cases are referred to as the quartet and doublet channel, respectively.

4.4.4.1 Quartet Channel

In the quartet-channel, the spins of all three nucleons have to be aligned to
produce the total spin 3=2. This means that only the deuteron field can appear in
intermediate states, and the Pauli principle excludes a three-body contact interaction
without derivatives. The resulting integral equation for the Nd T-matrix is shown
diagrammatically in Fig. 4.11. Compared to Fig. 4.8, we use a different convention
here were the T-matrix blob is drawn to the left of the nucleon exchange, and we
denote in- and outgoing momenta (in the Nd center-of-mass frame) by ˙k and
˙p, respectively.21 The energy and momentum dependence are exactly the same
as for bosons, but we have to include the additional spin-isospin structure from the

20We work in the isospin-symmetric theory here, but in the absence of electromagnetic interactions
(discussed in Sect. 4.5.1), the nucleon here should be thought of as a neutron.
21Unlike what is done in Sect. 4.3, we also read diagrams from left (incoming particles) to right
(outgoing particles). Both conventions can be found in the literature.
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vertices. Doing this, the result in its full glory reads:
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This unprojected amplitude carries spin and isospin indices for the various fields
in the initial and final states. To select the overall spin 3=2 contribution, we take
linear combinations as in Eq. (4.122) to select the maximal projections for the in-
and outgoing deuterons and ˛ D ˇ D 1 to get nucleons with spin orientationC1=2.
We also set a D b D 2 to select neutrons. Altogether, this gives
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in the inhomogeneous term, and the same factor for the integral part. The fully
projected quartet-channel amplitude is

Tq D 1

2



T11q C i
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�C T22q

�12
12
: (4.138)

4.7 Exercise: Work out the details leading to Eq. (4.138).

Finally, the S-wave projection of Eq. (4.136) is done by applying the operator
1
2

R 1
�1 d cos � , where � is the angle between k and p. Introducing a momentum cutoff

�, the resulting equation can be solved numerically by discretizing the remaining
one-dimensional integral. From the result, which we denote by T0q , we can calculate
observables like scattering phase shifts,
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1C 2ikMN
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, Ek D 3k2
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� 	2t
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; (4.139)

or the Nd scattering length:

aq D MN

3�
limk!0 ZtT

0
q .k; kIEk/ : (4.140)

Note that we have not absorbed the wavefunction renormalization Zt into T0q but
instead chose to keep it explicit in Eqs. (4.139) and (4.140)
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Fig. 4.12 Nd doublet-channel integral equation. As in Fig. 4.11, nucleons and deuterons are drawn
as single and double lines, respectively. Additionally, we represent the 1S0 dibaryon as a thick line.
The hatched and shaded blobs are the two components of the doublet-channel Nd ! Nd T-matrix

4.4.4.2 Doublet Channel

The doublet channel (total spin 1=2) has a richer structure, since now also the 1S0
dibaryon can appear as an intermediate state. The result is a coupled channel integral
equation, shown diagrammatically in Fig. 4.12. We skip here the technicalities of
the spin-isospin projection (for details, see [28] and earlier references therein) and
merely quote the result in a compact notation:
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(4.141)

where K is the “kernel” function
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EFT � Ds;t.qIE/ D �s;t
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2MN
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and the integral operation

A˝ B � 1

2�2

Z �

0

dq q2 A.: : : ; q/B.q; : : :/ (4.144)

has to be applied within each block. Just like the quartet-channel equation,
Eq. (4.141) can be solved numerically by discretizing the integrals, with the
additional complication that we now have a 2�2 block matrix. The T-matrix likewise
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becomes a 2-block vector, the upper part of which is gives the physical Nd ! Nd
amplitude.22

4.8 Exercise: Express the fully projected integral equation for the quartet channel
amplitude T0q using the compact notation based on Eqs. (4.142)–(4.144).

Leading-Order Three-Nucleon Force

Studying the doublet-channel solution as a function of increasing UV cutoff�, one
finds that there is no stable limit as �!1. Instead, the amplitude changes wildly
as � is varied. This is much unlike the quartet-channel case, which shows a rapid
convergence with �.

The origin of this behavior was explained by Bedaque et al. [29]. The behavior
for large � is governed by large momenta, which means that infrared scales like
the scattering lengths do not matter. Indeed, one finds that Dt.EI q/ and Ds.EI q/
have the same leading behavior as q ! 1. To analyze the asymptotic behavior
of the amplitude we can thus go to the SU.4/ spin-isospin symmetric limit and set
Dt D Dt � D as well as yt D ys � y. In this limit, the two integral equations in
Eq. (4.141) can be decoupled by defining Td;˙ D Td;1 ˙ Td;2. For Td;C we find the
integral equation

T0d;C.k; pIE/ D �MNy2K.k; pIE/CMNy2
Z �

0

dq

2�2
q2 K.k; qIE/D.qIE/T0d;C.q; pIE/ ;

(4.145)

which is formally exactly the same as the three-boson integral equation, Eq. (4.101),
in the absence of a three-body force. As discussed in Sect. 4.3.3, this equation does
not have a unique solution in the limit�!1. Since Td;1=2 are linear combinations
of involving Td;C, they inherit the same behavior. But the cure is now obvious: a
three-nucleon force, which by naïve counting would only enter at higher orders,
has to be promoted to leading order in order to make Eq. (4.141) well defined. This
three-nucleon force, like the asymptotic amplitudes, is SU.4/ symmetric (invariant
under arbitrary spin-isospin rotations) and can be written as

L3 D h0
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N�
�
yt
2 ti�tj� i� j C ys

2 sA�sB�A�B � ytys


ti�sA� i�A C h:c:

�	
N ;

(4.146)

22Note that this vector is one part of the more general full off-shell amplitude, which is a 2 	 2

block matrix including the two combinations of dibaryon legs that do not appear in Fig. 4.12.
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where the cutoff-running of the three-nucleon coupling is analogous to what we
derived for bosons:

h0 D MNH.�/

�2
: (4.147)

Including this, the coupled doublet-channel integral equation becomes
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(4.148)

We stress that the requirement to include this three-body force at leading-order is
a feature of the nonperturbative physics that can be traced back to the large NN
scattering lengths. All loop diagrams obtained by iterating the integral equation are
individually finite as � ! 1, yet their infinite sum does not exist in that limit
unless the h0 contact interaction is included.

The Phillips Line

The form of H.�/ is given by Eq. (4.118), but since there is a prefactor that depends
on the details of the regularization scheme, in practice one has to determine the
appropriate value numerically after choosing a cutoff�. This requires a three-body
datum as input, which is conveniently chosen to be the triton binding energy—the
3H bound state corresponds to a pole in Td at E D �EB.

3H/, cf. Sect. 4.3.4—or the
doublet-channel nd scattering length (or, in principle, a phase shift at some fixed
energy). Once one of these is fixed, the rest can be predicted. In particular, this
means that the existence of a single three-body parameter in pionless EFT at leading
order provides a natural explanation of the Phillips line, i.e., the observation that
various phenomenological potentials, which were all tuned to produce the same NN
phase shifts, gave different results for the triton binding energy and doublet S-wave
scattering length, which however are strongly correlated. In our framework, we can
obtain the line shown in Fig. 4.13 by fitting H.�/ to different values of the scattering
length and then calculating EB.

3H/ (or vice versa). Alternatively, one can find the
same curve by setting h0 to zero and varying� to move along the line.

With this, we conclude our discussion the three-nucleon system. For more details,
like calculations beyond leading order, we encourage the reader to encourage the
literature.
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Fig. 4.13 Correlation (Phillips line) between 3H binding energy (in MeV) and doublet nd
scattering length (in fm) in leading-order pionless EFT

4.5 Beyond Short-Range Interactions: Adding Photons
and Pions

4.5.1 Electromagnetic Interactions

So far, we have studied only effective theories where the particles (atoms of
nucleons) interact solely via short-range force (regulated contact interactions).
While this is, as we have argued, sufficient to describe the strong nuclear interactions
at (sufficiently low) energies where the EFT is valid, the electromagnetic interaction
does not fit in this scheme. Nevertheless, since almost all systems of interest in low-
energy nuclear physics involve more than one proton, the inclusion of such effects
is of course important.

Any coupling of photons to charged particles has to be written down in a gauge-
invariant way. A natural way to ensure gauge invariance is to replace all derivatives
in the effective Lagrangian with covariant ones, i.e.,

@� ! D� D @� C ieA� OQ ; (4.149)

where OQ is the charge operator (for nucleons, for example, OQN D .1 C �3/=2).
Moreover e2 D 4�˛ defines the electric unit charge in terms of the fine structure
constant ˛ � 1=137.

Since in the EFT there is an infinite tower of contact interactions with an
increasing number of derivatives, we also get an infinite number of photon vertices.
Still, merely plugging in the covariant derivative is not enough (after all, this is
called minimal substitution); it is possible to write down terms which are gauge
invariant by themselves, and for the EFT to be complete these have to be included
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as well. Before we come back to this in Sect. 4.5.1.4, let us first see what we get
from gauging the derivatives in the nucleon kinetic term:

N�

 
i@t C r 2

2MN
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!
N ! N�

 
iDt C D2

2MN
C � � �

!
N : (4.150)

In addition to this, we also have to include the photon kinetic and gauge fixing
terms to complete the electromagnetic sector. A convenient choice for the our
nonrelativistic framework is Coulomb gauge, i.e., demanding that r � A D 0. A
covariant way to write is condition is

@�A� � ����@�A� D 0 (4.151)

with the timelike unit vector �� D .1; 0; 0; 0/. Hence, we add to our effective
Lagrangian the term

Lphoton D �1
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4.5.1.1 The Coulomb Force

From Eq. (4.152) we get the equation of motion for the photon field as
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�
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(4.153)

The photon propagator is defined as the Feynman Green’s function for the differen-
tial operator acting on A�.x/. Writing down the general solution in momentum space
and choosing � D 0 at the end (recall that it is an artificial parameter introduced
through enforcing the gauge condition in the path integral [30]), we get
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: (4.154)

A simple inspection of this expression shows that it vanishes if � or � D 0.
In other words, A0 photons do not propagate. Correspondingly, their equation of
motion becomes time independent and we can use it to remove A0 from the effective
Lagrangian (the nuclear part plus Lphoton). We find

r2A0 D �eN� OQN ; (4.155)
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which is just the Poisson equation with the nucleon charge density on the right-
hand side. Solving this in Fourier space, where r 2 turns into the squared three-
momentum, we eventually get a term

LCoulomb.x0; x/ D �e2
Z

d3y N�.x0; x/N.x0; x/
e�iq�.x�y/

q2

 
1C �3
2
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N�.x0; y/N.x0; y/ ;

(4.156)

i.e., static Coulomb potential (� 1=r in configuration space) between charged
nucleons. This is a non-local interaction that really should be kept in the Lagrangian
as a whole. Still, to calculate Feynman diagrams it is convenient to split it up into a
vertex

� �ie

�
1C �3
2

�a

b

ı˛ˇ ; (4.157)

and a factor i=k2 for each “Coulomb-photon propagator,” which is really just
an expression for the static potential in momentum space. Note that the sign in
Eq. (4.157) is arbitrary because these vertices really only come in pairs; we have
chosen it here to coincide with what one would naïvely read off from the N�iD0N
term.

Finding that A0 photons only appear as static internal exchanges goes well in
line that physical photons in external states have to be transverse. Still, one might
wonder how to treat diagrams with virtual photons coupled to a nuclear system (e.g.,
electrodisintegration), which should have A0 contributions. The answer is that the
proper way to treat these is to add appropriate external currents to the Lagrangian,
which then, in turn, appear on the right-hand side of Eq. (4.155).

4.5.1.2 Coulomb Enhancement and Divergences

The Coulomb force is a long-range interaction: it only falls off like a power law
(� 1=r) in configuration space. In momentum space, it correspondingly has a pole
at vanishing momentum transfer (q2 D 0), i.e., it gives rise to an infrared divergence.
There are standard techniques for dealing with this, for example defining so-called
Coulomb-modified scattering phase shifts and effective-range expansions well-
known from quantum-mechanical scattering theory. These are based on treating
Coulomb effects fully nonperturbatively, i.e., resumming to exchange of Coulomb
photons to all orders. In the EFT power counting, the need for this resummation
is reflected in the fact dressing a given two-body scattering diagram with external
momenta of order Q by an additional Coulomb photon gives a factor ˛MN=Q, i.e.,
an enhancement if Q . ˛MN . In Fig. 4.14 we show this for two-photon exchange
compared to the single-photon diagram.
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Fig. 4.14 Infrared enhancement of Coulomb-photon exchange

Fig. 4.15 Single photon insertion in a proton-proton bubble diagram

If a problem with Coulomb interactions is solved numerically, the IR divergence
has to be regularized in some way to have all quantities well defined. One way to do
this “screening” the potential with a photon mass �, i.e., replacing q2 with q2 C �2
in the Coulomb-photon propagator. If this is done, � should be kept as small as
possible and be extrapolated to zero for all physical observables at the end of the
calculation.

In contrast to what one might naïvely expect, Coulomb contributions can also
modify the UV behavior of diagrams. Consider, for example the insertion of a
single photon within a bubble contributing to proton-proton scattering, as shown
in Fig. 4.15. Power counting momenta in this diagram (with C0 vertices) gives a
factor .Q5=MN/

2 from the two loops, .MN=Q2/4 from the nucleon propagators, and
an obvious ˛=Q2 from the photon, meaning that overall we have Q0, corresponding
to a superficial logarithmic divergence of this diagram (which one can confirm with
an explicit calculation). This is a new feature compared to the theory with only
short-range interactions, where this particular divergence is absent (all divergences
are of power-law type there). Without going into any details, we stress that this
divergence has to be accounted for when the theory with Coulomb contributions is
renormalized. In particular, this example teaches us that in the EFT the Coulomb
force is not merely an “add-on potential” that slightly shifts results, but that it has to
be treated consistently along with the short-range interactions.

4.5.1.3 Transverse Photons

Transverse photons come from the quadratic spatial derivative:

D2 D .@i C ieAi OQ/.@i C ieAi OQ/ D r 2 C ie.Ai OQ @i C @iAi OQ/� e2A2 OQ : (4.158)

We can rewrite this using

@i
�

Ai OQN
�
D .@iAi/ OQN C Ai OQ @iN ; (4.159)



4 General Aspects of Effective Field Theories and Few-Body Applications 147

where the first term vanishes in Coulomb gauge. Hence, we get the vertex
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with the momentum dependence coming from the derivative. We leave it as an
exercise to write down the Feynman rule for the two-photon term � A2 OQ.

Comparing Eq. (4.160) with Eq. (4.157) that a diagram with the exchange of a
transverse photon is suppressed by a factor Q2=M2

N compared to the same topology
with a Coulomb photon. Transverse photons also have a more complicated propaga-
tor than the simple i=k2 that we found for Coulomb photons. From Eq. (4.154) we
find that
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which now depends on the energy k0 and thus gives rise to poles in Feynman
diagrams. Note that the structure is somewhat different from what one typically
sees in QED textbooks that use Lorenz/Feynman gauge.

4.5.1.4 Other External Currents

The covariant derivative alone only gives us photons coupled to the proton’s charge.
However, as mentioned previously, minimal substitution only gives a subset of all
possible electromagnetic terms. For example, the magnetic coupling of photons to
the nucleons (both protons and neutrons in this case) is given by

Lmag D e

2MN
N�.�0 C �1�3/ E� � B N : (4.162)

where �0 and �1 are the isoscalar and isovector nucleon magnetic moments,
respectively. That is, the low-energy constant of this operator has been fixed directly
to the associated single-nucleon observable (similarly to how the nucleon mass is
fixed immediately in the nonrelativistic theory). With B D r � A and all indices
written out, this is
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and it gives rise to the Feynman rule
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We point out that Eq. (4.163) only gives the leading magnetic coupling. In traditional
nuclear physics language, it corresponds to a one-body operator. At higher orders in
the EFT, there are additional operators, like a four-nucleon contact interaction with
an additional photon. Such many-body terms correspond to what phenomenological
approaches model as “meson exchange currents.”

4.5.2 Example: Deuteron Breakup

As an application of the things discussed in the previous sections, we now consider
the low-energy reaction d	 $ np. By time-reversal symmetry, the amplitudes for
the processes corresponding to the two possible directions of the arrow are the same.
For definiteness, we show the simplest diagram for the breakup reaction in Fig. 4.16.

The reaction can be considered in different reference frames. In the lab frame (left
panel of Fig. 4.16), the deuteron is initially at rest and then gets hits by a photon with
four-momentum .k0;k/. For our theoretical discussion here it is more convenient
to take the two outgoing nucleons in their center-of-mass frame, as shown in the
right panel of Fig. 4.16. To first order, we can translate between the two frames by
boosting all nucleons lines with a momentum k=2. A more careful analysis would
keep track of relativistic kinematics (the external photon is never nonrelativistic),
but this is not essential for the illustration here, so we can get away with interpreting
.k0;k/ to mean different things in the two frames.

In the NN center-of-mass frame, the initial and final-state energies are

Ei D k0 C k2

4MN
� 	2t

MN
; (4.165a)

Ef D p2

2MN
C p2

2MN
D p2

MN
; (4.165b)

Fig. 4.16 Deuteron breakup diagram in two different kinematic frames. Left: lab frame, deuteron
at rest. Right: center-of-mass frame of the outgoing nucleons
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where we have neglected the small deuteron binding energy by setting Md D 2MN .
Conservation of energy implies that

p D
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MNk0 � 	2t C k2=4 , k0 D p2
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; (4.166)

and the energy assigned to the internal nucleon propagator has to be � k0
2
� 	2t

2MN
C

k2

8MN
.

The blob in Fig. 4.16 represents the deuteron vertex function calculated in
Sect. 4.4.3.2. Taking the result found there and adding the spin-isospin structure,
we find
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With this, we can finally write down the amplitude. For an E1 transition, the photon
couples to the nucleon charge via the Feynman rule given in Eq. (4.160). Combining
this with the ingredients above, we get
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We have included a factor 2 to account for the fact that in drawing the diagram, the
photon could be coupled to either nucleon (the isospin projection operator ensures
of course that only the proton charge gives a contribution). Moreover, in the second
line we have included polarization vectors and spinors for all external particles, the
spins of which we denote as s	 , sd, sp, and sn, respectively. From the amplitude
in Eq. (4.168) one can proceed to calculate the corresponding cross section by
summing/averaging over the various initial and final states and integrating over the
available phase space. We skip these details and close by noting that the isospin part
is of course completely fixed (“polarized”) by the experimental setup. Hence, the
spinor-isospinors are

.Nsp/
˛a D N˛

sp

�
1

0

�a

, .Nsn/ˇb D N˛
sp

�
1

0

�
b

; (4.169)
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i.e., we can directly set a D 1 (isospin “up”, proton) and b D 2 (isospin “down”,
neutron) in the amplitude.

4.9 Exercise: Write down the analog of Eq. (4.168) with a magnetically-coupled
(M1) photon.

4.5.3 Chiral Effective Field Theory

Pionless EFT provides a simple yet powerful framework to describe few-nucleon
systems at very low energies, but its name implies its natural limitation, i.e.,
the inability to describe physics at energy scales where pion exchange can be
resolved. Certainly this becomes important for scattering calculations at momentum
scales larger than the pion mass. But nuclear binding also generally increases
with increasing number A of bound nucleons, which translates to larger typical
momentum scales within the nucleus. There are indications that pionless EFT still
converges for A D 4, but the question is not fully settled.

The construction of an effective field theory of nucleons and pions was pioneered
by Weinberg in the early 1990s [31, 32], proposing a scheme to construct a nuclear
potential based on Feynman diagrams from chiral perturbation theory. This theory,
which is constructed as an expansion around the so-called “chiral limit,” in which
the pions are exactly massless Goldstone bosons. The resulting theory, which has
been applied with great success in the purely pionic and single-nucleon sector, treats
the pion mass as a small scale and thus has a power counting designed for typical
momenta Q � m� .

For two or more nucleons, the theory is highly nonperturbative, which motivated
Weinberg to develop a scheme where the power counting is applied to the potential
instead of the amplitude, as we have otherwise done throughout this section.
Kaplan et al. [17, 33, 34] proposed a different scheme where pions are included
perturbatively on top of a leading order given by pionless EFT. This approach has,
however, been found not to converge in channels where pion exchange generates a
singular attractive interaction [35]. It is thus understood today that pions in general
have to be treated nonperturbatively, in a framework generally referred to as “chiral
effective field theory.” How exactly this should be implemented, however, is still
a matter of debate. Instead of summarizing this here, we refer the reader to the
literature (see, e.g., [12, 36–43]).

4.5.3.1 Leading-Order Pion-Nucleon Lagrangian

For a thorough introduction to the field of chiral perturbation theory, we recommend
the reader to study the lecture notes of Scherer and Schindler [44] as well
as the vast original literature cited therein. It uses an elaborate formalism to
construct the most general pion-nucleon Lagrangian that is invariant under chiral
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transformations (individual rotations of left- and right-handed nucleon fields) plus
terms implementing the explicit breaking of chiral symmetry due to finite quark
masses. In the conventions of [44], the leading-order pion-nucleon Lagrangian is

L
.1/
�N CL �

2 D N 
�

i =D�MN C gA

2
	�	5u�

�
 C f 2�

4
Tr
�
.@�U/�.@�U/C �U� C U��

	
:

(4.170)

Here,  is the nucleon Dirac field, and the matrix-valued field

U �D exp

�
i
E� � E�

f�

�
(4.171)

collects the pion fields in an exponential representation. D� here is the so-called
chiral covariant derivative that couples the pion field to the nucleons. The matrix

� D 2B0 diag.mq;mq/ ; (4.172)

where mq is the light quark mass (in the exact isospin limit, mu D md D mq)
contains the effect from explicit chiral symmetry breaking. Via the Gell-Mann–
Oakes–Renner relation,

m2
� D 2B0mq ; (4.173)

one can show that � generates a mass term for the pion field.

4.10 Exercise: Expand the exponential in Eq. (4.171) to show that f 2�
4

Tr�
.@�U/�.@�U/

	
generates a kinetic term for the pion field E� plus higher-order

pion self interactions.

After a couple of steps, which we encourage the reader to follow based on the
definitions given in [44], the leading terms in the Lagrangian are found to be
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(4.174)

Comparing this to our pseudoscalar model (4.28) in Sect. 4.2.2.2, we see that the
pion-nucleon coupling now comes with explicit derivatives, as required by chiral
symmetry. After a Foldy-Wouthuysen transformation, however, one-pion-exchange
in the nonrelativistic limit gives the same structure as in Eq. (4.49). There is no
explicit � field in Eq. (4.174); in the chiral theory, this particle only appears as a
resonance generated by two-pion exchange.
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Chapter 5
Lattice Methods and Effective Field Theory

Amy Nicholson

5.1 Introduction

Quantitative understanding of nuclear physics at low energies from first principles
remains one of the most challenging programs in contemporary theoretical physics
research. While physicists have for decades used models combined with powerful
numerical techniques to successfully reproduce known nuclear structure data and
make new predictions, currently the only tools available for tackling this problem
that have direct connections to the underlying theory, Quantum Chromodynamics
(QCD), as well as quantifiable systematic errors, are Lattice QCD and Effective
Field Theory (EFT). In principle, when combined these techniques may be used
to not only quantify any bias introduced when altering QCD in order to make
it computationally tractable, but also to better understand the connection between
QCD and nuclear physics.

The lattice is a tool for discretizing a field theory in order to reduce the path
integral, having an infinite number of degrees of freedom, to a finite-dimensional
ordinary integral. After rendering the dimension finite (though extremely large),
the integral may then be estimated on a computer using Monte Carlo methods.
Errors introduced through discretization and truncation of the region of spacetime
sampled are controlled through the spatial and temporal lattice spacings, bs; b� ,
and the number of spatial and temporal points, L;N� . Thus, these errors may be
quantified through the lattice spacing dependence of the observables, and often may
be removed through extrapolation to the continuum and infinite volume limits.
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LQCD is a powerful and advanced tool for directly calculating low-energy
properties of QCD. However, severe computational issues exist when calculating
properties of systems with nucleons. Unfortunately, these problems grow rapidly
with the number of nucleons in the system.

The first issue is the large number of degrees of freedom involved when using
quark fields to create nucleons. In order to calculate a correlation function for a
single nucleon in LQCD using quarks (each of which has twelve internal degrees of
freedom given by spin and color), one has to perform all possible Wick contractions
of the fields in order to build in fermion antisymmetrization. For example, to create a
proton using three valence quark operators requires the calculation of two different
terms corresponding to interchanging the two up quark sources. The number of
contractions involved for a nuclear correlation function grows with atomic number
Z and mass number A as .AC Z/Š.2A� Z/Š. For He4 this corresponds to � 5 � 105
terms1!

The second major problem occurs when performing a stochastic estimate of
the path integral. A single quark propagator calculated on a given gauge field
configuration may be a part of either a light meson or a heavy nucleon. However,
the difference cannot be determined until correlations with the other quark fields
present are built in by summing over a sufficiently large number of these field
configurations.2 This leads to large fluctuations from configuration to configuration,
and a stochastic signal-to-noise ratio, R, which degrades exponentially with the
number of nucleons in the system,

R � e�A.M�3=2m� /� ; (5.1)

where M is the nucleon mass and m� is the pion mass [1]. This is currently the major
limiting factor for the size of nuclear which can be probed using LQCD. The best
calculations we have from LQCD using multiple nucleons to date are in the two-
nucleon sector [2–27], while fewer calculations have been performed for three and
four nucleon systems [7, 9, 10, 12, 15–19, 28, 29]; however, even for two nucleon
systems unphysically large pion masses must be used in order to reduce the noise
problem. We will discuss signal-to-noise problems in more detail in Sect. 5.3.1.

Starting from an EFT using nucleons as the fundamental degrees of freedom
greatly reduces the consequences from both of these issues. EFTs also enjoy the
same benefit as the lattice over traditional model techniques of having quantifiable
systematic errors, this time controlled by the cutoff of the EFT compared to the
energy regime studied. For chiral EFTs this scale is generally�� � m� � 700MeV.
Systematic errors can be reduced by going to higher orders in an expansion of
p=��, where p is the momentum scale probed, with the remaining error given by
the size of the first order which is not included. In a potential model there is no
controlled expansion, and it is generally unknown how much the results will be

1This is a very naïve estimate; far more sophisticated algorithms exist with power-law scaling.
2This interpretation of the signal-to-noise problem has been provided by David B. Kaplan.
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affected by leaving out any given operator. In addition, field theories provide a
rigorous mathematical framework for calculating physical processes, and can be
directly translated into a lattice scheme.

In these lecture notes we will explore the use of lattice methods for calculating
properties of many-body systems starting from nuclear EFT, rather than QCD. Our
discussion will begin with understanding a very basic nuclear EFT, pionless EFT, at
leading order. We will then proceed to discretize this theory and set up a framework
for performing Monte Carlo calculations of our lattice theory. We will then discuss
how to calculate observables using the lattice theory, and how to understand their
associated statistical uncertainties. Next we will discuss quantifying and reducing
systematic errors. Then we will begin to add terms to our theory going beyond
leading order pionless EFT. Finally, we will discuss remaining issues and highlight
some successes of the application of these methods by several different groups.

5.2 Basics of Effective Field Theory and Lattice Effective
Field Theory

5.2.1 Pionless Effective Field Theory

To develop an EFT we will first write down all possible operators involving the
relevant degrees of freedom within some energy range (determined by the cutoff)
that are consistent with the symmetries of the underlying theory. Each operator
will be multiplied by an unknown low-energy constant which may be fixed by
comparing an observable with experiment or lattice QCD. In order to reduce this,
in principle, infinite number of operators to a finite number we must also establish
a power-counting rule for neglecting operators that do not contribute within some
desired accuracy. This is a notoriously difficult problem for nuclear physics, and is
in general observable and renormalization scheme dependent. Here, we will only
briefly touch upon two common power-counting schemes, the so-called Weinberg
and KSW expansions [30–34]. For reviews of these and other power-counting
schemes, see [35–37].

The simplest possible nuclear EFT involves non-relativistic nucleon fields
interacting via delta functions. This is known as a pionless EFT, and is only relevant
for energy scales up to a cutoff � � m� . Below this scale, the finite range of pion
exchange cannot be resolved, and all interactions appear to be point-like. In this
discussion we will closely follow that of [38]. For the moment, let’s just consider
a theory of two-component (spin up/down) fermion fields,  , with the following
Lagrangian,

Leff D  �
�

i@� C r
2

2M

�
 C g0



 � 

�2 C g2
8

h
.  /�

�
 
 !r 2 

�
C h.c.

i
C � � � ;

(5.2)
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where

 !r 2 � �r 2 � 2 �r � �!r C�!r 2 ; (5.3)

M represents the nucleon mass, g0; g2; : : : are unknown, low-energy constants
(LECs) which may be fixed by comparing to experimental or LQCD results, and
all spin indices are suppressed. Because the effective theory involves dynamical
degrees of freedom that are only relevant up to a certain scale, we must define a cut-
off,�, above which the theory breaks down. In general, the LECs scale as��dim.O/,
where dim.O/ represents the dimension of the operator associated with the LEC.
According to naïve power counting, the g2 term in Eq. (5.2) should be suppressed
relative to the g0 term, because adding a derivative to an operator increases its
dimension. One should be careful in practice, however, because naïve power count-
ing does not always hold, as we will see several times throughout these lectures.

5.2.1.1 Two Particle Scattering Amplitude

In order to set the coefficients g0; g2; : : :, we may look to experimental scattering
data. In particular, if we wish to set the g0 coefficient we should consider two-
particle s-wave scattering because the operator associated with g0 contains no
derivatives. g2 and other LECs may be set using p- and higher-wave scattering data.
Recall that the S-matrix for non-relativistic scattering takes the following form:

S D 1C iMp

2�
A ; (5.4)

where p is the scattering momentum and A is the scattering amplitude. For s-wave
scattering the amplitude may be written as,

A D 4�

M

1

p cot ı � ip
; (5.5)

where ı is the s-wave scattering phase shift. Given a short-range two-body potential,
the scattering phase shift has a well-known expansion for low momenta, called the
effective range expansion,

p cot ı D �1
a
C 1

2
r0p

2 C r1p
4 C � � � ; (5.6)

where a is the scattering length, r0 is the effective range, and r1 and higher order
terms are referred to as shape parameters. The effective range and shape parameters
describe the short-range details of the potential, and are generally of order of the
appropriate power of the cutoff in a naturally tuned scenario.

The scattering length may be used to describe the asymptotic behavior of
the radial wavefunction. In particular, consider two-particles interacting via an
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Fig. 5.1 Sketches of two-body radial wavefunctions vs. r corresponding to various scattering
lengths. From left to right: a < 0, a ! 1,a > 0

attractive square-well potential. If the square-well is sufficiently strongly attractive,
the wavefunction turns over and goes to zero at some finite characteristic length.
This means the system is bound and the size of the bound state is given by the
scattering length, a. On the other hand, if the wavefunction extends over infinite
space, then the system is in a scattering state and the scattering length may be
determined as the distance from the origin where the asymptote of the wavefunction
intersects the horizontal axis (see Fig. 5.1). This implies that the scattering length in
the case of a scattering state is negative. If the potential is tuned to give a system
which is arbitrarily close to the crossover point from a bound state to a scattering
state, corresponding to infinite scattering length, the state is described as being near
unitarity, because the unitarity bound on the scattering cross section is saturated at
this point. Note that this implies that the scattering length may be any size and is
not necessarily associated with the scale set by the cutoff. However, such a scenario
requires fine-tuning of the potential. Such fine-tuning is well-known to occur in
nuclear physics, with the deuteron and neutron-neutron s-wave scattering being
notable examples.

A many-body system composed of two-component fermions with an attractive
interaction is known to undergo pairing between the species (higher N-body
interactions are prohibited by the Pauli exclusion principle), such as in neutron
matter, found in the cores of neutron stars, which is composed of spin up and spin
down neutrons. At low temperature, these bosonic pairs condense into a coherent
state. If the interaction is only weakly attractive, the system will form a BCS state
composed of widely separated Cooper pairs, where the average pair size is much
larger than the average interparticle spacing. On the other hand, if the interaction is
strongly attractive then the pairs form bosonic bound states which condense into a
Bose-Einstein condensate. The crossover between these two states corresponds to
the unitary regime, and has been studied extensively in ultracold atom experiments,
where the interaction between atoms may be tuned using a Feshbach resonance.
In this regime, the average pair size is equal to the interparticle spacing (given
by the inverse density), which defines the only scale for the system. Thus, all
dimensionful observables one wishes to calculate for this system are determined
by the appropriate power of the density times some dimensionless constant. For a
review of fermions in the unitary regime, see e.g., [39, 40].
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Fig. 5.2 Two-body scattering amplitude represented as a sum of bubble diagrams corresponding
to a single contact interaction with coupling g0

Fig. 5.3 Feynman diagram for a single bubble in Fig. 5.2, giving rise to the loop integral
equation (5.7)

5.2.1.2 Two-Body LECs

Returning to our task of setting the couplings using scattering parameters as input,
we might consider comparing Eqs. (5.2) and (5.6), to determine the LEC g0 using the
scattering length, g2 using the effective range, and so forth. To see how this is done
in practice we may compute the scattering amplitude A in the effective theory, and
match the coefficients to the effective range expansion. Let’s begin using only the
first interaction term in the effective theory, corresponding to g0. Diagrammatically,
the scattering amplitude may be written as the sum of all possible bubble diagrams
(see Fig. 5.2). Because the scattering length may take on any value, as mentioned
previously, we cannot assume that the coupling g0 is small, so we should sum all
diagrams non-perturbatively. The first diagram in the sum is given by the tree level
result, g0. If we assume that the system carries energy E D p2=M, then the second
diagram may be labeled as in Fig. 5.3, and gives rise to the loop integral,

I0 D i
Z

d4q

.2�/4
1�

E=2C q0 � q2

2M � i�
� �

E=2� q0 � q2

2M C i�
� : (5.7)

Performing the integral over q0 and the solid angle gives

I0 D 1

2�2

Z ��=2

dq
q2�

E � q2

M

� (5.8)

D M

2�2

�
��

2
�pME tanh�1

�
�p
ME

�
; (5.9)
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where I have introduced a hard momentum cutoff,�. Removing the cutoff by taking
it to infinity results in

I0 �!
�!1

M

4�
Œ�C ip
 : (5.10)

Because the interaction is separable, the nth bubble diagram is given by n products
of this loop function. Thus, the scattering amplitude is factorizable, and may be
written

A D g0

"
1C

X
n

.g0I0/
n

#
(5.11)

D g0
1 � g0I0

: (5.12)

We may now compare Eqs. (5.5), (5.6) and (5.11) to relate the coupling g0 to
the scattering phase shift. This is easiest to do by equating the inverse scattering
amplitudes,

1

A
D 1

g0
� M

4�
� � iMp

4�
D � M

4�a
� iMp

4�
; (5.13)

where I have used Eq. (5.6) cut off at leading order. We now have the relation

g0 D 4�

M

1

� � 1=a
(5.14)

between the coupling and the physical scattering length.
Note that the coupling runs with the scale �; the particular dependence is

determined by the regularization and renormalization scheme chosen. In order to
understand the running of the coupling we may examine the beta function. To do so
we first define a dimensionless coupling,

Og0 � �M�

4�
g0 ; (5.15)

then calculate

ˇ .Og0/ � �@Og0
@�
D � a�

.a�� 1/2 D �Og0 .Og0 � 1/ : (5.16)

This function is a simple quadratic that is plotted in Fig. 5.4. The beta function
has two zeroes, Og0 D 0; 1, corresponding to fixed points of the theory. At a fixed
point, the coupling no longer runs with the scale �, and the theory is said to be
scale-invariant (or conformal, given some additional conditions). This means that
there is no intrinsic scale associated with the theory. The fixed point at Og0 D 0 is
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Fig. 5.4 Beta function [Eq. (5.16)] for the two-body contact interaction. Arrows represent the
direction of flow toward the IR

a trivial fixed point, and corresponds to a non-interacting, free field theory (zero
scattering length). The other, non-trivial fixed point at Og0 D 1 corresponds to a
strongly interacting theory with infinite scattering length; this is the unitary regime
mentioned previously. Here, not only does the scattering length go to infinity, as does
the size of the radial wavefunction, but the energy of the bound state (as approached
from Og0 > 1) goes to zero and all relevant scales have vanished. Note that this is
an unstable fixed point; the potential must be finely tuned to this point or else the
theory flows away from unitarity as �! 0 (IR limit).

Generally perturbation theory is an expansion around free field theory, corre-
sponding to a weak coupling expansion. This is the approach used as part of the
Weinberg power counting scheme for nuclear EFT [30, 31]. However, in some
scattering channels of interest for nuclear theory the scattering length is indeed
anomalously large, such as the 1S0 and 3S1 nucleon-nucleon scattering channels,
where

a1S0 � �24 fm ; (5.17)

a3S1 � 5 fm : (5.18)

Such large scattering lengths suggest that an expansion around the strongly coupled
fixed-point of unitarity may be a better starting point and lead to better convergence.
This approach was taken by Kaplan, Savage, and Wise and led to the KSW power-
counting scheme [32–34]. Unfortunately, nuclear physics consists of many scales of
different sizes and a consistent power-counting framework with good convergence
for all observables has yet to be developed; in general the convergence of a given
scheme depends on the scattering channels involved.
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Because nuclear physics is not weakly coupled in all channels, non-perturbative
methods, such as lattice formulations, will be favorable for studying few- and many-
body systems, where two-body pairs may interact through any combination of
channels simultaneously. Due to the scale-invariant nature of the unitary regime,
it provides a far simpler testbed for numerical calculations of strongly-interacting
theories, so we will often use it as our starting point for understanding lattice EFT
methods.

5.2.2 Lattice Effective Field Theory

Our starting point for building a lattice EFT will be the path integral formulation of
quantum field theory in Euclidean spacetime. The use of Euclidean time allows the
exponent of the path integral to be real (in certain cases), a property which will be
essential to our later use of stochastic methods for its evaluation. Given a general
theory for particles  ; � obeying a Lagrangian density

L . �;  / D  � .@� � �/ CH
�
 �; 

	
; (5.19)

where � is the Euclidean time, � the chemical potential, and H is the Hamiltonian
density, the Euclidean path integral is given by

Z D
Z

D �D e� R
d�d3xŒL . �; /
 : (5.20)

If the integral over Euclidean time is compact, then the finite time extent ˇ acts as
an inverse temperature, and we may draw an analogy with the partition function in
statistical mechanics, Z D tr

�
e�Hˇ

	
. This analogy is often useful when discussing

lattice formulations of the path integral. In this work we will generally consider
� D 0 and create non-zero particle density by introducing sources and sinks for
particles and calculating correlation functions.

We discretize this theory on a square lattice consisting of L3 � N� points, where
L is the number of points in all spatial directions, and N� is the number of temporal
points. We will focus on zero temperature physics, corresponding to large N� .3 We
must also define the physical distance between points, the lattice spacings bs; b� ,
where b� D b2s=M by dimensional analysis for non-relativistic theories. The fields
are now labeled by discrete points,  .x; �/ !  n;� , and continuous integrals are
replaced by discrete sums,

R
d3x!PL;N�

n;� .

3The explicit condition on N� required for extracting zero temperature observables will be
discussed in Sect. 5.3.
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5.2.2.1 Free Field Theory

To discretize a free field theory, we must discuss discretization of derivatives. The
simplest operator which behaves as a single derivative in the continuum limit is a
finite difference operator,

@
.L/
Ok fj D 1

bs

h
fjCOk � fj

i
; (5.21)

where Ok is a unit vector in the k-direction. The discretized second derivative operator
must involve two hops, and should be a symmetric operator to behave like the
Laplacian. A simple possibility is

r2Lfj D
X

k

1

b2s

h
fjCOk C fj�Ok � 2fj

i
: (5.22)

We can check the continuum limit by inspecting the corresponding kinetic term in
the action,

SKE /
X

j

 
�
j r2L j : (5.23)

The fields may be expanded in a plane wave basis,

 j D
L=2X

kD�L=2

 ke� 2�i
L j�k ; (5.24)

for spatial indices, j, leading to

X
j

 
�
j r2L j D 1

b2s

X
j

X
k0

X
k

 
�

k0 k

h
e
2�i
L j�k0

e
�2�i

L j�ki he �2�i
L k C e

2�i
L k � 2

i
: (5.25)

After performing the sum over j the first piece in brackets gives ıkk0 , while the second
is proportional to sin2.k�=L/, resulting in,

X
j

 
�
j r2L j D � 4

b2s

X
k

 
�
k k sin2

�
k�

L

�
: (5.26)
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Finally, expanding the sine function for small k=L gives,

X
j

 
�
j r2L j D

X
k

 
�
k k

2
4�

�
2�k

bsL

�2
C b2s
12

�
2�k

bsL

�4
C � � �

„ ƒ‚ …

3
5 ;

�p2 C b2s
12

p4 C � � � �!
bs!0
�p2 (5.27)

where I’ve used the finite volume momentum p D 2�k
bsL to rewrite the expression in

square brackets. Thus, we have the correct continuum limit for the kinetic operator.
Note that for larger momenta, approaching the continuum limit requires smaller bs.
However, this is only one possibility for a kinetic term. We can always add higher
dimension operators (terms with powers of bs in front of them), in order to cancel
leading order terms in the expansion equation (5.27). This is a form of what’s called
improvement of the action, and will be discussed in more detail in Sect. 5.4.

Adding a temporal derivative term,

@.L/�  x;� D 1

b�
Œ n;� �  n;��1
 ; (5.28)

we can now write down a simple action for a non-relativistic free-field theory,

Sfree D
X
�;� 0

1

b�
 
�

� 0 ŒK0
�;� 0  � ; (5.29)

where I’ve defined a matrix K0 whose entries are L3 � L3 blocks,

K0 �

0
BBBBBBB@

D �1 0 0 : : :

0 D �1 0 : : :

0 0 D �1 : : :
: : : : :

: : : : :

1 : : : :

1
CCCCCCCA

(5.30)

where D � 1 � b2s r2
L

2
contains the spatial Laplacian, and therefore connects fields

on the same time slice (corresponding to diagonal entries of the matrix K0), while
the temporal derivative contributes the off-diagonal pieces. Note that the choice
of “1” in the lower left corner corresponds to anti-periodic boundary conditions,
appropriate for fermionic fields. For zero temperature calculations the temporal
boundary conditions are irrelevant, and it will often be useful to choose different
temporal boundary conditions for computational or theoretical ease.
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5.2.2.2 Interactions

Now let’s discuss adding interactions to the theory. We’ll focus on the first term in
a nuclear EFT expansion, the four-fermion interaction:

Lint D
X

n

g0 n;" n;" n;# n;# ; (5.31)

where .";#/ now explicitly label the particles’ spins (or alternatively, flavors).
Because anti-commuting fields cannot easily be accommodated on a computer, they
must be integrated out analytically. The only Grassmann integral we know how
to perform analytically is a Gaussian, so the action must be bilinear in the fields.
One trick for doing this is called a Hubbard-Stratonovich (HS) transformation, in
which auxiliary fields are introduced to mediate the interaction. The key is to use
the identity,

eb� g0 
�

"
 " 

�

#
 # D 1p

2�

Z 1

�1
d�2=2�p

b�g0
�
 
�

"
 "C �

#
 #

�
; (5.32)

where I have dropped the spacetime indices for brevity. This identity may be verified
by completing the square in the exponent on the right hand side and performing the
Gaussian integral over the auxiliary field . This form of HS transformation has

the auxiliary field acting in what is called the density channel
�
 
�

" " C  �# #
�

.

It is also possible to choose the so-called BCS channel,
�
 
�

" 
�

# C  " #
�

, the

usual formulation used in BCS models, however this causes a so-called sign
problem when performing Monte Carlo sampling, as will be discussed in detail in
Sect. 5.3.1.1. Transformations involving non-Gaussian auxiliary fields may also be
used, such as

Z2 field:
1

2

X
D˙1

e�p
b� g0

�
 
�

"
 "C �

#
 #

�

compact continuous:
1

2�

Z �

��
e� sin

p
b� g0

�
 
�

"
 "C �

#
 #

�
: (5.33)

These formulations may have different pros and cons in terms of computational
and theoretical ease for a given problem, and should be chosen accordingly.
For example, the Z2 interaction is conceptually and computationally the simplest
interaction, however, it also induces explicit 4- and higher-body interactions in
systems involving more than two-components which may not be desired.
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5.2.2.3 Importance Sampling

The action may now be written with both kinetic and interaction terms,

S D 1

b�

X
�;� 0

 
�

� 0 ŒK./
� 0�  � ; (5.34)

where the matrix K includes blocks which depend on the auxiliary field , and also
contains non-trivial spin structure that has been suppressed. The partition function
can be written

Z D
Z

DD �D �Œ
e�SŒ; � 
 ; (5.35)

where the integration measure for the  field, �Œ
, depends on the formulation
chosen,

�Œ
 D
8<
:

Q
n e�2n=2 GaussianQ

n
1
2



ın;1 C ın;�1

�
Z2Q

n .�.�� C n/�.� � n// compact continuous
: (5.36)

With the action in the bilinear form of Eq. (5.34), the  fields can be integrated
out analytically, resulting in

Z D
Z

DPŒ
 PŒ
 � �Œ
 det KŒ
 : (5.37)

Observables take the form

hOi D 1

Z

Z
DPŒ
OŒ
 : (5.38)

Through the use of discretization and a finite volume, the path integral has been
converted into a standard integral with finite dimension. However, the dimension is
still much too large to imagine calculating it on any conceivable computer, so we
must resort to Monte Carlo methods for approximation. The basic idea is to generate
a finite set of  field configurations of size Ncfg according to the probability measure
PŒ
, calculate the observable on each of these configurations, then take the mean
as an approximation of the full integral,

hOi � 1

Ncfg

NcfgX
n

O.n/ : (5.39)
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Assuming the central limit theorem holds, for Ncfg large enough (a non-trivial con-
dition, as will be discussed in Sect. 5.3.2), the distribution of the mean approaches a
Gaussian, and the error on the mean falls off with the square root of the sample size.

There are several algorithms on the market for generating field configurations
according to a given probability distribution, and I will only briefly mention a few.
Lattice calculations are particularly tricky due to the presence of the determinant
in Eq. (5.37), which is a highly non-local object and is very costly to compute.
One possible algorithm to deal with this is called determinantal Monte Carlo,
which implements local changes in , followed by a simple Metropolis accept/reject
step. This process can be rather inefficient due to the local updates. An alternative
possibility is Hybrid Monte Carlo, commonly used for lattice QCD calculations,
in which global updates of the field are produced using molecular dynamics as
a guiding principle. Note that the field  must be continuous in order to use this
algorithm due to the use of classical differential equations when generating changes
in the field. Also common in lattice QCD calculations is the use of pseudofermion
fields as a means for estimating the fermion determinant. Here the determinant is
rewritten in terms of a Gaussian integral over bosonic fields, �,

det KŒ
 /
Z

D��D�e���K�1Œ
� : (5.40)

This integral is then evaluated stochastically. These are just a sample of the available
algorithms. For more details on these and others in the context of non-relativistic
lattice field theory, see [41].

5.2.2.4 Example Formulation

Now that we have developed a general framework for lattice EFT, let’s be explicit
and make a few choices in order to further our understanding and make calculations
simpler. The first choice I’m going to make is to use a Z2 field, so that �Œ
 is
trivial. The next simplification I’m going to make is to allow the  fields to live only
on temporal links,

Lint D
X

x

p
b�g0x;� 

�
x;� x;��1 : (5.41)

Note that we are free to make this choice, so long as the proper four-fermion
interaction is regained in the continuum limit. This choice renders the interaction
separable, as it was in our continuum effective theory. This means we may
analytically sum two-body bubble chain diagrams as we did previously in order
to set the coupling g0 using some physical observable (see Fig. 5.5).
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Fig. 5.5 Two-body scattering amplitude of Fig. 5.2, where the contact interaction has been
replaced in the second line by exchange of a dimer auxiliary field via a Hubbard-Stratonovich
transformation

With this choice we can now write the K-matrix explicitly as

KŒ;N� 
 �

0
BBBBBBB@

D �X.N��1/ 0 0 : : :

0 D �X.N��2/ 0 : : :

: : : :

: : : :

: : : D X.0/
X.N� / : : 0 D

1
CCCCCCCA
; (5.42)

where X.� / � 1 � pg0� . Now the -dependence exists only on the upper
diagonal, as well as the lower left due to the boundary condition. This block will
be eliminated through our final choice: open boundary conditions in time for the  
fields, X.N� / D 0. As mentioned previously, we are free to choose the temporal
boundary conditions as we please, so long as we only consider zero temperature
(and zero chemical potential) observables.

With this set of choices the matrix K consists purely of diagonal elements, D,
and upper diagonal elements, X.� /. One property of such a matrix is that the
determinant, which is part of the probability distribution, is simply the product of
diagonal elements, det K D Q

� D. Note that D is completely independent of the
field . This means that the determinant in this formulation has no impact on the
probability distribution PŒ
, and therefore never needs to be explicitly computed,
greatly reducing the computational burden. Thus in all of our calculations, perform-
ing the path integral over  simply amounts to summing over  D ˙1 at each lattice
site.

Finally, this form of K also makes the calculation of propagators very simple.
The propagator from time 0 to � may be written,

K�1.�; 0/ D D�1X.��1/D�1X.��2/D�1 � � �X.0/D�1

D D�1X.��1/K�1.� � 1; 0/ ; (5.43)

where K�1.0; 0/ D D�1, and all entries are V�V matrices, with V D L3, which may
be projected onto the desired state. This form suggests a simple iterative approach
to calculating propagators: start with a source (a spatial vector projecting onto some
desired quantum numbers and interpolating wavefunction), hit it with the kinetic
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Fig. 5.6 Schematic of a lattice calculation for a two-particle correlation function. The two
particles (red and blue lines) propagate through the lattice between source  .0/ and sink  .�/,
seeing particular values of the auxiliary field, , on each time link. If two particles occupy the
same temporal link, then upon summation over all possible values of  at each link, a non-zero
contribution is generated by the interaction term because h2i ¤ 0

energy operator corresponding to free propagation on the time slice, then hit it with
the  field operator on the next time link, then another free kinetic energy operator,
and so on, finally projecting onto a chosen sink vector.

As will be discussed further in Sect. 5.4, it is often preferable to calculate the
kinetic energy operator in momentum space, while the auxiliary field in X./
must be generated in position space. Thus, Fast Fourier Transforms (FFTs) may
be used between each operation to quickly translate between the bases. Example
code for generating source vectors, kinetic operators, and interaction operators will
be provided in later sections.

A cartoon of this process on the lattice is shown in Fig. 5.6. The choice of Z2
auxiliary fields also simplifies the understanding of how four-fermion interactions
are generated. On every time link, imagine performing the sum over  D ˙1. If
there is only a single fermion propagator on a given link this gives zero contribution
because the term is proportional to

P
D˙1

p
g0 D 0. However, on time slices

where two propagators overlap, we have instead
P

D˙1 g02 D 2g0. In sum,
anywhere two fermions exist at the same spacetime point a factor of g0 contributes,
corresponding to an interaction.

5.2.2.5 Tuning the Two-Body Interaction

There are several ways to set the two-body coupling. Here we will explore two
methods, using different two-body observables. The first involves calculating the
two-particle scattering amplitude, and tuning the coupling to reproduce known
scattering parameters, to make a connection with our previous calculation for the
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effective theory. The second method uses instead the energy spectrum of a two-
particle system in a box. This powerful method will be useful later when we begin
to improve the theory in order to reduce systematic errors.

We have calculated the scattering amplitude previously for our effective theory
using a momentum cutoff. For the first method for tuning the coupling, we will
calculate it again using our lattice theory with the lattice cutoff as a regulator. First
we need the single particle free propagator:

G0.�;p/ D hp; � j


D�1��C1 jp; 0i D

�
1C �. p/

M

��.�C1/
; (5.44)

�. p/ � �1
2
hpjr2Ljpi

D
X

i

sin2
pi

2
;

where I’ve set bs D 1 (we will use this convention from now on until we begin
to discuss systematic errors), and have used the previously defined discretized
Laplacian operator. I’ve written the propagator in a mixed p; � representation, as
this is often useful in lattice calculations for calculating correlation functions in
time when the kinetic operator, D, is diagonal in momentum space.

The diagrammatic two-particle scattering amplitude is shown on the bottom line
in Fig. 5.5. Because we have chosen the interaction to be separable, the amplitude
can be factorized:

A D g0

"
1C

X
n

.g0 OL/n
#
D g0

1 � g0 OL
; (5.45)

where the one loop integral, OL, will be defined below. As before, in order to set a
single coupling we need one observable, so we use the effective range expansion for
the scattering phase shift to leading order,

A D 4�

M

1

p cot ı � ip
� �4�a

M
: (5.46)

Relating Eqs. (5.45), (5.46), we find

1

g0
D � M

4�a
C OL : (5.47)
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We will now evaluate the loop integral using the free single particle propagators,
Eq. (5.44),

OL D 1

V

X
p

1X
�D0

ŒG0.�;p/

2

D 1

V

X
p

1X
�D0

1�
1C �. p/

M

�2�C2

D 1

V

X
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1C �. p/

M
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2
6641C

1X
�D0

1��
1C �. p/

M

�2�

3
775

D 1

V

X
p

M

2

1

�. p/
�
1C �. p/

2M

� : (5.48)

This final sum may be calculated numerically for a given M and L (governing the
values of momenta included in the sum), as well as for different possible definitions
of the derivative operators contained in �, giving the desired coupling, g0, via
Eq. (5.47).

The second method for setting the coupling utilizes the calculation of the ground
state energy of two particles. We start with the two-particle correlation function,

C2.�/ D 1

Z

Z
DD �D e�SŒ � ; ;
��

src,2�snk,2 ; (5.49)

where �src,2(snk,2) is a source (sink) wavefunction involving one spin up and one spin
down particle. Integrating out the fermion fields gives,

C2.�/ D 1

Z

Z
DPŒ
h�snk,2jK�1.�; 0/˝ K�1.�; 0/j�src,2i

D 1

4�

X
D˙1
h�snk,2jD�1

˝D�1X.�/˝ X.� /D
�1 ˝D�1X.��1/˝ X.��1/ � � � j�src,2i :

(5.50)
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I will now write out the components of the matrices explicitly:

C2.�/ D 1

4�

X
x1x2x0

1x0

2���y1y2

X
x1x0

1
���D˙1

h�snk,2jx1x2iD�1
x1x

0

1
D�1

x2x0

2
.ıx1x0

1
Cpg0x1ıx1x

0

1
/

.ıx2x0

2
Cpg0x2ıx2x

0

2
/

�D�1
x0

1x00

1
D�1

x2x00

2
� � � hy1y2j�src,2i : (5.51)

The first (last) piece in angle brackets represents the position space wavefunction
created by the sink (source). All  fields in Eq. (5.51) are uncorrelated, so we can
perform the sum for each time slice independently. One such sum is given by,

1

4

X
x1x0

1x2x0

2

X
x1x2

ıx1x0

1
ıx2x

0

2
.1Cpg0x1 C

p
g0x2 C g0x1x2 /

D
X
x1x2

.1C g0ıx1x2 / ; (5.52)

where the cross terms vanish upon performing the sum. If we make the following
definitions,

hx1x0
1jD�1jx2x0

2i � D�1
x1x0

1
D�1

x2x0

2
; hx1x2jV jx0

1x
0
2i � g0ıx1x0

1
ıx2x0

2
ıx1x2 ; (5.53)

then we can write the two-particle correlation function as,

C2.�/ D h�snk,2jD�1.1C V /D�1.1C V / � � �D�1.1C V /D�1j�srci
D h�snkjD�1=2T D�1=2j�src,2i ; (5.54)

where I have made the definition

T � D�1=2.1C V /D�1=2 : (5.55)

Recall from statistical mechanics that correlation functions may be written as �
insertions of the transfer matrix, e�H , acting between two states,

C.�/ D h�snk,2je�H� j�src,2i
D h�snk,2j

�
e�H

	� j�src,2i : (5.56)

Then we may identifyT in Eq. (5.55) as the transfer matrix of the theory,T D e�H .
This in turn implies that the logarithm of the eigenvalues of T give the energies of
the two-particle system.
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We will now evaluate the transfer matrix in momentum space:

hpqjT jp0q0i D
X
kk0ll0

hpqjD�1=2jklihklj1C V jk0l0ihk0l0jD�1=2jp0q0i
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D ıpp0ıqq0 C g0
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�. p/�.q/�.q0/�. p0/
; (5.57)

where I have made the definition,

�. p/ � 1C �.q/

M
: (5.58)

The eigenvalues of the matrix T may be evaluated numerically to reproduce the
entire two-particle spectrum. However, for the moment we only need to set a single
coupling, g0, so one eigenvalue will be sufficient. The largest eigenvalue of the
transfer matrix, corresponding to the ground state, may be found using a simple
variational analysis.4 Choosing a simple trial state wavefunction,

hpqj� i D  . p/p
V
ıp;�q ; (5.59)

subject to the normalization constraint,

1

V

X
p

j . p/j2 D 1 ; (5.60)

we now need to maximize the following functional:
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(5.61)

4Many thanks to Michael Endres for the following variational argument.
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where � is a Lagrange multiplier enforcing the normalization constraint, and I
have used the fact that �. p/ is symmetric in p to simplify the expression. Taking
a functional derivative with respect to  �.q/ on both sides gives

� � .q/C  .q/

�2.q/
C g0

V

X
p

 . p/

�. p/�.q/
D 0 ; (5.62)

where I have set the expression equal to zero in order to locate the extrema.
Rearranging this equation, then taking a sum over q on both sides gives
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 . p/
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; (5.63)

finally resulting in

1 D g0
V

X
q

1

��2.q/� 1 : (5.64)

We now have an equation involving two unknowns, � and g0. We need a second
equation in order to determine these two parameters. We may use the constraint
equation to solve for  . p/, giving

 . p/ D N
�. p/

��2. p/� 1 ;
1

N 2
D 1

V

X
p

�2. p/

Œ��2. p/� 1
2 : (5.65)

Plugging this back in to our transfer matrix we find,

h� jT j� i D � : (5.66)

This tells us that � is equivalent to the eigenvalue we sought, E0 D � ln�.g0/. As
a check, we can compare Eqs. (5.47), (5.64) in the unitary limit: a ! 1; � ! 1,
giving

1

g0
D M

2V

X
p

1

�


1C �

2M

� (5.67)

for both equations.
In Sect. 5.2.2.5 we will discuss a simple formalism for determining the exact two

particle spectrum in a box for any given scattering phase shift. This will allow us to
eliminate certain finite volume systematic errors automatically. The transfer matrix
method is also powerful because it gives us access to the entire two particle, finite-
volume spectrum. When we discuss improvement in Sect. 5.4.2, we will add more
operators and couplings to the interaction in order to match not only the ground
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state energy we desire, but higher eigenvalues as well. This will allow us to control
the interaction between particles with non-zero relative momentum. To gain access
to higher eigenvalues, the transfer matrix must be solved numerically, however, this
may be accomplished quickly and easily for a finite volume system.

5.3 Calculating Observables

Perhaps the simplest observable to calculate using lattice (or any imaginary time)
methods is the ground-state energy. While the two-body system may be solved
exactly and used to set the couplings for two-body interactions, correlation functions
for N-body systems can then be used to make predictions. However, the transfer
matrix for N & 4 cannot in general be solved exactly, because the dimension of
the matrix increases with particle number. For this reason we form instead N-body
correlation functions,

CN.�/ D 1

Z

Z
DD �D e�SŒ �; ;
�

.b/
b1���bN

.�/��.a/
a1���aN

.0/ ; (5.68)

where

�.a/�
a1���aN

.�/ D
Z

dx1 � � � dxNA.a/.x1 � � � xN/ a1 .x1; �/ � � � aN .xN ; �/ (5.69)

is a source for N particles with spin/flavor indices a1 � � � aN , and a spatial wave-
function A.a/.x1 � � � xN/. For the moment the only requirement we will make of the
wavefunction is that it has non-zero overlap with the ground-state wavefunction (i.e.
it must have the correct quantum numbers for the state of interest).

Recall that a correlation function consists of � insertions of the transfer matrix
between source and sink. We can then expand the correlation function in a basis of
eigenstates,

CN.�/ D 1

Z
h Q�.a/

a1���aN
je�H� j Q�.b/

b1���bN
i D 1

Z

X
m;n

h Q�.a/
a1���aN
jmihmje�H� jnihnj Q�.b/

b1���bN
i

D
X

m

Z.a/m Z�.b/
m e�En� ; (5.70)

where Z.a/m is the overlap of wavefunction a with the energy eigenstate m, and En

is the nth eigenvalue of the Hamiltonian. In the limit of large Euclidean time (zero
temperature), the ground state dominates,

CN.�/ �!
�!1 Z.a/0 Z�.b/

0 e�E0� ; (5.71)
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with higher excited states exponentially suppressed by � e��n0� , where �n0 �
En � E0 is the energy splitting between the nth state and the ground state. It should
be noted that for a non-relativistic theory the rest masses of the particles do not
contribute to these energies, so the ground state energy of a single particle at rest is
E0 D 0, in contrast to lattice QCD formulations.

In this way, we can think of the transfer matrix as acting as a filter for the ground
state, removing more excited state contamination with each application in time. A
common method for determining the ground state energy from a correlation function
is to construct the so-called effective mass function,

Meff.�/ � ln
C.�/

C.� C 1/ �!�!1 E0 ; (5.72)

and look for a plateau at long times, whose value corresponds to the ground-state
energy.

Once the ground state has been isolated, we can calculate matrix elements with
the ground state as follows,

h�.a/a1���aN jA.� 0/j�.b/b1���bN
i D

X
lmnq

h�.a/a1���aN jlihlje�H.��� 0/jmihmjAjnihnje�H� 0 jqihqj�.b/b1 ���bN
i

D
X

ln

Z.a/l Z�.b/
n e�El.��� 0/e�En�

0hmjAjni : (5.73)

To filter out the ground state, the matrix element insertion A must be placed
sufficiently far in time from both source and sink, f�l0.� � � 0/;�n0�

0g � 1,

�!
�;� 0!1 Z.a/0 Z�.b/

0 e�E0� h0jAj0i : (5.74)

In order to isolate the matrix element and remove unknown Z factors and ground
state energies, ratios may be formed with correlation functions at various times,
similar to the effective mass function.

Another observable one may calculate using lattice methods is the scattering
phase shift between interacting particles. Because all lattice calculations are per-
formed in a finite volume, which cannot accommodate true asymptotic scattering
states, direct scattering measurements are not possible. However, a method has been
devised by Lüscher which uses finite volume energy shifts to infer the interaction,
and therefore, the infinite volume scattering phase shift. The Lüscher method will
be discussed further in Sect. 5.4.2.1. Because the inputs into the Lüscher formalism
are simply energies, correlation functions may be used in the same way as described
above to produce this data.
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5.3.1 Signal-to-Noise

Recall that we must use Monte Carlo methods to approximate the partition function
using importance sampling,

C.�/ � 1

Ncfg

NcfgX
iD1

C.i; �/ �!
�!1 Z0e

�E0� ; (5.75)

where C.i; �/ is the operator for some correlation function of interest evaluated
on a single configuration i, and the set of all fields, , are generated according to
the appropriate probability distribution. In the long Euclidean time limit we expect
that this quantity will give us an accurate value for the ground state energy. As stated
previously, if the ensemble is large enough for the central limit theorem to hold, then
the error on the mean (noise) will be governed by the sample standard deviation,

�2C.�/ D
1

Ncfg

2
64

NcfgX
iD1
jC.i; �/j2 �

ˇ̌
ˇ̌
ˇ̌

NcfgX
iD1

C.i; �/

ˇ̌
ˇ̌
ˇ̌
2
3
75 : (5.76)

As an example of how to estimate the size of the fluctuations relative to the signal,
let’s consider a single particle correlation function, consisting of a single propagator,

1

Z

Z
DP./h�ajK�1.; �/j�bi � 1

Ncfg

NcfgX
iD1

K�1
ab .i; �/ ; (5.77)

where the indices fabg indicate projection onto the states specified by the
source/sink. In the large Euclidean time limit, this object will approach a constant,
Z0, because the ground state energy for a single particle is E0 D 0. For the non-
relativistic theory as we have set it up, the matrix K is real so long as g0 > 0

(attractive interaction). The standard deviation is then given by

�2C1 .�/ D
1

Ncfg

2
64

NcfgX
iD1
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ab .i; �/
�2 �
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75 : (5.78)

The second term on the right hand side of the above equation is simply the square of
the single particle correlation function, and will therefore also go to a constant, Z20 ,
for large Euclidean time. To gain an idea of how large the first term of �2C1 is, let’s
take a look at a correlation function for one spin up and one spin down particle,

C2.�/ D 1

Z

Z
DD �D e�SŒ �; ;
 

.b/
" .�/ 

.b/
# .�/ 

�.a/
" .0/ 

�.a/
# .0/ ; (5.79)
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where I have chosen the same single particle source (sink),  .a/ ( .b/), for both
particles (this is only allowed for bosons or for fermions with different spin/flavor
labels). After integrating out the  fields we have

C2.�/ D 1

Z

Z
DP./K�1

ab .; �/K
�1
ab .; �/ ; (5.80)

which is approximately given by

C2.�/ � 1

Ncfg

NcfgX
iD1

�
K�1

ab .i; �/
	2
: (5.81)

This is precisely what we have for the first term on the right hand side of Eq. (5.78).
Therefore, this term should be considered a two-particle correlation function, whose
long Euclidean time behavior is known. Note that we must interpret this quantity as
a two-particle correlation function whose particles are either bosons or fermions
with different spin/flavor labels due to the lack of anti-symmetrization.

We may now write the long-time dependence of the variance of the single particle
correlator as

�2C1 .�/ � C2.�/ � .C1.�//2 �!
�!1 Z2e

�E
.2/
0 � � Z21 ; (5.82)

where E.2/0 is the ground state energy of the two-particle system. For a two-body

system with an attractive interaction in a finite volume, E.2/0 < 0, and we may write

�2C1 .�/ �!�!1 Z2e
E
.2/
B � � Z21 ; (5.83)

where I’ve defined E.2/B � �E.2/0 . This tells us that �2C1 , and therefore the noise,
grows exponentially with time. We can write the signal-to-noise ratio RC1 .�/ as

RC1.�/ �
C1.�/
1p
Ncfg
�C1 .�/

�!
�!1

p
Ncfg

Z1p
Z2eE

.2/
B �=2

DpNcfg

Z1p
Z2

e�E
.2/
B �=2 ; (5.84)

where I’ve dropped the constant term in �2C1 , because it is suppressed in time relative
to the exponentially growing term. This expression indicates that the signal-to-noise
ratio itself grows exponentially with time, and therefore an exponentially large Ncfg

will be necessary to extract a signal at large Euclidean time. Unfortunately, large
Euclidean time is necessary in order to isolate the ground state.

This exponential signal-to-noise problem is currently the limiting factor in
system size for the use of any lattice method for nuclear physics. Here, we will
discuss it in some detail because in many cases understanding the physical basis
behind the problem can lead to methods for alleviation. One method we can use is to
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employ knowledge of the wavefunction of the signal and/or the wavefunction of the
undesired noise in order to maximize the ratio of Z-factors, Z1=

p
Z2. For example,

choosing a plane wave source for our single particle correlator gives perfect overlap
with the desired signal, but will give poor overlap with the bound state expected
in the noise. This leads to what has been referred to as a “golden window” in time
where the ground-state dominates before the noise begins to turn on [42]. In general,
choosing a perfect source for the signal is not possible, however, a proposal for
simultaneously maximizing the overlap with the desired state as well as reducing the
overlap with the noise using a variational principle has been proposed in [43, 44].
We will discuss other methods for choosing good interpolating fields in Sect. 5.3.3,
in order to allow us to extract a signal at earlier times where the signal-to-noise
problem is less severe.

Another situation where understanding of the noise may allow us to reduce the
noise is when the auxiliary fields and couplings used to generate the interactions
can often be introduced in different ways, for instance, via the density channel vs.
the BCS channel as mentioned previously. While different formulations can give
the same effective interaction, they may lead to different sizes of the fluctuations.
Understanding what types of interactions generate the most noise is therefore
crucial. This will become particularly relevant when we discuss adding interactions
beyond leading order to our EFT in Sect. 5.5, where different combinations of
interactions can be tuned to give the same physical observables.

Let’s now discuss what happens to �2C1 if we have a repulsive interaction (g0 < 0).
Because nuclear potentials have repulsive cores, such a scenario occurs for inter-
actions at large energy. Since the auxiliary-field-mediated interaction is given byp

g0 � , this implies that the interaction is complex. Our noise is now given by

�2C1 .�/ D
1

Ncfg

NcfgX
iD1

K�1
ab .i; �/

�
K�1

ab .i; �/
	� � jC1.�/j2 : (5.85)

Recall that the single particle propagator can be written

K�1.i; �/ D D�1X.i;� /D
�1X.i;��1/ � � � X.i;� / D 1Cpg0i;� : (5.86)

The complex conjugate of the propagator then corresponds to taking  ! �,

�
K�1.i; �/

	� D D�1X.�i;� /D
�1X.�i;��1/ : (5.87)

Again,  fields on different time slices are independent, so we may perform each
sum over  D ˙1 separately. Each sum that we will encounter in the two-particle
correlator consists of the product of X.� /X.��/,

X


.1Cpg0/.1 �pg0/ D 1 � g20 D 1C jg0j2 ; (5.88)
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which is exactly the same as we had for the attractive interaction. This implies that
even though the interaction in the theory we’re using to calculate the correlation
function is repulsive, the noise is controlled by the energy of two particles with an
attractive interaction, which we have already investigated. In this particular case for
a single particle propagator, the signal-to-noise ratio is the same regardless of the
sign of the interaction.5

In general, however, signal-to-noise problems for systems with repulsive interac-
tions are exponentially worse than those for attractive interactions. This is because
generically the signal-to-noise ratio falls off as,

R � e�.ES �EN =2/� ; (5.89)

where ES .N / is the ground-state energy associated with the signal (noise). Because
the signal corresponds to a repulsive system while the noise corresponds to an
attractive system, the energy difference in the exponential will be greater than for a
signal corresponding to an attractive system.

5.3.1.1 Sign Problems

A related but generally more insidious problem can occur in formulations having
fermion determinants in the probability measure, known as a sign problem. A sign
problem occurs when the determinant is complex, for example, in our case of a
repulsive interaction. While we were able to eliminate the fermion determinant in
one particular formulation, there are situations when having a fermion determinant
in the probability measure may be beneficial, for example, when using forms of
favorable reweighting, as will be discussed later on, or may be necessary, such as
for non-zero chemical potential or finite temperature, when the boundary conditions
in time may not be altered. For these reasons, we will now briefly discuss sign
problems.

The basic issue behind a sign problem is that a probability measure, by definition,
must be real and positive. Therefore, a complex determinant cannot be used for
importance sampling. Methods to get around the sign problem often result in
exponentially large fluctuations of the observable when calculated on a finite
sample, similar to the signal-to-noise problem (the two usually result from the
same physical mechanism). One particular method is called reweighting, in which

5This argument is somewhat simplified by our particular lattice setup in which we have no fermion
determinant as part of the probability measure. For cases where there is a fermion determinant,
there will be a mismatch between the interaction that the particles created by the operators
see (attractive) and the interaction specified by the determinant used in the probability measure
(repulsive). This is known as a partially quenched theory, and is unphysical. However, one may
calculate a spectrum using an effective theory in which valence (operator) and sea (determinant)
particles are treated differently. Often it is sufficient to ignore the effects from partial quenching
because any differences contribute only to loop diagrams and may be suppressed.
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a reshuffling occurs between what is considered the “observable” and what is
considered the “probability measure”. For example, when calculating an observable,

hOi D 1

Z

Z
DP./O./ ; (5.90)

when P./ is complex, we can multiply and divide by the magnitude of P./ in
both numerator and denominator,

hOi D
R
DjP./jP./O./jP./jR
DjP./j P./

jP./j
; (5.91)

as well as multiply and divide by QZ �
R
DjP./j,

hOi D
R
DjP./jP./O./jP./j

QZ

,R
DjP./j P./

jP./j
QZ

D hO 0ijPj
ıhO 00ijPj ; (5.92)

where

O 0 � P./O./

jP./j ; O 00 � P./

jP./j ; (5.93)

and h� � � ijPj implies that the path integrals in the expectation values use the measure
jP./j. The advantage is that now the probability measure used for sampling is
real and positive, at the cost of having to calculate two observables, O 0;O 00. The
real disadvantage, however, is that the second observable, O 00 corresponds to the
complex phase of the original measure, P./, which is highly oscillatory from field
configuration to field configuration.

We can measure the size of the fluctuations of the phase of P./ D Œdet K./
2,
corresponding to a two-spin (or flavor) theory with a repulsive interaction,

hO 00ijPj D
R
D det K./ det K�./R

D Œdet K./
2
: (5.94)

The denominator of the above ratio corresponds to the partition function of
the original theory which has two spins of particles interacting via a repulsive
interaction. The numerator also corresponds to the partition function of a two-spin
theory. However, recall that K�./ corresponds to a propagator with the opposite
sign on the interaction term. Because fermions of the same spin don’t interact (Pauli
principle), the only interaction in this theory is that between two particles of opposite
spin, which we established previously will be an attractive interaction due to the sign
flip on K�./. Thus, the numerator corresponds to the partition function of a two-
spin theory with an attractive interaction.
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A partition function is simply the logarithm of the free energy, Z D e�ˇF . For a
system in a finite volume at zero temperature this becomes Z D e�VE0 , where E0 is
the energy density of the ground state of the theory. This implies that

hO 00ijPj �
�!1 e�V.E

.rep/
0 �E

.att/
0 / ; (5.95)

where E
.rep/
0 (E .att/

0 ) is the energy density of the ground state of the repulsive

(attractive) theory. Generically, E .att/
0 	 E

.rep/
0 , for theories which are identical up to

the sign of their interaction. This may be shown using the Cauchy-Schwarz theorem,

hj det K./ji 	 jhdet K./ij : (5.96)

Therefore, hO 00ijPj will be exponentially small for large Euclidean times so long as

E
.rep/
0 ¤ E

.att/
0 . The variance, on the other hand, is

hjO 00j2ijPj � jhO 00ijPjj2 D h1i � jhO 00ijPjj2 �
�!1 1 � e�2V.E

.rep/
0 �E

.att/
0 / � 1 : (5.97)

So again, we have an exponentially small signal-to-noise ratio at large Euclidean
time for the observable O 00. This argument is very similar to our signal-to-noise
argument for correlation functions. In general, if a theory has a sign problem
there will be a corresponding signal-to-noise problem for correlation functions. The
reverse is not always true, however, because reweighting is only necessary when
the integration measure is complex, so even if there is a signal-to-noise problem
in calculating correlation functions (as there is for an attractive interaction), a sign
problem may not arise. Sign problems are in general far more problematic due to
the exponential scaling with the volume, and because correlation functions give us
the additional freedom of choosing interpolating fields in order to try to minimize
the noise. In some cases, however, it may be possible to use knowledge learned from
signal-to-noise problems in order to solve or reduce sign problems, and vice-versa
[45–47].

5.3.1.2 Noise in Many-Body Systems

Let us now discuss signal-to-noise ratios for N-body correlation functions. First,
we’ll look at the two-particle case. We have already defined the correlation function
for two particles with different spin/flavor labels,

C2.�/ D h
�
K�1

ab .i; �/
	2i : (5.98)
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The variance is given by

�2C2 .�/ D h
�
K�1

ab .i; �/
	4i � .C2.�//2 : (5.99)

It is simple to see that the first term in this expression corresponds to a four-particle
correlation function, where each particle has a different flavor/spin index (because
there is no anti-symmetrization of the fermion fields). Thus, we can write,

�2C2 .�/ D C4.�/� .C2.�//2 ; (5.100)

where C4.�/ corresponds to a correlator with four particles having different flavors.
This is much like a correlator for an alpha particle in the spin/flavor SU.4/ limit,
thus, it will be dominated at large times by the binding energy, E.4/B , of a state with
a large amount of binding energy per particle. Our signal-to-noise ratio is then,

RC2 .�/ �
�!1

eE
.2/
B �

eE
.4/
B �=2

; (5.101)

where, E.4/B =2 > E.2/B . Therefore, the signal-to-noise ratio is again falling off
exponentially in time; this problem clearly becomes worse as the coupling becomes
stronger. Finally, we can consider a many-body correlator composed of a Slater
determinant over N single-particle states in a two spin/flavor theory,

C2N.�/ D h
�
det K�1.i; �/

	2i : (5.102)

The ground state of this correlator will be either a BEC or BCS state, as discussed
earlier in Sect. 5.2.1.1. The noise, on the other hand, will be dominated by a system
of alpha-like clusters, since the number of flavors in the noise is always double that
of the signal, which can bind to form nuclei. The ground-state energy of this bound
state will clearly be much lower than that of a dilute BEC/BCS state, and our signal-
to-noise ratio will be exponentially small in the large time limit.

In general this pattern continues for fermion correlators with any number of
particles, spins, and flavors. This is because doubling the number of flavors reduces
the amount of Pauli repulsion in the resulting expression for the variance. Even for
bosonic systems signal-to-noise can be a problem, simply as a result of the Cauchy-
Schwarz triangle inequality, which tells you that, at best, your signal-to-noise
ratio can be 1, corresponding to a non-interacting system. Turning on interactions
then generally leads to exponential decay of the signal-to-noise ratio. Signal-to-
noise problems also generally scale exponentially with the system size, leading to
limitations on system size based on computational resources. Thus, understanding
and combatting signal-to-noise problems is paramount to further development in the
field.
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5.3.2 Statistical Overlap

For the lattice formulations we have thus far explored one generates configurations
according to the probability distribution associated with the vacuum. One then
introduces sources to create particles, which are considered part of the “observable”.
However, the configurations which are the most important for creating the vacuum
may not necessarily be the most important for the observable one wishes to
calculate.

We can look to lattice QCD for a pedagogical example. In QCD, the fermion
determinant encodes vacuum bubbles created by quark/anti-quark pairs. According
to the tenets of confinement, bubbles with large spacetime area require a large
energy to produce, and are therefore highly suppressed in the partition function.
When doing importance sampling, small vacuum bubbles will dominate. On the
other hand, if we now calculate an observable which introduces particle sources,
a configuration involving a large vacuum bubble may become very important to
the calculation. This is because the total relevant spacetime area of the given
configuration, taking into account the particles created by the sources, can in fact be
small (see Fig. 5.7). However, by sampling according to the vacuum probability, this
configuration will be missed, skewing the calculation in an unknown manner. The
farther the observable takes us from the vacuum, the worse this problem becomes,
making this a particularly troublesome issue for many-body calculations.

Such problems are referred to as statistical overlap problems. Another situation
where these overlap problems can often occur is when doing reweighting to evade a
sign problem, as discussed in Sect. 5.3.1.1. For example, if the distribution being
sampled corresponds to a theory with an attractive interaction, but the desired

Fig. 5.7 A schematic of an example configuration in LQCD which may lead to a statistical over-
lap problem. Red propagators correspond to valence quarks (quarks created by the sources/sinks in
the operator), while blue corresponds to sea quarks (vacuum bubbles generated via Monte Carlo).
Due to confinement, large bubbles (determined by the area enclosed by the blue propagator) are
suppressed in the QCD vacuum and thus will likely be thrown out during importance sampling. In
the presence of quark sources, however, these configurations are very important in the calculation
of the observable (due to the small area enclosed between the red and blue propagators)
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Fig. 5.8 Schematic drawing of a long-tailed probability distribution (blue) which leads to an
overlap problem. Monte Carlo sampling leads to a sample distribution which is centered around
the peak of the underlying distribution (red), far from the mean. The ideal probability distribution
one would like to sample is narrow and centered around the mean (green)

observable has a repulsive interaction, the Monte Carlo sampling will be unlikely to
pick up the most relevant configurations, affecting the numerator of Eq. (5.92).

We can understand the problem further by studying probability distributions of
observables. While the distribution of the sampled field,  in our case, may be
peaked around the mean value of , the distribution of the observable as calculated
over the sample may not be peaked near the true mean of the observable. Such
a distribution necessarily has a long tail. Plotting histograms of the values of the
observable as calculated over the sample, fC.1/;C.2/; � � �C.Ncfg/g, can allow us
to gain an idea of the shape of the distribution for that observable. An example of
a distribution with a statistical overlap problem is plotted in Fig. 5.8. In this case,
the peak of the distribution is far from the true mean. Values in the tail of the
distribution have small weight, and are likely to be thrown out during importance
sampling, skewing the sample mean without a corresponding increase in the error
bar. The error bar is instead largely set by the width of the distribution near the
peak. One way to determine whether there is an overlap problem is to recalculate
the observable on a different sample size; if the mean value fluctuates significantly
outside the original error bar this indicates an overlap problem.

The central limit theorem tells us that regardless of the initial distribution we pull
from, the distribution of the mean should approach a Gaussian for a large enough
sample size, so in principle we should be able to combat an overlap problem by
brute force. However, what constitutes a “large enough” sample size is dictated by
the shape of the original distribution. The Berry-Esseen theorem [48, 49] can be
used to determine that the number of configurations necessary to assume the central
limit theorem applies is governed by

p
Ncfg � hX 3i

hX 2i3=2 ; (5.103)
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where hX ni is the nth moment of the distribution of an observable,X . Thus, a large
skewness, or long tail, increases the number of configurations necessary before the
central limit theorem applies, and therefore, to trust an error bar determined by the
standard deviation of the distribution of the mean.

One could imagine repeating an argument similar to that made for estimating
the variance of our correlation functions in order to estimate the third moment. For
example, if our observable is the two-particle correlation function, C2.�/, then the
third moment will be

hX 3i � hŒKab.i; �/

6i ; (5.104)

corresponding to a correlation function containing six particles of different flavors.
Again, increasing the number of flavors generally increases the binding energy
per particle of the system, leading to a third moment which is exponentially
large compared to the appropriately scaled second moment. This implies that an
exponentially large number of configurations will be necessary before the central
limit theorem applies to the distribution of the mean of correlation functions
calculated using this formulation.

While we mentioned that using reweighting to avoid a sign problem is one
situation where overlap problems often occur, it is also possible to use reverse
reweighting in order to lessen an overlap problem. Here instead we would like
to reweight in order to make the distribution of  have more overlap with the
configurations that are important for the observable. An example that is commonly
used is to include the desired correlation function itself, calculated at some fixed
time, to be part of the probability measure. This may be accomplished using ratios
of correlators at different times,

CN.�
0 C �/

CN.� 0/
D
R
D QP./ QO.; �/R

D QP./ ; (5.105)

where

QP./ � P./CN.�
0; / ; QO.; �/ � CN.�

0 C �; /
CN.� 0; /

: (5.106)

Now the probability distribution incorporates an N-body correlator at one time, � 0,
and will therefore do a much better job of generating configurations relevant for the
N-body correlator at different times. A drawback of this method is that it is much
more computationally expensive to require the calculation of propagators for the
generation of each configuration. Furthermore, the configurations that are generated
will be operator-dependent, so that calculating the correlator CNC1 will require the
generation of a whole new set of field configurations.

Another method for overcoming a statistical overlap problem is to try to get a
more faithful estimate of the mean from the long-tailed distribution itself. To try to
better understand the distribution, let’s use our signal-to-noise argument to estimate
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higher moments of the distribution. We can easily estimate the Nth moment of the
correlation function for a single particle,

MN � CN �
�!1 e�E

.N/
0 � ; (5.107)

where E.N/0 is the ground-state energy of N particles with different flavors. Let’s
consider the theory to be weakly coupled (small scattering length, a=L � 1). In
this case the two-body interaction dominates and we can use perturbation theory to
estimate the energy of two particles in a box: E.2/0 � 4�a

ML3
. A weakly coupled system

of N particles interacting via the two-body interaction is given by simply counting
the number of possible pairs of interacting particles, E.N/0 � N.N � 1/ 4�a

ML3
, leading

to the following expression for the moments [50]:

MN � e�N.N�1/ 4�a
ML3 : (5.108)

Distributions with the particular N dependence seen in Eq. (5.108) are called log-
normal distributions, so named because the distribution of the logarithm of a
log-normally distributed quantity is normal. While we derived this expression for
theories near weak coupling, there is also evidence that the log-normal distribution
occurs for correlators near unitarity as well [51, 52].

The central limit theorem implies that normal distributions occur generically for
large sums of random numbers; the same argument leads to the conclusion that log-
normal distributions occur for large products of random numbers. Let’s think about
how correlation functions are calculated on the lattice: particles are created, then
propagate through random fields from one time slice to the next until reaching a
sink. Each application of the random field is multiplied by the previous one,

K�1.�/ D D�1X.�/D�1X.� � 1/ � � � ; (5.109)

and then products of these propagators may be used to form correlation functions
for multiple particles. Thus, one might expect that in the � ! 1 limit (or for
large numbers of particles), the distributions of these correlation functions might
flow toward the log-normal distribution. More precisely though, each block X.�/ is
actually a matrix of random numbers, and products of random matrices are far less
well understand than products of random numbers. Nonetheless, products of random
link variables are used to form most observables in nearly all lattice calculations, and
approximately log-normal distributions appear to be ubiquitous as well, including
in lattice QCD calculations.

If it is ln C that is nearly Gaussian rather than C, then it may be better to sample
ln C as our observable instead. Without asserting any assumptions about the actual
form of the distribution, we can expand around the log-normal distribution using



5 Lattice Methods and Effective Field Theory 189

what is known as a cumulant expansion,

lnhOi D
1X

nD1

1

nŠ
�n.lnO/ ; (5.110)

where �n is the nth cumulant, or connected moment. The cumulants may be
calculated using the following recursion relation:

�n.X / D hX ni �
n�1X
mD1

�
n � 1
m � 1

�
�m.X /hX n�mi : (5.111)

Note that the expansion in Eq. (5.110) is an exact equality for an observable obeying
any distribution. We may now expand the correlation function as

lnhCi �!
�!1 �E0� D hln Ci C 1

2


h.ln C/2i � hln Ci2�C 1

6
�3.ln C/C � � � :

(5.112)

Again, this expansion is true for a correlation function obeying any distribution.
However, if the distribution of ln C is exactly log-normal, then �n�3.ln C/ D 0. If
the distribution is approximately log-normal, then the third and higher cumulants
are small corrections, further suppressed in the cumulant expansion by 1=nŠ. This
suggests that we may cut off the expansion after including a finite number of
cumulants without significantly affecting the result (see Fig. 5.9). We may also
include the next higher order cumulant in order to estimate any systematic error
associated with our cutoff.

Fig. 5.9 Results for the energy of 50 two-component fermions at unitarity using the cumulant
expansion [Eq. (5.110)] cut off at O.Nk/. Figure from [53]
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The benefit of using the cumulant expansion to estimate the mean rather than
using the standard method is that for a finite sample size, high-order cumulants of
ln C are poorly measured, which is the culprit behind the overlap problem. However,
for approximately log-normal distributions these high-order cumulants should be
small in the infinite statistics limit. Thus, by not including them in the expansion we
do a better job at estimating the true mean on a finite sample size. In other words,
by sampling ln C rather than C, we have shifted the overlap problem into high,
irrelevant moments which we may neglect.

The cumulant expansion avoids some of the drawbacks of reweighting, such
as greatly increased computational effort in importance sampling. However, the
farther the distribution is from log-normal, the higher one must go in the cumulant
expansion, which can be particularly difficult to do with noisy data. Thus, for some
observables it may be difficult to show convergence of the series on a small sample.
Which method is best given the competition between the computational effort
used in generating samples via the reweighting method versus the large number
of samples which may be required to show convergence of the cumulant expansion
is unclear and probably observable dependent.

5.3.3 Interpolating Fields

The previous section highlights the importance of gaining access to the ground
state as early in time as possible, since the number of configurations required
grows exponentially with time. Returning to our expression for the expansion of
a correlation function in terms of energy eigenstates,

C.�/ D Z0e
�E0� C Z1e

�E1� C � � �

D Z0e
�E0�

�
1C Z1

Z0
e�.E1�E0/� C � � �


; (5.113)

we see that the condition that must be met in order to successfully suppress the
leading contribution from excited state contamination is

� �
ln
�

Z1
Z0E0

�

E1 � E0
; (5.114)

where E0;Z0 (E1;Z1) are the ground (first excited) state energy and wavefunction
overlap factor, respectively. Assuming we have properly eliminated excited states
corresponding to unwanted quantum numbers through the choice of our source/sink,
we have no further control over the energy difference E1 � E0 in the denominator,
because this is set by the theory. Unfortunately, this makes the calculation of
many-body observables extremely difficult as this energy splitting can become
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arbitrarily small due to collective excitations. Therefore, our only recourse is to
choose excellent interpolating fields in order to reduce the numerator of Eq. (5.114).

The simplest possible choice for a many-body interpolating field is composed of
non-interacting single particle states. A Slater determinant over the included states
takes care of fermion antisymmetrization. For example, a correlation function for
N" (N#) spin up (spin down) particles can be written,

CN";N#
.�/ D hdet S#.�/ det S".�/i ; (5.115)

where

S�ij.; �/ � h˛�i jK�1.; �/j˛�j i ; (5.116)

and h˛�j j corresponds to single particle state i with spin � . As an example, we may
use a plane wave basis for the single particle states,

j˛"
j i D jpji ; j˛#

j i D j � pji ; (5.117)

where I’ve chosen equal and opposite momenta for the different spin labels in order
to enforce zero total momentum (this condition may be relaxed to attain boosted
systems).

Though the interpolating field chosen in Eq. (5.115) has non-zero overlap with
the ground state of interest, if the overlap is small it may take an inordinately long
time to remove excited state contributions. Consider a system involving only two-
particle correlations, as in our two-spin fermion system, and make the simplification
that the ground state consists of non-interacting two-body pairs having wavefunction
�2-body, and overlap with a product of two non-interacting single particle states
given by

h�2-bodyj .jpi ˝ j � pi/ D � < 1: (5.118)

Then the corresponding overlap of the Slater determinant in Eq. (5.115) with the
ground state wavefunction scales as

.h�2-bodyj ˝ � � � ˝ h�2-bodyj/ .jp1i ˝ j � p1i ˝ � � � ˝ jpNi ˝ j � pNi/ � �N :

(5.119)

Thus the overlap of single-particle states with an interacting 2N-body state is
exponentially small with N. This condition worsens for systems with 3- and higher-
body correlations.
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In order to do a better job we can incorporate two-body correlations into the sinks
as follows: first, we construct a two particle propagator,

S"
ij#.; �/ D h�2jK�1.; �/˝ K�1.; �/

�
j˛"

i i ˝ j˛#
j i
�

D
X

p

�.p/hpjK�1.; �/j˛"
i ih�pjK�1.; �/j˛#

j i ; (5.120)

where �2.p/ is some two-body wavefunction (this process could equally well be
performed in position space). As an example, to incorporate BCS pairing, we may
use a wavefunction of the form:

�2.p/ � e�bjpj

jpj2 ; (5.121)

where b is some parameter which may be tuned to maximize the overlap of the
wavefunction. We may also use the wavefunction derived in Eq. (5.65) for a lattice
version of such a wavefunction. An example code fragment for implementing such
wavefunctions is given here. We show a portion of our c++ code for implementing
two types of two-body source vector: Eq. (5.65) (GND) and Eq. (5.121) (PAIR2).
Note that these vectors are computed in momentum space. The first operator applied
to a source is the kinetic operator, D�1, which is also computed in momentum space.

if (two_body_arg.wavefunc_type==WAVEFUNC_TYPE_GND) {

Dispersion dispersion1(two_body_arg.dispersion_type1,
two_body_arg.mass1, CUTOFF_TYPE_HARD);

Dispersion dispersion2(two_body_arg.dispersion_type2,
two_body_arg.mass2, CUTOFF_TYPE_HARD);

double xi1;
double xi2;
double lambda = two_body_arg.lambda;

for (int i=0; i<vol; i++) {
xi1 = 1.0 + dispersion1.Get(i);
xi2 = 1.0 + dispersion2.Get(i);

// Here, I use the fermion wave function, as derived in my
note.

// Note that psi(p) = xi(p)/(lambda*xi(p)^2-1) is the
eigenstate of the transfer matrix.

// The correlation function, however, is given by <final| D
^{-1/2} T^N D^{-1/2} |initial>

// Hence <p|final> = xi(p) psi(p), where xi is the same as
D^{1/2} in momentum space).

//
// wavefunc[i] = xi^2/(lambda*xi^2-1.0);
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wavefunc[i] = 1.0; // This way avoids NAN when
dispersion type is QUADRATIC, or PERFECT

wavefunc[i] /= lambda - 1.0/(xi1*xi2); // so do it this way
instead:

}
}

//
if (two_body_arg.wavefunc_type==WAVEFUNC_TYPE_PAIR2) {

Dispersion dispersion(DISPERSION_TYPE_QUADRATIC, 1.0,
CUTOFF_TYPE_HARD);

double b = two_body_arg.lambda;
double psq;

for (int i=0; i<vol; i++) {
psq = 2.0*dispersion.Get(i);
if (psq < 1e-15) {
wavefunc[i] = 0.0; // Omit divergent contribution to wave

funcion--must be treated separately
} else {
wavefunc[i] = exp(- b*sqrt(psq) )/psq;

}
}

}

For the full source code see https://github.com/ManyBodyPhysics/LectureNotes
Physics/tree/master/Programs/Chapter5-programs.

To ensure Pauli exclusion, it is sufficient to antisymmetrize only the sources, j˛ii,
leading to the following many-body correlation function,

CN";N#
.�/ D hdet S"#.�/i ; (5.122)

where the determinant runs over the two sink indices. For correlation functions
having an odd number of particles, one may replace a row i of S"# with the
corresponding row of the single particle object, S". The benefit of folding the
wavefunction in at the sinks only is an O.V2/ savings in computational cost: to
fold a two-body wavefunction in at both source and sink requires the calculation
of propagators from all possible spatial points on the lattice to all possible spatial
points in order to perform the resulting double sum.

Higher-body correlations may also be important and can be incorporated using
similar methods. However, these will lead to further O.V/ increases in computation
time. Finally, the entire system should be projected onto the desired parity, lattice
cubic irreducible representation (which we will now briefly discuss), etc. in order to
eliminate any contamination from excited states having different quantum numbers.

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter5-programs
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Table 5.1 Decomposition of
the cubic group onto total
angular momentum, j

j Cubic irreps

0 A1
1 T1
2 E C T2
3 A2 C T1 C T2
4 A1 C E C T1 C T2

5.3.3.1 Angular Momentum in a Box

The projection onto the cubic irreps is the lattice equivalent of a partial wave
decomposition in infinite volume (and the continuum limit). The cubic group is
finite, and therefore has a finite number of irreps, reflecting the reduced rotational
symmetry of the box. The eigenstates of the systems calculated on the lattice will
have good quantum numbers corresponding to the cubic irreps. When mapping these
states onto angular momenta associated with infinite volume, there will necessarily
be copies of the same irrep corresponding to the same angular momentum due to the
reduced symmetry. This means that the box mixes angular momenta, as displayed in
Table 5.1. For example, an energy level calculated in a finite volume that has been
projected onto the positive parity A1 irrep will have overlap with j D 0; 4; � � � . For
low energies it may be possible to argue that contributions from high partial waves
are kinematically suppressed, since the scattering amplitude scales with p2lC1, but in
general the different partial wave contributions must be disentangled using multiple
data points from different cubic irreps.

A pedagogical method for projecting two-particle states onto the desired cubic
irrep involves first projecting the system onto a particular spin state: for example,
a two nucleon system may be projected onto either a spin singlet (symmetric)
or spin triplet (anti-symmetric) state. The wavefunctions may then be given an
“orbital angular momentum” label by performing a partial projection using spherical
harmonics confined to only the allowed rotations in the box. For example, we could
fix the position of one of the particles at the origin .0; 0; 0/, then displace the
second particle to a position .x0; y0; z0/. This configuration will be labeled by the
wavefunction  s;ms Œ.x0; y0; z0/
, where s;ms are the total and z-component of the
spin. We can then perform the partial projection,

Q l;mlIs;ms D
X

i

Yl;ml ŒRi.x0; y0; z0/
  s;ms ŒRi.x0; y0; z0/
 ; (5.123)

where the Ri are cubic rotation matrices. Essentially, the set Ri.x; y; z/ corre-
spond to all possible lattice vectors of the same magnitude. For example, if our
original vector was .1; 0; 0/, then we would sum over the set of displacements
f.˙1; 0; 0/; .0;˙1; 0/; .0; 0;˙1/g. I want to emphasize that the l;ml are only
wavefunction labels and do not correspond to good quantum numbers due to the
reduced rotational symmetry.
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Now that the wavefunctions have spin and orbital momentum labels, these may
be combined into total angular momentum labels j;mj using the usual Clebsch-
Gordan coefficients. Finally, these wavefunctions are projected onto cubic irreps
using so-called subduction matrices [54]. As an example, a wavefunction labeled
with j D 2 (having five possible mj labels) will have overlap with two cubic irreps,
T2;E. The subduction matrices are:

T2 W

mjD�2;�1;0;1;2‚ …„ ƒ0
@ 0 1 0 0 0

1=
p
2 0 0 0 �1=p2

0 0 0 1 0

1
A ; E W

�
0 0 1 0 0

1=
p
2 0 0 0 1=

p
2

�
: (5.124)

Note that the T2 irrep has three degenerate states, while the E irrep has two, matching
the total of five degenerate states for j D 2 in infinite volume.

Using this method for projection onto the cubic irreps has several benefits,
including ease of bookkeeping and extension to higher-body systems using pairwise
combinations onto a given j;mj, followed by subduction of the total resulting
wavefunction. Furthermore, in cases where more than one partial wave has overlap
onto the chosen cubic irrep, wavefunctions with different partial wave labels may
have different overlap onto the ground- and excited states of the system. Therefore,
they can be used as a handle for determining the best source for the state of interest.
We will discuss methods for using multiple sources for disentangling low-lying
states and allowing for measurements at earlier times in the next subsection.

5.3.4 Analysis Methods

Having done our best to come up with interpolating wavefunctions, we can attempt
to extract the ground state energy (and possibly excited state energies) earlier in time
by performing multiple exponential fits to take into account any remaining excited
state contamination. Using the known functional form for the correlator,

y.�/ D
�X
n

Zne�En� ; (5.125)

where � is a cutoff in the number of exponentials included in the fit, we may
perform a correlated �2 minimization,

�2� D
X
�;� 0

ŒC.�/ � y.�/



C�1�

�� 0

�
C.� 0/ � y.� 0/

	
; (5.126)



196 A. Nicholson

where C is the covariance matrix taking into account the correlation between
different time steps. Because the correlation function at a given time is built directly
upon the correlation function for the previous time step, there is large correlation
between times that must be taken into account.

We can go further by noting that correlation functions formed using different
sources, but having the same quantum numbers, will lead to the same spectrum
in Eq. (5.125), but with different overlap factors, Zn. Thus, the �2 minimization
can be expanded to include different sources s, with only a modest increase in the
number of parameters to be fit. Different sources may be produced, for example,
by varying some parameter in the wavefunction, such as b in Eq. (5.121), through
a different basis of non-interacting single particle states, such as plane waves vs.
harmonic oscillator states, or through different constructions of the same cubic irrep,
as discussed in the previous subsection. The resulting �2 minimization is

ys.�/ D
�X
n

Z.s/n e�En� ; �2� D
X
�;� 0;s;s0

ŒCs.�/ � ys.�/



C�1�ss0

�� 0

�
Cs0.� 0/ � ys0.� 0/

	
;

(5.127)

where the covariance matrix now takes into account the correlation between
different sources calculated on the same ensembles.

In general, multiple parameter fits require high precision from the data in order to
extract several parameters. The use of priors through Bayesian analysis techniques
may be beneficial in some circumstances when performing multi-exponential fits to
noisy data.

A more elegant approach using a set of correlation functions created using
different operators is based on a variational principle [55, 56]. A basic variational
argument proceeds as follows [57]: starting with some set of operators Oi which
produce states jii D Oij0i from the vacuum, we can evolve the state to some time
�0, j Qii D e��0H=2jii in order to eliminate the highest excited states, but leaving
a finite set of states contributing to the correlation function. We would like to find
some wavefunction j i D PN

iD1 ˛ij Qii which is a linear combination of our set of
operators parameterized by f˛ig, that maximizes the following quantity for � > �0:

�0.�; �0/ D Max
f˛ig
h je�.���0/Hj i
h j i ; (5.128)

so that

�0.�; �0/ � e�E0.���0/ : (5.129)

A powerful method for finding the appropriate linear combination of states
satisfying the variational principle uses a generalized eigenvalue problem (GEVP).
For this method we form a matrix of correlation functions using all combinations of
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sources and sinks formed from a set of operators,

Cij.�/ D hOi.�/O
�
j .0/i D

X
n

e�En�Z.n/i Z.n/j : (5.130)

The GEVP may be stated as:

C.�/vn.�; �0/ D �n.�; �0/C.�0/vn.�; �0/ ; (5.131)

where vn (�n) are a set of eigenvectors (eigenvalues) to be determined as follows:
assume we choose �0 to be far out enough in time such that only N states contribute
to the correlation function,

Cij.�/ D
NX
n

e�En�Z.n/i Z.n/j : (5.132)

Let’s introduce a set of dual vectors u.n/i such that

X
i

u.n/i Z.m/i D ımn : (5.133)

Applying ui to Cij gives

X
j

Cij.�/u
.m/
j D

X
j

X
n

e�En�Z.n/i Z.n/j u.m/j D e�Em�Z.m/i : (5.134)

Going back to our original GEVP, Eq. (5.131),

C.�/u.m/ D �m.�; �0/C.�0/u
.m/ ; (5.135)

we can now identify,

�m.�; �0/ D e�Em.���0/ : (5.136)

Thus, the energies may be found from the eigenvalues of the matrix, C�1.�0/C.�/.
Solving this GEVP gives us access to not only the ground state, but some of the
lowest excited states as well.

Any remaining contributions from states corresponding to En; n > N can be
shown to be exponentially suppressed as e�.ENC1�En/�0 , where ENC1 is the first state
neglected in the analysis. We should define a new effective mass function to study
the time dependence of each of the extracted states,

E.eff/
n .�; �0/ � ln

�n.�; �0/

�n.� C 1; �0/ ; (5.137)



198 A. Nicholson

and look for a plateau,

lim
�!1E.eff/

n .�; �0/ D En ; (5.138)

to indicate convergence to the desired state. The reference time �0 may be chosen
to optimize this convergence, and should generally be close to the beginning of the
plateau of the standard effective mass.

The GEVP method works very well in many situations and has been used
extensively for LQCD spectroscopy. The main determining factor on the applica-
bility of the method is whether one is able to construct a basis of operators which
encapsulates the full low-lying spectrum sufficiently well. One major drawback is
that the GEVP assumes a symmetric correlator matrix, meaning that the same set
of operators must be used at both source and sink. As discussed in Sect. 5.3.3,
this may be difficult to do numerically due to increases in computational time
which scale with the volume when projecting onto a given wavefunction (unless
the wavefunction is simply a delta function; however, this operator generally has
extremely poor overlap with any physical states of interest). This is particularly a
problem for noisy systems where large amounts of statistics are necessary.

There are a few alternatives to the GEVP which do not require a symmetric
correlator matrix, such as the generalized pencil of functions (GPof) method [58–
60], and the matrix Prony method [61, 62]. We will now briefly discuss the latter,
following the discussion of Beane et al. [61].

The Prony method uses the idea of a generalized effective mass,

M.eff/
�0

.�/ D 1

�0
ln

C.�/

C.� C �0/ �!�!1 E0 ; (5.139)

for some, in principle arbitrary, offset �0. Because the correlator C.�/ is a sum of
exponentials, it follows certain recursion relations. As an example, for times where
only a single exponential contributes we have,

C.� C �0/C ˛C.�/ D 0 : (5.140)

Plugging in our single exponential for the correlator we can solve for ˛, then plug it
back in to our original expression,

e�E0�0 C ˛ D 0

�! C.� � �0/ � eE0�0C.�/ D 0 : (5.141)

Solving for the ground state energy gives us the same expression as the generalized
effective mass at large times,

E0 D 1

�0
ln

C.�/

C.� C �0/ : (5.142)
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This recursion relation may be generalized for times with contributions from
multiple states using the correlation function at different time separations,

C.� C �0k/C ˛kC.� C �0.k � 1//C � � � C ˛1C.�/ D 0 : (5.143)

We can now generalize this method for a set of correlation functions produced
using different operators. Let Ci.�/ be an N-component vector of correlation
functions corresponding to different sources and/or sinks. The correlators then obey
the following matrix recursion relation,

MC.� C �0/� VC.�/ D 0 ; (5.144)

for some matrices, M;V , to be determined. Assume the correlator has contributions
from� states,

C.�/ D
�X
n

˛nun�
��
n ; (5.145)

where �n D eEn , and un is a normalized vector, then we have the following modified
GEVP,

Mu D ��0Vu : (5.146)

A solution for M and V may be found by applying
P�CtW

tD� C.t/T to both sides of
Eq. (5.144),

M
�CtWX
tD�

C.t C �0/C.t/T � V
�CtWX
tD�

C.t/C.t/T D 0 ; (5.147)

leading to the solution,

M D
"
�CtWX
tD�

C.tC �0/C.t/T
#�1

; V D
"
�CtWX
tD�

C.t/C.t/T
#
: (5.148)

The parameter tW is essentially free and may be tuned for optimization, but must
obey tW 
 �� 1 in order to ensure that the matrices are full rank. The �n may then
be found from the eigenvalues of V�1M.

Here we have only used a single recursion relation, which is useful for finding
the ground state at earlier times than traditional methods. However, this method
is generally less effective for calculating excited states than the symmetric GEVP
described previously. It may be possible to construct higher order recursion relations
for the matrix Prony method in order to get more reliable access to excited states.
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5.4 Systematic Errors and Improvement

5.4.1 Improving the Kinetic Energy Operator

The first systematic effect we will examine comes from the discretization of the
kinetic operator, first discussed in Sect. 5.2.2. In this section I will show the lattice
spacing dependence explicitly so that we may see how discretization errors scale.
The kinetic term depends on the definition of the Laplacian operator, which we
originally defined to be,

r2L fj D
X

kD1;2;3

1

b2s

h
fjCOk C fj�Ok � 2fj

i
; (5.149)

leading to the following kinetic term in momentum space,

�. p/ D 1

b2s

X
i

sin2
bspi

2
� �p2

2
C p4

24
b2s C � � � : (5.150)

The transfer matrix for the non-interacting system is given by

T D e�b�H D 1C b�
�.p/

M
; (5.151)

leading to the energy,

E D p2

2M
C O

�
p4

M
b2s

�
: (5.152)

Therefore, discretization errors in this observable appear at O


b2s
�

using this
particular discretization. To be more precise, the errors scale with the dimensionless
combination . pbs/

2, reflecting the fact that the errors grow as higher momentum
scales are probed. As we will discuss in Sect. 5.5, small lattice spacings can lead
to computational difficulties beyond the obvious scaling with the number of lattice
sites, and taking the continuum limit may prove to be quite difficult. Therefore, it
would be beneficial to have an improved operator whose discretization errors come
in at a higher order in pbs. One way to determine such an operator is to examine
the relation between the finite difference and the continuum derivative in more
detail using a Taylor expansion of the finite difference operator acting on a generic
function, f .x/,

f .xC bs/ � f .x/ D bs f 0.x/C b2s
2

f 00.x/C b3s
6

f 000.x/C b4s
24

f 0000.x/C � � � :
(5.153)
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Using this expansion, the expression we used previously for the discretized Lapla-
cian can be written,

r2Lf .x/ D 1

b2s
. f .xC bs/C f .x � bs/� 2f .x// D f 00.x/C b2s

12
f 0000.x/C � � � :

(5.154)

We see that the leading error comes in at O.b2s /, as expected. One method for
eliminating the leading error is to add terms involving multiple hops,

Qr2Lf .x/ D 1

b2s
. f .xC bs/C f .x � bs/� 2f .x/C c1f .xC 2bs/C c2f .x � 2bs// ;

(5.155)

where c1; c2 must be fixed in such a way as to eliminate the leading error. From
symmetry, we must have c1 D c2. We can then Taylor expand these new terms in
our action, and determine the resulting energy as a function of c1,

E.c1/ D p2

2M
C h.c1/

p4

M
b2s C � � � : (5.156)

By solving h.c1/ D 0 for c1, discretization errors will only enter at O.b4s /, implying
a faster approach to the continuum as bs is decreased. Perhaps more importantly,
in cases where decreasing the lattice spacing is difficult or impossible, the resulting
systematic errors at finite lattice spacing will be significantly reduced.

This is our first, very simple, example of improvement. A more general method
for improving the action in order to reduce discretization effects utilizes an EFT-
like approach [53, 63–66]: we add higher dimension operators consistent with the
symmetries of the theory and having unknown coefficients. The coefficients are then
fixed by matching onto known physical quantities. The dimension of the operator
added determines the order at which discretization errors have been eliminated.

In principle, one would need an infinite number of operators in order to eliminate
all discretization errors. We are, of course, limited in the number of displacements
we can add, as in Eq. (5.155), by the number of lattice sites. Therefore, the best
possible kinetic operator, utilizing all possible spatial hops allowed by the lattice,
may still only exactly reproduce the non-interacting spectrum up to the momentum
cutoff set by the edge of the first Brillouin zone. Because the kinetic operator � is
diagonal in momentum space, we may determine this “perfect” operator directly by
setting the transfer matrix,

T D 1C b��. p/

M
D e� b� p2

2M ; (5.157)
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up to a cutoff, leading to the operator,

�perf. p/ D M

�
e

b� p2

2M � 1
�
; p <

�

bs
: (5.158)

While this operator is simple in momentum space, it is highly non-local in
position space, as expected, and would be unwieldy to use in a typical lattice
calculation. However, another benefit of having a non-relativistic formulation with
a separable interaction is that the form of the propagator,

K�1.�/ D D�1X.�/D�1X.� � 1/ � � �D�1

D D�1X.�/K�1.� � 1/ ; (5.159)

suggests that the kinetic (D�1) and interaction (X) operators may each be applied
separately in whatever basis is most convenient. So, we may choose to start
with a source in momentum space (which is often preferable), then apply an
exact kinetic operator, D�1, also in momentum space, perform a FFT to position
space, hit the resulting vector with the X operator, which is most easily specified
in position space, FFT again back to momentum space to perform a kinetic
operation, and so on until finally the sink is applied. Example code for calculating
various forms of inverse kinetic operator in momentum space is shown here in
terms of a c++ code fragment for computing various lattice Laplacian operators:
Eq. (5.150) (STANDARD), Eq. (5.158) (PERFECT), as well as a simple quadratic
in momentum (QUADRATIC). Note that these are computed in momentum space,
and they may be used to calculate the kinetic operator D�1, then directly applied to
the momentum space vectors discussed above.

for(int i=0; i<GJP.Vol(); i++) {

z = i%z_sites;
Y = i/z_sites;
y = Y%y_sites;
x = Y/y_sites;

if (dispersion_type==DISPERSION_TYPE_STANDARD) {
//
// \Delta(p) = 2 \sum_j \sin^2(p_j/2)
//
sx = sin( (x+bc[0]) * PI / x_sites );
sy = sin( (y+bc[1]) * PI / y_sites );
sz = sin( (z+bc[2]) * PI / z_sites );
dispersion[i] = 2.0 * ( sx*sx + sy*sy + sz*sz );
dispersion[i] /= mass;

}
if ( (dispersion_type==DISPERSION_TYPE_QUADRATIC)
||(dispersion_type==DISPERSION_TYPE_PERFECT) ) {
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// additional code not displayed

sx = (x + bc[0]) / (double)x_sites;
sy = (y + bc[1]) / (double)y_sites;
sz = (z + bc[2]) / (double)z_sites;
psq = (sx*sx + sy*sy + sz*sz)*4.0*PISQ;

//---- Cutoff, beyond which we take psq = infinity
if ( (cutoff_type==CUTOFF_TYPE_HARD)&&(psq > GJP.CutoffSq()

) ) {
dispersion[i] = numeric_limits<double>::infinity();

} else {
if (dispersion_type==DISPERSION_TYPE_QUADRATIC) {

dispersion[i] = psq/(2.0*mass); }
if (dispersion_type==DISPERSION_TYPE_PERFECT) {

dispersion[i] = ( exp( psq/(2.0*mass) ) -1.0 ); }
}

}

The benefit to using the FFT repeatedly rather than simply converting the kinetic
operator into position space is that modern FFT libraries are highly optimized and
cheap to use. For comparison, if we used the “perfect” kinetic operator in position
space it would be a dense V � V matrix. The operation of applying such an object
to a V-dimensional vector,

D�1.x/j .x/i; (5.160)

scales like V2. On the other hand, using the FFT to convert the V-dimensional vector
to momentum space, then applying a diagonal matrix to it,

D�1. p/


FFTj .x/i D j Q . p/i� ; (5.161)

scales like V log V . This is a method referred to as “Fourier acceleration” (see e.g.
[67–70]).

For formulations lacking separability of the kinetic and interaction operations,
this method cannot generally be applied. In such cases, the kinetic operator should
be kept relatively sparse in position space. Such a condition disfavors the use of
Eq. (5.158) for a more modestly improved operator, composed of only a few spatial
displacements, using the method outlined in the beginning of this section.

5.4.2 Improving the Interaction

To discuss systematic errors and improvement of the interaction, we will focus on
systems tuned to unitarity. Because unitarity corresponds to a conformal fixed-point,
the systems we will study only depend on a single scale, the density, n. The finite
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lattice spacing necessarily breaks this conformal symmetry, and we can consider
dependence on any new scales to stem from systematic errors. Systems having
multiple intrinsic scales contain more complicated dependences of systematic
errors, and will be discussed later on.

Recall that the scattering phase shift for two particles at unitarity is,

p cot ı D 0 ; (5.162)

implying that the inverse scattering length, effective range, and all other shape
parameters vanish. In Sect. 5.2.2.5, we discussed how to tune the two-particle
coupling in order to reproduce infinite scattering length. The lattice, however,
naturally induces an effective range for the interactions, which have been generated
via auxiliary fields extending across a lattice link, of size bs. In order to improve the
interaction and eliminate the unwanted effective range contribution stemming from
discretization, we may add a higher-order interaction operator,

X
x

p
g2 

�
xr2L x ; (5.163)

recalculate the scattering amplitude, A, as a function of g0; g2, and tune g2 to
eliminate the r0 term in the effective range expansion. In principle, one may further
generalize the interaction operator,

Lint D
X

n

p
g2n 

�r2n
L  ; (5.164)

where we will now suppress spacetime indices, and use the g2n to tune away
successive terms in the effective range expansion. In practice this may be difficult
because the interaction is generally no longer separable, so that loops can’t be
summed analytically. An easier method may be to use the transfer matrix, as we
did in Sect. 5.2.2, to determine the two particle energy spectrum in a box, then tune
the couplings in order to reproduce the desired energies. The target energies may be
determined for systems obeying any known physical scattering phase shift using an
approach known as the Lüscher method, which we will now briefly review.

5.4.2.1 Lüscher’s Method

Lüscher’s method [71, 72] was originally developed as a tool for extracting physical
scattering phase shifts from finite volume, Euclidean space observables produced
by lattice QCD. The concept of asymptotic “in” and “out” scattering states does
not exist in a finite volume, making direct scattering “experiments” impossible
on the lattice. Furthermore, the issue of analytic continuation from Euclidean to
Minkowski time is a tricky one, particularly when utilizing stochastic techniques.
Thus, Lüscher proposed utilizing a different observable, finite volume energy
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shifts, and inferring the infinite volume scattering phase shift that would lead to
the observed finite volume spectrum. In this section, we will largely follow the
discussion in [73].

First let’s recap how to calculate the infinite volume s-wave scattering phase shift
in our effective theory assuming the following generic tree-level interaction: L2 DP

n g2np2n. The scattering amplitude is given by,

A1 D
P

n g2np2n

1 �Pn g2np2nI1
0

D 4�

M

1

p cot ı � ip
; (5.165)

where I will now include the super/subscript “1” to indicate infinite volume
quantities, and I1

0 is defined as,

I1
0 D

Z
d3q

.2�/3
1

E � q2=M
: (5.166)

Note that I have assumed that the interaction is separable in deriving Eq. (5.165).
This would not be possible using a momentum cutoff as a regulator, so we will use
dimensional regularization for this integral. By investigating the inverse scattering
amplitude,

A�11 D
1P

n g2np2n
� I1

0 D
M

4�
. p cot ı � ip/ ; (5.167)

we can identify

X
n

g2np2n D
�

I1
0 C

M

4�
. p cot ı � ip/

�1
: (5.168)

the quantity on the right can be expanded using the effective range expansion;
the couplings are then determined by the scattering parameters, as we have seen
previously.

Now that we have a relation between the couplings and the physical scattering
parameters, let’s now use this same effective theory to determine its finite volume
spectrum. In a finite volume, there is no continuum of scattering states, but rather
a discrete spectrum corresponding to poles in the finite volume analogue of the
scattering amplitude, AFV,

Re
�
A�1

FV

	 D 0 : (5.169)

Because the imposition of a finite volume can affect only the IR behavior of the
theory, the interactions, and therefore the couplings, g2n, remain unchanged. Any
differences come from loops, where intermediate particles may go on shell and
explore the finite boundary. Therefore, our finite volume analogue of the scattering
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amplitude may be written, where

A�1
FV D

1P
n g2np2n

� IFV
0 ; (5.170)

where the loop integral has been replaced by a finite volume sum over the allowed
quantized momenta in a box,

IFV
0 D

1

L3

�X
n

1

E � 
 2�n
L

�2
=M

: (5.171)

Again, because the couplings are unchanged by the finite volume we are free
to use Eq. (5.168) to replace them with the physical infinite volume phase shift,
resulting in,

A�1
FV D

M

4�
. p cot ı � ip/C I1

0 � IFV
0 : (5.172)

This leads to the eigenvalue equation,

Re
�
A�1

FV

	 D M

4�
p cot ı C Re

�
I1
0 � IFV

0

	 D 0 : (5.173)

I have specified taking the real part of the inverse amplitude merely for calculational
simplicity; this quantity is, in fact, already purely real because there are no integrals,
and therefore, no i� prescription. Furthermore, the difference between the infinite
volume integral and the finite volume sum must be finite because the two encode
the same UV behavior. Finally, we have the result,

p cot ı D 4�

M

2
64� M

4�2L

�X
n

1�
pL
2�

�2 � n2
� M�

�L

3
75 D 1

�L
S.�/ ; (5.174)

where � �
�

pL
2�

�2
, and

S.�/ �
�X
n

1

n2 � � � 4�� ; (5.175)

is related to the Riemann zeta function. The cutoff on the sum,�, may be interpreted
as an upper limit on the allowed momenta due to the finite lattice spacing, however,
in practice it is taken to 1 so that discretization and finite volume effects may
be separately accounted for (note that we haven’t used our lattice propagators in
this derivation, which would be necessary for a proper treatment of discretization
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Fig. 5.10 S.�/ (solid red) and �Lp cot ı (dashed) as a function of � 

�

pL
2�

�2
. The �Lp cot ı

correspond to r0=a D �0:1, for the following volumes: L=jaj D 2 (blue), L=jaj D 4 (pink),
L=jaj D 8 (yellow), L=jaj D 10 (green). The energy eigenstates for the corresponding volumes
are given by the intercepts of S.�/ with the dashed lines. Figure from [41]

effects). Values of momenta which solve this eigenvalue equation for a given
phase shift and volume correspond to the predicted finite volume spectrum. This
is illustrated in Fig. 5.10, where the function S.�/ has been plotted, along with
several representative phase shifts, corresponding to positive and negative scattering
lengths. The locations of the intersections give the energy eigenvalues for that
volume. The poles of the S function give the locations of the energies of a non-
interacting system in a box, while the zeroes give the energies for systems at
unitarity.

Many extensions of Lüscher’s method exist for more complicated systems,
such as multi-channel processes [74–81], higher partial waves [82–84], moving
frames [85, 86], moving bound states [87, 88], asymmetric boxes [89, 90], and
three-body systems [91–94], as well as perturbative expansions for many-boson
systems [95–97]. Formulations for general systems involving two nucleons may
be found in [98, 99]. These formulations have been successfully applied in Lattice
QCD for the determination of scattering phase shifts of nucleon-nucleon [2, 5–
8, 12, 13, 16, 19, 23, 100], meson-meson [101–119], meson-baryon [120–123], and
hyperon-nucleon [14, 124, 125] systems.

5.4.2.2 Applying Lüscher’s Method to Tune the Two-Body Couplings

The prescription for a lattice QCD calculation of nucleon-nucleon phase shifts
is to start with quark interpolating fields to create a two nucleon correlation
function, measure a set of finite volume energies, then use the eigenvalue equation,
Eq. (5.174), to infer the infinite volume two nucleon phase shift that produces those
energies. For our lattice EFT, however, two nucleon phase shifts are used as input
into the coefficients in the Lagrangian. Thus, we can use the Lüscher method in
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reverse to calculate what we expect the two nucleon energies in a box to be given a
known phase shift, then tune the couplings to reproduce those same energies in our
lattice calculations. Having tuned the two-body sector, we can then make predictions
about 3- and higher-body systems.

Our prescription for tuning the coefficients will be to construct the two-body
transfer matrix with some set of operators,

G .p/ D
�nX
n

g2nO2n.p/ ; (5.176)

which satisfy the low energy expansionO2n.p/ D p2n
�
1CO.p2/

	
at low momenta,

and should be chosen to depend only on the relative momentum of the two particle
system in order to ensure Galilean invariance. This is important so that once the
interaction is tuned boosted pairs of particles will see the same interaction. A
convenient choice for the operators is given by,

O2n.p/ D Mn
�
1 � e�Op2=M

�n
; (5.177)

where Op is taken to be a periodic function of p and satisfies the relation
Op2 D p2�.� � jpj/ C �2�.jpj � �/ for p in the first Brillouin zone. Here we
show a C++ code fragment for calculating the interaction given in Eq. (5.176),
using the operators equation (5.177), given some set of input coefficients
interaction_arg.couplingsŒ�n
. Note that this operator is calculated in momentum
space. It may be applied directly to the momentum space vector resulting from the
first operation of the kinetic operator, D�1. A FFT must then be performed before
applying the random auxiliary field, x. A final FFT must then be performed to
return to momentum space before applying the next operation of D�1 in order to
propagate the system forward in time.

double xi1;
double xi2;

double psq;
double mass = 2.0 * kinetic_arg1.mass * kinetic_arg2.mass; //

reduced mass
mass /= kinetic_arg1.mass + kinetic_arg2.mass; // reduced mass

double PSQ = GJP.Cutoff();
PSQ *= PSQ;
double XI1 = exp( PSQ/(2.0*kinetic_arg1.mass));
double XI2 = exp( PSQ/(2.0*kinetic_arg2.mass));

for(int i=0; i<vol; i++) {

xi1 = 1.0 + dispersion1.Get(i);
if (xi1 > XI1) { xi1 = XI1; }
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xi2 = 1.0 + dispersion2.Get(i);
if (xi2 > XI2) { xi2 = XI2; }

switch (interaction_arg.interaction_type) {
case INTERACTION_TYPE_NONE:
ERR.NotImplemented(fname,"Interaction type

INTERACTION_TYPE_NONE.");
break;

case INTERACTION_TYPE_ONEMINUSXIINVSQ:
psq = 1.0 - 1.0 /(xi1*xi2);
break;

case INTERACTION_TYPE_XISQMINUSONE:
psq = xi1*xi2 - 1.0;
break;

default:
ERR.NotImplemented(fname,"Unrecognized interaction_type."

);
}

psq *= mass;

//---- Evaluate the interaction as a Taylor series in p^2: O
(\,p) = sum_n C_n p^(2n)

interaction[i] = 0.0;
for (int j=0; j<interaction_arg.num_couplings; j++) {
interaction[i] += interaction_arg.couplings[j]*pow(psq,j);

}

//---- Make sure O(p) is non-negative before taking the
square root!

if (interaction[i]<0.0) {
ERR.General(fname, "Interaction is less the zero; cannot

take square root.");
}

//---- Normalize operator, etc..
interaction[i] *= 2.0 * TWOPI / mass; // Just a convention
interaction[i] = sqrt(interaction[i]); // Division by vol

because FFT is not normalized
interaction[i] /= vol; // Division by vol because FFT is not

normalized
interaction[i] *= dt; // Controls overall sign and step size

of the interaction
}

The transfer matrix may then be diagonalized numerically to determine the
energy eigenvalues. The g2n should then be tuned until the energies match the first
�n eigenvalues given by the Lüscher method. This process serves a dual purpose:
tuning multiple couplings helps reduce lattice spacing effects like the effective
range, as we discussed previously, and also takes into account finite volume effects
by correctly translating the exact infinite volume phase shifts into a finite volume.
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Fig. 5.11 Effective
scattering phase shifts p cot ı
vs. � produced by a set of
contact interactions of the
form in Eq. (5.176), with NO

coefficients tuned to unitarity.
Figure from [126]

The process of tuning for the case of unitarity is illustrated in Fig. 5.11. Here, NO

coefficients have been tuned to correctly reproduce the first NO Lüscher eigenvalues.
The entire two-body spectrum is then calculated using these coefficients, and the
resulting energies are plugged back into Eq. (5.174) to determine the effective phase
shift seen by pairs of particles with different momenta. To be truly at unitarity, we
should have p cot ı D 0 for all momenta. Clearly, tuning more coefficients brings
us closer to unitarity for larger and larger momenta. This is particularly important
for calculations involving many-body systems, where the average momentum grows
with the density, hpi � n1=3.

A quantitative prediction can be made for the error remaining in higher, untuned
two-body energy levels [126]. Assuming NO terms in the effective range expansion
have been tuned to zero,

p cot ı � rNO�1p2NO D
�
2�

L

�2NO

rNO�1�NO ; (5.178)

we can then use Lüscher’s relation for the first untuned eigenvalue �k,

�
2�

L

�2NO

rNO�1�NO

k D 1

�L
S.�k/ : (5.179)

Let’s suppose ��
k is the eigenvalue one would expect in the true unitary limit. We

can then Taylor expand the function S.�k/ around ��
k ,

S.�k/ � ck.�k � ��
k / ; (5.180)

where ck is the slope near ��
k . The error is then estimated as,
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1=3/2NO�1� ;
(5.181)
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where on the right I have rewritten the scaling with the volume as a scaling with the
density to remind you that though the errors scale with the volume, these are not
actually finite volume errors we are investigating, but discretization effects scaling
with the dimensionless quantity bsn1=3 � bs=Lphys D 1=L for systems at unitarity.
The Lüscher method takes into account finite volume effects automatically.

5.4.3 Scaling of Discretization Errors for Many-Body Systems

Having tuned our two-body interaction, we can now also predict the scaling of errors
that we should expect to find in an N-body calculation. Let us suppose that the first
untuned operator contains at most 2NO derivatives,

O2NO � .  /�  r2NO : (5.182)

The leading error results when any pair of particles interacts via this operator, and
should scale with the dimension of this operator.

To determine the operator dimension, first let me briefly recap how scaling
dimensions are determined in a non-relativistic theory (see [38] for more details).
We expect the action, S, to be a dimensionless quantity, so we will consider the
action for a non-interacting theory to determine how the fields and derivatives must
scale,

S D
Z

d�d3x �
�
@� � r

2

2M

�
 : (5.183)

First, note that the mass, M, carries zero scaling dimension in a non-relativistic
theory because it is considered to be much larger than any scale of interest.
Then, from the expression in parentheses, we see that time and space must scale
differently, Œ@� 
 D 2Œr
. Using the convention Œr
 D 1, we can then determine that
the dimension of the fermion field must be Œ 
 D 3=2.

Now let us return to the operator, Eq. (5.182), and determine its scaling dimen-
sion relative to the energy,

h
.  /�  r2NO 

i
� � �@� 	 D .6C 2NO/� .5/ D 1C 2NO : (5.184)

This indicates that the error from such an operator will scale as � O.bsp/1C2NO , or
� O



.bsn1=3/1C2NO

�
for unitary fermions. This is similar scaling that we saw for

higher two-body states, however, here the dependence on the number of particles is
also important.

One may in principle tune as many operators as possible in order to perfect the
interaction for higher energies. In practice, however, as more and more operators
are tuned, the coefficients in front of higher dimensional operators which are still



212 A. Nicholson

untuned can become very large. This can cause interactions seen by pairs of particles
far in the tail of the momentum distribution to generate large errors. Thus, similar to
the case of the kinetic operator, there is a limit to how “perfect” the interaction can
be made.

On the other hand, these s-wave two-body interactions are not the only possible
errors that are induced by the lattice, so we should not expect to see much
improvement by tuning more operators corresponding to errors which are higher
order than the leading operator which is not accounted for. For example, an
unfortunate consequence of our tuning program is the introduction of interactions
in the p-wave channel, as well as in higher partial waves. While a simple interaction
which is point-like in space has no p-wave contribution, the introduction of spatial
derivatives in our tuning operators gives rise to these new p-wave interactions. The
leading p-wave operator has the form,

Op-wave �  �r �  �r ; (5.185)

and induces errors at O


.bsn1=3/3

�
. In order to cancel this operator we could in

principle add a  field which carries momentum and carry out a similar program
for tuning the coefficients as we used for the s-wave interaction. This destroys
the separability of our interaction, however, and may be difficult to implement, in
addition to introducing a new source of noise.

In general, we can determine all possible sources of discretization error as well as
their scaling using a method referred to as the Symanzik effective action [53, 63–66].
The basic procedure begins through considering any possible operators (that have
not been explicitly tuned) which are allowed by the symmetry of the theory. Because
these operators may only be induced through discretization and must disappear in
the continuum limit, they should be multiplied by the lattice spacing raised to the
appropriate scaling dimension of the operator. We can then determine at what order
in bs, relative to the energy, we can expect systematic errors to arise.

Let’s take a look another interesting operator which arises due to discretization,
corresponding to a three-body interaction. While there can be no point-like 3-
body interaction in the continuum limit for 2-component fermions due to the Pauli
exclusion principle, three particles separated by a lattice spacing may interact via
-field exchange because they don’t all lie on the same spacetime point. Thus, we
should include in our Symanzik effective action an operator,

O3-body � .   /�    : (5.186)

Naïvely, the dimension of this operator is 9, and therefore should contribute errors of
O


.bsn1=3/4

�
. So far, all of the operators we’ve discussed obey this simple scaling,

corresponding to naïve dimensional analysis. However, our theory is strongly
interacting, which can in general lead to large anomalous dimensions of certain
operators.
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Fig. 5.12 Propagator for the bosonic field , dressed by fermionic loops

As an example, let’s consider the scaling dimension of a very basic operator, the
field . The canonical (non-interacting) dimension for a generic bosonic field in a
non-relativistic theory can be deduced by looking at the kinetic term in the action,

Skin D
Z

d�d3xr22 ; (5.187)

leading to a scaling dimension, Œ
 D 3=2. However, once interactions with the
 fields are included, the  propagator is renormalized through loop diagrams
(see Fig. 5.12). For a non-perturbative interaction, we must sum all possible loop
diagrams. However, there is a simpler way to determine the scaling dimension of
the strongly interacting  field. The key is to recognize that near unitarity the 
field represents a bound state of two  fields at threshold. We can therefore write 
as a local operator,

.x/ D lim
x!y
jx � yj �.x/ .y/ ; (5.188)

where jx � yj must be included to ensure that matrix elements of the operator are
finite (the wavefunction for two particles at unitarity must scale as jx� yj�1 at short
distances [127]). Using our previous analysis for the scaling dimension of the  
field, we find,

Œ
int D 2 ; (5.189)

which implies a very strong wavefunction renormalization.
In general it can be very difficult to calculate anomalous dimensions directly in

a non-perturbative fashion. However, for non-relativistic conformal field theories
(CFT), there exists an operator-state correspondence (similar to an ADS/CFT
correspondence), which relates the scaling dimension of an operator in the CFT
(e.g. for unitary fermions) to the energy of the corresponding state in a harmonic
potential [127]. For example, we have already determined the dimension of the field
 to be 3/2, and the energy of a single fermion in a harmonic potential with oscillator
frequency ! is 3=2!. The energy of two unitary fermions in a harmonic potential is
2!, corresponding to the dimension of the  field, Œ
 D 2.

Returning now to our 3-body operator, we can use numerical results for the
energy of three fermions in a total l D 0 state in a harmonic potential [128, 129] to
determine that,

Œ   
 D 4:67 : (5.190)
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The error-inducing operator in the Symanzik effective action both creates and
destroys this 3-body state, resulting in

h
.   /�    

i
D 9:34 : (5.191)

The relative error in the energy will then be O


L�.9:34�5/� D O



L�4:34�.

It turns out that the ground state of three fermions in a harmonic potential is
actually not the s-wave state, but a p-wave state with energy � 4:27!. Thus, we
should expect an additional systematic error corresponding to a 3-body p-wave
operator that contributes at O



L�3:55� [130]. Finally, at approximately the same

order as the 3-body s-wave there is a 2-body d-wave operator (four derivatives) with
zero anomalous dimension, and therefore contributing at O



L�5�.

While certainly only the leading error,


O


L�3��, will dominate very close to

the continuum limit, at a finite lattice spacing we have just demonstrated that there
are several sources of error scaling with very similar powers of the lattice spacing.
If we wish to eliminate discretization errors through extrapolation to the continuum
limit, we must include all possible non-negligible contributions in our extrapolation
function. For example, we could employ the following function:

E.L/ D E0
�
1C aL�3 C bL�3:55 C cL�4:34 C dL�5 C � � � 	 ; (5.192)

and fit the coefficients fa; b; c; dg using data at several volumes, in order to extract
the continuum energy, E0 [53].

5.4.4 Additional Sources of Systematic Error

It should be pretty clear by now that understanding and controlling systematic errors
can be quite complicated, even for conformal systems! For more complex systems
with contributions from multiple scales, such as nuclei, things become even messier.
As a simple example of a system with more than one scale we can consider trapping
our unitary fermions in a harmonic potential, which will allow us to discuss finite
volume errors that are not accounted for by the Lüscher method. This is clearly
relevant for cold atom experiments, which utilize traps, but may also be useful for
calculating the energies needed to use the operator-state correspondence discussed
in the previous subsection.

The new characteristic length scale contributed by the introduction of the
harmonic trap is given by the size of the trap, L0. We now have two different
dimensionless quantities which determine the scaling of systematic errors due to
discretization, bs=L0, and finite volume, L0=Lphys, individually. To determine the
size of discretization errors we may use the Symanzik effective action method
as previously described, with the average momentum scale replaced by n1=3 !
N1=3=L0. Finite volume errors may be estimated by examining the long distance
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behavior of the wavefunction of the system of interest, where distortions due to the
finite boundary can occur. For a system in a harmonic trap with local interactions,
wavefunctions behave as Gaussians at large distance, so we might consider using

a function E.Lphys/ D E0
�
1C ae�.L0=Lphys/

2
�

to extrapolate to the infinite volume

limit.
For the case of nuclei, which are bound states whose wavefunctions fall off

exponentially at long distance, we might expect systematic errors to scale as
e�R=Lphys , where R is the characteristic size of the bound state. In general, one may
also need to consider effects from interactions between images produced due to
the periodic boundary conditions. For example, if the interaction between images is
mediated at long distances by the exchange of a light particle, such as a pion, then
we might expect systematic errors to fall off exponentially with � .m�Lphys/. Note
that this type of finite volume effect is not accounted for by the Lüscher formalism;
this is because in order to derive Eq. (5.174) we had to assume that all interactions
were point-like.

Finally, we should briefly discuss systematic errors associated with temporal
discretization. These tend to be far less worrisome for zero temperature results

for several reasons. The first is due to the relation b� D b2s
M for non-relativistic

theories, indicating that temporal discretization errors are of lower order than spatial
discretization errors. Furthermore, our tuning method for improving the kinetic and
interaction operators also translates into an improved temporal derivative operator.
The lattice temporal derivative is given by the finite difference,

@� �  �C1 �  � � .T � 1/ � ; (5.193)

where on the right hand side I have used the knowledge that the transfer matrix T
is our time-translation operator. By perfecting the transfer matrix with our tuning
method, we are in turn perfecting the single time hop operation, thereby reducing
temporal discretization errors.

We also have the freedom to use the anisotropy parameter M to tune the temporal
lattice spacing to be intrinsically smaller than the spatial lattice spacing. However, it
should be noted that because the temperature is controlled by the physical Euclidean
time length, 1= .b�N� /, increasing the anisotropy parameter M will necessitate an
increase in the number of temporal lattice points to reach the zero temperature
limit. On the other hand, having a finer temporal lattice spacing may also help to
better resolve plateaus occurring within a short “golden window” before the noise
begins to set in, due to the increase in the number of points available for fitting.
For this reason, anisotropic lattices are sometimes used in lattice QCD for noisy
systems. However, points corresponding to a finer temporal lattice spacing are also
more correlated, so it is currently unclear whether anisotropic lattices are actually
beneficial for resolving noisy signals.
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5.5 Beyond Leading Order EFT

The first step away from unitarity and toward real nuclear physics that we can
easily take is to introduce a four-component nucleon field, N, containing two
flavors of spin up and spin down fermions. The nucleons have two allowed s-wave
scattering channels, 1S0 and 3S1, which should be tuned independently (breaking the
approximate SU.4/ symmetry between the nucleons) to give the physical nucleon-
nucleon scattering lengths. One possible way to achieve this is to introduce two
four-fermion interactions corresponding to,

Lint D �1
2

gS


N�N

�2 � 1
2

gT


N�� N

�2
; (5.194)

where �i is a Pauli matrix acting on the spin indices, and gS; gT are couplings for
the spin singlet and spin triplet channel, respectively. The lattice version of this
interaction requires the introduction of two independent auxiliary fields, S; T . One
possibility is,

L .L/
int D

p
gSSN�N CpgTT� � N�� N : (5.195)

There are, in fact, many ways to implement the same interactions, and the
different implementations will affect the signal-to-noise ratios of observables. For
example, one could imagine having one of the  fields couple to both channels
equally (the SU.4/ limit), tuned to give the scattering length of the more attractive
channel,3S1, then adding a second auxiliary field coupling only to the 1S0 channel
and tuning this coupling to be repulsive, making this channel more weakly attractive
as desired. As we learned in Sect. 5.3.1, repulsive interactions cause severe sign and
noise problems, so this would clearly be a poor choice of implementation.

Let’s look at the signal-to-noise ratio for a two-particle correlator in the 1S0
channel using the interaction shown above, Eq. (5.195), where neither interaction
is repulsive, but their relative strengths are different. The signal goes like,

hK"�1
n .�/K#�1

n .�/i � e�E
.1S0/
0 � : (5.196)

while the noise is given by,

�2 � hK"�1
n .�/K#�1

n .�/iK"�1
n0 .�/K#�1

n0 .�/i � eE
.4/
B � ; (5.197)

where n0 denotes a particle of different flavor from n, and E.4/B is the binding energy
of a four particle, four flavor state. This causes a signal-to-noise problem which
is similar to our original two-body correlator, however, in this case the problem is
exacerbated by the fact that particles in Eq. (5.197) having different flavor index
interact through the most attractive channel, 3S1. This results in a greater disparity
between the energies governing the signal and the noise, leading to more severe
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exponential decay of the signal-to-noise ratio. Unequal interactions can also lead to
problems with reweighting methods designed to alleviate an overlap problem if the
desired reweighting factor is no longer real or positive.

One method, devised by the Bonn-Raleigh group (for a review, see e.g. [131]), for
avoiding the extra noise caused by unequal interactions in the two s-wave channels,
is to use an SU.4/ symmetric transfer matrix,TSU.4/, to evolve the system for several
time steps before applying the full asymmetric transfer matrix. This process may be
thought of as utilizing several applications of TSU.4/ in order to produce a better
interpolating wavefunction from some initial guess wavefunctions, �i;f , which is
then used as a source for the correlation function,

C.�/ D h�f jT � 0

SU.4/T
�T � 0

SU.4/j�ii D h Q�f jT � j Q�ii ; (5.198)

where j Q�ii � T � 0

SU.4/j�ii. Using this method reduces the number of times the noisier
T must be used because the system begins in a state that is already closer to the true
ground state.

Another method used by the same group to reduce noise is to perform a Fierz
transformation on the four-fermion interactions in order to define interactions with
more symmetric couplings [132]. Using the identity,



N�N

�2 D �1
2



N�� N

�2 � 1
2



N��N

�2
; (5.199)

we can rewrite the four-fermion interactions, Eq. (5.194), to give the following,

QLint D �1
2

g0


N�N

�2 � 1
2

gI


N��N

�2
; (5.200)

where �i is a Pauli matrix acting on the flavor components of N, and the couplings
g0;I are related to the original couplings by,

g0 D gS � 2gT ; gI D �gT : (5.201)

5.5.1 Tuning the Effective Range

The method outlined in Sect. 5.2.2.5 was devised as a way to allow us to tune
our couplings to reproduce any physical scattering phase shift using the Lüscher
finite volume method. We were able to successfully tune the system to unitarity,
where the effective range and all higher shape parameters vanish. For nucleon
scattering, the effective ranges in the s-wave channels are given roughly by the
Compton wavelength of the pion, so the next logical step in our quest toward nuclear
physics should be to try to tune our coefficients to give the physical effective ranges.
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Unfortunately, a problem arises for producing a non-zero effective range non-
perturbatively using point-like interactions in combination with a lattice regulator.

The choice of regulator is relevant when attempting to perform non-perturbative
calculations because EFTs in general are non-renormalizable. However, they should
be renormalizable order by order in perturbation theory, because at each order we
introduce a new operator having the correct dimensions and symmetries to act as
a counterterm, absorbing infinities from loops containing lower order interactions.
Lattice methods incorporate the Lagrangian of the theory non-perturbatively, effec-
tively summing the entire subset of diagrams for each interaction. In principle,
such a formulation may also require the introduction of an infinite number of
counterterms to absorb the divergences from all loop diagrams.

In certain cases, however, this situation can be avoided. An example is our
non-perturbative tuning of the scattering length. Recall that all bubble diagrams
involving only the coupling g0 were separable; this allowed us to write the non-
perturbative scattering amplitude as a geometric sum, and we were able to absorb all
loop divergences into the single coupling, g0. The condition of separability for loop
diagrams containing interactions which carry momenta is dependent on the choice
of regulator. Our choice of a lattice regulator, which is similar to a momentum cutoff,
leads to a bound, known as the Wigner bound, on the allowed effective ranges one
can access non-perturbatively [133–135].

Because the general tuning method introduced in Sect. 5.2.2.5 involves the
numerical calculation of the transfer matrix, understanding the Wigner bound in this
context is difficult. To better illustrate the issue, let’s attempt to tune the effective
range instead using the first method for tuning, outlined in Sect. 5.2.1.2. This method
involves calculating the scattering amplitude and tuning the couplings to match the
desired scattering parameters directly from the effective range expansion.

We will again calculate a sum of bubble diagrams, however, we must now include
an interaction of the form Lint � g2 �r2 , which we would like to use to tune the
effective range. We will largely follow the discussion of Phillips et al. [136]. A
generic integral from one of these diagrams will have the form,

I2n D 1

2�2

Z
dq

q2C2n

E � q2=M
; (5.202)

where n D 0; 1; 2, depending on which of the two interactions we have at the two
vertices. Since we are interested in the renormalizability of the scattering amplitude,
we will separate out the divergent pieces of such an integral by expanding around
q!1,

I2n D 1

2�2

Z
dq

�
Mq2n � EM

Z
dq

q2n�2

E � q2=M


; (5.203)

and investigate the integrals using different regularization schemes. The above
relation may be iterated for a given n until the remaining integral is finite. The
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lowest order integral that we will need is given by,

I0 D � 1

2�2

Z
dq

q2

E � q2=M
: (5.204)

We evaluated this integral previously using a cutoff, ��=2, to find,

I0 D M

4�
Œ�C iME
 (cutoff) : (5.205)

Using dimensional regularization (dim reg), on the other hand, eliminates power-law
divergences, so the result becomes,

I0 D M

4�
iME (dim reg) : (5.206)

The other two integrals we will need have two and four additional powers of the
momentum. Using our relation, Eq. (5.203), we can write,

I2 D MEI0 � �2 ; (5.207)

where

�2 D M

2�2

Z
dqq2 D

� �M�
48
�3 cutoff
0 dim reg

; (5.208)

and

I4 D MEI2 � �4 ; (5.209)

where

�4 D M

2�2

Z
dqq4 D

(
�M�3

320
�5 cutoff

0 dim reg
: (5.210)

From these results we see that dim reg leads to a separable interaction because each
of the integrals can be written in terms of I0 times some overall factor. On the other
hand, the cutoff introduces new terms which cannot be factorized.

In order to evaluate the scattering amplitude more generally for a non-separable
interaction we must solve a matrix equation. We will set this up by noting that the
interaction can be written,

V. p; p0/ D
1X

i;jD0
p02ivijp

2j ; (5.211)
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where

v D
�

g0 g2
g2 0

�
: (5.212)

The amplitude is then,

A D �
1X

i;jD0
.ME/iCj aij ; (5.213)

where

a D v C vI a ; I D
�

I0 I2
I2 I4

�
: (5.214)

We can now solve for a,

a D Œ1 � vI 
�1 v D 1

�

�
g0 C g22I4 g2.1 � g2I2/

g2.1 � g2I2/ g22I0

�
; (5.215)

where

� � 1 � g0I0 � 2g2I2 C g22.I
2
2 � I0I4/ : (5.216)

Finally, we have

1

A
D � .g2�2 � 1/2

g0 C g2ŒME.2 � g2�2/C g2�4

C I0

D M

4�

�
�1=aC 1=2r0ME � i

p
ME

�
; (5.217)

where I have used the effective range expansion for the inverse scattering amplitude
on the right hand side.

This expression may be used to determine the couplings g0;2 in terms of the
effective range parameters, a; r0, by expanding the left hand side in powers of ME,
and comparing the resulting coefficients to the corresponding parameters in the
effective range expansion. The leading order is,

1

A

ˇ̌
ˇ̌
ED0
D � .g2�2 � 1/

2

g0 C g22�4
C I0jED0 D �

M

4�a
; (5.218)

while the next order gives,

�
@

@.ME/

1

A


ED0

g2



I0jED0 C M
4�a

�2
/.2� g2�2/

.g2�2 � 1/2 D M

8�
r0 : (5.219)
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Using these two expressions and the above relations for �n and I0, we can derive
the following dependence of the effective range on the couplings for a theory
regularized using dim reg,

r0 D Mg2
�a2

: (5.220)

Because the effective range is proportional to the coupling g2, it can be tuned
arbitrarily. Thus, as expected from the separability of the interaction, there are no
issues with renormalizability when using dim reg.

Let us now see what happens for the case of a cutoff. The relation becomes,

r0 D 8�

M

�
M

4�a
C I0jED0

�2 �
1

.g2�2 � 1/2�2 �
1

�2



D M

2�
.1=aC�/2

"
� 1


g2 M�
48
�3 � 1�2 M�

48
�3
C 48

M��3

#
: (5.221)

We should now attempt to remove the cutoff by taking,�!1,

r0 �!
�!1 �

M
2�
�2

.g2
M�
48
�3 � 1/2 M�

48
�3

; (5.222)

where I have kept the first term in square brackets in Eq. (5.221) because there g2
may be renormalized to absorb factors of �. Because g2 must be real to ensure
a Hermitian Hamiltonian, this expression shows that if we attempt to remove the
cutoff of the theory, we are only allowed to tune r0 	 0.

More generally, Wigner showed that for any potential which obeys V.r; r0/! 0

for r; r0 > R sufficiently quickly for some characteristic radius R, then

r0 	 2
�

R � R2

a
C R3

3a2

�
: (5.223)

For a potential generated using delta function interactions and a momentum cutoff,
R � 1=�, and we arrive at our expression r0 	 0.

In our lattice formulation the interactions are generated by an auxiliary field
extending across a single time link, so that R � bs. Therefore, if we try to tune r0
non-perturbatively via the inclusion of such interactions in the Lagrangian, we are
limited to r0 . bs. This was not a problem when we considered unitarity, since at
this point r0 D 0. For nuclear physics, this bound restricts us to tuning the effective
range to be smaller than the lattice spacing, implying that there is no continuum
limit to the theory. On the other hand, the theory we are attempting to simulate is
only an effective theory of nucleons, valid up to a physical cutoff. Thus, so long as
we do not attempt to probe physics beyond scales of order � 1=r0 there will be no
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inconsistencies. This is clearly a limitation, however, and also restricts our ability to
vary the lattice spacing when studying discretization effects.

One possibility for avoiding this restriction is to include the effective range
contribution to observables perturbatively, keeping the renormalizability of the
effective theory intact. Perturbative corrections may be added by expanding the
transfer matrix,

T � e�H0b� � b� ıHe�H0b� ; (5.224)

where H D H0 C ıH is the full Hamiltonian and ıH is the piece we wish to treat
perturbatively. Multiple insertions of ıH may be included to reach higher orders in
the effective theory.

5.5.2 Including Pions

If we wish to probe energies of order the pion mass we must include pions explicitly
into the effective theory. Unfortunately, pions are notoriously difficult to include in
a consistent power counting scheme. Here, we will only briefly outline some of the
issues related to power counting for pion contributions.

The KSW expansion proposed that pion exchange be treated as a series of
perturbative corrections to the leading order pionless EFT [32–34]. In this case,
a tree level one pion exchange (1PE) diagram may be given by Fleming et al. [137],

� g2A
2f 2�

f
�

p
m�

�
; (5.225)

where solid lines represent nucleons, dashed lines represent pions, gA is the axial
coupling, f� is the pion decay constant, and f . p=m�/ is a dimensionless function.
By comparison, at one loop there is a box diagram,

�
�

g2A
2f 2�

�2
Mm�
4�
Qf
�

p
m�

�
: (5.226)

Note that the factor of the nucleon mass, a large energy scale for the effective theory,
comes from diagrams in which intermediate nucleons can go on-shell. This implies
that an expansion parameter for the set of ladder diagrams is approximately,

g2AMm�

8�f 2�
� 0:5 ; (5.227)

and that the expansion may converge very slowly. In practice, the convergence for
this formulation might be acceptable in the 1S0 scattering channel, but is poor in the
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spin triplet channel. This is likely due to the singular tensor force contribution to the
two-nucleon potential in this channel, which we will discuss in a moment [137].

Weinberg’s formulation for nuclear EFT involves summing a subset of diagrams
non-perturbatively, by first calculating a nucleon-nucleon potential diagrammati-
cally, then using this potential to solve the Schrodinger equation. In doing so, we
can take into account higher orders in a perturbative expansion that breaks down or
converges slowly. For the pions, tree-level pion exchange diagrams give rise to the
following 1PE potential [36]:

V1PE.r/ D
�

gA

2f�

�2
�1 � �2

�
m2
�

e�m� r

12�r

�
S12.Or/

�
1C 3

m�r
C 3

.m�r/2

�
C � 1 � � 2

�

�1
3

� 1 � � 2ı3.r/

; (5.228)

where S12 D 3� 1 � Or� 2 � Or � � 1 � � 2 .
The most divergent part of this potential, scaling like � 1=r2, comes from the

tensor force in the spin triplet channel. Attractive potentials which scale as r�n for
n 
 2 are referred to as singular potentials. Particles sitting in a singular potential
eventually fall toward the center with infinite velocity, which is clearly unphysical.
Thus, singular potentials can only be defined with an explicit cutoff that cannot
be removed. Particles generally sit near this cutoff, rendering the system sensitive
to the short-range details of the choice of boundary condition. Therefore, systems
involving singular potentials are generally model dependent and we can no longer
have a true effective theory because the cutoff cannot be removed.

The reason such a singular potential arises is similar to that which led to the
Wigner bound in the previous section. Again, we are attempting to sum a subset
of diagrams in an effective theory non-perturbatively, which cannot in general be
assumed to be a renormalizable process. In practice, nuclear theorists using so-
called chiral potentials are generally able to demonstrate that the cutoff dependence
is small so long as the cutoff is only varied within a particular range, typically
� � 300–1000MeV. Therefore, if we wish to include pions non-perturbatively
in our lattice theory we should keep this in mind as it implies a restriction on
the allowed lattice spacings, just as we found for the non-perturbative inclusion
of effective range contributions.

Pion fields may be added directly to our lattice Lagrangian in a straightforward
way. The incorporation of dynamical pions, however, will likely complicate impor-
tance sampling by introducing noise and/or sign problems, and adds complexity to
the Monte Carlo algorithms. Fortunately fully dynamical pions are unnecessary; all
we actually seek is the addition of a term in the Lagrangian which generates the
tree level diagrams between a single pion and two nucleons. The lattice formulation
then non-perturbatively accounts for all possible loop diagrams involving this pion-
nucleon interaction. Diagrams involving vacuum pion loops, pion self-energies,
etc. are higher order in our chiral expansion and can be included perturbatively if
necessary.



224 A. Nicholson

One possible implementation utilized by the Bonn-Raleigh group is to use static
pion auxiliary fields, �.I/x;� , with isospin I, and the following action [131, 132]:

S�� D
�

m2
�

2
C 3

�X
x;�;I

�.I/x;� �
.I/
x;� �

X
x;�;I;k

�.I/x;� �
.I/

xCOk;� : (5.229)

Because the pions are derivatively coupled to the nucleons, the interaction term
should behave like,

S�NN � gA

2f�

X
I;k

h
�
.I/

xCOk � �
.I/

x�Ok
i
 �x x ; (5.230)

(see [131] for more details on the particular interaction chosen). The pions have been
chosen to only couple to the nucleons through spatial displacements. This simplifies
the analysis by eliminating the renormalization of the nucleon mass through nucleon
self-energy diagrams such as:

Then we can simply utilize the physical value, M � 938MeV, for the nucleon
mass. These pions therefore act instantaneously, much the same way as they do in a
pion potential picture.

5.5.3 3- and Higher-Body Interactions

Naïve dimensional analysis dictates that the leading three-body interaction should
be suppressed relative to the two-body interaction by O.L3/. We should be more
cautious by this point, since we have seen dimensional analysis fail in previous cases
for strongly interacting systems. For that reason, we will now inspect the three-body
system more carefully.

To begin, we will consider a system of three particles interacting via only the
simplest, leading order two-body contact interaction. We will follow the discussion
of Braaten et al. [138]. Let us assume that all three particles carry different quantum
numbers, as they do for the triton and 3He, and that all pairs of particles interact via
the same two-body coupling, g0. To calculate the three-particle scattering amplitude
for a strongly coupled system we must iterate this interaction non-perturbatively, as
we did for the two-particle system.

A useful trick for calculating this quantity is the addition of a bosonic dimer
field, , coupling to two fermion particles,  . This allows us to rewrite the three-
particle scattering amplitude in the form of a two-particle scattering amplitude. The
dimer propagator must be fully dressed by fermion loop bubbles and can be written
diagrammatically as shown in Fig. 5.13. This bubble sum is essentially the same as
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Fig. 5.13 Dressed propagator for the bosonic dimer field, 

Fig. 5.14 Full three-particle scattering amplitude written in terms of a two-particle amplitude for
a fermion scattering with a dimer field. Here we have only included two-body interactions, with no
explicit three-body contact interaction

the one we have encountered several times before in these lectures. However, we
must now allow external momentum, . p0;p/ to flow through the diagrams, leading
to the following dressed propagator for the dimer field,

D0. p0;p/ D 1

1 � g0 I0jEDp0�p2=M

D 1=a��
1=aC i

p
Mp0 � p2 � i�

; (5.231)

where I’ve used the results from Sect. 5.2.1.2 to rewrite the coupling in terms of the
scattering length, a, and the cutoff, �. We see that the dimer propagator has a pole

at p0 D p2

M � 1
Ma2

, corresponding to a (virtual) bound state for (negative) positive
scattering length with energy EB D 1

Ma2
.

Using this dimer field, we can write the full three-body scattering amplitude, A3,
as an integral equation, shown in Fig. 5.14. To simplify the expression, we can set
the fields to be on-shell, so that all off-shell properties are absorbed into the dimer
propagator. The amplitude can then be written,

A3. p; kIE; p2=M/ D � g0
E � p2=M � k2=M � . pC k/2=M C i�
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1=aC i
p

M.E � q0/C q2 � i�

!
;

(5.232)

known as the Skorniakov-Ter-Martirosian (STM) integral equation. Integrating over
q0 and projecting the system onto the s-wave channel gives (see [138] for more
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details),

QA3. p; kIE/ D 1
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�

QA3.q; kIE/
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: (5.233)

For large scattering length (strong interaction) we have,

QA3. p; kIE/ �!
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1

4�2
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dq
q

p
ln

�
p2 C pqC q2 �ME � i�

p2 � pqC q2 �ME � i�

� QA3.q; kIE/p
3q2 �ME � i�

(5.234)

This integral contains divergences, which may be renormalized by adding an
explicit three-body coupling, H. To absorb the divergences, the coupling must have
the following dependence on the momentum cutoff,� [139–141]:

H.�/ D cos
�
s0 ln.�=��/C tan�1 s0

	
cos Œs0 ln.�=��/ � tan�1 s0


; (5.235)

where s0 � 1:006 is a constant, and�� is some reference scale which may be set by
a three-body observable, such as the triton binding energy, or the neutron-deuteron
scattering length.

There are two remarkable things to note here: the first is that this result for
the scattering amplitude is only a leading order result, yet we had to introduce a
three-body coupling in order to renormalize the theory. This illustrates another case
where naïve dimensional analysis does not work, because the three-body coupling
contributes at the same order as the two-body coupling. The second is the running
of the coupling H.�/, plotted on a logarithmic scale in Fig. 5.15. We see that
the coupling, and therefore also observables depending on the coupling, displays
a log-periodic discrete scaling symmetry, related to the so-called Efimov effect.
This property arises for systems obeying a potential at the threshold of singularity,
� 1=r2, as can be shown to occur for our three-body system using hyperspherical
coordinates [142, 143].

Because the three-body interaction has been demonstrated to be relevant at
leading order, we should in general include it non-perturbatively to our lattice theory
by adding an interaction term to the Lagrangian such as,

C33 
�
�  �C1 ; (5.236)
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Fig. 5.15 Running of the three-body contact interaction H.�/ at unitarity vs. the momentum
cutoff, �, showing log-periodicity

where C3 is tuned to reproduce some three-body observable, and 3 2 Z3 (cube
roots of 1). However, 3 is necessarily a complex field, will induce severe noise
and/or sign problems. The interaction may alternatively be introduced via multiple
Z2 interactions, but the noise problem remains.

Figure 5.15 is important for our discussion because it shows how the three-
body coupling runs as we change the lattice spacing. The larger the coupling, the
worse the noise/sign problem will be. The solution chosen by the Bonn-Raleigh
group is to tune the ratio b�=bs until a chosen three-body observable is sufficiently
well-described by tuning only the two-body interactions. This implies that the three-
body interaction is small at this point, and can then be regarded as a higher-order
correction and included perturbatively. A drawback to this approach is that we can
no longer use the anisotropy parameter as a knob for probing temporal discretization
errors. Because the spatial lattice spacing may also already be restricted by the
condition of renormalizability of any pion or effective range contributions to the
Lagrangian, we have forfeited most of our ability to demonstrate that discretization
errors are under control.

Another possibility for reducing the contribution from the three-body interaction
might be to change the short-distance behavior of the two-body sector in another
way. For example, tuning different numbers of two-body interaction coefficients
(Sect. 5.2.2.5) or changing the discretization of the kinetic operator will shift the
reference scale ��, giving us a different value for H.�/ at a fixed lattice spacing.

Finally, given that the three-body sector required a reshuffling of the orders in
perturbation theory at strong coupling, should we expect the same for higher N-body
interactions? Fortunately it has been fairly well established that four- and higher
body operators are not necessary to renormalize the theory at leading order and are
therefore irrelevant. This means that we may treat four- and higher-body interactions
as perturbative corrections.
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This is observed via the so-called Tjon line (see, e.g. [144]). Recall that while the
two-body system at unitarity has no intrinsic scale, in order to describe the three-
body system we had to introduce a single scale, ��, to be set by some three-body
observable. Once this scale is set, all other three-body observables may then be
predicted. If four- and higher-body operators appear only at higher orders, then this
three-body scale remains the only relevant scale in the problem, and observables
must be proportional to��.6 This implies that varying the three-body parameter��,
in a plot of the binding energy for the four-body system versus the binding energy
of the three-body system, will result in a straight line. Any non-linear dependence
on higher-order N-body operators contributes only within the error band predicted
at this order in perturbation theory.

5.5.4 Final Considerations

Perhaps the most worrisome issue we have discussed is the inability to take the
continuum limit due to interactions that are included non-pertubatively and which
generate new non-zero scales beyond the scattering length. The lattice spacing must
also be kept reasonably large for another reason mentioned previously, related to
numerical stability: if the lattice spacing becomes too small, the system will begin
to probe the repulsive core of the two-body potential, leading to sign and/or signal-
to-noise problems.

Though we may not have the ability to vary the lattice spacing by significant
amounts, we must still prove that our results do not depend strongly on the short-
distance details of the action. This can be demonstrated instead by changing the
discretization of derivatives in the action, using more or less improvement of the
interaction, etc., and showing that the results do not change significantly [131].

Showing convergence of the EFT for the lattice results is also a major concern,
particularly since we have no single power-counting scheme that is known to
converge in all channels even in the continuum theory. One possible indication
of issues with convergence in the current Bonn-Raleigh method is the need for a
significant repulsive four-body interaction in order to stabilize four- and higher-
body systems, which seem prone to forming four-body clusters on a single lattice
site. This is akin to the particles falling to the bottom of a singular potential, and
may be related to the particular tuning of the three-body interaction. However, once

6This single scale is also critical for the appearance of the log-normal distribution in correlators
near unitarity, where the moments are given by

MN � e�EN-body� � e�f .N/��� : (5.237)

Numerical evidence was shown in [51] that f .N/ has the expected form for the log-normal
distribution.
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this interaction has been set the convergence of the results appears to be relatively
stable.

Possibly the biggest open issues to be resolved are the sign/noise problems
and proving convergence to the ground (or desired excited) state. Noise problems
have restricted most calculations of nuclear systems to nuclei in (or near) the
alpha ladder, where approximate SU.4/ symmetry applies. New theories and/or
algorithms would be enormously helpful in this arena. The engineering of better
sources or methods for extracting the desired states might be particularly beneficial
for both the reduction of noise and to eliminate the need for performing long
temporal extrapolations.

Despite these limitations there have been enormous successes for lattice EFT
for few- and many-body states both for systems at unitarity and nuclei. As an
example, at unitarity the energies of up to 50 two-component fermions have been
calculated with errors comparable to state-of-the-art Green’s Function Monte Carlo
calculations [53, 126, 145–148]. The Raleigh-Bonn group has calculated properties
of nuclei up to A D 28 [149–153]. Particularly exciting is their investigation of the
structure of the Hoyle state, a key component of the triple alpha process necessary
for Carbon production in stars [154–158].

5.6 Reading Assignments and Exercises

5.1 Much of these lecture notes follow this review: arXiv:1208.6556. There you
will also find more information about algorithms. The following is an excellent
pedagogical introduction to EFT’s by David B. Kaplan: arXiv:nucl-th/0510023.

5.2 Explore the cumulant expansion using a toy model [145]:

C.�; / D
�Y

iD1
.1C gi/ ; (5.238)

for 0 	 g 	 1 and  2 Œ�1; 1
. The true mean of the correlator should be
hC.�; /i D 1, corresponding to E0 D 0. Compare the cumulant expansion cut
off at various orders on a finite sample size to the mean calculated using standard
methods as the sample size is varied.

5.3 Reading: D. Lee: arXiv:0804.3501 [131] G.P. Lepage: Analysis of algorithms
for lattice field theory [1].

5.4 Add a term

c ��r2L ��1 (5.239)
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to the simple interaction, Eq. (5.41), and derive an analytic expression for tuning the
couplings, g0 and c in order to eliminate the effective range contribution. You may
use either the scattering amplitude or the transfer matrix method.

5.5 Write numerical code (Mathematica will suffice) to solve the transfer matrix for
two particles for a chosen set of coefficients, g2n [Eq. (5.176)], using L D 32, M D
5, and tune your coefficients to match the first few expected Lüscher eigenvalues at
unitarity. Compare your results with those in Table II of [126].

Acknowledgements The author would like to thank Michael Endres, David B. Kaplan, and
Jong-Wan Lee for extensive discussions, and especially M. Endres for the development of and
permission to use this code. AN was supported in part by U.S. DOE grant No. DE-SC00046548.

Appendix

Compilation and Running the Code

This code requires the use of the FFTW library, which you may download and
install from fftw.org. The script “create_lib.sh” should be run first from the head
directory. Once this script is successful, you may go into the production directory,
modify the script “create_binary.sh” to reflect your path to the FFTW library,
and compile by running this script. The executable created is called “a.out”,
which should be run without specifying any additional parameters in the command
line. Input parameters are specified in the files included in the “arg” folder. The
parameters for each file are described in the header “arg.h”. The codes can be down-
loaded from the link https://github.com/ManyBodyPhysics/LectureNotesPhysics/
tree/master/Programs/Chapter5-programs/.

Output is created in the folder “results”. The file gives a list of the values (real
part listed first, imaginary second) of the two-particle correlation function calculated
at different values of Euclidean time, on a set of auxiliary field configurations. The
organization of the output is as follows:

ReŒC.1; �1/
 ImŒC.1; �1/
 ReŒC.1; �2/
 ImŒC.1; �2/
 � � � ReŒC.1; �N� /
 ImŒC.1; �N� /


ReŒC.2; �1/
 ImŒC.2; �1/
 ReŒC.2; �2/
 ImŒC.2; �2/
 � � � ReŒC.2; �N� /
 ImŒC.2; �N� /


:
:
:

ReŒC.Ncfg ; �1/
 ImŒC.Ncfg ; �1/
 ReŒC.Ncfg ; �2/
 ImŒC.Ncfg ; �2/
 � � � ReŒC.Ncfg ; �N� /
 ImŒC.Ncfg ; �N� /


where N� and Ncfg are the total number of time steps, specified in “do.arg”, and
total number of configurations, specified in “evo.arg”, respectively. To calculate
the correlation function at a given time, � , average over all values: C.�/ DP

i .Re ŒC.i; �/
C i Im ŒC.i; �/
/.

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter5-programs/
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter5-programs/
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Exercises

5.6 Set the first value in the file “interaction.arg” to a coupling of your choice,
and the remaining couplings to 0. Use the long time behavior of the effective mass
function, ln C.�/

C.�C1/ �!�!1 E0 (see Sect. 5.3), to determine the ground state energy

for your choice of coupling, g. Compare this with what you expect from Eq. (5.64),
using the relation � D e�E0 , as the number of lattice points is increased. You may
test the improved interaction, Sect. 5.2.2.5, using coefficients calculated from your
code developed in Prob. 4 by setting multiple couplings in the “interaction.arg” file.
Be careful to set the dispersion relation in “kinetic.arg” to match the one used in
setting up your transfer matrix for the tuning.

5.7 Add a harmonic potential by setting the parameters in potential.arg. The three
numerical values correspond to the spring constant, �, for the x; y; z-directions. Set
the interaction coefficients to correspond to unitarity, then find the energies of two
unitary fermions in a harmonic trap, exploring and removing finite volume and
discretization effects by varying the parameters, L;L0 D .�M/�1=4, and performing
extrapolations in these quantities if necessary. Compare your result to the expected
value of 2!, where ! D p�=M, and the mass M is set in the file “kinetic.arg”.

5.8 Construct sources for three fermions in an l D 0 and l D 1 state and find the
lowest energies corresponding to each state at unitarity. Which l corresponds to the
true ground state of this system?
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Chapter 6
Lattice Methods and the Nuclear
Few- and Many-Body Problem

Dean Lee

6.1 Introduction

This chapter builds upon the general overview of lattice methods for effective field
theory of the previous chapter. We discuss the theory and algorithms used in lattice
simulations of nuclear few and many body systems. We show the exact equivalence
of the Grassmann path integral, transfer matrix operator, Grassmann path integral
with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with
our analysis we include several coding examples and a number of exercises for the
calculations of few- and many-body systems at leading order in chiral effective field
theory.

Effective field theory (EFT) provides a theoretical framework for organizing low-
energy interactions in powers of particle momenta. Chiral effective field theory
applies this framework to the low-energy interactions of protons and neutrons while
explicitly including the interactions of pions [1–9]. Pions are qualitatively different
from other mesons since they become massless in the limit of massless quarks,
thereby producing long-range exchange interactions. The low-energy expansion of
chiral EFT is organized in powers of Q, where Q denotes the typical momentum
of the nucleons as well as explicit factors of the pion mass. The most important
interactions are called leading order (LO) or O.Q0/. The next most important
contributions are next-to-leading order (NLO) or O.Q2/. The terms after this are
next-to-next-to-leading order (NNLO) or O.Q3/, and so on.

Lattice EFT refers generally to lattice simulations based upon the framework of
effective field theory. There are a few reviews in the literature which discuss current
methods used in lattice effective field theory [10, 11] as well as the discussion in the
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previous chapter of this volume. Many different phenomena can be studied in lattice
EFT using the same lattice action. In principle all systematic errors are introduced
up front when defining the low-energy effective theory, as opposed to the particular
computational scheme used to calculate observables.

Lattice EFT has been aided by efficient lattice methods developed for lattice
QCD and condensed matter applications. The methods include Markov Chain
Monte Carlo techniques, auxiliary fields [12, 13], pseudofermion methods [14],
and non-local updating schemes such as the hybrid Monte Carlo algorithm[15–17].
Lattice EFT was first used in studies of infinite nuclear matter [18] and infinite
neutron matter with and without explicit pions [19–22]. The method has also been
used to study light nuclei in pionless EFT [23] and chiral EFT at leading order [24].
There have been further studies of neutron matter [25–27] and light nuclei [28, 29],
and there have been several applications to nuclear structure and nuclear clustering
[30–35] as well as recent work on nuclear scattering and reactions [36–38].

6.2 Recent Applications

We review here several recent applications of lattice effective field theory to nuclear
systems. In [34], the first ab initio evidence is presented for a tetrahedral alpha-
cluster structure of the ground state of 16O. The first excited 0C state of 16O is
found to be a planar or square arrangement of alpha clusters. The evidence for these
geometric arrangements come from the strong overlap between nuclear states and
initial state configurations with these alpha-cluster geometries.

In Table 6.1 we presented the energies of the low-lying even parity states of
oxygen-16. The columns labeled “LO(2N)” and “NNLO(2N)” show the energies
at each order using the two-nucleon force only. The column labeled “+3N” also
includes the 3NF, which first appears at NNLO. The column “+4Neff” includes
an “effective” 4N force, and the column “Exp” gives the empirical energies. This
“effective” 4N force was introduced in [33] as a proxy measure of unknown
systematic errors responsible for overbinding in lattice chiral effective field theory
calculations with increasing numbers of nucleons. This tendency towards overbind-
ing has also been noted in other nuclear structure calculations [39, 40].

Table 6.1 Lattice results and experimental energies for the lowest even-parity states of 16O in
MeV

Jp
n LO (2N) NNLO (2N) +3N +4Neff Exp

0
C

1 �147:3.5/ �121:4.5/ �138:8.5/ �131:3.5/ �127.62

0
C

2 �145.2/ �116.2/ �136.2/ �123.2/ �121.57

2
C

1 �145.2/ �116.2/ �136.2/ �123.2/ �120.70

The errors include statistical Monte Carlo errors and uncertainties due to the extrapolation to
infinite Euclidean time
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In order to understand the source of this overbinding, the problem was revisited
again in [35]. In that work numerical evidence from ab initio lattice simulations
showed that the problem appears related to the fact that the nuclear forces reside
near a quantum phase transition. Using lattice effective field theory, Monte Carlo
simulations were performed for systems with up to 20 nucleons. For even and
equal numbers of protons and neutrons, a first-order transition was found at zero
temperature from a Bose-condensed gas of alpha particles to a nuclear liquid.
Whether one has an alpha-particle gas or nuclear liquid is determined by the strength
of the alpha-alpha interactions, and the alpha-alpha interactions depend on the
strength and locality of the nucleon-nucleon interactions. This insight is useful in
improving calculations of nuclear structure and important astrophysical reactions
involving alpha capture on nuclei. These findings also provide a tool to probe the
structure of alpha cluster states such as the Hoyle state responsible for the production
of carbon in red giant stars and point to a connection between nuclear states and the
universal physics of bosons at large scattering length.

Processes such as the scattering of alpha particles, the triple-alpha reaction,
and alpha capture play an important role in stellar nucleosynthesis. In particular,
alpha capture on carbon determines the ratio of carbon to oxygen during helium
burning and impacts the following carbon, neon, oxygen, and silicon burning stages.
In these reactions the elastic scattering of alpha particles and alpha-like nuclei
(nuclei with even and equal numbers of protons and neutrons) are important for
understanding background and resonant scattering contributions. In [38] the first
ab initio calculations of the scattering of two alpha particles were performed using
a technique called the adiabatic projection method. These calculations represent a
significant algorithmic improvement since the calculations presented in [38] scale
roughly quadratically with the number of nucleons and opens a gateway to scattering
and reactions involving heavier nuclei.

6.3 Scattering on the Lattice

At any given order in the chiral EFT expansion, there will be short-range interaction
coefficients which depend on the chosen regularization of the large-momentum
divergences. On the lattice this regularization is provided by the lattice spacing,
unless some additional regularization is applied to the lattice interactions. In
order to set the values of the short-range two-nucleon interaction coefficients, we
make a comparison of nucleon-nucleon scattering on the lattice with experimental
scattering data. The extension to three-nucleon interaction coefficients is also
required at NNLO, and that procedure on the lattice has been discussed in [28].

As discussed in the previous chapter, Lüscher [41–43] has shown that the finite-
volume energy levels for a two-body system in a periodic cubic box are related to the
infinite-volume scattering matrix. While the method is very useful at low momenta,
it can become less accurate at higher momenta and higher orbital angular momenta.
Also spin-orbit coupling and partial-wave mixing are difficult to measure accurately
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using Lüscher’s method due to scattering artifacts produced by the cubic periodic
boundary. An alternative approach has been developed to measure phase shifts for
particles on the lattice using a spherical wall boundary [44, 45].

In this approach, a hard spherical wall boundary is imposed on the relative
separation between the two particles. This wall is placed at some chosen radius
Rwall, and it removes copies of the interactions produced by the periodic lattice.
Working in the center-of-mass frame, we solve the time-independent Schrödinger
equation as a function of the relative separation between the particles and compute
spherical standing waves which vanish at r D Rwall. At values of r beyond the range
of the interaction, the spherical standing waves can be written as a superposition of
products of spherical harmonics and spherical Bessel functions,

Œcos ı` � j`.kr/� sin ı` � y`.kr/
 Y`;`z.�; /: (6.1)

Here k is the relative momentum between the scattering particles, and ı` is the phase
shift for partial wave `. We can extract k from the energy of the standing wave, and
the phase shift ı` is determined by setting the wave function in Eq. (6.1) to zero at
the wall boundary.

When the total intrinsic spin of the two nucleons is nonzero, spin-orbit coupling
generates mixing between partial waves. In this case the standing wave at the wall
boundary is decomposed into spherical harmonics and coupled-channel equations
are solved to extract the phase shifts and mixing angles. The spherical wall method
was used to calculate phase shifts and mixing angle for low-energy nucleon-nucleon
scattering [25]. Recently the spherical wall approach has been improved in accuracy
and computational efficiency [46]. In the improved approach one projects onto
spherical harmonics Y`;`z with angular momentum quantum numbers `; `z. In this
manner one constructs radial position states for a given partial wave,

jri`;`z D
X

r0

Y`;`z.Or0/ır;jr0jjr0i: (6.2)

We require that r is less than half the box length L=2. Using this technique we are
essentially constructing a radial position basis for each partial wave.

It is also useful to introduce auxiliary potentials in the region lying just in front
of the spherical wall boundary [46]. The auxiliary potential is a spherical attractive
well that is positioned in front of the spherical wall boundary. We can tune to
any scattering energy by adjusting the depth of the well. For systems with partial
wave mixing due to spin-orbit coupling, we also include a Hermitian but imaginary
off-diagonal auxiliary potential for the two coupled channels. This breaks time
reversal symmetry, and the resulting standing wave solutions now have both real and
imaginary parts that are linearly independent. From the real and imaginary solutions
one can determine the scattering phase shifts and mixing angle at any given value
of the scattering energy.

This spherical wall approach has been used together with a technique called
the adiabatic projection method to study nuclear scattering and reactions on the
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lattice. The adiabatic projection method [35, 38, 47–49] is a general framework
that produces a low-energy effective theory for clusters of particles which becomes
exact in the limit of large projection time. For the case of two-cluster scattering, we
consider a set of two cluster states jRi labeled by the spatial separation vector R.
The initial wave functions are wave packets which, for large jRj, factorize into a
product of two individual clusters,

jRi D
X

r

jrC Ri1 ˝ jri2: (6.3)

The summation over r is required to produce states with total momentum equal
to zero. We bin the initial cluster states together according to radial distance and
angular momentum. In this manner, we form radial position states with projected
angular momentum quantum numbers, which we label jRi`;`z .

The next step is to multiply by powers of the transfer matrix in order to form
“dressed” cluster states. This produces states that approximately span the set of low-
energy cluster-cluster scattering states in our periodic box. We discuss the transfer
matrix formalism in detail later in this chapter. After nt time steps, we have the
dressed cluster states

jRi`;`z
nt
D Mnt jRi`;`z : (6.4)

These dressed cluster states are then used to compute matrix elements of the transfer
matrix M,

ŒMnt 

`;`z
R0;R D `;`z

nt
hR0jMjRi`;`z

nt
: (6.5)

Since such states are not orthogonal, we also compute a norm matrix

ŒNnt 

`;`z
R0;R D `;`z

nt
hR0jRi`;`z

nt
: (6.6)

The “radial adiabatic transfer matrix” is defined as the matrix product

�
Ma

nt

	`;`z

R0;R
D
�

N
� 1
2

nt Mnt N
� 1
2

nt

`;`z

R0;R

; (6.7)

and the scattering phase shifts can then be determined from the standing waves of
the radial adiabatic transfer matrix.

6.4 Lattice Formalisms

Throughout our discussion of the lattice formalism we use dimensionless parameters
and operators corresponding with physical values times the appropriate power of
the spatial lattice spacing a. In our notation the three-component integer vector n
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Fig. 6.1 A schematic diagram of the different lattice formulations, namely, the Grassmann path
integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix
operator with auxiliary fields

labels the lattice sites of a three-dimensional periodic lattice with dimensions L3.
The spatial lattice unit vectors are denoted Ol = O1, O2, O3. We use nt to label lattice steps
in the temporal direction, and Lt denotes the total number of lattice time steps. The
temporal lattice spacing is given by at, and ˛t D at=a is the ratio of the temporal
to spatial lattice spacing. We also define h D ˛t=.2m/, where m is the nucleon
mass in lattice units. In Fig. 6.1 we show a diagram of the four different but exactly
equivalent lattice formulations that we discuss, the Grassmann path integral, transfer
matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix
operator with auxiliary fields.

6.4.1 Grassmann Path Integral

We define the lattice action starting from the lattice Grassmann path integral action
without auxiliary fields. This is the simplest formulation in which to derive the
lattice Feynman rules. We let c and c� be anticommuting Grassmann fields for
the nucleons. In our notation c is a column vector composed of the spin-isospin
nucleon degrees of freedom ci, while c� is a row vector of the components c�

i .
The Grassmann fields are periodic with respect to the spatial extent of the L3

lattice,

ci.nC LO1; nt/ D ci.nC LO2; nt/ D ci.nC LO3; nt/ D ci.n; nt/; (6.8)

c�
i .nC LO1; nt/ D c�

i .nC LO2; nt/ D c�
i .nC LO3; nt/ D c�

i .n; nt/; (6.9)
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and antiperiodic along the temporal direction,

ci.n; nt C Lt/ D �ci.n; nt/; (6.10)

c�
i .n; nt C Lt/ D �c�

i .n; nt/: (6.11)

We write DcDc� as shorthand for the integral measure,

DcDc� D
Y
n;nt ;i

dci.n; nt/dc�
i .n; nt/: (6.12)

We use the usual convention for Grassmann integration,

Z
dci.n; nt/ D

Z
dc�

i .n; nt/ D 0, (6.13)

Z
dci.n; nt/ci.n; nt/ D

Z
dc�

i .n; nt/c
�
i .n; nt/ D 1 (no sum on i): (6.14)

We consider the Grassmann path integral

Z D
Z

DcDc� exp
��S



c�; c

�	
; (6.15)

where the lattice action can be broken into a free part and interacting part,

S.c�; c/ D Sfree.c
�; c/C Sint.c

�; c/: (6.16)

The free part is the free non-relativistic nucleon action, which is

Sfree.c
�; c/ D

X
n;nt

c�.n; nt/ Œc.n; nt C 1/� c.n; nt/
C ˛t

X
nt

K.nt/.c�; c/; (6.17)

where

K.nt/.c�; c/ D
X

kD0;1;2;���
.�1/k wk

2m

X
n;Ol

c�.n; nt/
h
c.nC kOl; nt/C c.n� kOl; nt/

i
;

(6.18)

and the hopping coefficients wk correspond to a hopping parameter expansion of the
squared momentum,

P2.p/ D 2
X

kD0;1;2;���

X
lD1;2;3

.�1/kwk cos .kpl/ : (6.19)
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Table 6.2 Hopping
coefficients wk for several
lattice actions

Coefficient Standard O.a2/-improved O.a4/-improved

w0 1 5=4 49=36

w1 1 4=3 3=2

w2 0 1=12 3=20

w3 0 0 1=90

The hopping coefficients are chosen to match the continuum relation

P2.p/ D p2; (6.20)

up to some chosen level of lattice discretization error. The hopping coefficients wk

for a few different lattice actions are shown in Table 6.2.

6.4.2 Transfer Matrix Operator

Let ai.n/ and a�i .n/ denote fermion annihilation and creation operators for the
nucleon component i at lattice site n. The shorthand a.n/ represents a col-
umn vector of nucleon components ai.n/, and a�.n/ represents a row vector
of components a�i .n/. We can write any Grassmann path integral with instan-
taneous interactions as the trace of a product of operators using the identity
[50, 51]

Tr
˚WFLt�1

�
a�.n0/; a.n/

	 W � � � � �WF0 �a�.n0/; a.n/
	 W �

D
Z

DcDc� exp

8<
:

Lt�1X
ntD0

X
n;i

c�
i .n; nt/ Œci.n; nt/� ci.n; nt C 1/


9=
;

�
Lt�1Y
ntD0

Fnt

�
c�.n0; nt/; c.n; nt/

	
; (6.21)

where ci.n;Lt/ D �ci.n; 0/.
Let us define the free non-relativistic lattice Hamiltonian

Hfree.a
�; a/ D

X
kD0;1;2;���

.�1/k wk

2m

X
n;Ol

a�.n/
h
a.nC kOl/C a.n� kOl/

i
: (6.22)

We write the interaction term as Hint.a�; a/, so that our total Hamiltonian is

H.a�; a/ D Hfree.a
�; a/C Hint.a

�; a/: (6.23)
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Using the correspondence Eq. (6.21), we can rewrite the path integral Z defined in
Eq. (6.15) as a transfer-matrix partition function,

Z D Tr


MLt

�
; (6.24)

where M is the normal-ordered transfer matrix operator

M DW exp
��H.a�; a/˛t

	 W : (6.25)

Roughly speaking, the transfer matrix operator is the exponential of the Hamiltonian
operator over one Euclidean lattice time step. In order to satisfy the identity
Eq. (6.21), the exact definition of the transfer matrix is the normal-ordered expo-
nential as defined in Eq. (6.25).

In this transfer matrix formalism, one can do simulations of nucleons using
Monte Carlo, and this would essentially be a lattice version of diffusion or Green’s
function Monte Carlo [52]. Visually one can view the nucleons as interacting
with each other while diffusing in space with each time step, as indicated in
Fig. 6.2. At leading order in chiral effective field theory, the interactions include
two independent S-wave contact interactions and the exchange of pions. We discuss
these interactions in detail in the following.

Fig. 6.2 A sketch showing nucleons which evolve with each time step. At leading order in chiral
effective field theory, the interactions include two contact interactions and the exchange of pions
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6.4.3 Grassmann Path Integral with Auxiliary Field

We assume that there exists an integral relation that allows us to write
exp Œ�Sint.c�; c/
 as an integral over auxiliary fields. The purpose of the
auxiliary field transformation is to decouple the interactions among the nucleons.
Instead the interactions will be between the nucleons and the auxiliary
fields.

We illustrate using the interactions that appear at leading order in chiral
effective field theory. For pedagogical purposes we discuss the simplest possible
implementation of the leading order action on the lattice. We first consider a zero-
range contact interaction which is independent of nucleon spin and isospin. The
action has the form

SC
int.c

�; c/ D ˛t
C

2

X
n;nt

�
c�.n; nt/c.n; nt/

	2
: (6.26)

We can write this as

exp
��SC

int.c
�; c/

	 D
Z

Ds exp
��Sss.s/� Ss.c

�; c; s/
	

(6.27)

for auxiliary field s.n; nt/, where

Sss.s/ D 1

2

X
n;nt

s2.n; nt/; (6.28)

Ss.c
�; c; s/ D

p
�C˛t

X
n;nt

s.n; nt/c
�.n; nt/c.n; nt/: (6.29)

In our definition of the integration measure Ds, we include a factor of 1=
p
2� for

each degree of freedom.
Next we consider an isospin-dependent contact interaction

SC0

int.c
�; c/ D ˛t

C0

2

X
n;nt ;I

�
c�.n; nt/�Ic.n; nt/

	2
; (6.30)

where �I for I D 1; 2; 3 are the Pauli matrices in isospin space. Then we can use

exp
h
�SC0

int.c
�; c/

i
D
Z Y

I

DsI exp
��SsIsI .sI/ � SsI .c

�; c; sI/
	

(6.31)



6 Lattice Methods and the Nuclear Few- and Many-Body Problem 247

for auxiliary fields sI.n; nt/ where

SsIsI .sI/ D 1

2

X
n;nt ;I

s2I .n; nt/; (6.32)

SsI .c
�; c; sI/ D

p�C0˛t

X
n;nt ;I

sI.n; nt/c
�.n; nt/�Ic.n; nt/: (6.33)

Finally we work with the one-pion exchange potential (OPEP). In this case the
pion acts much like the auxiliary fields. However there are also spatial correlations
in the quadratic part of the pion action and a gradient coupling between the
pions and nucleons. The one-pion exchange interaction on the lattice can written
as

exp
��SOPEP

int .c�; c/
	 D

Z Y
I

D�I exp
��S�I�I .�I/� S�I .c

�; c; �I/
	
: (6.34)

The free pion action is

S�I�I .�I/ D 1

2
˛tm

2
�

X
n;nt;I

�2I .n; nt/

C 1

2
˛t

X
kD0;1;2;���

.�1/kwk

X
n;nt ;I;Ol

�I.n; nt/
h
�I.nC kOl; nt/C �I.n � kOl; nt/

i
;

(6.35)

with the coefficient wk as defined in Table 6.2 and m� is the pion mass. At leading
order we do not consider any isospin-breaking effects. The pion coupling to the
nucleon is

S�I .c
�; c; �I/ D gA˛t

2f�

X
n;nt ;l;I

�k�I.n; nt/c
�.n; nt/�k�Ic.n; nt/; (6.36)

where �l for l D 1; 2; 3 are the Pauli matrices in spin space and

�l�I.n; nt/ D 1

2

X
kD1;2;���

.�1/k�1ok

h
�I.nC kOl; nt/� �I.n� kOl; nt/

i
; (6.37)

with coefficients ok corresponding to a hopping parameter expansion of the
momentum,

P. pl/ D
X

kD1;2;���
.�1/k�1ok sin .kpl/ : (6.38)



248 D. Lee

Table 6.3 Hopping
coefficients ok for several
lattice actions

Coefficient Standard O.a2/-improved O.a4/-improved

o1 1 4=3 3=2

o2 0 1=6 3=10

o3 0 0 1=30

Here gA is the axial-vector coupling constant, and f� is the pion decay
constant. The hopping coefficients can be chosen to match the continuum
result

P. pl/ D pl: (6.39)

The hopping coefficients ok for a few different lattice actions are shown in
Table 6.3.

6.4.4 Transfer Matrix Operator with Auxiliary Field

Using the equivalence in Eq. (6.21), we can write Z as the trace of a product of
transfer matrix operators which depend on the auxiliary field,

Z D
Z

Ds
Y

I

.DsID�I/ exp Œ�Sss.s/� SsIsI .sI/� S�I�I .�I/
Tr
˚
M.Lt�1/ � � �M.0/

�
:

(6.40)

The transfer matrix at time step nt is given by

M.nt/ DW exp
��H.nt/.a�; a; s; sI; �I/˛t

	 W ; (6.41)

where

H.nt/.a�; a; s; sI ; �I/˛t D Hfree.a
�; a/˛t C S.nt/

s .a�; a; s/C S.nt/
sI
.a�; a; sI/

CS.nt/
�I
.a�; a; �I/; (6.42)

and

S.nt/
s .a�; a; s/ D p�C˛t

X
n

s.n; nt/a
�.n/a.n/; (6.43)

S.nt/
sI
.a�; a; sI/ D

p
�C0˛t

X
n;I

sI.n; nt/a
�.n/�Ia.n/; (6.44)

S.nt/
�I
.a�; a; �I/ D gA˛t

2f�

X
n;k;I

�k�I.n; nt/a
�.n/�k�Ia.n/: (6.45)
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6.5 Projection Monte Carlo

Let us consider a system with A nucleons. We can create a general single-nucleon
state using creation operators acting on the vacuum with coefficient function f .n/.
We write f .n/ as a column vector in the space of nucleon spin and isospin
components, and the single-nucleon state can be written as

j f i D
X

n

a�.n/f .n/ j0i : (6.46)

For our projection Monte Carlo calculation we take our A-body initial state to be a
Slater determinant of single nucleon states,

j f1; � � � ; fAi D
"X

n

a�.n/f1.n/

#
� � �
"X

n

a�.n/fA.n/

#
j0i : (6.47)

We use the same construction for the A-body final state.
For the purposes of coding the projection Monte Carlo calculation, it is conve-

nient to view the identical nucleons as having a hidden index j D 1; � � � ;A that
makes all of the nucleons distinguishable. If we antisymmetrize all physical states
over this extra index then all physical observables are exactly recovered. So our
initial state j f1; � � � ; fAi becomes

1p
AŠ

X
P

"X
n

a�ŒP.1/
.n/f1.n/

#
� � �
"X

n

a�ŒP.A/
.n/fA.n/

#
j0i

D 1p
AŠ

X
P0

sgn.P0/
"X

n

a�Œ1
.n/fP0.1/.n/

#
� � �
"X

n

a�ŒA
.n/fP0.A/.n/

#
j0i ;

(6.48)

where the summations are over all permutations P, and sgn is the sign of the
permutation. With these hidden indices our normal-ordered auxiliary-field transfer
matrix M.nt/ becomes

h
1 �H.nt/.a�Œ1
; aŒ1
; s; sI ; �I/˛t

i
� � �
h
1 � H.nt/.a�ŒA
; aŒA
; s; sI ; �I/˛t

i
(6.49)

We see that the higher-order powers of the exponential vanish due to normal
ordering.

In the projection Monte Carlo calculation we compute the amplitude

Z.nt/ D h f1; � � � ; fAjM.nt�1/ � � �M.0/ j f1; � � � ; fAi (6.50)
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Fig. 6.3 A sketch showing the worldline for a single nucleon with a background of pion fields and
auxiliary fields

for nt D Lt and nt D Lt�1. In the limit of large Lt the amplitudes will be dominated
by the state with the lowest energy E0 and nonzero overlap with j f1; � � � ; fAi. In this
limit the ratio Z.nt/=Z.nt � 1/ will converge to exp.�E0˛t/ from above.

Each nucleon evolves as a particle in a fluctuating background of auxiliary
fields and pion fields. The original interactions are reproduced after integrating
over the fluctuating auxiliary and pion fields. For a simulation with A nucleons,
the amplitude for a given configuration of pion and auxiliary fields is proportional
to the determinant of an A � A matrix M. The entries of Mij are single nucleon
worldline amplitudes for a nucleon starting at state

ˇ̌
fj
˛

at t D 0 and ending at state
j fii at t D tf D Lt˛t. This is shown in Fig. 6.3.

In the following we show sample code 6.1 in the Fortran programming language
which calculates the auxiliary-field transfer matrix multiplications on the left
starting from the single-nucleon initial states. We show only the terms which arise
from the free-nucleon transfer matrix and the auxiliary field s.

Code Listing 6.1 Sample code calculating the auxiliary-field transfer matrix multiplications on
the left starting from the single-nucleon initial states

DO nt = nt1+1, nt2
DO np = 0,num-1
DO nz = 0,L-1; DO ny = 0,L-1; DO nx = 0,L-1; DO ni = 0,1; DO

ns = 0,1

zvecs(nx,ny,nz,nt,ns,ni,np) = zvecs(nx,ny,nz,nt-1,ns,ni,np) &

* (1.D0-6.D0*w0_N*h+CDSQRT(-c0*atovera*(1.D0,0.D0))*s(nx,ny
,nz,nt-1))
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zvecs(nx,ny,nz,nt,ns,ni,np) = zvecs(nx,ny,nz,nt,ns,ni,np) &
+ w1_N*h*zvecs(MOD(nx+1,L),ny,nz,nt-1,ns,ni,np) &
+ w1_N*h*zvecs(MOD(nx-1+L,L),ny,nz,nt-1,ns,ni,np) &
+ w1_N*h*zvecs(nx,MOD(ny+1,L),nz,nt-1,ns,ni,np) &
+ w1_N*h*zvecs(nx,MOD(ny-1+L,L),nz,nt-1,ns,ni,np) &
+ w1_N*h*zvecs(nx,ny,MOD(nz+1,L),nt-1,ns,ni,np) &
+ w1_N*h*zvecs(nx,ny,MOD(nz-1+L,L),nt-1,ns,ni,np)

IF (improveN >= 1) THEN
zvecs(nx,ny,nz,nt,ns,ni,np) = zvecs(nx,ny,nz,nt,ns,ni,np) &
- w2_N*h*zvecs(MOD(nx+2,L),ny,nz,nt-1,ns,ni,np) &
- w2_N*h*zvecs(MOD(nx-2+L,L),ny,nz,nt-1,ns,ni,np) &
- w2_N*h*zvecs(nx,MOD(ny+2,L),nz,nt-1,ns,ni,np) &
- w2_N*h*zvecs(nx,MOD(ny-2+L,L),nz,nt-1,ns,ni,np) &
- w2_N*h*zvecs(nx,ny,MOD(nz+2,L),nt-1,ns,ni,np) &
- w2_N*h*zvecs(nx,ny,MOD(nz-2+L,L),nt-1,ns,ni,np)

END IF

IF (improveN == 2) THEN
zvecs(nx,ny,nz,nt,ns,ni,np) = zvecs(nx,ny,nz,nt,ns,ni,np) &
+ w3_N*h*zvecs(MOD(nx+3,L),ny,nz,nt-1,ns,ni,np) &
+ w3_N*h*zvecs(MOD(nx-3+L,L),ny,nz,nt-1,ns,ni,np) &
+ w3_N*h*zvecs(nx,MOD(ny+3,L),nz,nt-1,ns,ni,np) &
+ w3_N*h*zvecs(nx,MOD(ny-3+L,L),nz,nt-1,ns,ni,np) &
+ w3_N*h*zvecs(nx,ny,MOD(nz+3,L),nt-1,ns,ni,np) &
+ w3_N*h*zvecs(nx,ny,MOD(nz-3+L,L),nt-1,ns,ni,np)

END IF

END DO; END DO; END DO; END DO; END DO
END DO

END DO

Similarly, we now show sample code 6.2 which calculates the auxiliary-field
transfer matrix multiplications on the right starting from the single-nucleon final
states. Again we present only the terms arising from the free-nucleon transfer matrix
and the auxiliary field s.

Code Listing 6.2 Sample code calculating the auxiliary-field transfer matrix multiplications on
the right starting from the single-nucleon final states

DO nt = nt2,nt1+1,-1
DO np = 0,num-1
DO nz = 0,L-1; DO ny = 0,L-1; DO nx = 0,L-1; DO ni = 0,1; DO

ns = 0,1

zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
= zdualvecs(nx,ny,nz,nt,ns,ni,np) &

* (1.D0-6.D0*w0_N*h+CDSQRT(-c0*atovera*(1.D0,0.D0))*s(nx,
ny,nz,nt-1))

zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
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= zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
+ w1_N*h*zdualvecs(MOD(nx+1,L),ny,nz,nt,ns,ni,np) &
+ w1_N*h*zdualvecs(MOD(nx-1+L,L),ny,nz,nt,ns,ni,np) &
+ w1_N*h*zdualvecs(nx,MOD(ny+1,L),nz,nt,ns,ni,np) &
+ w1_N*h*zdualvecs(nx,MOD(ny-1+L,L),nz,nt,ns,ni,np) &
+ w1_N*h*zdualvecs(nx,ny,MOD(nz+1,L),nt,ns,ni,np) &
+ w1_N*h*zdualvecs(nx,ny,MOD(nz-1+L,L),nt,ns,ni,np)

IF (improveN >= 1) THEN
zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
= zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
- w2_N*h*zdualvecs(MOD(nx+2,L),ny,nz,nt,ns,ni,np) &
- w2_N*h*zdualvecs(MOD(nx-2+L,L),ny,nz,nt,ns,ni,np) &
- w2_N*h*zdualvecs(nx,MOD(ny+2,L),nz,nt,ns,ni,np) &
- w2_N*h*zdualvecs(nx,MOD(ny-2+L,L),nz,nt,ns,ni,np) &
- w2_N*h*zdualvecs(nx,ny,MOD(nz+2,L),nt,ns,ni,np) &
- w2_N*h*zdualvecs(nx,ny,MOD(nz-2+L,L),nt,ns,ni,np)

END IF

IF (improveN == 2) THEN
zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
= zdualvecs(nx,ny,nz,nt-1,ns,ni,np) &
+ w3_N*h*zdualvecs(MOD(nx+3,L),ny,nz,nt,ns,ni,np) &
+ w3_N*h*zdualvecs(MOD(nx-3+L,L),ny,nz,nt,ns,ni,np) &
+ w3_N*h*zdualvecs(nx,MOD(ny+3,L),nz,nt,ns,ni,np) &
+ w3_N*h*zdualvecs(nx,MOD(ny-3+L,L),nz,nt,ns,ni,np) &
+ w3_N*h*zdualvecs(nx,ny,MOD(nz+3,L),nt,ns,ni,np) &
+ w3_N*h*zdualvecs(nx,ny,MOD(nz-3+L,L),nt,ns,ni,np)

END IF

END DO; END DO
END DO; END DO; END DO

END DO

In the following we show sample code 6.3 where these transfer matrix product
multiplications are called as subroutines and used to compute the determinant and
inverse of the matrix of single-nucleon amplitudes M.

Code Listing 6.3 Sample code where transfer matrix product multiplications are called and used
to compute the determinant and inverse of the matrix of single-nucleon amplitudes

CALL getzvecs(s,sI,zvecs,zwave,Lt,0,pion,ztau2x2,n_f)
CALL getzdualvecs(s,sI,zdualvecs,zdualwave,Lt,0,pion,ztau2x2,n_f)
CALL getinvcorr(zvecs,zdualvecs,zldeter,zcorrmatrix,zcorrinv,Lt)

aldeterabs = DBLE(zldeter)
zdeterphase = CDEXP((0.D0,1.D0)*DIMAG(zldeter))
act = bose - aldeterabs
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6.6 Importance Sampling

We do importance sampling according to the positive measure

jZ.Lt/j exp Œ�Sss.s/ � SsIsI .sI/ � S�I�I .�I/
; (6.51)

and use hybrid Monte Carlo to do global updates of the auxiliary and pion fields.
The hybrid Monte Carlo (HMC) algorithm [15–17] is efficient in quickly generating
decorrelated configurations for each auxiliary and pion field. Here we describe the
updating algorithm for the s field. The updating of the sI and �I fields proceed in
a very similar fashion. In general terms, the HMC algorithm can be described by
means of a probability weight P.s/

P.s/ / expŒ�V.s/
; (6.52)

where V.s/ is in general a non-local function of the field s.n; nt/; and a molecular
dynamics (MD) Hamiltonian,

H.s; p/ � 1

2

X
n;nt

Œps.n; nt/

2 C V.s/: (6.53)

Classical Hamiltonian dynamics is introduced by defining the momentum ps.n; nt/

conjugate to s.n; nt/.
Given an arbitrary initial configuration s0.n; nt/, the conjugate momentum is

chosen from a random Gaussian distribution according to

PŒp0s .n; nt/
 / exp

�
�1
2

�
p0s .n; nt/

	2�
; (6.54)

after which the Hamiltonian equations of motion are integrated numerically with a
small but nonzero step size "step. This method begins with a “half-step” forward in
the conjugate momentum,

Qp0s .n; nt/ D p0s .n; nt/� "step

2

�
@V.s/

@s.n; nt/


sDs0

; (6.55)

followed by repeated updates of s and Qps according to

siC1.n; nt/ D si.n; nt/C "step Qpi
s.n; nt/; QpiC1

s .n; nt/ D Qpi
s.n; nt/� "step

�
@V.s/

@s.n; nt/


sDsiC1

;

(6.56)
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for a specified number of steps Nstep. This is followed by an additional half-step
backward in Qps given by

p
Nstep
s .n; nt/ D QpNstep

s .n; nt/C "step

2

�
@V.s/

@s.n; nt/


sDs0

: (6.57)

For algorithmic efficiency the length of such an MD “trajectory” should be
taken large enough to ensure decorrelation between successive configurations of the
auxiliary field. The evolved configuration is then subjected to a “Metropolis test”
against a random number r 2 Œ0; 1/. The new configuration is accepted if

r < exp
h
�H.sNstep ; p

Nstep
s /C H.s0; p0s /

i
: (6.58)

It should be noted that although H is in principle conserved in the MD evolution,
the truncation error of the leapfrog method introduces a systematic error. The
Metropolis test eliminates the need for extrapolation in "step.

In our case expŒ�V.s/
 has the form

jZ.Lt/j exp Œ�Sss.s/ � SsIsI .sI/ � S�I�I .�I/
; (6.59)

where Z.Lt/ is the determinant of an A � A matrix of single-nucleon amplitudes M.
The derivative of V is then computed using

@V.s/

@s.n; nt/
D @Sss.s/

@s.n; nt/
� @Re Œln .det M/


@s.n; nt/

D @Sss.s/

@s.n; nt/
� Re

"
1

det M

X
k;l

@ det M
@Mkl

@Mkl

@s.n; nt/

#

D @Sss.s/

@s.n; nt/
� Re

"X
k;l

M�1
lk

@Mkl

@s.n; nt/

#
: (6.60)

In the following we show sample code 6.4 calculating the quadratic part of the
action due to the auxiliary fields and pion fields,

1

2

X
n;nt

Œps.n; nt/

2 C 1

2

X
n;nt ;I

ŒpsI .n; nt/

2 C 1

2

X
n;nt ;I

Œp�I .n; nt/

2 C Sss.s/C SsIsI .sI/

CS�I�I .�I/: (6.61)

In the code we have found it convenient to rescale the pion field by a factor of
p

q�
where

q� D ˛t


m2
� C 6w0

�
: (6.62)
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Code Listing 6.4 Sample code calculating the quadratic part of the action due to the auxiliary
fields and pion fields

bose = 0.D0
DO nt = 0,Lt-1
DO nz = 0,L-1; DO ny = 0,L-1; DO nx = 0,L-1
bose = bose &
+ s(nx,ny,nz,nt)**2.D0/2.D0 &
+ p_s(nx,ny,nz,nt)**2.D0/2.D0

DO iso = 1,3
bose = bose &
+ sI(nx,ny,nz,nt,iso)**2.D0/2.D0 &
+ p_sI(nx,ny,nz,nt,iso)**2.D0/2.D0 &
+ pion(nx,ny,nz,nt,iso)**2.D0/2.D0 &
+ atovera/qpi3*pion(nx,ny,nz,nt,iso)*( &
- w1_P*pion(MOD(nx+1,L),ny,nz,nt,iso) &
- w1_P*pion(nx,MOD(ny+1,L),nz,nt,iso) &
- w1_P*pion(nx,ny,MOD(nz+1,L),nt,iso) &
+ w2_P*pion(MOD(nx+2,L),ny,nz,nt,iso) &
+ w2_P*pion(nx,MOD(ny+2,L),nz,nt,iso) &
+ w2_P*pion(nx,ny,MOD(nz+2,L),nt,iso) &
- w3_P*pion(MOD(nx+3,L),ny,nz,nt,iso) &
- w3_P*pion(nx,MOD(ny+3,L),nz,nt,iso) &
- w3_P*pion(nx,ny,MOD(nz+3,L),nt,iso)) &
+ p_pion(nx,ny,nz,nt,iso)**2.D0/2.D0

END DO
END DO; END DO; END DO

END DO

In following we show sample code 6.5 which calculates

�
@V.s/

@s.n; nt/


sDs0

(6.63)

and uses it to compute the half-step forward in the conjugate momentum,

Qp0s .n; nt/ D p0s .n; nt/ � "step

2

�
@V.s/

@s.n; nt/


sDs0

: (6.64)

Code Listing 6.5 Sample code computing derivative with respect to the auxiliary field and half-
step forward in the conjugate momentum

DO npart1 = 0,n_f-1; DO npart2 = 0,n_f-1
zdcorrmatrix(npart2,npart1) = 0.D0
DO ni = 0,1; DO ns = 0,1
zdcorrmatrix(npart2,npart1) = &
zdcorrmatrix(npart2,npart1) + &
zdualvecs(nx,ny,nz,nt+1,ns,ni,npart2) &

*zvecs(nx,ny,nz,nt,ns,ni,npart1) &

*CDSQRT(-c0*atovera*(1.D0,0.D0))/L**3
END DO; END DO
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END DO; END DO

dVds(nx,ny,nz,nt) = s(nx,ny,nz,nt)

DO npart1 = 0,n_f-1; DO npart2 = 0,n_f-1
dVds(nx,ny,nz,nt) = dVds(nx,ny,nz,nt) &
- DBLE(zdcorrmatrix(npart2,npart1) &

*zcorrinv(npart1,npart2))
END DO; END DO

p_sHMC(nx,ny,nz,nt,0) = &
p_s(nx,ny,nz,nt) - 0.5D0*eHMC*dVds(nx,ny,nz,nt)

In following code 6.6 we show an example code which performs the Metropolis
test against a random number r 2 Œ0; 1/, with the new configuration being accepted
if

r < exp
h
�H.sNstep ; p

Nstep
s /C H.s0; p0s /

i
: (6.65)

Code Listing 6.6 Sample code which performs the Metropolis acceptance test

IF (ntrial .eq. 1 .or. grnd() .lt. DEXP(-actnew+act)) THEN

accept = accept + 1.

DO nt = 0,Lt-1
DO nz = 0,L-1; DO ny = 0,L-1; DO nx = 0,L-1
s(nx,ny,nz,nt) = snew(nx,ny,nz,nt)

END DO; END DO; END DO
END DO

DO nt = 0,Lt-1
DO nz = 0,L-1; DO ny = 0,L-1; DO nx = 0,L-1
DO iso = 1,3
sI(nx,ny,nz,nt,iso) = sInew(nx,ny,nz,nt,iso)
pion(nx,ny,nz,nt,iso) = pionnew(nx,ny,nz,nt,iso)

END DO
END DO; END DO; END DO

END DO

aldeterabs = aldeternewabs
zdeterphase = zdeternewphase

END IF

Although the Monte Carlo importance sampling uses only the absolute value of
the amplitude, the complex phase of the amplitude is treated as an observable and is
collected with each configuration of the auxiliary and pion fields.
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6.7 Exercises

6.1 Write a lattice hybrid Monte Carlo code which performs updates of the lattice
action according to only the quadratic part of the action due to the auxiliary fields
and pions,

1

2

X
n;nt

Œps.n; nt/

2 C 1

2

X
n;nt ;I

ŒpsI .n; nt/

2 C 1

2

X
n;nt ;I

Œp�I .n; nt/

2 C Sss.s/C SsIsI .sI/

C S�I�I .�I/: (6.66)

Verify that the change in the action produced by the hybrid Monte Carlo update is
scaling quadratically in the step size, "step, in the limit "step ! 0 with Nstep"step held
fixed.

6.2 Write a function or subroutine that generates initial/final single-nucleon states
on the lattice corresponding to a Slater-determinant state with one neutron spin-up
and one neutron spin-down, both with zero momentum.

6.3 Write a function or subroutine that generates initial/final single-nucleon states
on the lattice corresponding to a Slater-determinant state with one proton spin-up
and one neutron spin-up, both with zero momentum.

6.4 Write a function or subroutine that generates initial/final single-nucleon states
on the lattice corresponding to a Slater-determinant state of four nucleons—proton
spin-up, proton spin-down, neutron spin-up, and neutron spin-down—each with
zero momentum.

6.5 Write a function or subroutine that extends the sample code 6.1 to repeatedly
multiply the auxiliary-field transfer matrix on the left starting from the initial single-
nucleon wave functions. Include the contributions from the auxiliary fields s and sI

as well as the pion field �I .

6.6 Write a function or subroutine that extends the sample code 6.2 to repeatedly
multiply the auxiliary-field transfer matrix on the right starting from the final single-
nucleon wave functions. Include the contributions from the auxiliary fields s and sI

as well as the pion field �I .

6.7 Use the Slater-determinant states constructed in Problems 6.2–6.4 as initial and
final states. In each case apply the functions or subroutines written in Problems 6.5
and 6.6 with all coupling constants set to zero. Verify that in each case the
initial/final state is the ground state of the non-interacting system with energy equal
to zero.

6.8 Use the Slater-determinant states constructed in Problems 6.2–6.4 as initial and
final states. Using the functions or subroutines written in Problems 6.5 and 6.6,
extend the sample code 6.5 to compute the derivatives of V.s/ with respect to
s.n; nt/, sI.n; nt/, and �I.n; nt/.
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6.9 Take the code you have written for Problem 6.8 and complete the remaining
steps needed to do hybrid Monte Carlo updates for s, sI , and �I . Verify that
the change in the action produced by the hybrid Monte Carlo update is scaling
quadratically in "step in the limit "step ! 0 with Nstep"step held fixed.

6.10 Take the code you have written for Problem 6.9 and complete the remaining
steps needed to calculate the energy of the ground state by computing the ratio of
the amplitudes Z.Lt/=Z.Lt � 1/.

6.8 Codes and Benchmarks

Complete versions of the codes discussed in this chapter and developed in the
exercises can be found online via this link. In order to run the codes, one
must first copy the corresponding initial/final wavefunctions (waveinit_1S0.f90,
waveinit_3S1.f90, or waveinit_He4.f90) into the file waveinit.f90 used by the main
program nuclei.f90. The number of nucleons is controlled by the parameter n_f in
input.f90 and must correspond to the number of nucleons in waveinit.f90.

As an example we show the beginning of the input file input.f90 for a two nucleon
state with spatial lattice spacing a D 1=.100MeV/, temporal lattice spacing at D
1=.150MeV/, box size L D 4a, and Euclidean time extent Lt D 6at. We use an
O.a4/-improved lattice action for the nucleon hopping coefficients, O.a0/-improved
lattice action for the pion hopping coefficients, and O.a0/-improved lattice action for
the pion-nucleon coupling. The coefficient of the 1S0 contact interaction is tuned to
the physical 1S0n�p scattering length and is�5:615�10�5 MeV�2. The coefficient
of the 3S1 contact interaction is tuned to the deuteron binding energy at infinite
volume and is �6:543 � 10�5 MeV�2.

Code Listing 6.7 Parameter declarations at the beginning of the file input.f90

parameter(n_f = 2)
parameter(L = 4)
parameter(Lt = 6)
parameter(cutoff = 100.D0, temporalcutoff = 150.D0)
parameter(improveN = 2)
parameter(improveP = 0)
parameter(improveD = 0)
parameter(c1S0_phys = -5.615D-5)
parameter(c3S1_phys = -6.543D-5)

Using these values for the parameters of the lattice action, we now present
some benchmark values which can be used to test the nuclear lattice simulations
in the two-nucleon system. The values presented in these benchmarks are computed
using exact calculations of the two-nucleon transfer matrix. They provide a useful
independent check that there are no errors in the Monte Carlo simulations. In
Table 6.4 we show the energies for the 1S0 spin combination of two nucleons.
The initial state is one neutron spin-up and one neutron spin-down, both at zero

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter6-programs
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Table 6.4 Benchmark
energies for the 1S0 spin
combination of two nucleons

Lt Energy (MeV)

2 �1:0915
4 �1:3987
6 �1:6209
8 �1:7929
10 �1:9296
12 �2:0398
14 �2:1291
16 �2:2018
18 �2:2610
20 �2:3094

The initial state is one neutron spin-
up and one neutron spin-down, both
at zero momentum, for L D 4a and
various values of Lt

Table 6.5 Benchmark
energies for the 3S1 spin
combination of two nucleons

Lt Energy (MeV)

2 �1:4446
4 �2:0400
6 �2:4774
8 �2:8331
10 �3:1341
12 �3:3925
14 �3:6151
16 �3:8069
18 �3:9718
20 �4:1132

The initial state is one proton
spin-up and one neutron spin-up,
both at zero momentum, for L D
4a and various values of Lt

momentum, for L D 4a and various values of Lt. The energies are extracted by
computing the ratio of amplitudes Z.Lt/=Z.Lt � 1/ and setting equal to exp.�E˛t/.

We show the energies for the 3S1 spin combination of two nucleons in Table 6.5.
The initial state is one proton spin-up and one neutron spin-up, both at zero
momentum, for L D 4a and various values of Lt. The energies are extracted by
computing the ratio of amplitudes Z.Lt/=Z.Lt � 1/ and setting equal to exp.�E˛t/.
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Chapter 7
Ab Initio Methods for Nuclear Structure
and Reactions: From Few to Many Nucleons

Giuseppina Orlandini

7.1 Introduction: Theory, Model, Method

The importance of studying nuclei lays in the fact that they are the most com-
mon manifestation of the strong interaction at low-energy (order of MeV), a
regime where the fundamental theory, Quantum Chromo-Dynamics (QCD), is non-
perturbative.

Describing nuclei as an assembly of interacting protons and neutrons corresponds
to choosing the effective degrees of freedom (d.o.f) most relevant at that energy.
This idea comes from observing that just protons and/or neutrons emerge, when
energies of a few MeV are transferred to a nuclear system. Since such degrees of
freedom have a comparatively much larger mass (about one GeV), we are allowed
to adopt a non relativistic quantum mechanical framework to describe nuclear
properties. Then, any observable we would like to account for, will require solving
the Schrödinger equation, governed by a many-nucleon Hamiltonian. In other words
we will need to solve the so called non relativistic quantum many-body problem.

In this context we will adopt the word Theory referred exclusively to non
relativistic quantum mechanics (NRQM), in Schrödinger, Heisenberg or Interaction
representation. The word Model will be used in connection to the choice of the
d.o.f. and of their mutual interaction, namely the potential part of the Hamiltonian.
It is clear that any nuclear Model (in the above acceptation) must have its roots in
QCD, and that the Hamiltonian will have to share all its symmetries with QCD.
These lectures will not deal with the problem of establishing the best model for a
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“realistic” potential (this subject is extensively treated elsewhere in this book), here
we limit ourselves to consider it as an input for our problem.

Summarizing, we want to calculate observables within our defined Theory, with
an input nuclear Model, which is both rooted in QCD and realistic enough to
accurately reproduce (at least) the nucleon-nucleon scattering data (�-square per
datum close to 1). However, in addition, we want to be able to control the degree
of accuracy of the method used to solve the NRQM many-body problem, namely
we want to determine the theoretical accuracy on the value of an observable. This
is done by benchmarking different results obtained by different methods, using the
same input. All this is what characterizes an ab initio approach. Comparing the ab
initio results to data we can learn about the degree of reliability of the nuclear Model.
In this way we will be able to predict new nuclear observables, as well as to give
other fields (e.g. astrophysics) the needed nuclear information, complemented by
the degree of accuracy of the many-body method used.

7.2 The Non-relativistic Quantum Mechanical
Many-Nucleon Problem

The non-relativistic quantum dynamics of a system of A nucleons, supposed to have
equal masses m, is governed by the nuclear Hamiltonian H, which consists of kinetic
energy T and potential V:

H D T C V D
AX

iD1

p2i
2m
C

AX
i<j

Vij C
AX

i<j<k

Vijk C : : : : (7.1)

In the equation above pi is the momentum of the ith nucleon in a general laboratory
system, and Vij and Vijk denote the nucleon-nucleon (NN) potential VNN, the three-
nucleon potential VNNN, etc., respectively. Notice that the reason why in general
the nuclear Hamiltonian should contain many-body potentials is due to the fact
the nucleons are effective degrees of freedom. The Chiral Effective Field Theory
approach to the nuclear potential [1] shows that nuclear forces obey a hierarchy:
forces of more and more many-body nature appear at higher and higher order in
a perturbative expansion. In our discussion we will restrict to two- and three-body
potentials, which appear to be the most relevant for common observables (in general
the inclusion of three-body potentials represents a technical challenge for most ab
initio approaches).

Our problem consists in solving the Schrödinger equation,

.H � En/j�ni D 0 ; (7.2)
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where En and j�ni denote the eigenenergies and eigenfunctions of H, respectively.
The spectrum of H, represented by the infinite set of eigenenergies is discrete below,
and continuous above, the first break-up threshold Eth.

In order to solve the Schrödinger equation one has to supply proper boundary
conditions. For E < Eth the wave function represents a bound state and thus it
is described by a square integrable (localized) function. This characteristic leads to
major technical simplifications, compared to the case E 
 Eth, where the asymptotic
boundary conditions pose serious problems, especially when A > 2 (many-body
scattering problem).

There are different ways to tackle the NRQM problem for bound states or for the
continuum. Very often a reformulation of the problem allows a practical solution,
which seems impossible otherwise. It is this possibility that generates the richness
of methods in many-body theory.

7.2.1 Translation and Galileian Invariance

A correct approach to the non relativistic many-nucleon problem should fulfill
two fundamental symmetries, namely those related to translational and Galileian
invariance. One can easily show that the corresponding conserved quantities are
center of mass (CM) momentum pCM D PA

i pi and CM position RCM D 1
A

PA
i ri,

respectively. Therefore the correct nuclear Hamiltonian must commute with those
operators. This can be achieved if one rewrites Eq. (7.1) in terms of the Jacobi
vectors, i.e. the A independent (normalized) vectors given by RCM and

�1 D
r

A � 1
A

�
r1 � 1

A � 1.r2 C r3 C � � � C rA/
�

�2 D
r

A � 2
A � 1

�
r2 � 1

A � 2.r3 C r4 C � � � C rA/
�

: : :

�N D
r
1

2

�
rA�1 � rA

�
; N D A � 1 I (7.3)

together with their conjugate momenta PCM and �1;�2; : : :�N .
In terms of Jacobi vectors the Hamiltonian in (7.1) becomes

H D HCM CH D P2CM

2Am
C

A�1X
iD1

�2
i

2m
C V.�1;�2: : ::�A�1/ ; (7.4)

and the translation and Galileian invariant Hamiltonian of our interest is H , which
commutes both with PCM and RCM. An interesting remark is in order here: any
potential, even when it is limited to have a two-(or three-)body character, becomes
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an unseparated function of the .A�1/-coordinate in H . This means that the system,
when correctly expressed in terms of relative coordinates only, contains a correlation
among the constituents, which goes beyond the dynamical one. One can call it a CM
correlation. The latter can be easily understood from the fact that the movement of
one particle will affect all the others, since the CM momentum and position remain
fixed (conserved).

7.3 Classification of Ab Initio Approaches for Ground-State
Calculations

As it was stated above the NRQM problem can be formulated in different ways.
Therefore one can classify the ab initio methods in terms of just such different
formulations, grouping them in different classes:

• The Faddeev-Yakubowski (FY) method,
• Methods based on the variational theorem,
• Methods based on similarity transformations,
• Quantum Monte Carlo methods.

In the following we will concentrate in particular on two of the methods rooted in
the variational theorem. However, in the following a brief summary of the main
peculiarities characterizing each group will be given. A more extensive description
of the methods can be found in the quoted original references. A recent review can
be found in [2].

7.3.1 The Faddeev-Yakubowski (FY) Method

The very nice feature of the FY method is that it is formulated in a way that it is
applicable to both bound and scattering states. This method starts from the Lipmann-
Schwinger (LS) reformulation of the Schrödinger equation and therefore deals with
integral equations instead of differential equations. Today it is well known that a
direct application of LS-type equations to the scattering problem for a system with
more than two particles does not lead to a unique solution. However, for quite
some time it was not clear how such a unique solution could be obtained. It was
in 1961 that in his seminal work for the three-body system [3] Faddeev showed how
the problem can be solved. He derived the right set of coupled integral equations
which have taken his name: the Faddeev equations. Yakubowsky [4] generalized the
approach, in principle to any number of particles. However, the number of coupled
equations to solve becomes prohibitive for more than four particles.
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A sort of variation of the FY equations are those introduced by Alt, Grassberger
and Sandhas (AGS equations) [5] who looked for possible further reductions of the
FY problem. Assuming a separable form for the NN t-matrix leads to one-variable
integral equations, which are much simpler to solve than the FY equations.

7.3.2 Methods Based on the Variational Theorem
(Diagonalization Methods)

The diagonalization methods are based on the Rayleigh-Ritz variational theo-
rem [6, 7]. This theorem, which is very profitably applied every time the solution
of some useful equation renders stationary some proper functional, finds a large
application in quantum mechanics. In particular, one can show that the solution of
the Schrödinger equation (for a state with finite norm) renders stationary the energy
functional

EŒ� 
 D h� jHj� ih� j� i : (7.5)

An important lemma complements the fundamental variational theorem, stating
that the value of the energy functional calculated with any trial function is always
greater than the ground-state energy and equal to it, only when the trial function
coincides with the exact ground-state wave function. This means that one can find
the ground state energy of a system by solving a minimization problem

ıEŒ� 
 D 0 : (7.6)

Numerous approaches use this variational principle to find the ground-state
energy of a many-body system. The approach is efficient if the trial function has
a parametrized functional form that is both convenient and suitable to the problem
to be solved. The various variational approaches differ by the choice of the trial
function. One very well known classical example is the Hartree-Fock method,
where the trial function is a Slater determinant. In this case, however, it is not
possible to give a theoretical estimate of how far the Hartree-Fock energy is from the
correct result. Also the use of a parametrized functional form for the trial function
and the minimization with respect to the parameters does not allow a theoretical
estimate of the error. More sophisticated approaches exist like the resonating group
method [8, 9], where the trial function is chosen according to a cluster picture of
the system or the variational Monte Carlo (VMC) technique where the trial function
reflects the form of the potential, see the presentation in Chap. 9.

A more systematic approach consists in choosing the trial function �T as an
expansion on a complete (or over complete) set of square integrable functions n
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that respect the symmetries of the Hamiltonian:

j�T.N/i D
NX

nD1
cnjni : (7.7)

In this case the minimization procedure corresponds to finding the solution of a
(generalized) eigenvalue problem

.H � E M/C D 0 ; (7.8)

where H and M are N � N Hermitean matrices of the Hamiltonian (Hnm D
hnjHjmi) and overlap integrals of the basis functions (Mnm D hnjmi), while
C represents the N-component vector formed by the linear parameters cn. With
growing N the size of the Hamiltonian matrix, represented on the chosen basis,
increases and the true ground-state energy is approached from above. The basis can
be complete as the hyperspherical harmonics (HH) or the harmonic oscillator (HO)
basis, or over-complete. In principle the true result would be obtained only for an
infinite number of basis functions, however, the convergence of the smallest energy
obtained after the diagonalization for large enough N gives the ground state energy.
An estimate of the error can also be given, related to the convergence pattern. One
can consider this as an ab initio result.

Here one should also mention another interesting variational method, namely the
stochastic variational method (SVM) [10, 11]. Here again the variational procedure
does not proceed systematically by the diagonalization of a larger and larger
Hamiltonian matrix, but in a stochastic way (trial and error), obtaining nevertheless
rather good results when compared to other approaches [12].

Variational approaches also allow to obtain the wave function corresponding
to the minimal energy, which can then be used to calculate other ground-state
observables. However, one has to remember that the difference between the exact
value of the energy and that obtained with the trial function �T which minimizes
the energy functional, is an infinitesimal of higher order than the difference between
the true wave function and �T . Therefore one should expect a slower convergence
and less accuracy for such observables.

7.3.2.1 The Hyperspherical Harmonics (HH) Method

The HH method is a variational method where the trial function is written as
an expansion on the hyper-spherical harmonics (HH) basis. The HH are the
generalization of the spherical harmonics Ylm. In fact as the latter represent a basis
for the relative wave function of a two-body system, the HH represent a general
basis for the internal wave function of an A-body system. Because of this, they
are expressed in terms of the hyperspherical coordinates which are defined by a
transformation of the Jacobi vectors.
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Let us remember that the set of A Jacobi vectors is composed by RCM and the
N D A� 1 relative vectors �1; : : :;�N in Eq. (7.3), for a total of 3A coordinates. The
hyperspherical coordinates are defined by further transforming the 3N coordinates
�1; : : :;�N as follows: the 2N polar angles �i and i of the �i � .�i; �i; i/ are left
unaffected by the transformation. The remaining N hyperspherical coordinates �i are
expressed in terms of one hyper-radius �N and .N � 1/ hyper-angles ˛n defined by

sin ˛n D j�nj
�n
I �2n D

nX
iD1

� 2i ; n D 2; : : :;N : (7.9)

A very interesting feature of the hyperspherical coordinates is that, when
expressed in such coordinates, the A-body kinetic energy operator of A nucleons
of equal masses is a sum of two terms (�2 � �2N) [13]

T D T� C TK.�/ ; with T� D � 1

2m
�� ; TK.�/ D 1

2m

K2
N

�2
; (7.10)

namely it has a form which is in perfect analogy to the three-dimensional case, with
a hyper-radial dependent Laplacian T� and a hyper-centrifugal barrier TK.�/.

The hyper-angular momentum operator KN depends on all the .3N � 1/ angles
(denoted by Ő ŒN
) and has a rather complicated form. But the main point here is that
the HH are the orthonormal eigenfunctions YŒKN 
.

Ő
ŒN
/ of K2

N

K2
N YŒKN 
.

Ő
ŒN
/ D KN.KN C 3N � 2/YŒKN 
.

Ő
ŒN
/ : (7.11)

As one sees the eigenvalues are expressed in terms of the quantum number KN . The
subscript ŒKN 
 stands for the total set of .3N�1/ quantum numbers corresponding to
commuting operators, namely the hyperangular momenta K2

N ;K
2
N�1; : : :K2

2 relative
to the subsets of N;N�1: : :2�-coordinates, the angular momenta relative to each of
the N Jacobi coordinates l2N ; l

2
N�1; : : :l21, the total angular momenta L2N ;L

2
N�1; : : :L22

of the same subsets of N;N � 1: : :2�-coordinates, and the third component of the
total angular momentum Lz.

The YŒKN 
.
Ő
ŒN
/ are good basis functions for the hyperangular part of the A-

body internal wave function, however, one also needs good basis functions for the
hyperradial part of the wave function. A suitable choice are the orthogonal Laguerre
polynomials, because of their exponential weight function, reproducing the correct
asymptotic behavior of the wave function.

The basis obtained by the product of Laguerre polinomials and HH is a
translation invariant CM “correlated“ basis (all particles are connected to each
other!) and has good asymptotic conditions, therefore one can expect a faster
convergence with respect to using a translation invariant HO basis. However, just
because of the mentioned correlation, the basis presents big difficulties when coping
with the Pauli principle, a problem also common to the translation invariant HO
basis. Based only on intuition one can guess that permutations of particles will
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lead to different definitions of the Jacobi coordinates and consequently of the
hyperspherical coordinates. It would be a miracle if the HH would have definite
permutational symmetries. And in fact they do not, but they possess different
components of the irreducible representations of the symmetry group SA. Even when
this problem is overcome (see [14–17]), as the number of particles increases the
convergence becomes rather slow.

In order to speed up the convergence two ways have been followed: the
Correlated Hyperspherical Harmonics expansion (CHH) and the Hyperspheri-
cal Harmonics expansion with Effective Interaction (EIHH). The latter will be
explained in Sect. 7.4.2. The main idea of the CHH approach consists in acting
on the bare HH functions with a Jastrow operator OJ embodying the short range
correlation due to the repulsive part of the potential. Such a repulsion leads to
high momentum components in the wave function which is responsible for the slow
convergence of the bare HH expansion. The correlation operator OJ takes the form

OJ D S
Y
i<j

X
s;t

fst.rij/Pst.i; j/ (7.12)

where Pst.i; j/ are projection operators onto nucleon pairs .ij/with spin s and isospin
t and S is a particle symmetrization operator. This method has been applied only
to A=3,4 systems, since the loss of orthonormality of the CHH limits its efficiency.
In fact calculating the matrix elements of the potential requires 3N dimensional
integrals. The reason why this is not the case for the uncorrelated HH basis is
explained in the following.

When expressed in HH coordinates the invariant Hamiltonian H is

H D T� C TK.�/C V.�; Ő ŒN
/ : (7.13)

However, supposing for simplicity that the potential has a two-body characterP
i<j Vij (but the present argument can be easily extended to three-body potentials)

its matrix element on antisymmetric functions will be the sum of A.A� 1/ identical
integrals with, say, i D A and j D A � 1. This means that V will be a function only
of the Jacobi vector �N , namely V.

p
2� sin ˛N ; �N ; N/, the recursive construction

of the HH allows then to use the orthonormality condition of the YŒKN�1
.
Ő
ŒN�1
/

and reduce the calculation of the matrix element of the potential to a (at most)
four-dimensional integral, for any number of particles. When the orthonormality
condition of the HH is lost, like in the CHH case, this is no longer true and one is
left with 3N-dimensional integrals.

7.3.3 Methods Based on Similarity Transformations

Another reformulation of the quantum mechanical many-body problem is based on
the use of similarity transformations [18–21]. In this case one considers that the
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following mean value

E0 D h�0jHj�0i ; (7.14)

where j�0i is the ground state of the Hamiltonian H, is invariant under similarity
transformations eS, i.e.

E0 D h�0je�S eS H e�S eSj�0i � h N̊ j NHj˚i (7.15)

with

j˚i D eSj�0i ; j N̊ i D e�S� j�0i ; NH D eS H e�S : (7.16)

At this point one may consider a subspace P of the Hilbert space with eigenpro-
jector OP given by

OP D
NX

nD1
jnihnj ; (7.17)

where the jni are eigenfunctions of some well known Hamiltonian (e.g. HHO/.
Indicating by OQ D I � OP the corresponding eigenprojector on the residual space,
one can write Eq. (7.15) as

E D h N̊ j. OPC OQ/ NH. OPC OQ/j˚i D h N̊ j OP NH OPC OP NH OQC OQ NH OPC OQ NH OQj˚i : (7.18)

If the following decoupling condition is satisfied

OQ NH OP D OQeS H e�S OP D 0 ; (7.19)

one has

E D h N̊ j OP NH OPj˚i : (7.20)

This means that if one solves the decoupling equation (7.19) it is possible, in
principle, to determine S and therefore calculate E0 as the mean value of the effective
operator NH on the P-space.

Notice that, while in the bare Hamiltonian H the operators may have a two- or
three-body nature, the effective operator NH will be in principle an A-body operator.
So, in general the operator S, which generates the similarity transformation, may
be written as a combination of operators of any n 	 A-body nature. It is clear that
in actual calculations one has to apply some restrictions on the number of these
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n-body operators. In this respect the similarity transformation approach has been
used in two ways:

• in the so called Coupled Cluster (CC) method [22, 23] (discussed in the next
chapter) to calculate the ground state energies and radii of A-body nuclei (n 	 3,
known as CCSD and CCSDT);

• to construct effective two- or three-body potentials, as described in the next
Sect. 7.3.3.1, in order to accelerate convergence in the variational diagonalization
approaches using the HO and the HH basis (see Sects. 7.4.1 and 7.4.2).

7.3.3.1 The Similarity Transformation Method for Effective Interactions

As was stressed in the previous section, the similarity transformation leads to an
effective Hamiltonian which is an A-body operator. To avoid this complication,
an approximation is made. It consists in first finding only a two-body effective
interaction QV Œ2;eff


ij which is then used to replace the bare interaction term Vij. This
approach is often referred to as the Lee-Suzuki (LS) method [21]. The effective
interaction V Œ2;eff


ij is obtained by applying the decoupling condition of Eq. (7.19) to

a two-nucleon Hamiltonian HŒ2
 that arises from H by restricting the kinetic and
potential operators to two nucleons only (e.g. i D A and j D A � 1). In this simple
case the decoupling condition can be solved. In fact the two-body problem can be
fully solved and in this case one has the knowledge of both the P and the Q space.

Once the effective interaction V Œ2;eff

12 is obtained one replaces it in the

P
i<j Vij.

The replacement in the potential term of the effective interaction V Œ2;eff

ij makes the

approach no longer variational. The n-body terms neglected in the full effective
Hamiltonian, could either increase or decrease the binding energy. On the other
hand, one has an important result: as the PA-space is increased the result has to
converge to the exact solution. This may be illustrated in a pictorial way as in
Fig. 7.1. At each PA, since the similarity transformation transfers information from
the Q2 space to the P2 space, there is much less information left out. Consequently
the convergence on E0 is much faster. When PA is sufficiently large, so that it covers
almost the whole Hilbert space, the effective interaction practically coincides with
the bare one, and one has an accurate result. From the figure one can infer that
the exact result could be reached also applying the similarity transformation to the
three-body and then four-body Hamiltonian etc., namely systematically applying
the similarity transformation to move the information from the larger Q3 space into
the P3 space, from the Q4 space into the P4 space, etc.

However, this is much more problematic and impossible in practice, since one
would need to know the entire n-body spectrum to construct the n-body effective
interaction. Of course if three-body forces are present in the original Hamiltonian
one has to apply the procedure at least up to n D 3.
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PA

P2

Q2

QA

Fig. 7.1 The various P and Q spaces relevant for the construction of the two-body effective
interaction (see text)

7.3.4 Monte Carlo Methods

The Monte Carlo (MC) methods are based on a formulation of the quantum
mechanical many-body problem which is suited to a stochastic approach. These
methods are the Green’s Function MC (GFMC) [24], Diffusion MC (DMC) [25]
and Auxiliary Field Diffusion MC (AFDMC) [26], the Chiral Effective Field
Theory on a Lattice (LCEFT) [27], the Monte Carlo Shell Model Diagonalization
(MCSMD) [28–30], and the Variational Monte Carlo (VMC) [31]. The GFMC,
DMC and AFDMC methods are based on the path integral formulation of quantum
mechanics (there are small differences between the GFMC and DMC methods so
that in the literature they are often interchanged). The LCEFT is a DMC approach,
except that the dynamical degrees of freedom are nucleon and pion fields rather
than particles. Both GFMC and LCEFT methods are based on the Euclidean time
(imaginary time) evolution of the system. The MCSMD, although inspired by the
imaginary time formulation, is effectively a variational method. Starting from an
imaginary time evolved trial function, after some manipulation, MCSMD leads to
an expression that suggests a way of constructing a variational shell model basis.
In this case the imaginary time is just one of the non-linear parameters. The VMC
method is a fully variational method. Here the MC technique is used to evaluate
the many-dimensional energy functional integrals. The variational wave function
obtained with this method usually serves as starting trial function for the GFMC
imaginary time evolution.

An extensive treatment of Monte Carlo approaches can be found in Chap. 9 of
this text.



274 G. Orlandini

7.4 Two Diagonalization Methods with Effective Interactions

In this section we will describe two diagonalization methods, which have much
in common: the No Core Shell Model (NCSM) and the Effective Interaction
Hyperspherical Harmonic (EIHH) methods. They both make use of the LS similarity
transformation method (see Sect. 7.3.3.1), in order to speed up the convergence.
They differ only by the choice of the basis on which the Hamiltonian is diagonalized
and, for A > 4, also for the way they treat translation invariance.

7.4.1 The No Core Shell Model Method (NCSM)

The name NCSM means that all the nucleons are taken into account explicitly as
degrees of freedom, namely it is not assumed that there is an inert core, like in the
traditional shell model. The NCSM couples the advantage of the shell model (i.e.
working in a HO basis) with the accuracy of an ab initio approach.

In the literature two versions of the NCSM exist, which differ in the treatment
of translation invariance. In one version, the Hamiltonian of Eq. (7.1) is modi-
fied [32] by adding a harmonic oscillator CM Hamiltonian HCM to the intrinsic
Hamiltonian H

HŒA

˝ D H C HHO

CM DH C p2CM

2Am
C Am

2
˝2R2

CM (7.21)

D
AX

iD1

�
p2i
2m
C 1

2
m˝2r2i


C

AX
i<jD1

�
Vij � m˝2

2A
.ri � rj/

2


(7.22)

�
AX

iD1
hHO

i C
AX

i<jD1
QVij ; (7.23)

where QVjk is a modified potential which depends on both the HO frequency ˝ and
the nuclear system via the mass number A:

QVij D
�

Vij � m˝2

2A
.ri � rj/

2


: (7.24)

Of course the added center of mass HO term has no influence on the internal motion.
Therefore the ground-state energy E of H is obtained by subtraction of the CM
ground-state energy 3„˝=2 from the ground-state energy EŒA
˝ of HŒA


˝ .

In order to obtain an accurate result the calculation of EŒA
˝ should be performed
with the QV of Eq. (7.24) in a finite model space PA spanned by all the A-body
HO Slater determinants formed by filling the single-particle HO eigenstates with
N 	 Nmax (N is the total number of single-particle HO quanta) and increasing PA,
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namely Nmax, up to convergence. However, since the convergence is very slow one
can speed it up using a QV Œ2;eff
. This is obtained as described in Sect. 7.3.3.1, namely
applying the SL procedure to a two-body internal Hamiltonian obtained from (7.22)
by restricting the sums to two nucleons only (e.g. nucleons A and A � 1/, keeping
however the original mass number A in the interaction term QV:

H Œ2

˝ D

�
�2

2m
C 1

2
m˝2�2


C QVA.A�1/ �H Œ2


HO C QVA.A�1/ : (7.25)

The effective Hamiltonian H
Œ2


eff is determined in the P2-space ( OP2 C OQ2 D I2), a
subspace of P, via the two-body transformation operator SŒ2
 D OQ2SŒ2
 OP2. Then by
subtracting H

Œ2

HO from H

Œ2

eff the two-body effective interaction is obtained i.e.

QV Œ2;eff

12 DH

Œ2

eff �H

Œ2

HO : (7.26)

The obtained QV Œ2;eff

ij is then used in Eq. (7.23). As is clear from [20], this procedure

is equivalent to (1) limiting the similarity operator S of Sect. 7.3.3 to a two-body
operator SŒ2
 and (2) truncating the effective Hamiltonian at the two-body operator
level. When the diagonalization of the Hamiltonian is performed with the two-body
effective interaction the NCSM is no longer variational. In fact, as was already stated
above the real effective interaction obtained by a full similarity transformation at a
fixed P-space is an A-body interaction. The neglected n > 2-body terms could either
increase or decrease the binding energy. However, as the P-space increases the result
converges to the exact solution, as was already discussed in Sect. 7.3.3.1.

Another version of the NCSM exists [33], where the problem is formulated
directly in terms of Jacobi coordinates and the A-body basis is the translationally
invariant HO basis. However, it is restricted to A D 3; 4, because of the same com-
plications generated by the Pauli principle, as those was mentioned in Sect. 7.4.2.

7.4.2 The Hyperspherical Harmonics Method with Effective
Interaction (EIHH)

The idea is very similar to that of the NCSM approach, but with the following two
differences: one is that the P-space is defined by a maximal value Kmax of the grand
angular quantum number KN (N D A � 1), and the second is that the EIHH two-
body Hamiltonian undergoing the similarity transformation, HŒ2


A , is a quasi two-
body Hamiltonian, because it contains information about the dynamics of the entire
A-body system via an hyperradial dependence.

To be more explicit, the HH quasi two-body Hamiltonian is chosen as

HŒ2

A .�/ D TK.�/C VA;A�1.

p
2� sin˛N �N ; N/ ; (7.27)
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Fig. 7.2 Comparison between EIHH (full squares), pure HH (open squares) and NCSM results
obtained with different values of the HO parameter

where TK.�/ is the collective hyperspherical kinetic energy of the entire A-body
system [see Eqs. (7.10)] and we make explicit only the spatial dependence of V
on two particles (chosen to be A and A � 1, consistent with Jacobi coordinates
constructed in normalized reversed order, like those in Eq. (7.3).

The transformation is applied separately for each value of the hyperradius �,
therefore the effective interaction becomes a function of �. In addition to its �-
dependence, the HH effective interaction also depends on some quantum numbers
of the residual system. The additional many-body information contained in the
HH effective interaction (obtained by subtracting the hypercentrifugal term) is
responsible for leading to a fast convergence of the HH expansion as can be seen in
an example reported in Fig. 7.2 from [34]. In this figure the binding energy of 4He
was obtained using a central NN potential. One can notice the enormous advantage
in the convergence pattern of the EIHH results in comparison to the HH ones. It is
also interesting to notice the comparison with the NCSM results, which are spread
around the EIHH one, depending on the HO parameter, as well as the non-variational
behavior of the convergence pattern.

7.5 Excited States

By diagonalizing the Hamiltonian matrix on a given finite basis of square integrable
functions one gets a spectrum of N eigenstates �i with eigenvalues Ei. If the trial
function has the same quantum numbers of the ground state of the nucleus, the
lowest Ei corresponds to the ground-state energy. The other solutions correspond to
discrete excited states of the system, with the same quantum numbers as the ground
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state. Getting convergence for the energy of such excited states requires in general
larger matrices. To find discrete excited states with quantum numbers different from
those of the ground state one has to implement the proper quantum numbers into the
basis set.

Few-nucleon systems have very few, if any, discrete excited states, in fact most
of them lie in the continuum. Continuum eigenvalues are larger than the threshold
energy Eth, corresponding to their ground state energy plus the nucleon separation
energy (the proton separation energy is always smaller than that of a neutron if
the Coulomb force is considered). The energy states larger than Eth obtained by
diagonalization do not have the proper continuum boundary conditions. Proceeding
in such a way one obtains a fake discretization of the continuum.

In order to avoid finding the continuum solutions of the Schrödinger equation,
corresponding to solve the many-body scattering problem, one can try again to
reformulate the quantum mechanical problem in an accessible way. This will be
done in the next sections, referring in particular to observables that require the
knowledge of such continuum states.

7.5.1 Response Functions to Perturbative Probes

Here we focus on a particular family of reactions involving states in the continuum:
we deal with nuclear reactions on light systems induced by perturbations. Typical
examples are electroweak (e.w.) reactions like electron or neutrino scattering on
nuclei or nuclear photoabsorption.

The strength of the interaction Hamiltonian Hint between an electromagnetic or
weak probe and the nucleus is very weak when compared to the strong interaction
among the nucleons. Therefore the cross section can be calculated in first order
perturbation theory, using the Fermi Golden rule. This means that the cross section
will contain the transition rate proportional to the square modulus of the matrix
element jh f jHintjiij2 with jii and j f i the initial and final states of the nucleus, as
well as an energy conserving ı-function

� / jh f jHintjiij2ı.! � Ef C Ei/ ; (7.28)

where ! is the energy transferred by the probe to the nucleus .„ D c D 1/ and
Ef ;Ei are the energies of the nuclear final and initial states, generally the ground
state j0i and one of its jni eigenstates (we suppose that in ! the energy that has
served to recoil the nucleus has been subtracted). In general the interaction Hint can
be described as the product of the “current” densities inside the nucleus and the field
generated by the probe, e.g. the charge density �.r/ and the electromagnetic scalar
potential '.r/ generated by the electrons in an electron scattering experiment

Hint D
Z

dr �.r/ '.r/ (7.29)
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In this example the nuclear charge density is due to the presence of the protons

�.r/ D
ZX

jD1
e ı.r � rj/ D e

AX
jD1

ı.rr � rj/
1C �3j
2

: (7.30)

The initial and final states will be the product of the CM wave functions and the
internal ones, which are antisymmetric and translation invariant

jii D j˚i.RCM/ij i.�1: : :�A�1/i (7.31)

j f i D j˚f .RCM/ij f .�1: : :�A�1/i (7.32)

Therefore

h f jHintjii D e
Z

dr '.r/
Z

dRCMe�iPf �RCM eiPi�RCM

�
Z

d�1: : :d�A�1 �
f .�1: : :�A�1I � z

1: : :�
z
AI � z

1: : :�
z
A/

�
AX

jD1
ı.r� rj/

1C �3j
2

 i.�1: : :�A�1I � z
1: : :�

z
AI � z

1: : :�
z
A/ : (7.33)

Because the  are antisymmetric the matrix element above is a sum of A equal
integrals, with the charge density operator limited to only one element of the sum
(e.g. j=1).

At this point it is necessary to express ı.r � r1/ in terms of the integration
variables. Using the definition of the Jacobi coordinate �1 as in (7.3)

�1 D
r

A

A � 1.r1 �RCM/ (7.34)

the matrix element in (7.33) becomes

h f jHintjii D Ae

Z
dr '.r/

Z
dRCMeir�RCM

	
Z

d�1: : :d�A�1 
�

f .�1: : :�A�1I � z
1: : :�

z
AI � z

1: : :�
z
A/

	
AX

jD1

ı

 
r � RCM �

r
A � 1

A
�1

!
1C �31
2

 i.�1: : :�A�1I� z
1: : :�

z
AI � z

1: : :�
z
A/ : (7.35)
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After performing the integral in dRCM one has

h f jHintjii D Ae
Z

dr '.r/ eiq�r
Z

d�1: : :d�A�1

� �
f .�1: : :�A�1I � z

1: : :�
z
AI � z

1: : :�
z
A/ eiq�

p
A�1

A �1
1C �31
2

 i.�1: : :�A�1I � z
1: : :�

z
AI � z

1: : :�
z
A/ : (7.36)

One can notice that in the matrix element one has a factorization in two terms: the
Fourier transform of the field

'.q/ D
Z

dr'.r/ eiq�r (7.37)

and the Fourier transform of the so called proton transition density, defined as

�
p
i;f .�1/ D

Z
d�2: : :d�A�1 �

f .�1: : :�A�1I � z
1: : :�

z
AI � z

1: : :�
z
A/

X
j

1C �3j
2

 i.�1: : :�A�1I � z
1: : :�

z
AI � z

1: : :�
z
A/ : (7.38)

Since
q

A�1
A �1 D r1 � RCM � r0 one can write the final expression as

h f jHintjii D e'.q/

r
A

A � 1
Z

dr0 eiq�r0

�
p
i;f .r

0/ : (7.39)

Some remarks are in order here:

• if  i D  f D  0, namely the nucleus recoils, but does not excite, the cross
section is called elastic and will be proportional to the square modulus of what is
called the charge form factor. This is the Fourier transform of the average charge
distribution with respect to the center of mass �p

0;0.r
0/;

• if  i ¤  f the cross section is called inelastic and one has the Fourier transform
of the transition density �p

i;f .r
0/ (called the transition form factor);

• the matrix element entering in the cross section is involving an integral of the
wave functions. This means that in principle one does not need to know the whole
detailed wave function, but only an integral of it (an infinite number of different
wave functions will have the same integral!).

The previous derivation has been done for the case of electron scattering on
a nucleus, considering only the interaction between the charge density and the
electromagnetic scalar field. Similar results are obtained in case of other kinds of
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interactions, e.g. between the nuclear current density and the vector field or axial
currents and axial field for neutrino scattering. What changes is the form of the
transition form factors which will not result from the charge density operator, but
from other kinds of operators.

From what has been illustrated above we can conclude what is the main ingre-
dient of the cross section for perturbative inclusive experiments. Such experiments
are those where the only experimentally controlled quantities are the energy ! and
the momentum q transferred to the nucleus, while nothing is known on what has
happened to it (in how many fragments it has possibly broken). The cross section
will be proportional to the so called structure or response function S.q; !/

S.q; !/ D
1X

nD0
jhnjGj0ij2ı.! � En C E0/ : (7.40)

The operator G denotes the general operator that interacts with the field created by
the probe.

Notice that in (7.40), because of the presence of the energy conserving ı function,
we have been allowed to introduce the sum on all the eigenstates of the nuclear
Hamiltonian. Of course, depending whether the energy transferred to the system
corresponds to the discrete or the continuum part of the spectrum, that sum may
be intended as an integral. Moreover it has to be noticed that for each energy En in
the continuum one has the degeneration given by the different possible “asymptotic
channels”, namely the possibility that such a many-body system breaks in many
different sets of fragments at the same energy.

In the following we will concentrate on the inelastic part of the response function,
namely S.q; !/ where the term n D 0 in the sum is excluded

R.q; !/ D
1X

n¤0
jhnjGj0ij2ı.! � En C E0/ : (7.41)

The reason is that the elastic part requires only the knowledge of the ground state of
the system and its calculation can be done with one of the methods described above.
Here, instead we want to face the inelastic scattering problem, and in particular the
situation when the energy is large enough to break the system and continuum states
jni are in the game. To this aim we define a fluctuation operator� D G � h0jGj0i.
Since h0j�j0i D 0 one can write

R.q; !/ D
1X

nD0

Z
jhnj�j0ij2ı.! � En C E0/ ; (7.42)

where the complete sum (or the integral) on all states has been recovered. Having a
complete sum on the Hamiltonian eigenstates is crucial as it will be clear below.
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7.6 Integral Transform Approaches

Integral transform approaches allow to calculate inclusive response functions,
avoiding to calculate the wave functions in the continuum. One starts from the
consideration, already mentioned above, that the amount of information contained in
the wave function is redundant with respect to the transition matrix elements needed,
since the latter involve their integrals. Therefore, one tries to avoid the difficult
task of solving the Schrödinger equation for positive energies and one concentrates
instead on R.q; !/, directly.

An integral transform of R.!/ (here and in the following we drop the dependence
on q) is defined as

˚.�/ D
Z

K.�; !/R.!/ d! ; (7.43)

with a smooth kernel K. Performing the integral in d! and applying the closure
property of Hamiltonian eigenstates

P1
nD0 jnihnj D I (see the remark at the end of

Sect. 7.5.1) one has

˚.�/ D h0j�� OK
�
�; . OH � E0/

�
�j0i : (7.44)

From Eq. (7.44) one can see that the calculation of ˚.�/ seems to require in
principle the knowledge of the ground state only. However, the possibility to actually
calculate ˚.�/ depends on how complicate is the operator OK.�; OH/. Moreover, in
order to access the quantity of interest, namely R.!/ an inversion of the transform
is necessary.

7.6.1 Sum Rules

Before proceeding towards discussing useful kernels for our aim, let us recall that
the so called “method of moments” has something to do with this approach. The
moments of R.!/, seen as a probability distribution, would be the˚.�/ obtained by
the kernel K.�; !/ D !� with � integer (they are also known as sum rules).

˚.�/ � m� D
Z

d! !�R.!/ D h0j��.H � E0/
� �j0i : (7.45)

For integer positive � the moments m.�/ can also be written as mean values on the
ground state of multiple commutators or anticommutators of the Hamiltonian with
the � operator (see e.g [35]). As already stressed they can be evaluated using the
knowledge of the ground state only. The knowledge of only few moments can give
information about some gross features of R.!/, like its normalization (m0) the mean
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! value .m1=m0/ etc. However, the real problem of such an approach is that the very
detailed knowledge of R.!/ would require the calculation of a large number of m� ,
arising then the problem of their existence, since the high energy behavior of R.!/
is in general unknown. Cumulant expansion approaches [36] have been suggested
in order to get a lot of information on R.!/ by the knowledge of only the first few
m� , however with limited success.

7.6.2 Integral Transform with the Laplace Kernel

There is a kernel that is used extensively in many different contexts. This is the
Laplace kernel e �� ! . Before coming to that let’s first consider the Fourier transform
of R.!/

F.t/ D
Z

d! e i! t R.!/ ; (7.46)

one can again make use of closure and write it as

F.t/ D h0j�� e i .H�E0/ t � j0i ; (7.47)

or, in Heisemberg representation

F.t/ D h0j��.t/�.0/ j0i : (7.48)

This is a complex quantity of the real time variable t. However, if one extends its
domain in the complex plane, one realizes that F�.t/ D F.�t�/ and for imaginary
time, i.e. t D i� , the function F.�/ is real. Since R.!/ D 0 for ! 	 0, F.�/
corresponds to its Laplace transform. It turns out that GFMC or DMC methods
are suitable to calculate F.�/. However, one is left with the thorny problem of the
inversion of the Laplace transform.

It is well known that the inversion of a Laplace transform is a typical ill posed
problem. In order to explain in simpler terms what an ill posed problem means in
practice, consider two examples for R.!/ as plotted in the left panel of Fig. 7.3.
Suppose that the dashed curve is the real one and the full line a wrong one. If you
look at their relative Laplace transforms�.�/ in the right panel, you will notice that
they can fall both within a possible numerical error of the size shown in the figure,
so that no inversion algorithm can discriminate with absolute certitude between the
right and wrong R.!/. This is due to the fact that the exponential kernel tends to
wash out rapidly any information at high !. Moreover errors in the transform can
generate oscillations (see discussion in Sect. 7.6.6).
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Fig. 7.3 Left panel: two different R.!/. Right panel: their relative Laplace transforms �.�/. See
discussion in the text

7.6.3 Integral Transform with the Lorentzian Kernel

One may ask what would be the “perfect” kernel, in the sense of a kernel that returns
a transform which reproduces the features of R.!/. It would trivially be ı.� � !/.
This is of course of no use. However, probably a representation of the ı-function
could be an “almost perfect” kernel. This is the idea that was pursued in [37], when
the Lorentz Integral Transform (LIT) was proposed. It is clear that a good kernel has
not only to be able to reproduce the features of the original R.!/ in the transformed
function, in order to make the inversion procedure easier and reliable, but it has also
to allow the calculation of˚.�/ in practice. In the following it will be illustrated that
if the kernel is a Lorentzian function (one of the representations of the ı-function)
this is just the case.

The (normalized) Lorentzian kernel can be defined for a complex � D �RCi�I as

KL.�; !/ D �I

�

1

.! � �R/2 C �2I
D �I

�

1

! � �R � i�I

1

! � �R C i�I
: (7.49)

With such a kernel Eq. (7.43) becomes

L.�R; �I/ D �I

�
h 0 j�� 1

OH � E0 � �R � i�I

1

OH � E0 � �R C i�I

�j 0 i : (7.50)
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If one defines

j Q� i �
r
�I

�

1

OH � E0 � �R C i�I

�j 0 i ; (7.51)

the LIT of R.!/ corresponds to the norm of this j Q�i, namely

L.�R; �I/ D h Q� j Q�i : (7.52)

The most important feature of j Q�i is that its norm is finite since

L.�R; �I/ D �I

�

Z
1

.! � �R/2 C �2I
R.!/ d! < 1 (7.53)

This means that j Q� i has bound-state like asymptotic behavior and therefore it can
be calculated using one or more of the methods described in Sect. 7.3.

In the literature there are examples of LIT calculations with the Faddeev method
for inclusive electron scattering[38] and photoabsorption on 3He and 3H [39], the
CHH method, again for electron scattering [40] and photoabsorption [41] of three-
nucleon systems, the NCSM method for photoabsorption of 4He [42], the EIHH
method for photoabsorption of 4He [43], 6He and 6Li [44], 7Li [45], for neutrino
scattering on 4He [46] and more recently with CC on photoabsorption of 16O and
22O [47].

Now we will illustrate how the Lanczos method can be particularly useful to
calculate L.�R; �I/ in practice. One easily realizes that, because of Eqs. (7.50)–
(7.53), one has

h Q� j Q� i D 1

�
Im

�
h 0 j�� 1

OH � E0 � �R � i�I

�j 0 i

: (7.54)

Due to the finiteness of the norm of j Q�i one can represent the Hamiltonian on a
basis of localized functions. After a Lanczos diagonalization, L.�R; �I/ will appear
as

L.�R; �I/ D 1

�
Im

"X
�

h 0 j�� 1

�� � E0 � �R � i�I
�j 0 i

#

D �I

�

X
�

jh� j�j 0 ij2
.�� � E0 � �R/2 C �2I

; (7.55)

namely a superposition of Lorentzians functions of width �I , centered on ���E0 (��
is the Hamiltonian matrix eigenvalue) and weighted by the strength of the transition
between the ground state and the Hamiltonian matrix eigenvectors j�i, induced by
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�. In principle the “exact result” is reached when the Hamiltonian matrix is large
enough to let L.�R; �I/ become a converged curve.

A few remarks are in order here:

• the range of �R, where it is convenient to calculate L.�R; �I/, is connected to the
!-range of interest for R.!/. In fact one should remember that the kernel is a
representation of the ı-function and L.�R; �I/ resembles R.!/ more and more as
�I becomes small;

• the choice of �I is determined by the kind of resolution that one wants to have on
R.!/. If �I is of the same order as the experimental resolution one does not even
need to invert the transform and one can compare L.�R; �I/ to data, directly;

• even in case that an inversion is necessary, �I is related to the the kind of
resolution one wishes to have for R.!/. A crucial quantity to look at is the
average distance between contiguous ��. In fact for �I larger than this average
distance the convergence of L.�R; �I/ is rather easy to reach, since in this case the
different Lorentzians that compose L.�R; �I/ [see Eq. (7.55)] overlap smoothly.
The inversion of a well converged result is safe. However, if the inverted result
shows oscillations with wavelength smaller that �I , one has to check the result,
calculating the LIT up to convergence with an as small �I (see discussion in
Sect. 7.6.6).

• when �I is smaller than the average distance between contiguous �� , L.�R; �I/

will appear as a set of separated peaks, which in most cases move around as the
matrix increases. In fact enlarging the matrix does not necessarily mean that the
density of �� increases in the �R region of interest. Only if this is the case one
could reach a convergence in L.�R; �I/. The choice of an appropriate basis in
representing the Hamiltonian plays an essential role for this problem, as it was
shown in [48].

An extensive review of the LIT method, together with more examples of
applications can be found in [49].

7.6.4 Integral Transform with the Sumudu Kernel

One of the advantages of the LIT method is that the kernel is a representation
of the ı-function. This makes the transform resemble R.!/, reducing in this way
the difficulties in the inversion considerably. On the other hand, the necessity to
diagonalize, up to convergence of the transform, an Hamiltonian matrix built on a
many-body basis, seems to limit its applicability to rather small A. One could ask
whether it is possible to find a kernel that is both a representation of the ı-function
and that allows to calculate the transform with one of the Monte Carlo methods,
which are rather powerful also for a rather large number of particles. Such a kernel
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has been proposed in [50], see also Chap. 9 here. It is a combination of Sumudu
kernels, (or more simply of exponentials) and reads

KP.�; !/ D N

"
e�� !

�

�
� e�� !�

�

#P

; (7.56)

where

� D lnŒb
� lnŒa


b � a
a I � D lnŒb
� lnŒa


b� a
b ; (7.57)

and the parameters P; a; b are integer numbers with b > a. The normalization
constant N is a function of P; a; b such that

R
d�KP.�; !/ D 1.

Independent on the choice of a and b the kernel KP.�; !/ converges to ı.! � �/
in the P ! 1 limit. For a finite P, at each value of ! the kernel has a finite width
which depends on P and represents the resolution with which one can study R.!/.
The maximum of �KP.�; !/ is at ! D � , therefore one can choose both the energy
range of interest (the � values) and the resolution (the larger is P, the higher is
the resolution). This makes the transform with such a kernel extremely flexible,
similarly to the case of the LIT method.

Using the binomial expansion the kernel becomes a linear combination of the
so-called Sumudu transform kernels [50]

KP.�; !/ D N

�

PX
kD0

�
P
k

�
.�1/ke� ln.b=a/Œ a

b�a PCk
 !� : (7.58)

This expression makes it clear how to calculate the transform by quantum Monte
Carlo. In fact by operating the usual substitution ! ! OH [see Eqs. (7.43)–(7.44)],
one has a simple linear combination of imaginary-time propagators

KP.�; OH/ D N

�

PX
kD0

�
P
k

�
.�1/ke��Pk OH ; (7.59)

taken at different imaginary-time points

�Pk D ln.b=a/Œ
a

b� a
PC k
=�: (7.60)

Until now this transform has only been applied to the case of bosons (liquid
Helium) [50]. It would be desirable to investigate its application for nuclear systems.
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7.6.5 Integral Transform with the Stieltjes Kernel

The integral transform with the Stieltjes kernel, K.�; !/ D 1
!C� and � > 0, is

given by

S .�/ D
Z

d!
1

.! C �/R.!/ D h 0 j�� 1

OH � E0 C �
�j 0 i : (7.61)

It was introduced long ago [51] to study reactions in the continuum. It has had,
however, a limited application, since it shares the same problems as the Laplace
transform. In fact the kernel has a similar decreasing behavior in � , even if much
smoother than the exponential, washing out information at higher energies, useful
for the success of the inversion algorithms. In [52] the test on the electron scattering
longitudinal response function has shown that its inversion can lead to rather large
uncertainties, even in presence of rather small errors in the calculation of the
transform.

There is, however, an interesting application of such a transform to calculate
a dynamical quantity, which in general requires the knowledge of the continuum
part of the spectrum. This quantity is the generalized polarizability (e.g. dipole
polarizability or magnetic susceptibility) of a nucleus in response to a constant
perturbative field.

Applying time dependent perturbation theory one can show that these polariz-
abilities ˛� are related to the inverse moment m�1 of R.!/ as

˛� D 2m�1 D 2h 0 j�� 1

OH � E0
�j 0 i ; (7.62)

where � represents the operator relevant for the kind of probe used. Comparing
Eqs. (7.61) and (7.62) it is clear that the polarizability corresponds to the limit for
vanishing � of S .�/. It turns out that this limit represents a viable way to calculate
the polarizability. In fact, one notices that the polarizability can be written as

˛� D 2h 0 j�� j Q̊ i (7.63)

where j Q̊ i is the solution of the Schrödinger-like equation with a source

. OH � E0 C �/j Q̊ i D � j0 i (7.64)

One notices that Q̊ is a function of finite norm, since

h Q̊ j Q̊ i D
Z

d!
1

.! C �/2R.!/ < 1: (7.65)
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Therefore representing the Hamiltonian and Q̊ on bound state-like functions,
Eq. (7.64) becomes a linear matrix equation to be solved up to convergence in the
size of the matrix. Repeating the calculation for smaller and smaller � one can plot
S .�/ as a function of � and read ˛� as the extrapolated value at � D 0. A first
application of this procedure for the calculation of the dipole polarizability of light
system can be found in [53].

7.6.6 Methods of Inversion

A crucial part of the integral transform method is the inversion of the transforms.
The inversion has to be made with care, since errors in the transform can generate
spurious oscillations in R.!/. To illustrate this let us consider a well defined R.!/
to which we add a term ��R.!/ oscillating at a high frequency �. Such a term
leads to an additional ��˚.�/ in the transform of Eq. (7.43). One should realize
that, for any amplitude of the oscillation, ��˚ decreases with increasing �. This
means that for some value of � the term ��˚ may be smaller than the size of the
errors in the calculation. Therefore in this case ��R cannot be discriminated. In
principle, by reducing the error in the calculation one can push the frequency of
the undiscriminated ��R to higher and higher values, so to render their spuriosity
manifest.

At this point something should be said regarding the algorithms which are
commonly used to invert the transforms. The Laplace transforms are obtained
by Monte Carlo methods and are affected by statistical errors. In this case the
inversion algorithms are necessarily based on Bayes theorem. Therefore, one gets
the probability of a solution based on known input conditions. Because of the highly
ill-posed nature of the Laplace transform inversion it may be necessary to use many
input conditions to obtain a highly probable solution. The best known algorithm is
the Maximum Entropy method[54] with its many sophisticated versions.

The calculation of the LIT is much less affected by numerical errors of statistical
nature (they are generally tiny) and much more by the systematic errors related to
estimations of the convergence quality. Therefore in this case it is more convenient
to use another algorithm called the regularization method [55]. This has led to
very safe inversion results. Alternative inversion methods of the same nature are
discussed in [56].

A LIT inversion method that has been largely used with success consists in
making the following ansatz for the response function

R.!0/ D
NmaxX
nD1

cn�n.!
0; ˛i/ ; (7.66)

with !0 D ! � Eth, where Eth is the break–up threshold energy into the continuum
(calculable with bound state methods). The �n are given functions with nonlinear
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parameters ˛i. A basis set that has rather frequently been used to invert the LIT
inversions is

�n.!
0; ˛i/ D !0˛1 exp.�˛2!

0

n
/ : (7.67)

In addition also possible information on narrow levels could be incorporated easily
into the set �n. Substituting such an expansion into the right hand side of (7.53) one
obtains (here too the �I dependence is omitted)

L.�R/ D
NmaxX
nD1

cn Q�n.�R; ˛i/ ; (7.68)

where

Q�n.�R; ˛i/ D
Z 1

0

�n.!
0; ˛i/

.!0 � �R/2 C �2I
: (7.69)

For given ˛i the linear parameters cn are determined from a least–square best fit of
L.�R/ of Eq. (7.68) to the calculated L.�R/ for a number of �R points much larger
than Nmax.

For every value of Nmax the overall best fit is selected and then the procedure is
repeated for N0

max D NmaxC 1 till a stability of the inverted response is obtained and
taken as inversion result. A further increase of Nmax will eventually reach a point,
where the inversion becomes unstable leading typically to random oscillations. The
reason is that L.�R/ of Eq. (7.55) is not determined precisely enough so that a
randomly oscillating R.!/ leads to a better fit than the true response. If the accuracy
in the determination of L.�R/ is increased, one may include more basis functions in
the expansion (7.68).

The LIT method has to be understood as an approach with a controlled resolution.
If one expects that R.!/ has structures of width� , then the LIT resolution parameter
�I should be similar in size. Then it is sufficient to determine the corresponding
LIT with a moderately high precision, and the inversion should lead to reliable
results for R.!/, if in fact no structures with a width smaller than � are present.
If, however, there is a reason to believe that R.!/ exhibits such smaller structures
one should reduce �I accordingly and perform again a calculation of the Lorentz
integral transform with the same relative precision as before. Such a calculation is
of course more expensive than the previous one with larger �I , but in principle one
can reduce the LIT resolution parameter �I more and more.

The advantage of the LIT approach as compared with a conventional approach
is evident. In the LIT case one makes the calculation with the proper resolution,
while in a conventional calculation an infinite resolution (corresponding to �I D 0)
is requested, which often makes such a calculation not feasible.

There are several tests of the reliability of the inversion. First of all, performing
the calculation at different �I one has to obtain the same stable result for R.!/ from
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the inversion. If �I is too small the solution reaches its asymptotic behavior to zero
very slowly, therefore for �I < �min

I one may have convergence problems, turning
into large errors for the LIT. As already said above, this will show up in unphysical
oscillations in R.!/. This means that the stable result obtained with �I 
 �min

I is the
correct one, at that resolution.

Another test is the control of the moments, in fact the moments of R.!/ can be
calculating both integrating R.!/ or by Eq. (7.45), which needs only the knowledge
of the ground state.

7.7 Conclusion

From what has been written in these short lecture notes it should be clear that they
are only a partial presentation of the amount of work that the theoretical nuclear
physicists have done in the last two decades in the attempt to account for nuclear
observables from first principles, for a number of particles that exceeds the classical
few-body definition, traditionally limited to A=2,3.

In describing the methods, here only the main points have been exposed, leaving
out the complicated formalism of the more detailed presentation needed by possible
practitioners. The reference to the numerous original works should compensate this
lack.

Very active theoretical research is still going on in this field, especially in the
attempt to find unifying approaches for structure and reactions and to reach regions
of the nuclear data chart still unexplored. Fortunately this research is accompanied
by an as active experimental activity, which produces observables that at the same
time need a theoretical explanation and constitute the reference for testing the
models and the methods. All that shows the relevance of the ab initio approaches
in nuclear physics as the necessary bridge between QCD, the fundamental theory
of strong interaction and nuclear phenomena, many of which are at the basis of the
evolution of the Universe.
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Chapter 8
Computational Nuclear Physics and Post
Hartree-Fock Methods

Justin G. Lietz, Samuel Novario, Gustav R. Jansen, Gaute Hagen,
and Morten Hjorth-Jensen

8.1 Introduction

Studies of dense baryonic matter are of central importance to our basic understand-
ing of the stability of nuclear matter, spanning from matter at high densities and
temperatures to matter as found within dense astronomical objects like neutron stars.
An object like a neutron star offers an intriguing interplay between nuclear processes
and astrophysical observables, spanning many orders of magnitude in density and
several possible compositions of matter, from the crust of the star to a possible quark
matter phase in its interior, see for example [1–8] for discussions. A central issue
in studies of infinite nuclear matter is the determination of the equation of state
(EoS), which can in turn be used to determine properties like the mass range, the
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mass-radius relationship, the thickness of the crust and the rate by which a neutron
star cools down over time. The EoS is also an important ingredient in studies of the
energy release in supernova explosions.

The determination and our understanding of the EoS for dense nuclear matter
is intimately linked with our capability to solve the nuclear many-body problem.
In particular, to be able to provide precise constraints on the role of correlations
beyond the mean field is crucial for improved and controlled calculations of the
EoS. In recent years, there has been a considerable algorithmic development of first
principle (or ab initio) methods for solving the nuclear many-body problem. Linked
with a similar progress in the derivation of nuclear forces based on effective field
theory (EFT), see Chaps. 4, 5 and 6 of the present text and [9–16], we are now in a
situation where reliable results can be provided at different levels of approximation.
The nuclear Hamiltonians which are now used routinely in nuclear structure and
nuclear matter calculations, include both nucleon-nucleon (NN) and three-nucleon
forces (3NFs) derived from EFT, see for example [5, 5, 17–26]. Parallel to the
development of nuclear forces from EFT, which employ symmetries of quantum
chromodynamics, there are recent and promising approaches to derive the EoS
using forces constrained from lattice quantum chromodynamics calculations [27],
see Chaps. 2 and 3 of the present text.

Theoretical studies of nuclear matter and the pertinent EoS span back to the
very early days of nuclear many-body physics. These early developments are
nicely summarized in for example the review of Day [28] from 1967. These early
state-of-the-art calculations were performed using what is known as Brueckner-
Bethe-Goldstone theory [29, 30], see for example [8, 20, 21, 31–33] for recent
reviews and developments. In these calculations, mainly particle-particle correla-
tions were summed to infinite order. Other correlations were often included in a
perturbative way. A systematic inclusion of other correlations in a non-perturbative
way are nowadays accounted for in many-body methods like coupled cluster
theory [17, 19, 23, 34–38] (this chapter), various Monte Carlo methods [39–46]
(Chap. 9), Green’s function approaches [26, 32, 47, 48] (Chap. 11) and similarity
renormalization group methods [24, 49] (Chap. 10), just to mention a few of the
actual many-body methods which are used for nuclear matter studies. Many of these
methods are discussed in detail in this and the following chapters.

The aim of this part of the present lecture notes (comprising this chapter and the
three subsequent ones) is to provide the necessary ingredients for performing studies
of neutron star matter (or matter in ˇ-equilibrium) and symmetric nuclear matter.
We will mainly focus on pure neutron matter, but the framework and formalism
can easily be extended to other dense and homogeneous fermionic systems such
as the electron gas in two and three dimensions. The introductory material we
present here forms also the basis for the next three chapters, starting with the
definition of the single-particle basis and our Hamiltonians as well as Hartree-Fock
theory. For infinite matter, due to the translational invariance of the Hamiltonian,
the single-particle basis, in terms of plane waves, is unchanged under Hartree-Fock
calculations.
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Neutron star matter at densities of 0.1 fm�3 and greater, is often assumed to
consist mainly of neutrons, protons, electrons and muons in beta equilibrium.
However, other baryons like various hyperons may exist, as well as possible
mesonic condensates and transitions to quark degrees of freedom at higher densities
[3, 4, 8, 50]. In this chapter we limit ourselves to matter composed of neutrons
only. Furthermore, we will also consider matter at temperatures much lower than
the typical Fermi energies.

In the next section we present some of the basic quantities that enter the
different many-body methods discussed in this and the three subsequent chapters.
All these methods start with some single-particle basis states, normally obtained
via the solution of mean-field approaches like Hartree-Fock theory. Contributions
from correlations beyond such a mean-field basis to selected observables, are then
obtained via a plethora of many-body methods. These methods represent different
mathematical algorithms used to solve either Schrödinger’s or Dirac’s equations
for many interacting fermions. After the definitions of our basis states, we derive
the Hartree-Fock equations in the subsequent section and move on with many-
body perturbation theory, full configuration interaction theory and coupled cluster
theory. Monte Carlo methods, Green’s function theory approaches and Similarity
Renormalization group approaches are discussed in the subsequent three chapters.

The strengths and weaknesses of these methods are discussed throughout these
chapters, with applications to either a simple pairing model and/or pure neutron
matter. Our focus will be on pure neutron matter, starting with a simple model
for the interaction between nucleons. This allows us to focus on pedagogical and
algorithmic aspects of the various many-body methods, avoiding thereby the full
complexity of nuclear forces. If properly written however, the codes can easily
be extended to include models of the nuclear interactions based on effective field
theory (see Chaps. 4, 5 and 6 of the present text) and other baryon species than just
neutrons. In our conclusions we point back to models for nuclear forces and their
links to the underlying theory of the strong interaction discussed in the first chapters
of this book, bridging thereby the gap between the theory of nuclear Hamiltonians
and many-body methods.

8.2 Single-Particle Basis, Hamiltonians and Models
for the Nuclear Force

8.2.1 Introduction to Nuclear Matter and Hamiltonians

Although our focus here and in the coming chapters is on neutron matter only, our
formalism lends itself easily to studies of nuclear matter with a given proton fraction
and electrons. In this section we outline some of the background details, with a focus
on the calculational basis and the representation of a nuclear Hamiltonian.
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Neutron star matter is not composed of only neutrons. Rather, matter is composed
of various baryons and leptons in chemical and charge equilibrium. The equilibrium
conditions are governed by the weak processes (normally referred to as the
processes for ˇ-equilibrium)

b1 ! b2 C lC N�l b2 C l! b1 C �l;

where b1 and b2 refer to different types of baryons, for example a neutron and a
proton. The symbol l is either an electron or a muon and N�l and �l their respective
anti-neutrinos and neutrinos. Leptons like muons appear at a density close to nuclear
matter saturation density �0, the latter being

�0 � 0:16˙ 0:02 fm�3;

with a corresponding energy per baryon E0 for symmetric nuclear matter at
saturation density of

E0 D B=A D �15:6˙ 0:2 MeV:

The energy per baryon is the central quantity in the present studies. From the energy
per baryon, we can define the pressure P which counteracts the gravitational forces
and hinders the gravitational collapse of a neutron star. The pressure is defined
through the relation

P D �2 @E
@�
D �@"

@�
� ";

where " is the energy density and � the density. Similarly, the chemical potential for
particle species i is given by

�i D
�
@"

@�i

�
:

In calculations of properties of neutron star matter in ˇ-equilibrium, we need to
calculate the energy per baryon E for several proton fractions xp. The proton fraction
corresponds to the ratio of protons as compared to the total nucleon number (Z=A).
It is defined as

xp D �p

�
;

where � D �p C �n is the total baryonic density if neutrons and protons are the
only baryons present (the subscripts used here, n; p; e; �, refer to neutrons, protons,
electrons and muons, respectively). If this is the case, the total Fermi momentum kF

and the Fermi momenta kFp, kFn for protons and neutrons, respectively, are related
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to the total nucleon density n by

� D 2

3�2
k3F D xp�C .1 � xp/� D 1

3�2
k3Fp C

1

3�2
k3Fn:

The energy per baryon will thus be labelled as E .�; xp/. The quantity E .�; 0/
refers then to the energy per baryon for pure neutron matter while E .�; 1

2
/ is the

corresponding value for symmetric nuclear matter.
An important ingredient in the discussion of the EoS and the criteria for matter

in ˇ-equilibrium is the so-called symmetry energy S .�/, defined as the difference
in energy for symmetric nuclear matter and pure neutron matter

S .�/ D E .�; xp D 0/� E .�; xp D 1=2/:

If we expand the energy per baryon in the case of nucleonic degrees of freedom only
in the proton concentration xp about the value of the energy for SNM (xp D 1

2
), we

obtain,

E .�; xp/ D E .n; xp D 1

2
/C 1

2

d2E

dx2p
.�/



xp � 1=2

�2 C : : : ;

where the term d2E =dx2p is to be associated with the symmetry energy S .�/ in
the empirical mass formula. If we assume that higher order derivatives in the
above expansion are small, then through the conditions for ˇ-equilibrium (see for
example [8]) we can define the proton fraction by the symmetry energy as

„c 
3�2�xp
�1=3 D 4S .�/



1 � 2xp

�
;

where the electron chemical potential is given by �e D „ckF, i.e. ultrarelativistic
electrons are assumed. Thus, the symmetry energy is of paramount importance for
studies of neutron star matter in ˇ-equilibrium. One can extract information about
the value of the symmetry energy at saturation density �0 from systematic studies of
the masses of atomic nuclei. However, these results are limited to densities around
�0 and for proton fractions close to 1

2
. Typical values for S .�/ at �0 are in the range

27–38MeV [51]. For densities greater than �0 it is more difficult to get a reliable
information on the symmetry energy, and thereby the related proton fraction.

With this background, we are now ready to define our basic inputs and approx-
imations to the various many-body theories discussed in this chapter and the three
subsequent ones. We will assume that the interacting part of the Hamiltonian can be
approximated by a two-body interaction. This means that our Hamiltonian is written
as the sum of a one-body part and a two-body part

OH D OH0 C OHI D
AX

iD1
Oh0.xi/C

AX
i<j

Ov.rij/;
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with

OH0 D
AX

iD1
Oh0.xi/;

being the so-called unperturbed part of the Hamiltonian defined by the one-body
operator

Oh0.xi/ D Ot.xi/C Ouext.xi/;

where Ot represents the kinetic energy and xi represents both spatial and spin
degrees of freedom. For many-body calculations of finite nuclei, the external
potential uext.xi/ is normally approximated by a harmonic oscillator or Woods-
Saxon potential. For atoms, the external potential is defined by the Coulomb
interaction an electron feels from the atomic nucleus. However, other potentials are
fully possible, such as one derived from the self-consistent solution of the Hartree-
Fock equations to be discussed below. Since we will work with infinite matter and
plane wave basis states, the one-body operator is simply given by the kinetic energy
operator. Finally, the term OHI represents the residual two-body interaction

OHI D
AX

i<j

Ov.rij/:

Our Hamiltonian is invariant under the permutation (interchange) of two parti-
cles. Since we deal with fermions however, the total wave function is anti-symmetric
and we assume that we can approximate the exact eigenfunction for say the ground
state with a Slater determinant

˚0.x1; x2; : : : ; xA; ˛; ˇ; : : : ; �/ D 1p
AŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

 ˛.x1/  ˛.x2/ : : : : : :  ˛.xA/

 ˇ.x1/  ˇ.x2/ : : : : : :  ˇ.xA/

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

 �.x1/  �.x2/ : : : : : :  � .xA/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
;

where xi stand for the coordinates and spin values of particle i and ˛; ˇ; : : : ; 	 are
quantum numbers needed to describe remaining quantum numbers.

The single-particle function  ˛.xi/ are eigenfunctions of the one-body Hamilto-
nian h0, that is

Oh0.xi/ ˛.xi/ D

Ot.xi/C Ouext.xi/

�
 ˛.xi/ D "˛ ˛.xi/:
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The energies "˛ are the so-called non-interacting single-particle energies, or unper-
turbed energies. The total energy is in this case the sum over all single-particle
energies, if no two-body or more complicated many-body interactions are present.

The properties of the determinant lead to a straightforward implementation of the
Pauli principle since no two particles can be at the same place (two columns being
the same in the above determinant) and no two particles can be in the same state (two
rows being the same). As a practical matter, however, Slater determinants beyond
N D 4 quickly become unwieldy. Thus we turn to the occupation representation
or second quantization to simplify calculations. For a good introduction to second
quantization see for example [35, 52–54].

We start with a set of orthonormal single-particle states f ˛.x/g. To each single-
particle state  ˛.x/ we associate a creation operator a�˛ and an annihilation operator
a˛. When acting on the vacuum state j0i, the creation operator a�˛ causes a particle
to occupy the single-particle state  ˛.x/

 ˛.x/! a�˛j0i:

But with multiple creation operators we can occupy multiple states

 ˛.x/ ˇ.x
0/ ı.x00/! a�˛a�ˇa�ı j0i:

Now we impose anti-symmetry by having the fermion operators satisfy the anti-
commutation relations

a�˛a�ˇ C a�ˇa�˛ D
n
a�˛; a

�

ˇ

o
D 0;

with the consequence that

a�˛a�ˇ D �a�ˇa�˛:

Because of this property, we obtain a�˛a�˛ D 0, enforcing the Pauli exclusion
principle. Thus we can represent a Slater determinant using creation operators as

a�˛a�ˇa�ı : : : j0i;

where each index ˛; ˇ; ı; : : : has to be unique.
We will now find it convenient to define a Fermi (F) level and introduce a new

reference vacuum. The Fermi level is normally defined in terms of all occupied
single-particle states below a certain single-particle energy. With the definition of
a Fermi level we define our ansatz for the ground state, represented by a Slater
determinant˚0. We will throughout the rest of this text use creation and annihilation
operators to represent quantum mechanical operators and states. It means that our
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compact representation for a given Slater determinant in Fock space is

˚0 D ji1 : : : iAi D a�i1 : : : a
�
iA
j0i

where j0i is the true vacuum and we have defined the creation and annihilation
operators as

a�pj0i D jpi; apjqi D ıpqj0i

with the anti-commutation relations

ıpq D
˚
ap; a

�
q

�
;

and

˚
a�p; aq

� D ˚ap; aq
� D ˚a�p; a�q� D 0:

We can rewrite the ansatz for the ground state as

j˚0i D
Y
i�F

a�i j0i;

where we have introduced the shorthand labels for states below the Fermi level F
as i; j; : : : 	 F. For single-particle states above the Fermi level we reserve the labels
a; b; : : : > F, while the labels p; q; : : : represent any possible single-particle state.

Since our focus is on infinite systems, the one-body part of the Hamiltonian is
given by the kinetic energy operator only. In second quantization it is defined as

OH0 D OT D
X

pq

h pjOtjqia�paq;

where the matrix elements h pjOtjqi represent the expectation value of the kinetic
energy operator (see the discussion below as well). The two-body interaction reads

OHI D OV D 1

4

X
pqrs

h pqj OvjrsiASa�pa�qasar;

where we have defined the anti-symmetrized matrix elements

h pqj OvjrsiAS D h pqj Ovjrsi � h pqj Ovjsri:
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We can also define a three-body operator

OV3 D 1

36

X
pqrstu

h pqrj Ov3jstuiASa�pa�qa�r auatas;

with the anti-symmetrized matrix element

h pqrj Ov3jstuiAS D h pqrj Ov3jstui C h pqrj Ov3jtusi C h pqrj Ov3justi � h pqrj Ov3jsuti
� h pqrj Ov3jtsui � hpqrj Ov3jutsi:

In this and the forthcoming chapters we will limit ourselves to two-body interactions
at most. Throughout this chapter and the subsequent three we will drop the subscript
AS and use only anti-symmetrized matrix elements.

Using the ansatz for the ground state j˚0i as new reference vacuum state, we
need to redefine the anticommutation relations to

˚
a�p; aq

� D ıpq; p; q 	 F;

and

˚
ap; a

�
q

� D ıpq; p; q > F:

It is easy to see that

aij˚0i D j˚ii ¤ 0; a�aj˚0i D j˚ai ¤ 0;

and

a�i j˚0i D 0 aaj˚0i D 0:

With the new reference vacuum state the Hamiltonian can be rewritten as, see
Problem 8.1,

OH D ERef C OHN ;

with the reference energy defined as the expectation value of the Hamiltonian using
the reference state ˚0

ERef D h˚0j OHj˚0i D
X
i�F

hijOh0jii C 1

2

X
ij�F

hijj Ovjiji;
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and the new normal-ordered Hamiltonian (all creation operators to the left of the
annihilation operators) is defined as

OHN D
X

pq

h pjOh0jqi
˚
a�paq

�C 1

4

X
pqrs

h pqj Ovjrsi ˚a�pa�qasar
�C X

pq;i�F

h pij Ovjqii ˚a�paq
�
;

(8.1)

where the curly brackets represent normal-ordering with respect to the new refer-
ence vacuum state. The normal-ordered Hamiltonian can be rewritten in terms of a
new one-body operator and a two-body operator as

OHN D OFN C OVN ;

with

OFN D
X

pq

h pj Of jqi ˚a�paq
�
; (8.2)

where

h pj Of jqi D h pjOh0jqi C
X
i�F

h pij Ovjqii:

The last term on the right hand side represents a medium modification to the
single-particle Hamiltonian due to the two-body interaction. Finally, the two-body
interaction is given by

OVN D 1

4

X
pqrs

h pqj Ovjrsi ˚a�pa�qasar
�
:

8.2.2 Single-Particle Basis for Infinite Matter

Infinite nuclear or neutron matter is a homogeneous system and the one-particle
wave functions are given by plane wave functions normalized to a volume ˝ for a
box with length L (the limit L!1 is to be taken after we have computed various
expectation values)

 k� .r/ D 1p
˝

exp .ikr/��
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where k is the wave number and �� is the spin function for either spin up or down
nucleons

��DC1=2 D
�
1

0

�
��D�1=2 D

�
0

1

�
:

As an interesting aside, the recent works of Binder et al. [55] and McElvain and
Haxton [56] offer new perspectives on the construction of effective Hamiltonians
and choices of basis functions.

We focus first on the kinetic energy operator. We assume that we have periodic
boundary conditions which limit the allowed wave numbers to

ki D 2�ni

L
i D x; y; z ni D 0;˙1;˙2; : : :

The operator for the kinetic energy can be written as

OT D
X
p�p

„2k2P
2m

a�p�p
ap�p :

When using periodic boundary conditions, the discrete-momentum single-particle
basis functions (excluding spin and/or isospin degrees of freedom) result in the
following single-particle energy

"nx;ny;nz D
„2
2m

�
2�

L

�2 

n2x C n2y C n2z

� D „2
2m

�
k2nx
C k2ny

C k2nz

�
;

for a three-dimensional system with

kni D
2�ni

L
; ni D 0;˙1;˙2; : : : ;

We will select the single-particle basis such that both the occupied and unoccupied
single-particle states have a closed-shell structure. This means that all single-particle
states corresponding to energies below a chosen cutoff are included in the basis. We
study only the unpolarized spin phase, in which all orbitals are occupied with one
spin-up and one spin-down fermion (neutrons and protons in our case). With the
kinetic energy rewritten in terms of the discretized momenta we can set up a list
(assuming identical particles one and including spin up and spin down solutions) of
single-particle energies with momentum quantum numbers such that n2xCn2yCn2z 	
3, as shown in for example Table 8.1.

Continuing in this way we get for n2x C n2y C n2z D 4 a total of 12 additional
states, resulting in 66 as a new magic number. For the lowest six energy values
the degeneracy in energy gives us 2, 14, 38, 54, 66 and 114 as magic numbers.
These numbers will then define our Fermi level when we compute the energy in
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Table 8.1 Total number of
particle filling N"# for
various n2x C n2y C n2z values
for one spin-1/2 fermion
species

n2x C n2y C n2z nx ny nz N"#

0 0 0 0 2

1 �1 0 0

1 1 0 0

1 0 �1 0

1 0 1 0

1 0 0 �1
1 0 0 1 14

2 �1 �1 0

2 �1 1 0

2 1 �1 0

2 1 1 0

2 �1 0 �1
2 �1 0 1

2 1 0 �1
2 1 0 1

2 0 �1 �1
2 0 �1 1

2 0 1 �1
2 0 1 1 38

3 �1 �1 �1
3 �1 �1 1

3 �1 1 �1
3 �1 1 1

3 1 �1 �1
3 1 �1 1

3 1 1 �1
3 1 1 1 54

Borrowing from nuclear shell-model termi-
nology, filled shells corresponds to all single-
particle states for one n2x Cn2y Cn2z value being
occupied. For matter with both protons and
neutrons, the filling degree increased with a
factor of 2

a Cartesian basis. When performing calculations based on many-body perturbation
theory, coupled cluster theory or other many-body methods, we need then to add
states above the Fermi level in order to sum over single-particle states which are not
occupied.

If we wish to study infinite nuclear matter with both protons and neutrons, the
above magic numbers become 4; 28; 76; 108; 132; 228; : : : .

Every number of particles for filled shells defines also the number of particles to
be used in a given calculation. The number of particles can in turn be used to define
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the density � (or the Fermi momentum) of the system via

� D g
k3F
6�2

;

where kF is the Fermi momentum and the degeneracy g, which is two for one type of
spin-1=2 particles and four for symmetric nuclear matter. With the density defined
and having fixed the number of particles A and the Fermi momentum kF, we can
define the length L of the box used with periodic boundary contributions via the
relation

V D L3 D A

�
:

With L we can to define the spacing between various k-values given by

�k D 2�

L
:

Here, A is the number of nucleons. If we deal with the electron gas only, this needs
to be replaced by the number of electrons N. Exercise 8.4 deals with the set up of a
program that establishes the single-particle basis for nuclear matter calculations with
input a given number of nucleons and a user specified density or Fermi momentum.

8.2.3 Two-Body Interaction

As mentioned above, we will employ a plane wave basis for our calculations of
infinite matter properties. With a cartesian basis we can calculate directly the various
matrix elements. However, a cartesian basis represents an approximation to the
thermodynamical limit. In order to compare the stability of our basis with results
from the thermodynamical limit, it is convenient to rewrite the nucleon-nucleon
interaction in terms of a partial wave expansion. This will allow us to compute
the Hartree-Fock energy of the ground state in the thermodynamical limit (with
the caveat that we need to limit the number of partial waves). In order to find
the expressions for the Hartree-Fock energy in a partial wave basis, we will find
it convenient to rewrite our two-body force in terms of the relative and center-of-
mass motion momenta.

The direct matrix element, with single-particle three-dimensional momenta kp,
spin �p and isospin �p, is defined as

hkp�p�pkq�q�qj Ovjkr�r�rks�s�si;

or in a more compact form as hpqj Ovjrsi where the boldfaced letters p etc represent
the relevant quantum numbers, here momentum, spin and isospin. Introducing the
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relative momentum

k D 1

2



kp � kq

�
;

and the center-of-mass momentum

K D kp C kq;

we have

hkp�p�pkq�q�qj Ovjkr�r�rks�s�si D hkK�p�p�q�qj Ovjk0K0�r�r�s�si:

The nucleon-nucleon interaction conserves the total momentum and charge, imply-
ing that the above uncoupled matrix element reads

hkK�p�p�q�qj Ovjk0K0�r�r�s�si D ıTz;T0

z
ı.K�K0/hkTzSz D .�a C �b/j Ovjk0TzS

0
z

D .�c C �d/i;

where we have defined the isospin projections Tz D �p C �q and T 0
z D �r C �s.

Defining Ov D Ov.k;k0/, we can rewrite the previous equation in a more compact
form as

ıTz;T0

z
ı.K�K0/hkTzSz D .�p C �q/j Ovjk0TzS

0
z D .�r C �s/i

D ıTz;T0

z
ı.K �K0/hTzSzj Ov.k;k0/jTzS

0
zi:

These matrix elements can in turn be rewritten in terms of the total two-body
quantum numbers for the spin S of two spin-1/2 fermions as

hkTzSzj Ov.k; k0/jk0TzS
0

zi D
X
SS0

h1
2
�p
1

2
�qjSSzih1

2
�r
1

2
�sjS0S0

zihkTzSSzj Ov.k; k0/jkTzS
0S0

zi

The coefficients h 1
2
�p

1
2
�qjSSzi are so-called Clebsch-Gordan recoupling coeffi-

cients. We will assume that our interactions conserve charge. We will refer to Tz D 0
as the pn (proton-neutron) channel, Tz D �1 as the pp (proton-proton) channel and
Tz D 1 as the nn (neutron-neutron) channel.

The nucleon-nucleon force is often derived and analyzed theoretically in terms
of a partial wave expansion. A state with linear momentum k can be written in terms
of spherical harmonics Ylm as

jki D
1X

lD0

lX
mD�l

{ lYlmhOkjklmli:
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In terms of the relative and center-of-mass momenta k and K, the potential in
momentum space is related to the nonlocal operator V.r; r0/ by

hk0K0j Ovjk0Ki D
Z

drdr0e�{k0r0

V.r0; r/e{krı.K;K0/:

We will assume that the interaction is spherically symmetric and use the partial wave
expansion of the plane waves in terms of spherical harmonics. This means that we
can separate the radial part of the wave function from its angular dependence. The
wave function of the relative motion is described in terms of plane waves as

e{kr D hrjki D 4�
X
lm

{ ljl.kr/Y�
lm.
Ok/Ylm.Or/;

where jl is a spherical Bessel function and Ylm the spherical harmonic. This partial
wave basis is useful for defining the operator for the nucleon-nucleon interaction,
which is symmetric with respect to rotations, parity and isospin transformations.
These symmetries imply that the interaction is diagonal with respect to the quantum
numbers of total angular momentum J, spin S and isospin T. Using the above plane
wave expansion, and coupling to final J, S and T we get

hk0jVjki D .4�/2
X
JM

X
lm

X
l0m0

{ lCl0 Y�

lm.
Ok/Yl0m0. Ok0/C l0SJ

m0MSMC lSJ
mMSMhk0l0STJMjVjklSTJMi;

where we have defined

hk0l0STJMjVjklSTJMi D
Z

jl0.k
0r0/hl0STJMjV.r0; r/jlSTJMijl.kr/r02dr0r2dr:

We have omitted the momentum of the center-of-mass motion K and the corre-
sponding orbital momentum L, since the interaction is diagonal in these variables.

The interaction we will use for these calculations is a semirealistic nucleon-
nucleon potential known as the Minnesota potential [57] which has the form,
V˛ .r/ D V˛ exp .�˛r2/. The spin and isospin dependence of the Minnesota
potential is given by,

V .r/ D 1

2

�
VR C 1

2



1C P�12

�
VT C 1

2



1 � P�12

�
VS

� 

1� P�12P

�
12

�
;

where P�12 D 1
2
.1C �1 � �2/ and P�12 D 1

2
.1C �1 � �2/ are the spin and isospin

exchange operators, respectively. A Fourier transform to momentum space of the
radial part V˛ .r/ is rather simple, see Problem 8.5, since the radial depends only
on the magnitude of the relative distance and thereby the relative momentum q D
1
2



kp � kq � kr C ks

�
. Omitting spin and isospin dependencies, the momentum
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Table 8.2 Parameters used
to define the Minnesota
interaction model [57]

˛ V˛ in MeV �˛ in fm�2

R 200 1.487

T 178 0.639

S 91.85 0.465

space version of the interaction reads

hkpkqjV˛jkrksi D V˛
L3

��
˛

�3=2
exp .

�q2

4˛
/ıkpCkq;krCks

The various parameters defining the interaction model used in this work are listed
in Table 8.2.

8.2.4 Models from Effective Field Theory for the Two- and
Three-Nucleon Interactions

During the past two decades it has been demonstrated that chiral effective field
theory represents a powerful tool to deal with hadronic interactions at low energy in
a systematic and model-independent way (see [14–16, 18, 58–62]). Effective field
theories (EFTs) are defined in terms of effective Lagrangians which are given by
an infinite series of terms with increasing number of derivatives and/or nucleon
fields, with the dependence of each term on the pion field prescribed by the rules
of broken chiral symmetry. Applying this Lagrangian to a particular process, an
unlimited number of Feynman graphs can be drawn. Therefore, a scheme is needed
that makes the theory manageable and calculable. This scheme which tells us
how to distinguish between large (important) and small (unimportant) contributions
is chiral perturbation theory (ChPT). Chiral perturbation theory allows for an
expansion in terms of .Q=��/

� , where Q is generic for an external momentum
(nucleon three-momentum or pion four-momentum) or a pion mass, and �� �
1GeV is the chiral symmetry breaking scale. Determining the power � has become
known as power counting.

Nuclear potentials are defined as sets of irreducible graphs up to a given order.
The power � of a few-nucleon diagram involving A nucleons is given in terms of
naive dimensional analysis by:

� D �2C 2A� 2CC 2LC
X

i

�i ; (8.3)
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Fig. 8.1 Nuclear forces in ChPT up to NNLO. Solid lines represent nucleons and dashed lines
pions. Small dots, large solid dots, and solid squares denote vertices of index �i D 0, 1, and 2,
respectively

with

�i � di C ni

2
� 2 ;

where A labels the number of nucleons, C denotes the number of separately
connected pieces and L the number of loops in the diagram; di is the number of
derivatives or pion-mass insertions and ni the number of nucleon fields (nucleon
legs) involved in vertex i; the sum runs over all vertices contained in the diagram
under consideration. Note that �i 
 0 for all interactions allowed by chiral
symmetry. In this work we will focus on the simple Minnesota model discussed
above. It is however possible, see also the exercises, to include two- and three-
nucleon forces at order NNLO, as indicated in Fig. 8.1.

Below we revisit briefly the formalism and results presented in [62]. For further
details on chiral effective field theory and nuclear interactions, see for example [15,
16, 18, 61, 62] For an irreducible NN diagram (“two-nucleon potential”, A D 2,
C D 1), Eq. (8.3) collapses to

� D 2LC
X

i

�i :

Thus, in terms of naive dimensional analysis or “Weinberg counting” [58], the
various orders of the irreducible graphs which define the chiral NN potential are
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given by (see Fig. 8.1)

VLO D V.0/
ct C V.0/

1�

VNLO D VLO C V.2/
ct C V.2/

1� C V.2/
2�

VNNLO D VNLO C V.3/
1� C V.3/

2�

where the superscript denotes the order � of the low-momentum expansion, LO
stands for leading order, NLO for next-to-leading order and NNLO stands for
next-to-next-to leading order. Contact potentials carry the subscript “ct” and pion-
exchange potentials can be identified by an obvious subscript.

The charge-independent one-pion-exchange (1PE) potential reads

V1�.k 0;k/ D � g2A
4f 2�

�1 � �2 � 1 � q � 2 � q
q2 C m2

�

; (8.4)

where k 0 and k represent the final and initial nucleon momenta in the center-of-
mass system (CMS) and q � k 0 � k is the momentum transfer; � 1;2 and �1;2 are
the spin and isospin operators of nucleon 1 and 2; gA, f� , and m� denote axial-
vector coupling constant, the pion decay constant, and the pion mass, respectively.
Since higher order corrections contribute only to mass and coupling constant
renormalizations and since, on shell, there are no relativistic corrections, the on-
shell 1PE has the form of Eq. (8.4) to all orders.

It is well known that for high-precision NN potentials, charge dependence is
important. To take into account the charge dependence of the 1PE contribution we
define a pion-mass dependent 1PE by

V1�.m�/ � � g2A
4f 2�

� 1 � q � 2 � q
q2 C m2

�

:

The 1PE for proton-proton (pp) and neutron-neutron (nn) terms are then given by

V.pp/
1� .k

0;k/ D V.nn/
1� .k

0;k/ D V1�.m�0/ ;

while for the neutron-proton (np) part we have

V.np/
1� .k

0;k/ D �V1�.m�0/C .�1/TC1 2V1�.m�˙/ ;

where T denotes the isospin of the two-nucleon system. The pion masses are defined
as m�0 D 134:9766MeV and m�˙ D 139:5702MeV. For the leading-order, next-
to-leading order and NNLO, we refer the reader to [15, 62]. The final interaction at
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order NNLO is multiplied with the following factors [15],

bV.k 0;k/ � 1

.2�/3

s
MN

Ep0

V.p 0;p/
s

MN

Ep

with Ep D
q

M2
N C p2 and where the factor 1=.2�/3 is just added for convenience.

The potential bV satisfies the nonrelativistic Lippmann-Schwinger (LS) equation,
see [15] for discussions,

bT.k 0;k/ D bV.k 0;k/C
Z

d3p00 bV.k 0;k 00/
MN

k2 � k002 C i�
bT.k 00;k/ :

In pp scattering, we use MN D Mp D 938:2720MeV, and in nn scattering, MN D
Mn D 939:5653MeV. Moreover, the on-shell momentum is simply

p2 D 1

2
MNTlab ;

where Tlab denotes the kinetic energy of the incident nucleon in the laboratory
system (“Lab. Energy”). For np scattering, we have the relations

MN D 2MpMn

Mp CMn
D 938:9182MeV, and

p2 D M2
pTlab.Tlab C 2Mn/

.Mp CMn/2 C 2TlabMp
;

which are based upon relativistic kinematics.
Iteration of OV in the Lippman-Schwinger equation discussed above, requires

cutting OV off for high momenta to avoid infinities. This is consistent with the
fact that ChPT is a low-momentum expansion which is valid only for momenta
Q � �� � 1GeV. Therefore, the potential OV is multiplied with the regulator
function f .k0; k/,

OV.k 0;k/ 7�! OV.k 0;k/ f .k0; k/

with

f .p0; p/ D expŒ�.p0=�/2n � .p=�/2n
;

as a possible example.
Up to NNLO in chiral perturbation theory there are, in addition to the two-body

interaction diagrams discussed above, also a few three-body interaction diagrams,
see Fig. 8.1. In chiral perturbation theory, the orders are generated systematically,
and at a given chiral order the number of Feynman diagrams is finite. Consistency
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requires that a calculation includes all diagrams which are present at the chosen
order. There are in total five contact terms that determine the strength of the
NNLO three-nucleon force (3NF); c1; c3; and c4 are associated with the three-body
two-pion-exchange (2PE) diagram, cD and cE determine the strength of the one-
pion-exchange plus contact (1PE) diagram and the pure contact (CNT) diagram,
respectively. References [16, 63] give an extensive discussions of these terms.

8.3 Hartree-Fock Theory

Hartree-Fock (HF) theory is an algorithm for finding an approximative expression
for the ground state of a given Hamiltonian. The basic ingredients contain a single-
particle basis f ˛g defined by the solution of the following eigenvalue problem

OhHF ˛ D "˛ ˛;

with the Hartree-Fock Hamiltonian defined as

OhHF D OtC Ouext C OuHF:

The term OuHF is a single-particle potential to be determined by the HF algorithm.
The HF algorithm means to select OuHF in order to have

h OHi D EHF D h˚HF
0 j OHj˚HF

0 i;

as a local minimum with a Slater determinant ˚HF
0 being the ansatz for the ground

state. The variational principle ensures that EHF 
 E0, with E0 representing the
exact ground state energy.

We will show that the Hartree-Fock Hamiltonian OhHF equals our definition of the
operator Of discussed in connection with the new definition of the normal-ordered
Hamiltonian, that is we have, for a specific matrix element

h pjOhHFjqi D h pj Of jqi D h pjOtC Ouextjqi C
X
i�F

h pij OVjqii;

meaning that

h pjOuHFjqi D
X
i�F

h pij OVjqii:

The so-called Hartree-Fock potential OuHF adds an explicit medium dependence due
to the summation over all single-particle states below the Fermi level F. It brings
also in an explicit dependence on the two-body interaction (in nuclear physics we
can also have complicated three- or higher-body forces). The two-body interaction,
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with its contribution from the other bystanding fermions, creates an effective mean
field in which a given fermion moves, in addition to the external potential Ouext which
confines the motion of the fermion. For systems like nuclei or infinite nuclear matter,
there is no external confining potential. Nuclei and nuclear matter are examples of
self-bound systems, where the binding arises due to the intrinsic nature of the strong
force. For nuclear systems thus, there would be no external one-body potential in
the Hartree-Fock Hamiltonian.

Another possibility is to expand the single-particle functions in a known basis
and vary the coefficients, that is, the new single-particle wave function is written as
a linear expansion in terms of a fixed chosen orthogonal basis (for example the well-
known harmonic oscillator functions or the hydrogen-like functions etc). We define
our new Hartree-Fock single-particle basis by performing a unitary transformation
on our previous basis (labelled with Greek indices) as

 HF
p D

X
�

Cp��: (8.5)

In this case we vary the coefficients Cp�. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis � is orthogonal. A
unitary transformation keeps the orthogonality, as discussed in Problem 8.6 below.

It is normal to choose a single-particle basis defined as the eigenfunctions of
parts of the full Hamiltonian. The typical situation consists of the solutions of the
one-body part of the Hamiltonian, that is we have

Oh0� D ���:

For infinite nuclear matter Oh0 is given by the kinetic energy operator and the states
are given by plane wave functions. Due to the translational invariance of the two-
body interaction, the Hartree-Fock single-particle eigenstates are also given by the
same functions. For infinite matter thus, it is only the single-particle energies that
change when we solve the Hartree-Fock equations.

The single-particle wave functions �.r/, defined by the quantum numbers � and
r are defined as the overlap

�.r/ D hrj�i:

In our discussions we will use our definitions of single-particle states above and
below the Fermi (F).

We use Greek letters to refer to our original single-particle basis. The expectation
value for the energy with the ansatz ˚0 for the ground state reads (see Problem 8.7,
with application to infinite nuclear matter)

EŒ˚0
 D
X
��F

h�jhj�i C 1

2

X
�;��F

h��j Ovj��i:
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Now we are interested in defining a new basis defined in terms of a chosen basis as
defined in Eq. (8.5). We define the energy functional as

EŒ˚HF
 D
X
i�F

hijhjii C 1

2

X
ij�F

hijj Ovjiji; (8.6)

where ˚HF is the new Slater determinant defined by the new basis of Eq. (8.5).
Using Eq. (8.5) we can rewrite Eq. (8.6) as

EŒ� 
 D
X
i�F

X
˛ˇ

C�
i˛Ciˇh˛jhjˇi C 1

2

X
ij�F

X
˛ˇ	ı

C�
i˛C�

jˇCi	Cjıh˛ˇj Ovj	ıi: (8.7)

In order to find the variational minimum of the above functional, we introduce
a set of Lagrange multipliers, noting that since hijji D ıi;j and h˛jˇi D ı˛;ˇ , the
coefficients Ci	 obey the relation

hijji D ıi;j D
X
˛ˇ

C�
i˛Ciˇh˛jˇi D

X
˛

C�
i˛Ci˛;

which allows us to define a functional to be minimized that reads

FŒ˚HF
 D EŒ˚HF 
 �
X
i�F

�i

X
˛

C�
i˛Ci˛: (8.8)

Minimizing with respect to C�
i˛ (the equations for C�

i˛ and Ci˛ can be written as
two independent equations) we obtain

d

dC�
i˛

2
4EŒ˚HF
 �

X
j

�j

X
˛

C�
j˛Cj˛

3
5 D 0;

which yields for every single-particle state i and index ˛ (recalling that the
coefficients Ci˛ are matrix elements of a unitary matrix, or orthogonal for a real
symmetric matrix) the following Hartree-Fock equations

X
ˇ

Ciˇh˛jhjˇi C
X
j�F

X
ˇ	ı

C�
jˇCjıCi	 h˛ˇj Ovj	ıi D �HF

i Ci˛:

We can rewrite this equation as (changing dummy variables)

X
ˇ

8<
:h˛jhjˇi C

X
j�F

X
	ı

C�
j	Cjıh˛	 j Ovjˇıi

9=
;Ciˇ D �HF

i Ci˛:
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Note that the sums over Greek indices run over the number of basis set functions (in
principle an infinite number).

Defining

hHF
˛ˇ D h˛jhjˇi C

X
j�F

X
	ı

C�
j	Cjıh˛	 j Ovjˇıi;

we can rewrite the new equations as

X
ˇ

hHF
˛ˇ Ciˇ D �HF

i Ci˛: (8.9)

The latter is nothing but a standard eigenvalue problem. Our Hartree-Fock matrix is
thus

OhHF
˛ˇ D h˛jOh0jˇi C

X
j�F

X
	ı

C�
j	Cjıh˛	 j Ovjˇıi:

The Hartree-Fock equations are solved in an iterative way starting with a guess for
the coefficients Cj	 D ıj;	 and solving the equations by diagonalization till the new
single-particle energies �HF

i do not change anymore by a user defined small quantity.
Normally we assume that the single-particle basis jˇi forms an eigenbasis for the

operator Oh0, meaning that the Hartree-Fock matrix becomes

OhHF
˛ˇ D �˛ı˛;ˇ C

X
j�F

X
	ı

C�
j	Cjıh˛	 j Ovjˇıi:

8.3.1 Hartree-Fock Algorithm with Simple Python Code

The equations are often rewritten in terms of a so-called density matrix, which is
defined as

�	ı D
X
i�F

h	 jiihijıi D
NX

iD1
Ci	C�

iı: (8.10)

It means that we can rewrite the Hartree-Fock Hamiltonian as

OhHF
˛ˇ D �˛ı˛;ˇ C

X
	ı

�	ıh˛	 jVjˇıi:

It is convenient to use the density matrix since we can precalculate in every iteration
the product of the eigenvector components C.
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The Hartree-Fock equations are, in their simplest form, solved in an iterative way,
starting with a guess for the coefficients Ci˛ . We label the coefficients as C.n/

i˛ , where
the superscript n stands for iteration n. To set up the algorithm we can proceed as
follows.

1. We start with a guess C.0/
i˛ D ıi;˛ . Alternatively, we could have used

random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight. We
construct then the density matrix and the Hartree-Fock Hamiltonian.

2. The Hartree-Fock matrix simplifies then to

OhHF
˛ˇ .0/ D �˛ı˛;ˇ C

X
	ı

�
.0/

	ı h˛	 jVjˇıi:

Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors
C.1/

i˛ and eigenvalues �HF
i .1/.

3. With the new eigenvectors we can set up a new Hartree-Fock potential

X
	ı

�
.1/

	ı h˛	 jVjˇıi:

The diagonalization with the new Hartree-Fock potential yields new
eigenvectors and eigenvalues.

4. This process is continued till a user defined test is satisfied. As an example,
we can require that

P
p j�.n/i � �.n�1/

i j
m

	 �;

where � is a small number defined by the user (� � 10�8 or smaller) and
p runs over all calculated single-particle energies and m is the number of
single-particle states.

The following simple Python program implements the above algorithm using
the density matrix formalism outlined above. We have omitted the functions that set
up the single-particle basis and the anti-symmetrized two-body interaction matrix
elements. These have to be provided, see https://github.com/ManyBodyPhysics/
LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python for full
code and matrix elements.

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python
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# We skip here functions that set up the one- and two-body parts
of the Hamiltonian

# These functions need to be defined by the user. The two-body
interaction below is

# calculated by calling the function TwoBodyInteraction(alpha,
gamma,beta,delta)

# Similarly, the one-body part is computed by the function
singleparticleH(alpha)

# We have omitted specific quantum number tests as well (isospin
conservation,

# momentum conservation etc)
import numpy as np
from decimal import Decimal

if __name__ == '__main__':

""" Star HF-iterations, preparing variables and density matrix
"""

""" Coefficients for setting up density matrix, assuming
only one along the diagonals """

C = np.eye(spOrbitals) # HF coefficients
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):

sum += C[gamma][i]*C[delta][i]
DensityMatrix[gamma][delta] = Decimal(sum)

maxHFiter = 100
epsilon = 1.0e-5
difference = 1.0

hf_count = 0
oldenergies = np.zeros(spOrbitals)
newenergies = np.zeros(spOrbitals)
while hf_count < maxHFiter and difference > epsilon:

HFmatrix = np.zeros([spOrbitals,spOrbitals])
for alpha in range(spOrbitals):
for beta in range(spOrbitals):

""" Setting up the Fock matrix using the
density matrix and antisymmetrized two-
body interaction """

sumFockTerm = 0.0
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
sumFockTerm += DensityMatrix[gamma][

delta]*
TwoBodyInteraction(alpha,

gamma,beta,delta)
HFmatrix[alpha][beta] = Decimal(sumFockTerm

)
""" Adding the one-body term """
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if beta == alpha: HFmatrix[alpha][alpha] +=
singleparticleH(alpha)

spenergies, C = np.linalg.eigh(HFmatrix)
""" Setting up new density matrix """
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):

for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):

sum += C[gamma][i]*C[delta][i]
DensityMatrix[gamma][delta] = Decimal(sum)

newenergies = spenergies
""" Brute force computation of difference between

previous and new sp HF energies """
sum =0.0
for i in range(spOrbitals):

sum += (abs(newenergies[i]-oldenergies[i]))/
spOrbitals

difference = sum
oldenergies = newenergies
print "Single-particle energies, ordering may have

changed "
for i in range(spOrbitals):

print('{0:4d} {1:.4f}'.format(i, Decimal(
oldenergies[i])))

hf_count += 1

We end this section by rewriting the ground state energy by adding and
subtracting OuHF. Using anti-symmetrized two-body matrix elements we have

EHF
0 D h˚0j OHj˚0i D

AX
i�F

hijOh0 C OuHFjii C 1

2

AX
i�F

AX
j�F

hijj Ovjiji �
AX

i�F

hijOuHFjii;

which results in

EHF
0 D

AX
i�F

"HF
i C

1

2

AX
i�F

AX
j�F

hijj Ovjiji �
AX

i�F

hijOuHFjii:

Our single-particle states ijk : : : are now single-particle states obtained from the
solution of the Hartree-Fock equations.

Using our definition of the Hartree-Fock single-particle energies we obtain then
the following expression for the total ground-state energy

EHF
0 D

AX
i�F

"i � 1
2

AX
i�F

AX
j�F

hijj Ovjiji:
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This equation demonstrates that the total energy is not given as the sum of the
individual single-particle energies.

8.4 Full Configuration Interaction Theory

Full configuration theory (FCI), which represents a discretized variant of the
continuous eigenvalue problem, allows for, in principle, an exact (to numerical
precision) solution of Schrödinger’s equation for many interacting fermions or
bosons with a given basis set. This basis set defines an effective Hilbert space.
For fermionic problems, the standard approach is to define an upper limit for the
set of single-particle states. As an example, if we use the harmonic oscillator one-
body Hamiltonian to generate an orthogonal single-particle basis, truncating the
basis at some oscillator excitation energy provides thereby an upper limit. Similarly,
truncating the maximum values of nx;y;z for plane wave states with periodic boundary
conditions, yields a similar upper limit. Table 8.1 lists several possible truncations
to the basis set in terms of the single-particle energies as functions of nx;y;z. This
single-particle basis is then used to define all possible Slater determinants which
can be constructed with a given number of fermions A. The total number of Slater
determinants determines thereafter the dimensionality of the Hamiltonian matrix
and thereby an effective Hilbert space. If we are able to set up the Hamiltonian
matrix and solve the pertinent eigenvalue problem within this basis set, FCI provides
numerically exact solutions to all states of interest for a given many-body problem.
The dimensionality of the problem explodes however quickly. To see this it suffices
to consider the total number of Slater determinants which can be built with say N
neutrons distributed among n single-particle states. The total number is

�
n
N

�
D nŠ

.n � N/ŠNŠ
:

As an example, for a model space which comprises the first four major harmonic
oscillator shells only, that is the 0s, 0p, 1s0d and 1p0f shells we have 40 single
particle states for neutrons and protons. For the eight neutrons of oxygen-16 we
would then have

�
40

8

�
D 40Š

.32/Š8Š
� 8 � 107;

possible Slater determinants. Multiplying this with the number of proton Slater
determinants we end up with approximately d � 1015 possible Slater determinants
and a Hamiltonian matrix of dimension 1015 � 1015, an intractable problem if we
wish to diagonalize the Hamiltonian matrix. The dimensionality can be reduced if
we look at specific symmetries, however these symmetries will never reduce the
problem to dimensionalities which can be handled by standard eigenvalue solvers.
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These are normally lumped into two main categories, direct solvers for matrices
of dimensionalities which are smaller than d � 105, and iterative eigenvalue
solvers (when only selected states are being sought after) for dimensionalities up
to 1010 � 1010.

Due to its discreteness thus, the effective Hilbert space will always represent an
approximation to the full continuous problem. However, with a given Hamiltonian
matrix and effective Hilbert space, FCI provides us with true benchmarks that
can convey important information on correlations beyond Hartree-Fock theory and
various approximative many-body methods like many-body perturbation theory,
coupled cluster theory, Green’s function theory and the Similarity Renormalization
Group approach. These methods are all discussed in this text. Assuming that we
can diagonalize the Hamiltonian matrix, and thereby obtain the exact solutions,
this section serves the aim to link the exact solution obtained from FCI with
various approximative methods, hoping thereby that eventual differences can shed
light on which correlations play a major role and should be included in the above
approximative methods. The simple pairing model discussed in Problem 8.10 is an
example of a system that allows us to compare exact solutions with those defined by
many-body perturbation theory to a given order in the interaction, coupled cluster
theory, Green’s function theory and the Similarity Renormalization Group (SRG).

In order to familiarize the reader with these approximative many-body methods,
we start with the general definition of the full configuration interaction problem.

We have defined the ansatz for the ground state as

j˚0i D
 Y

i�F

Oa�i
!
j0i;

where the variable i defines different single-particle states up to the Fermi level. We
have assumed that we have A nucleons and that the chosen single-particle states are
eigenstates of the one-body Hamiltonian Oh0 (defining thereby an orthogonal basis
set). A given one-particle-one-hole (1p1h) state can be written as

j˚a
i i D Oa�a Oaij˚0i;

while a 2p2h state can be written as

j˚ab
ij i D Oa�a Oa�b Oaj Oaij˚0i;

and a general ApAh state as

j˚abc:::
ijk::: i D Oa�a Oa�b Oa�c : : : Oak Oaj Oaij˚0i:

As before, we use letters ijkl : : : for states below the Fermi level and abcd : : :
for states above the Fermi level. A general single-particle state is given by letters
pqrs : : : .
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We can then expand our exact state function for the ground state as

j�0i D C0j˚0i C
X

ai

Ca
i j˚a

i i C
X
abij

Cab
ij j˚ab

ij i C � � � D .C0 C OC/j˚0i;

where we have introduced the so-called correlation operator

OC D
X

ai

Ca
i Oa�a Oai C

X
abij

Cab
ij Oa�a Oa�b Oaj Oai C : : :

Since the normalization of �0 is at our disposal and since C0 is by assumption not
zero, we may arbitrarily set C0 D 1 with corresponding proportional changes in all
other coefficients. Using this so-called intermediate normalization we have

h�0j˚0i D h˚0j˚0i D 1;

resulting in

j�0i D .1C OC/j˚0i:

We rewrite

j�0i D C0j˚0i C
X

ai

Ca
i j˚a

i i C
X
abij

Cab
ij j˚ab

ij i C : : : ;

in a more compact form as

j�0i D
X
PH

CP
H˚

P
H D

 X
PH

CP
H
OAP

H

!
j˚0i;

where H stands for 0; 1; : : : ; n hole states and P for 0; 1; : : : ; n particle states. The
operator OAP

H represents a given set of particle-hole excitations. For a two-particle-
to-hole excitation this operator is given by OA2p

2h D Oa�a Oa�b Oaj Oai. Our requirement of unit
normalization gives

h�0j�0i D
X
PH

jCP
Hj2 D 1;

and the energy can be written as

E D h�0j OHj�0i D
X

PP0HH0

C�P
H h˚P

Hj OHj˚P0

H0iCP0

H0 :
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The last equation is normally solved by diagonalization, with the Hamiltonian
matrix defined by the basis of all possible Slater determinants. A diagonalization
is equivalent to finding the variational minimum of

h�0j OHj�0i � �h�0j�0i;

where � is a variational multiplier to be identified with the energy of the system.
The minimization process results in

0 Dı
h
h�0j OHj�0i � �h�0j�0i

i
(8.11)

DX
P0H0

n
ıŒC�P

H 
h˚P
H j OHj˚P0

H0 iCP0

H0 C C�P
H h˚P

Hj OHj˚P0

H0 iıŒCP0

H0 
� �.ıŒC�P
H 
CP0

H0 C C�P
H ıŒCP0

H0 

o
:

(8.12)

Since the coefficients ıŒC�P
H 
 and ıŒCP0

H0 
 are complex conjugates it is necessary and
sufficient to require the quantities that multiply with ıŒC�P

H 
 to vanish.
This leads to

X
P0H0

h˚P
Hj OHj˚P0

H0iCP0

H0 � �CP
H D 0;

for all sets of P and H.
If we then multiply by the corresponding C�P

H and sum over PH we obtain

X
PP0HH0

C�P
H h˚P

Hj OHj˚P0

H0iCP0

H0 � �
X
PH

jCP
Hj2 D 0;

leading to the identification � D E. This means that we have for all PH sets

X
P0H0

h˚P
Hj OH � Ej˚P0

H0i D 0: (8.13)

An alternative way to derive the last equation is to start from

. OH � E/j�0i D . OH � E/
X
P0H0

CP0

H0 j˚P0

H0i D 0;

and if this equation is successively projected against all ˚P
H in the expansion of � ,

we end up with Eq. (8.13).
If we are able to solve this equation by numerical diagonalization in a large

Hilbert space (it will be truncated in terms of the number of single-particle states
included in the definition of Slater determinants), it can then serve as a benchmark
for other many-body methods which approximate the correlation operator OC. Our
pairing model discussed in Problem 8.10 is an example of a system which can
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be diagonalized exactly, providing thereby benchmarks for different approximative
methods.

To better understand the meaning of possible configurations and the derivation
of a Hamiltonian matrix, we consider here a simple example of six fermions. We
assume we can make an ansatz for the ground state with all six fermions below the
Fermi level. We label this state as a zero-particle-zero-hole state 0p � 0h. With six
nucleons we can make at most 6p � 6h excitations. If we have an infinity of single
particle states above the Fermi level, we will obviously have an infinity of say 2p�2h
excitations. Each specific way to distribute the particles represents a configuration.
We will always have to truncate the basis of single-particle states. This gives us a
finite number of possible Slater determinants. Our Hamiltonian matrix would then
look like (where each block which is marked with an x can contain a large quantity of
non-zero matrix elements) as shown here if the Hamiltonian contains at most a two-

0p � 0h 1p � 1h 2p � 2h 3p � 3h 4p � 4h 5p � 5h 6p � 6h

0p � 0h x x x 0 0 0 0

1p � 1h x x x x 0 0 0

2p � 2h x x x x x 0 0

3p � 3h 0 x x x x x 0

4p � 4h 0 0 x x x x x

5p � 5h 0 0 0 x x x x

6p � 6h 0 0 0 0 x x x

body interaction, as demonstrated in Problem 8.8. If we use a so-called canonical
Hartree-Fock basis [35], this corresponds to a particular unitary transformation
where matrix elements of the type h0p� 0hj OHj1p� 1hi D h˚0j OHj˚a

i i D 0. With a
canonical Hartree-Fock basis our Hamiltonian matrix reads

0p � 0h 1p � 1h 2p � 2h 3p � 3h 4p � 4h 5p � 5h 6p � 6h

0p � 0h Qx 0 Qx 0 0 0 0

1p � 1h 0 Qx Qx Qx 0 0 0

2p � 2h Qx Qx Qx Qx Qx 0 0

3p � 3h 0 Qx Qx Qx Qx Qx 0

4p � 4h 0 0 Qx Qx Qx Qx Qx
5p � 5h 0 0 0 Qx Qx Qx Qx
6p � 6h 0 0 0 0 Qx Qx Qx

If we do not make any truncations in the possible sets of Slater determinants
(many-body states) we can make by distributing A nucleons among n single-
particle states, we call such a calculation for a full configuration interaction (FCI)
approach. If we make truncations, we have several different possibilities to reduce
the dimensionality of the problem. A well-known example is the standard nuclear
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shell-model. For the nuclear shell model we define an effective Hilbert space with
respect to a given core. The calculations are normally then performed for all many-
body states that can be constructed from the effective Hilbert spaces. This approach
requires a properly defined effective Hamiltonian. Another possibility to constrain
the dimensionality of the problem is to truncate in the number of excitations. As
an example, we can limit the possible Slater determinants to only 1p � 1h and
2p � 2h excitations. This is called a configuration interaction calculation at the
level of singles and doubles excitations. If we truncate at the level of three-particle-
three-hole excitations we end up with singles, doubles and triples excitations.
Such truncations reduce considerably the size of the Hamiltonian matrices to be
diagonalized, but can lead to so-called unlinked contributions, and thereby wrong
results, for a given expectation value [34]. A third possibility is to constrain the
number of excitations by an energy cutoff. This cutoff defines a maximum excitation
energy. The maximum excitation energy is normally given by the sum of single-
particle energies defined by the unperturbed one-body part of the Hamiltonian. A
commonly used basis in nuclear physics is the harmonic oscillator. The cutoff in
energy is then defined by the maximum number of harmonic oscillator excitations.
If we do not define a core, this defines normally what is called the no-core shell-
model approach, see for example [25, 64].

8.4.1 A Non-practical Way of Solving the Eigenvalue Problem

For reasons to come (links with coupled cluster theory and many-body perturbation
theory), we will rewrite Eq. (8.13) as a set of coupled non-linear equations in terms
of the unknown coefficients CP

H . To obtain the eigenstates and eigenvalues in terms
of non-linear equations is less efficient than using standard eigenvalue solvers [65].
However, this digression serves the scope of linking full configuration interaction
theory with approximative solutions to the many-body problem.

To see this, we look at the contributions arising from

h˚P
Hj D h˚0j

in Eq. (8.13), that is we multiply with h˚0j from the left in

. OH � E/
X
P0H0

CP0

H0 j˚P0

H0i D 0:

If we assume that we have a two-body operator at most, the Slater-Condon rule for
a two-body interaction, see Problem 8.8, results in an expression for the correlation
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energy in terms of Ca
i and Cab

ij only, namely

h˚0j OH � Ej˚0i C
X

ai

h˚0j OH � Ej˚a
i iCa

i C
X
abij

h˚0j OH � Ej˚ab
ij iCab

ij D 0;

or

E � ERef D �E D
X

ai

h˚0j OHj˚a
i iCa

i C
X
abij

h˚0j OHj˚ab
ij iCab

ij ;

where the energy ERef is the reference energy and �E defines the so-called
correlation energy. The single-particle basis functions could result from a Hartree-
Fock calculation or they could be the eigenstates of the one-body operator that
defined the non-interacting part of the Hamiltonian.

In our Hartree-Fock discussions, we have already computed the matrix
h˚0j OHj˚a

i i and h˚0j OHj˚ab
ij i. If we are using a Hartree-Fock basis we have

h˚0j OHj˚a
i i D 0 and we are left with a correlation energy given by

E � ERef D �EHF D
X
abij

h˚0j OHj˚ab
ij iCab

ij :

Inserting the various matrix elements we can rewrite the previous equation as

�E D
X

ai

hij Of jaiCa
i C

X
abij

hijj OvjabiCab
ij : (8.14)

This equation determines the correlation energy but not the coefficients C. We need
more equations. Our next step is to set up

h˚a
i j OH � Ej˚0i C

X
bj

h˚a
i j OH � Ej˚b

j iCb
j C

X
bcjk

h˚a
i j OH � Ej˚bc

jk iCbc
jk

C
X
bcdjkl

h˚a
i j OH � Ej˚bcd

jkl iCbcd
jkl D 0;

as this equation will allow us to find an expression for the coefficients Ca
i through

hijOf jai C h˚a
i j OHj˚a

i iCa
i C

X
bj¤ai

h˚a
i j OHj˚b

j iCb
j C

X
bcjk

h˚a
i j OHj˚bc

jk iCbc
jk

C
X
bcdjkl

h˚a
i j OHj˚bcd

jkl iCbcd
jkl D ECa

i : (8.15)

We see that on the right-hand side we have the energy E. This leads to a non-
linear equation in the unknown coefficients since the coefficients appear also in
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the definition of the correlation energy of Eq. (8.14). These equations are normally
solved iteratively, that is we start with a guess for the coefficients Ca

i . A common
choice is to use perturbation theory as a starting point for the unknown coefficients.
For the one-particle-one-hole coefficients, the wave operator (see Sect. 8.5) to first
order in the interaction is given by

Ca
i D
hij Of jai
�i � �a

:

The observant reader will however see that we need an equation for Cbc
jk and Cbcd

jkl
and more complicated particle-hole excitations as well. To find the equations for
these coefficients we need then to continue our multiplications from the left with
the various ˚P

H terms.
For Cbc

jk we have

0 D h˚ab
ij j OH � Ej˚0i C

X
kc

h˚ab
ij j OH � Ej˚ c

k iCc
k (8.16)

C
X
cdkl

h˚ab
ij j OH � Ej˚ cd

kl iCcd
kl C

X
cdeklm

h˚ab
ij j OH � Ej˚ cde

klmiCcde
klm

C
X

cdefklmn

h˚ab
ij j OH � Ej˚ cdef

klmniCcdef
klmn: (8.17)

We can isolate the coefficients Ccd
kl in a similar way as we did for the coefficients

Ca
i . A standard choice for the first iteration is to use again perturbation theory to first

order in the interaction and set

Cab
ij D

hijj Ovjabi
�i C �j � �a � �b

:

At the end we can rewrite our solution of the Schrödinger equation in terms of a
series coupled equations for the coefficients CP

H . This is a very cumbersome way
of solving a many-body problem. However, by using this iterative scheme we can
illustrate how we can compute the various terms in the wave operator or correlation
operator OC. We will later identify the calculation of the various terms CP

H as parts of
different many-body approximations to full configuration interaction theory.

8.4.2 Short Summary

If we can directly diagonalize large matrices, full configuration interaction theory
is the method of choice since we obtain all eigenvectors and eigenvalues. The
eigenvectors are obtained directly from the coefficients CP

H which result from the
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diagonalization. We can then compute expectation values of other operators, as
well as transition probabilities. Moreover, correlations are easy to understand in
terms of contributions to a given operator beyond the Hartree-Fock contribution. For
larger dimensionalities d, with d > 105, iterative methods [65] like Lanczos’ [66]
or Davidson’s [67, 68] algorithms are frequently used. These methods yield, with
a finite number of iteration, only a subset of all eigenvalues of interest. Lanczos’
algorithm converges to the extreme values, yielding the lowest-lying and highest-
lying eigenstates, see for example [65] for a proof.

With the eigenvectors we can compute the correlation energy, which is defined
as (with a two-body Hamiltonian)

�E D
X

ai

hij Of jaiCa
i C

X
abij

hijj OvjabiCab
ij :

The energy of the ground state is then

E D ERef C�E:

However, as we have seen, even for a small case like the four first major shells and
oxygen-16 with 16 active nucleons, the dimensionality becomes quickly intractable.
If we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods that
sum specific correlations to infinite order. All these methods start normally with a
Hartree-Fock basis as the calculational basis. In the next section we discuss one of
these possible approximative methods, namely many-body perturbation theory.

8.5 Many-Body Perturbation Theory

We assume here that we are only interested in the non-degenerate ground state of
a given system and expand the exact wave function in terms of a series of Slater
determinants

j�0i D j˚0i C
1X

mD1
Cmj˚mi;

where we have assumed that the true ground state is dominated by the solution of
the unperturbed problem, that is

OH0j˚0i D W0j˚0i:

The state j�0i is not normalized and we employ again intermediate normalization
via h˚0j�0i D 1.
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The Schrödinger equation is given by

OHj�0i D Ej�0i;

and multiplying the latter from the left with h˚0j gives

h˚0j OHj�0i D Eh˚0j�0i D E;

and subtracting from this equation

h�0j OH0j˚0i D W0h�0j˚0i D W0;

and using the fact that the operators OH and OH0 are hermitian results in

�E D E �W0 D h˚0j OHIj�0i; (8.18)

which is an exact result. This resembles our previous definition of the correlation
energy except that the reference energy is now defined by the unperturbed energy
W0. The reader should contrast this equation to our previous definition of the
correlation energy

�E D
X

ai

hij Of jaiCa
i C

X
abij

hijj OvjabiCab
ij ;

and the total energy

E D ERef C�E;

where the reference energy is given by

ERef D h˚0j OHj˚0i:

Equation (8.18) forms the starting point for all perturbative derivations. However,
as it stands it represents nothing but a mere formal rewriting of Schrödinger’s
equation and is not of much practical use. The exact wave function j�0i is unknown.
In order to obtain a perturbative expansion, we need to expand the exact wave
function in terms of the interaction OHI .

Here we have assumed that our model space defined by the operator OP is one-
dimensional, meaning that

OP D j˚0ih˚0j;
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and

OQ D
1X

mD1
j˚mih˚mj:

We can thus rewrite the exact wave function as

j�0i D . OPC OQ/j�0i D j˚0i C OQj�0i:

Going back to the Schrödinger equation, we can rewrite it as, adding and a
subtracting a term !j�0i as

�
! � OH0

�
j�0i D

�
! � EC OHI

�
j�0i;

where ! is an energy variable to be specified later.

We assume also that the resolvent of
�
! � OH0

�
exits, that is it has an inverse

which defines the unperturbed Green’s function as

�
! � OH0

��1 D 1�
! � OH0

� :

We can rewrite Schrödinger’s equation as

j�0i D 1

! � OH0

�
! � EC OHI

�
j�0i;

and multiplying from the left with OQ results in

OQj�0i D
OQ

! � OH0

�
! � EC OHI

�
j�0i;

which is possible since we have defined the operator OQ in terms of the eigenfunctions
of OH0.

Since these operators commute we have

OQ 1�
! � OH0

� OQ D OQ 1�
! � OH0

� D OQ�
! � OH0

� :

With these definitions we can in turn define the wave function as

j�0i D j˚0i C
OQ

! � OH0

�
! � EC OHI

�
j�0i:
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This equation is again nothing but a formal rewrite of Schrödinger’s equation and
does not represent a practical calculational scheme. It is a non-linear equation in
two unknown quantities, the energy E and the exact wave function j�0i. We can
however start with a guess for j�0i on the right hand side of the last equation.

The most common choice is to start with the function which is expected to exhibit
the largest overlap with the wave function we are searching after, namely j˚0i.
This can again be inserted in the solution for j�0i in an iterative fashion and if
we continue along these lines we end up with

j�0i D
1X

iD0

( OQ
! � OH0

�
! � EC OHI

�) i

j˚0i;

for the wave function and

�E D
1X

iD0
h˚0j OHI

( OQ
! � OH0

�
! � EC OHI

�) i

j˚0i;

which is now a perturbative expansion of the exact energy in terms of the interaction
OHI and the unperturbed wave function j�0i.

In our equations for j�0i and �E in terms of the unperturbed solutions j˚ii we
have still an undetermined parameter ! and a dependency on the exact energy E.
Not much has been gained thus from a practical computational point of view.

In Brilluoin-Wigner perturbation theory [35] it is customary to set ! D E. This
results in the following perturbative expansion for the energy�E

�E D
1X

iD0
h˚0j OHI

( OQ
! � OH0

�
! � EC OHI

�) i

j˚0i (8.19)

D h˚0j
 
OHI C OHI

OQ
E � OH0

OHI C OHI

OQ
E � OH0

OHI

OQ
E � OH0

OHI C : : :
!
j˚0i:

(8.20)

This expression depends however on the exact energy E and is again not very
convenient from a practical point of view. It can obviously be solved iteratively, by
starting with a guess for E and then solve till some kind of self-consistency criterion
has been reached.

Defining e D E � OH0 and recalling that OH0 commutes with OQ by construction
and that OQ is an idempotent operator OQ2 D OQ, we can rewrite the denominator in
the above expansion for�E as

OQ 1

Oe � OQ OHI OQ
D OQ

�
1

Oe C
1

Oe
OQ OHI OQ1Oe C

1

Oe
OQ OHI OQ1Oe

OQ OHI OQ1Oe C : : :

OQ:
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Inserted in the expression for�E we obtain

�E D h˚0j OHI C OHI OQ 1

E � OH0 � OQ OHI OQ
OQ OHIj˚0i:

In Rayleigh-Schrödinger (RS) perturbation theory [35] we set ! D W0 and obtain
the following expression for the energy difference

�E D
1X

iD0

h˚0j OHI

( OQ
W0 � OH0

� OHI ��E
�) i

j˚0i (8.21)

h˚0j
 

OHIC OHI
OQ

W0 � OH0

. OHI ��E/C OHI
OQ

W0 � OH0

. OHI ��E/
OQ

W0 � OH0

. OHI ��E/C : : :

!
j˚0i:

(8.22)

The operator OQ commutes with OH0 and since �E is a constant we obtain that

OQ�Ej˚0i D OQ�Ej OQ˚0i D 0:

Inserting this result in the expression for the energy gives us

�E D h˚0j
 
OHI C OHI

OQ
W0 � OH0

OHI C OHI

OQ
W0 � OH0

. OHI ��E/
OQ

W0 � OH0

OHI C : : :
!
j˚0i:

We can now perturbatively expand this expression in terms of the interaction OHI ,
which is assumed to be small. We obtain then

�E D
1X

iD1
�E.i/;

with the following expression for�E.i/

�E.1/ D h˚0j OHIj˚0i;

which is just the contribution to first order in perturbation theory,

�E.2/ D h˚0j OHI

OQ
W0 � OH0

OHI j˚0i;
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Fig. 8.2 Linked anti-symmetrized Goldstone diagrams which enter the definition of the ground-
state correlation energy �E0 to third order in the interaction. We have not included the first-order
contribution

which is the contribution to second order and

�E.3/ D h˚0j OHI

OQ
W0 � OH0

OHI

OQ
W0 � OH0

OHI˚0i

� h˚0j OHI

OQ
W0 � OH0

h˚0j OHI j˚0i
OQ

W0 � OH0

OHI j˚0i;

being the third-order contribution. There exists a formal theory for the calculation of
�E0, see for example [35]. According to the well-known Goldstone linked-diagram
theory, the energy shift�E0 is given exactly by the diagrammatic expansion shown
in Fig. 8.2, where ground state diagrams to third order are listed. This theory is a
linked-cluster perturbation expansion for the ground state energy of a many-body
system, and applies equally well to both nuclear matter and closed-shell nuclei
such as the doubly magic nucleus 40Ca. We assume the reader is familiar with
the standard rules for deriving and setting up the analytical expressions for various
Feymann-Goldstone diagrams [35]. In an infinite system like nuclear matter or the
homogenous electron gas, all diagrams with so-called Hartree-Fock insertions like
diagrams (2), (6), (7), (10–16) are zero due to lack of momentum conservation. They
would also be zero in case a canonical [35] Hartree-Fock basis is employed.
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Using the above standard diagram rules, the various diagrams contained in
Fig. 8.2 can be readily calculated (in an uncoupled scheme). Diagram (1) results in

.1/ D 1

22

X
ij�F

X
ab>F

hijj Ovjabihabj Ovjiji
"i C "j � "a � "b

; (8.23)

while diagram (2) is zero due to lack of momentum conservation. We have two
factors of 1=2 since there are two equivalent pairs of fermions (two particle states
and two hole states) starting at the same vertex and ending at the same vertex. The
expression for diagram (3) is

.3/ D
X

ijk�kF

X
abc>F

hijj Ovjabihbkj Ovjicihacj Ovjiki
."i C "j � "a � "b/."i C "k � "a � "c/

: (8.24)

Diagrams (4) and (5) read

.4/ D 1

23

X
ij�F

X
abcd>F

hijj Ovjcdihcdj Ovjabihabj Ovjiji
."i C "j � "c � "d/."i C "j � "a � "b/

; (8.25)

.5/ D 1

23

X
ijkl�F

X
ab>F

habj Ovjklihklj Ovjijihijj Ovjabi
."i C "j � "a � "b/."k C "l � "a � "b/

; (8.26)

where the factor .1=2/3 arises due to three equivalent pairs of lines starting and
ending at the same vertex. The last two contributions have an even number of hole
lines and closed loops, resulting thus in a positive sign. In Problem 8.9, you are
asked to calculate the expressions for diagrams like (8) and (9) in the above figure.

In the expressions for the various diagrams the quantity " denotes the single-
particle energies defined by H0. The steps leading to the above expressions for the
various diagrams are rather straightforward. Though, if we wish to compute the
matrix elements for the interaction Ov, a serious problem arises. Typically, the matrix
elements will contain a term V.jrj/ which represents the interaction potential V
between two nucleons, where r is the internucleon distance. All modern models
for V have a strong short-range repulsive core. Hence, matrix elements involving
V.jrj/, will result in large (or infinitely large for a potential with a hard core) and
repulsive contributions to the ground-state energy. A perturbative expansion in terms
of such interaction matrix elements may thus lead to a slowly converging expansion.
A standard recipe to circumvent such problems has been to sum up a selected class
of correlations. We discuss such possibilities in Sect. 8.6.
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8.5.1 Interpreting the Correlation Energy and the Wave
Operator

In Sect. 8.4 we showed that we could rewrite the exact state function for the ground
state as a linear expansion in terms of all possible Slater determinants. We expanded
our exact state function for the ground state as

j�0i D C0j˚0i C
X

ai

Ca
i j˚a

i i C
X
abij

Cab
ij j˚ab

ij i C � � � D .C0 C OC/j˚0i;

where we introduced the so-called correlation operator

OC D
X

ai

Ca
i Oa�a Oai C

X
abij

Cab
ij Oa�a Oa�b Oaj Oai C : : :

In a shell-model calculation, the unknown coefficients in OC are the eigenvectors that
result from the diagonalization of the Hamiltonian matrix.

How can we use perturbation theory to determine the same coefficients? Let us
study the contributions to second order in the interaction, namely

�E.2/ D h˚0j OHI

OQ
W0 � OH0

OHI j˚0i:

This contribution will also be discussed in connection with the development of
a many-body program for nuclear matter, as well as the simple pairing model of
Problem 8.10. The intermediate states given by OQ can at most be of a 2p�2h nature
if we have a two-body Hamiltonian. This means that to second order in perturbation
theory we can at most have 1p � 1h and 2p � 2h excitations as intermediate states.
When we diagonalize, these contributions are included to infinite order. This means
that in order to include such correlations to higher order in the interaction, we need
to go to higher-orders in perturbation theory.

If we limit the attention to a Hartree-Fock basis, we have that h˚0j OHIj2p� 2hi is
the only contribution since matrix elements involving h˚0j OHIj1p � 1hi are zero
and the contribution to the energy from second order in Rayleigh-Schrödinger
perturbation theory reduces to

�E.2/ D 1

4

X
abij

hijj Ovjabi habj Ovjiji
�i C �j � �a � �b

:

Here we have used the results from Problem 8.8. If we compare this to the correla-
tion energy obtained from full configuration interaction theory with a Hartree-Fock
basis, we found that

E � ERef D �E D
X
abij

hijj OvjabiCab
ij ;
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where the energy ERef is the reference energy and �E defines the so-called
correlation energy.

We see that if we set

Cab
ij D

1

4

habj Ovjiji
�i C �j � �a � �b

;

we have a perfect agreement between configuration interaction theory and many-
body perturbation theory. However, configuration interaction theory includes 2p�2h
(and more complicated ones as well) correlations to infinite order. In order to
make a meaningful comparison we would at least need to sum such correlations
to infinite order in perturbation theory. The last equation serves however as a
very useful comparison between configuration interaction theory and many-body
perturbation theory. Furthermore, for our nuclear matter studies, one-particle-
one-hole intermediate excitations are zero due to the requirement of momentum
conservation in infinite systems. These two-particle-two-hole correlations can also
be summed to infinite order and a particular class of such excitations are given by
two-particle excitations only. These represent in case of nuclear interactions, which
are strongly repulsive at short interparticle distances, a physically intuitive way
to understand the renormalization of nuclear forces. Such correlations are easily
computed by simple matrix inversion techniques and have been widely employed
in nuclear many-body theory. Summing up two-particle excitations to infinite order
leads to an effective two-body interaction which renormalizes the short-range part
of the nuclear interactions.

In summary, many-body perturbation theory introduces order-by-order spe-
cific correlations and we can make comparisons with exact calculations like
those provided by configuration interaction theory. The advantage of for example
Rayleigh-Schrödinger perturbation theory is that at every order in the interaction,
we know how to calculate all contributions. The two-body matrix elements can for
example be tabulated or computed on the fly. However, many-body perturbation
theory suffers from not being variational and there is no guarantee that higher-order
terms will improve the order-by-order convergence. It is also extremely tedious
to compute terms beyond third order, in particular if one is interested in effective
valence space interactions. There are however classes of correlations which can be
summed up to infinite order in the interaction. The hope is that such correlations can
mitigate specific convergence issues, although there is no a priori guarantee thereof.
Examples are the so-called TDA and RPA classes of diagrams [52–54], as well
as the resummation of two-particle-two-hole correlations discussed in Chap. 11.
If we limit ourselves to the resummation of two-particle correlations only, these
lead us to the so-called G-matrix resummation of diagrams, see for example [28].
There are however computationally inexpensive methods which sum larger classes
of correlations to infinite order in the interaction. This leads us to Sect. 8.6 and the
final many-body method of this chapter, coupled cluster theory.
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8.6 Coupled Cluster Theory

Coester and Kümmel [69–71] developed the ideas that led to coupled cluster theory
in the late 1950s. The correlated wave function of a many-body system j � i can
be formulated as an exponential of correlation operators T acting on a reference
state j ˚i,

j � i D exp
� OT� j ˚i:

We will discuss how to define the operators later in this work. This simple ansatz
carries enormous power. It leads to a non-perturbative many-body theory that
includes summation of ladder diagrams [30], ring diagrams [72], and an infinite-
order generalization of many-body perturbation theory [73]. Developments and
applications of coupled cluster theory took different routes in chemistry and nuclear
physics. In quantum chemistry, coupled cluster developments and applications have
proven to be extremely useful, see for example the review by Barrett and Musial as
well as the recent textbook by Shavitt and Bartlett [35]. Many previous applications
to nuclear physics struggled with the repulsive character of the nuclear forces and
limited basis sets used in the computations [71]. Most of these problems have
been overcome during the last decade and coupled cluster theory is one of the
computational methods of preference for doing nuclear physics, with applications
ranging from light nuclei to medium-heavy nuclei, see for example the recent
reviews [17, 19, 23, 38].

8.6.1 A Quick Tour of Coupled Cluster Theory

The ansatz for the ground state is given by

j�0i D j�CCi D e OT j˚0i D
 

AX
nD1

1

nŠ
OTn

!
j˚0i;

where A represents the maximum number of particle-hole excitations and OT is the
cluster operator defined as

OT D OT1 C OT2 C : : :C OTA

OTn D
�
1

nŠ

�2 X
i1;i2;:::in

a1;a2;:::an

ta1a2:::an
i1i2:::in

a�a1a
�
a2 : : : a

�
an

ain : : : ai2ai1 :
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The energy is given by

ECC D h˚0jHj˚0i;
where H is a similarity transformed Hamiltonian

H D e� OT OHNe OT

OHN D OH � h˚0j OHj˚0i:

The coupled cluster energy is a function of the unknown cluster amplitudes
ta1a2:::an
i1i2:::in

, given by the solutions to the amplitude equations

0 D h˚a1:::an
i1:::in
jHj˚0i: (8.27)

In order to set up the above equations, the similarity transformed Hamiltonian H is
expanded using the Baker-Campbell-Hausdorff expression,

H D OHN C
h OHN ; OT

i
C 1

2

hh OHN ; OT
i
; OT
i
C : : :C 1

nŠ

h
: : :
h OHN ; OT

i
; : : : OT

i
C : : :

(8.28)

and simplified using the connected cluster theorem [35]

H D OHN C
� OHN OT

�
c
C 1

2

� OHN OT2
�

c
C � � � C 1

nŠ

� OHN OTn
�

c
C : : :

We will discuss parts of the derivation below. For the full derivation of these
expressions, see for example [35].

A much used approximation is to truncate the cluster operator OT at the n D
2 level. This defines the so-called singles and doubles approximation to the
coupled cluster state function, normally shortened to CCSD. The coupled cluster
wavefunction is now given by

j�CCi D e OT1C OT2 j˚0i

where

OT1 D
X

ia

ta
i a�aai

OT2 D 1

4

X
ijab

tab
ij a�aa�bajai:

The amplitudes t play a role similar to the coefficients C in the shell-model
calculations. They are obtained by solving a set of non-linear equations similar
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to those discussed above in connection with the configuration interaction theory
discussion, see Eqs. (8.15) and (8.16).

In our configuration interaction theory discussion the correlation energy is
defined as (with a two-body Hamiltonian)

�E D
X

ai

hij Of jaiCa
i C

X
abij

hijj OvjabiCab
ij :

We can obtain a similar expression for the correlation energy using coupled cluster
theory. Using Eq. (8.28) we can write the expression for the coupled cluster ground
state energy as an infinite sum over nested commutators

ECC D h˚0j
� OHN C

h OHN ; OT
i
C 1

2

hh OHN ; OT
i
; OT
i

C 1

3Š

hhh OHN ; OT
i
; OT
i
; OT
i

C 1

4Š

hhhh OHN ; OT
i
; OT
i
; OT
i
; OT
i
C : : :

�
j˚0i :

One can show that this infinite series truncates naturally at a given order of nested
commutators [35]. Let us demonstrate briefly how we can construct the expressions
for the correlation energy by approximating OT at the CCSD level, that is OT � OT1 COT2. The first term is zero by construction

h˚0j OHN j˚0i D 0:

The second term can be split into the following contributions

h˚0j
h OHN ; OT

i
j˚0i D h˚0j

� h OFN ; OT1
i
C
h OFN ; OT2

i
C
h OVN ; OT1

i
C
h OVN ; OT2

i �
j˚0i :

Let us start with
h OFN ; OT1

i
, where the one-body operator OFN is defined in Eq. (8.2).

In the equations below we employ the shorthand f p
q D h pj Of jqi. We write out the

commutator as
h OFN ; OT1

i
D
X
pqia



f p
q

˚
a�paq

�
ta
i

˚
a�aai

�� ta
i

˚
a�aai

�
f p
q

˚
a�paq

��

D
X
pqia

f p
q ta

i


˚
a�paq

� ˚
a�aai

� � ˚a�aai
� ˚

a�paq
��
:

We have kept here the curly brackets that indicate that the chains of operators are
normal ordered with respect to the new reference state. If we consider the second
set of operators and rewrite them with curly brackets (bringing back the normal
ordering) we have
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˚
a�aai

� ˚
a�paq

� D ˚a�aaia
�
paq
� D ˚a�paqa�aai

�
˚
a�paq

� ˚
a�aai

� D ˚a�paqa�aai
�

C
n
a�paqa�aai

o
C
n
a�paqa�aai

o

C
�

a�paqa�aai

�

D ˚a�paqa�aai
�C ıqa

˚
a�pai

�C ıpi
˚
aqa�a

�C ıqaıpi:

We can then rewrite the two sets of operators as

˚
a�paq

� ˚
a�aai

� � ˚a�aai
� ˚

a�paq
� D ıqa

˚
a�pai

�C ıpi
˚
aqa�a

�C ıqaıpi:

Inserted into the original expression, we arrive at the explicit value of the
commutator

h OFN ; OT1
i
D
X
pai

f p
a ta

i

˚
a�pai

�CX
qai

f i
qta

i

˚
aqa�a

�CX
ai

f i
ata

i :

We are now ready to compute the expectation value with respect to our reference
state. Since the two first terms require the ground state linking to a one-particle-one-
hole state, the first two terms are zero and we are left with

h˚0j
h OFN ; OT1

i
j˚0i D

X
ai

f i
ata

i : (8.29)

The two first terms will however contribute to the calculation of the Hamiltonian
matrix element which connects the ground state and a one-particle-one-hole excita-
tion.

Let us next look at the term
h OFN ; OT2

i
. We have

h OFN ; OT2
i
D
2
4X

pq

f p
q

˚
a�paq

�
;
1

4

X
ijab

tab
ij

n
a�aa�bajai

o35

D 1

4

X
pq

ijab

f p
q tab

ij

�˚
a�paq

� n
a�aa�bajai

o
�
n
a�aa�bajai

o ˚
a�paq

��
:

The last set of operators can be rewritten as

n
a�aa�bajai

o ˚
a�paq

� D na�aa�bajaia
�
paq

o
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D
n
a�paqa�aa�bajai

o

˚
a�paq

� n
a�aa�bajai

o
D
n
a�paqa�aa�bajai

o
C
n
a�paqa�aa�bajai

o
C
n
a�paqa�aa�bajai

o

C
n
a�paqa�aa�bajai

o
C
n
a�paqa�aa�bajai

o
C
�

a�paqa�aa�bajai

�

C
�

a�paqa�aa�bajai

�
C
�

a�paqa�aa�bajai

�
C
�

a�paqa�aa�bajai

�

D
n
a�paqa�aa�bajai

o
� ıpj

n
aqa�aa�bai

o
C ıpi

n
aqa�aa�baj

o

C ıqa

n
a�pa�bajai

o
� ıqb

˚
a�pa�aajai

� � ıpjıqa

n
a�bai

o

C ıpiıqa

n
a�baj

o
C ıpjıqb

˚
a�aai

� � ıpiıqb
˚
a�aaj

�
:

We can then rewrite the two sets of operators as

� ˚
a�paq

� n
a�aa�bajai

o
�
n
a�aa�bajai

o ˚
a�paq

� �

D �ıpj

n
aqa�aa�bai

o
C ıpi

n
aqa�aa�baj

o
C ıqa

n
a�pa�bajai

o

� ıqb
˚
a�pa�aajai

� � ıpjıqa

n
a�bai

o
C ıpiıqa

n
a�baj

o
C ıpjıqb

˚
a�aai

�

� ıpiıqb
˚
a�aaj

�
;

which, when inserted into the original expression gives us

h OFN ; OT2
i
D 1

4

X
pq

abij

f p
q tab

ij

�
� ıpj

n
aqa�aa�bai

o
C ıpi

n
aqa�aa�baj

o

C ıqa

n
a�pa�bajai

o
� ıqb

˚
a�pa�aajai

� � ıpjıqa

n
a�bai

o

C ıpiıqa

n
a�baj

o
C ıpjıqb

˚
a�aai

� � ıpiıqb
˚
a�aaj

� �
:
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After renaming indices and changing the order of operators, we arrive at the explicit
expression

h OFN ; OT2
i
D 1

2

X
qijab

f i
qtab

ij

n
aqa�aa�baj

o
C 1

2

X
pijab

f p
a tab

ij

n
a�pa�bajai

o
C
X
ijab

f i
atab

ij

n
a�baj

o
:

In this case we have two sets of two-particle-two-hole operators and one-particle-
one-hole operators and all these terms result in zero expectation values. However,
these terms are important for the amplitude equations. In a similar way we can
compute the terms involving the interaction OVN . We obtain then

h˚0j
h OVN ; OT1

i
j˚0i D h˚0j

"
1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�
;
X

ia

ta
i

˚
a�aai

�# j˚0i

D 1

4

X
pqr
sia

h pqj jrsi ta
i h˚0j

�˚
a�pa�qasar

�
;
˚
a�aai

�	 j˚0i

D 0;

and

h˚0j
h OVN ; OT2

i
j˚0i

D h˚0j
2
41
4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�
;
1

4

X
ijab

tab
ij

n
a�aa�bajai

o35 j˚0i

D 1

16

X
pqr

sijab

h pqj Ov jrsi tab
ij h˚0j

h˚
a�pa�qasar

�
;
n
a�aa�bajai

oi
j˚0i

D 1

16

X
pqr

sijab

h pqj Ov jrsi tab
ij h˚0j

� �
a�pa�qasara

�
aa�bajai

�
C
�

a�pa�qasara
�
aa�bajai

�

�
a�pa�qasara

�
aa�bajai

�
C
�

a�pa�qasara
�
aa�bajai

� �
j˚0i

D 1

4

X
ijab

hijj Ov jabi tab
ij :
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The final contribution to the correlation energy comes from the non-linear terms
with the amplitudes squared. The contribution from OT2 is given by

h˚0j 1
2

� OVN OT21
�
j˚0i

D 1

8

X
pqrs

X
ijab

h pqj Ov jrsi ta
i tb

j h˚0j
�˚

a�pa�qasar
� ˚

a�aai
� n

a�baj

o�
c
j˚0i

D 1

8

X
pqrs

X
ijab

h pqj Ov jrsi ta
i tb

j h˚0j

� �
a�pa�qasara

�
aaia

�
baj

�
C
�

a�pa�qasara
�
aaia

�
baj

�
C
�

a�pa�qasara
�
aaia

�
baj

�

C
�

a�pa�qasara
�
aaia

�
baj

� �
j˚0i

D 1

2

X
ijab

hijj Ov jabi ta
i tb

j :

Collecting all terms we have the final expression for the correlation energy with a
two-body interaction given by

�E D
X

ai

hij Of jaita
i C

1

2

X
ijab

hijj Ov jabi ta
i tb

j C
1

4

X
ijab

hijj Ovjabitab
ij : (8.30)

We leave it as a challenge to the reader to derive the corresponding equations for the
Hamiltonian matrix elements of Eq. (8.27).

There are several interesting features with the coupled cluster equations. With a
truncation like CCSD or even with the inclusion of triples (CCSDT), we can include
to infinite order correlations based on one-particle-one-hole and two-particle-two-
hole contributions. We can include a large basis of single-particle states, normally
not possible in standard FCI calculations. Typical FCI calculations for light nuclei
A 	 16 can be performed in at most some few harmonic oscillator shells.
For heavier nuclei, at most two major shells can be included due to too large
dimensionalities. However, coupled cluster theory is non-variational and if we want
to find properties of excited states, additional calculations via for example equation
of motion methods are needed [17, 35]. If correlations are strong, a single-reference
ansatz may not be the best starting point and a multi-reference approximation is
needed [74]. Furthermore, we cannot quantify properly the error we make when
truncations are made in the cluster operator.
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8.6.2 The CCD Approximation

We will now approximate the cluster operator OT to include only 2p�2h correlations.
This leads to the so-called CCD approximation, that is

OT � OT2 D 1

4

X
abij

tab
ij a�aa�bajai;

meaning that we have

j�0i � j�CCDi D exp
� OT2

�
j˚0i:

Inserting these equations in the expression for the computation of the energy we
have, with a Hamiltonian defined with respect to a general reference vacuum

OH D OHN C Eref;

with

OHN D
X
pq

h pjOf jqia�paq C 1

4

X
pqrs

h pqj Ovjrsia�pa�qasar;

we obtain that the energy can be written as

h˚0j exp
�
� OT2

� OHN exp
� OT2

�
j˚0i D h˚0j OHN.1C OT2/j˚0i D ECCD:

This quantity becomes

ECCD D Eref C 1

4

X
abij

hijj Ovjabitab
ij ;

where the latter is the correlation energy from this level of approximation of coupled
cluster theory. Similarly, the expression for the amplitudes reads (see Problem 8.13)

h˚ab
ij j exp

�
� OT2

� OHN exp
� OT2

�
j˚0i D 0:
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These equations can be reduced to (after several applications of Wick’s theorem),
for all i > j and all a > b,

0 D habj Ovjiji C 
�a C �b � �i � �j
�

tab
ij C

1

2

X
cd

habj Ovjcditcd
ij C

1

2

X
kl

hklj Ovjijitab
kl

C OP.ijjab/
X

kc

hkbj Ovjcjitac
ik C

1

4

X
klcd

hklj Ovjcditcd
ij tab

kl C OP.ij/
X
klcd

hklj Ovjcditac
ik tbd

jl

� 1
2
OP.ij/

X
klcd

hklj Ovjcditdc
ik tab

lj �
1

2
OP.ab/

X
klcd

hklj Ovjcditac
lk tdb

ij ; (8.31)

where we have defined

OP .ab/ D 1 � OPab;

where OPab interchanges two particles occupying the quantum numbers a and b. The
operator OP.ijjab/ is defined as

OP.ijjab/ D .1 � OPij/.1 � OPab/:

The single-particle energies �p are normally taken to be Hartree-Fock single-particle
energies. Recall also that the unknown amplitudes tab

ij represent anti-symmetrized
matrix elements, meaning that they obey the same symmetry relations as the two-
body interaction, that is

tab
ij D �tab

ji D �tba
ij D tba

ji :

The two-body matrix elements are also anti-symmetrized, meaning that

habj Ovjiji D �habj Ovjjii D �hbaj Ovjiji D hbaj Ovjjii:

The non-linear equations for the unknown amplitudes tab
ij are solved iteratively. We

discuss the implementation of these equations below.

8.6.3 Approximations to the Full CCD Equations

It is useful to make approximations to the equations for the amplitudes. These
serve as important benchmarks when we are to develop a many-body code. The
standard method for solving these equations is to set up an iterative scheme where
method’s like Newton’s method or similar root searching methods are used to find
the amplitudes, see for example [75].
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Iterative solvers need a guess for the amplitudes. A good starting point is to use
the correlated wave operator from perturbation theory to first order in the interaction.
This means that we define the zeroth approximation to the amplitudes as

.tab
ij /

.0/ D habj Ovjiji

�i C �j � �a � �b

� ;

leading to our first approximation for the correlation energy at the CCD level to be
equal to second-order perturbation theory without 1p� 1h excitations, namely

�E.0/CCD D
1

4

X
abij

hijj Ovjabi.tab
ij /

.0/ D 1

4

X
abij

hijj Ovjabihabj Ovjiji

�i C �j � �a � �b

� :

With this starting point, we are now ready to solve Eq. (8.31) iteratively. Before
we attack the full equations, it is however instructive to study a truncated version of
the equations. We will first study the following approximation where we take away
all terms except the linear terms that involve the single-particle energies and the
two-particle intermediate excitations, that is

0 D habj Ovjiji C 
�a C �b � �i � �j
�

tab
ij C

1

2

X
cd

habj Ovjcditcd
ij : (8.32)

In the above and following equations we have dropped the subscript which indicates
the number of iterations. Setting the single-particle energies for the hole states equal
to an energy variable ! D �i C �j, Eq. (8.32) reduces to the well-known equations
for the so-called G-matrix, widely used in infinite matter and finite nuclei studies,
see for example [8, 28]. The equation can then be reordered and solved by matrix
inversion. To see this let us define the following quantity

�ab
ij D .! � �a � �b/ tab

ij ;

and inserting

1 D .! � �c � �d/

.! � �c � �d/
;

in the intermediate sums over cd in Eq. (8.32), we can rewrite the latter equation as

�ab
ij .!/ D habj Ovjiji C 1

2

X
cd

habj Ovjcdi 1

! � �c � �d
� cd

ij .!/;

where we have inserted an explicit energy dependence via the parameter !. This
equation, transforming a two-particle configuration into a single index, can be
rewritten as a matrix inversion problem. Alternatively, the same equation can
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be solved by iteration. Solving the equations for a fixed energy ! allows us to
compare directly with results from Green’s function theory when only two-particle
intermediate states are included.

To solve Eq. (8.32), we start with a guess for the unknown amplitudes, normally
using the wave operator defined by first order in perturbation theory, leading to
a zeroth-order approximation for the correlation energy given by second-order
perturbation theory. A simple approach to the solution of Eq. (8.32), is thus to

1. Start with a guess for the amplitudes and compute the zeroth approximation to
the correlation energy.

2. Use the ansatz for the amplitudes to solve Eq. (8.32) via for example your root-
finding method of choice (Newton’s method or modifications thereof can be
used) and continue these iterations till the correlation energy does not change
more than a prefixed quantity �; �E.i/CCD ��E.i�1/CCD 	 �.

3. It is common during the iterations to scale the amplitudes with a parameter ˛,
with ˛ 2 .0; 1
 as t.i/ D ˛t.i/ C .1 � ˛/t.i�1/.

The next approximation is to include the two-hole term in Eq. (8.31), a term which
allows us to make a link with Green’s function theory with two-particle and two-
hole correlations discussed in Chap. 11. This means that we solve

0 D habj Ovjiji C 
�a C �b � �i � �j
�

tab
ij C

1

2

X
cd

habj Ovjcditcd
ij C

1

2

X
kl

hklj Ovjijitab
kl :

(8.33)

This equation is solved the same way as we would do for Eq. (8.32). The final step
is then to include all terms in Eq. (8.31).

8.7 Developing a Numerical Project

A successful numerical project relies on us having expertise in several scientific and
engineering disciplines. We need a thorough understanding of the relevant scientific
domain to ask the right questions and interpret the results, but the tools we use
require a proficiency in mathematics to develop models and work out analytical
results, in numerics to choose the correct algorithms, in computer science to
understand what can go wrong with our algorithms when the problem is discretized
and solved on a digital computer, and in software engineering to develop and
maintain a computer program that solves our problem.

Independent of your scientific background, you are probably also educated
in mathematics and numerics. Unfortunately, the computer science and software
engineering aspects of computing are often neglected and thought of as skills
you pick up along the way. This is a problem for many reasons. First, running
a numerical project is very similar to running a physical experiment. The codes
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we develop are the blueprints the compiler uses to build the experiment from the
components of the computer. It is unthinkable to publish results from a physical
experiment without a thorough understanding of the experimental equipment.
Second, the blueprints are not only used to tell the compiler what to build, but
also by humans to understand what is being built, how to fix it if something goes
wrong, and how to improve it. If the blueprints are not properly written and readable,
human understanding is lost. Last, components of an experiment are always tested
individually to establish tolerances and that they work according to specification. In
software engineering, this corresponds to writing testable code where you can be
confident of the quality of each piece. These are skills many writers of scientific
software never learn and as a consequence many numerical experiments are not
properly understood and are never independently verified.

In this section we will focus on some key tools and strategies that we feel are
important for developing and running a numerical experiment. Our main concerns
are that our results can be validated, independently verified, and run efficiently.
In addition, we will discuss tools that make the whole process somewhat easier.
We will cover testing, tracking changes with version control software, public code
repositories, and touch upon simple profiling tools to guide the optimization process.
Finally we will present a numerical project where we have developed a code to
calculate properties of nuclear matter using coupled-cluster theory. Here, we will
make extensive use of the simple pairing model of Problem 8.10. This model allows
for benchmarks against exact results. In addition, it provides analytical answers to
several approximations, from perturbation theory to specific terms in the solution
of the coupled cluster equations, the in-medium similarity renormalization group
approach of Chap. 10 and the Green’s function approach of Chap. 11.

8.7.1 Validation and Verification

The single most important thing in a numerical experiment is to get the correct
answer. A close second is to be confident that the answer is correct and why. A
lucky coincidence must be distinguishable from a consistently correct result. The
only way to do this is to validate the code by writing and running tests—lots of
tests. Ideally, every aspect of a code should be tested and it should be possible to
run the tests automatically. As most of you have probably experienced, it’s very easy
to introduce errors into a project. And very often, symptoms of the errors are not
visible where the errors have been introduced. By having a large set of automated
tests and running them often, symptoms of errors can be discovered quickly and the
errors tracked down while recent changes are fresh in memory.

As scientists we are trained to validate our methods and findings. By applying the
same rigorous process to our software, we can achieve the same level of confidence
in our code as we have for the rest of our work. We advocate testing at three distinct
levels. Let’s start with discussing validation tests, as this is the type of test you
are probably most familiar with. In a validation test, your application is run as in
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production mode and the test fails if it cannot reproduce a known result. The known
result could be a published benchmark, a simplified model where analytical results
are available, an approximate result from a different method, or even an earlier result
from the same code. We will discuss this type of testing further in Sect. 8.7.4.

Analogous to testing individual components in a physical experiment, is a type
of test called a unit test. This is a very fine-grained test that will typically only
test a class or a procedure, or even a small part of your code at a time. This is
where you test that a data structure has been correctly filled, that an algorithm
works appropriately, that a file has been read correctly, and basically every other
component test you can think of. It does take a little more work to setup as testing
needs to be done outside of your normal program flow. Typically this involves
writing different executables that create the necessary dependencies before testing a
component. The advantages of writing unit tests are many. First, because you know
that the individual pieces of your code work independently, you will achieve a higher
degree of confidence in your results. Second, you will develop a programming style
that favors highly decoupled units because such units are easier to test. This allows
talking about the code at a higher level of abstraction, which helps understanding.
Last, your tests become the documentation of how your code is supposed to be used.
This might not seem important while your are actively working on a project, but it
will be invaluable down the line when you want to add new features. Also, when
you share your code as part of the scientific process, these tests will be the way your
peers will start to understand your work. This means that your final production code
will also include various tests.

While validation tests test your code at the coarsest level, and unit tests test your
code at the finest level, integration tests test how your components work together. If,
for example, your program solves differential equations as parts of a larger problem,
the components that make up your differential-equation solver can be tested alone.
If your solver can solve a set of representative problems that either have analytical
solutions or can be worked out using some other tool, you can be more confident that
it will work on your specific problem. Moreover, writing integration tests pushes you
to develop more general components. Instead of writing a routine that only solves
the differential equations you need, you write a solver that can solve many different
types of differential equations. This allows your components to be reused in other
projects and by other people.

To many, this rigorous approach to testing software might seem like a waste of
time. Our view is that testing software is crucial to the scientific process and we
should strive to apply the same level of rigour to our software as we do to every
other aspect of our work. On a more pragmatic level, you can either spend your
time writing tests and make sure your components work, or you can spend your time
debugging when something goes wrong and worry that your results are not valid.
We definitely prefer, from own and other people’s experience, the first approach.
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8.7.2 Tracking Changes

If you’re not using a tool to track the changes you make to your code, now is the time
to start. There are several tools available, but the authors are using git (https://git-
scm.com/), an open-source version-control system that can run on Linux, OSX, and
Windows. By tracking changes, it is easier to correct a mistake when it inevitably
creeps into the code. It is possible to go back to a previously validated version and
by using branches, you can work on different versions of the code simultaneously.
For example, you can create a production branch where everything is validated and
ready to run, and you can create a development branch to implement new features.
There are also code repositories where you can store a copy of your code for free,
without worrying about things getting lost. The source codes discussed in this book
are hosted on for example GitHub (https://github.com/), which uses git to track all
changes to the code. By using a service like this, it is easier to synchronize code
between multiple machines. Multiple developers can work on the same code at the
same time and share changes without worrying about losing contributions. It can
also become the official public repository of your software to enable your peers
to verify your work. The software discussed in this chapter is available from our
GitHub repository https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/
master/Programs/Chapter8-programs/.

8.7.3 Profile-Guided Optimization

The aim of this subsection is to discuss in more detail how we can make the
computations discussed in connection with Eqs. (8.52) and (8.53) more efficient
using physical constraints, algorithm improvements, and parallel processing.
For pedagogical reasons, we will use the MBPT parts of the program due to
their simplicity while still containing the important elements of a larger, more
complicated CCD calculation. The codes can be found at the github link https://
github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter
8-programs/cpp/MBPT/src. We will demonstrate the use of a simple profiler to help
guide our development efforts. Our starting points are naive implementations of
many-body perturbation theory to second (MBPT2) and third order (MBPT3) in the
interaction. For reference, we calculate properties of nuclear matter and construct
our Hamiltonian in a free-wave basis using the Minnesota [57] potential discussed
in Sect. 8.2.3. As the model is not as important as the performance in this section,
we postpone a discussion of the model to Sect. 8.7.4.

https://git-scm.com/
https://git-scm.com/
https://github.com/
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT/src
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT/src
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT/src
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Code Listing 8.1 Trivial implementation of a MBPT2 diagram

1 double energy = 0.0;
2 for(int i = 0; i < modelspace.indhol; ++i){
3 for(int j = 0; j < modelspace.indhol; ++j){
4 if(i == j){ continue; }
5 for(int a = modelspace.indhol; a < modelspace.indtot; ++a){
6 for(int b = modelspace.indhol; b < modelspace.indtot; ++b)

{
7 if(a == b){ continue; }
8 energy0 = potential->get_element(modelspace.qnums, i, j,

a, b);
9 energy0 *= energy0;

10 energy0 /= (modelspace.qnums[i].energy + modelspace.
qnums[j].energy -

11 modelspace.qnums[a].energy - modelspace.
qnums[b].energy);

12 energy += energy0;
13 }
14 }
15 }
16 }
17 energy *= 0.25;
18 return energy;
19 }

Listing 8.1 shows a possible early implementation to solve Eq. (8.52) from
MBPT2. This function has a loop over all single-particle indices and calls the
V_Minnesota function via the get_element function to calculate the two-body
interaction for each set of indices. The energy denominators are calculated from
the single-particle energies stored in the modelspace structure and partial results are
accumulated into the energy variable. This function represents a straightforward
implementation of MBPT2. We normally recommend, when developing a code,
to write the first implementation in a way which is as close as possible to the
mathematical expressions, in this particular case Eq. (8.52).

Table 8.3 shows the total execution time for this application for different model
spaces (defined by the number of single-particle states) and number of particles
on a local workstation. Your runtimes will be different. Our goals are converged
calculations of pure neutron matter as well as nuclear matter, where the number of
states and the number of protons and neutrons goes to infinity. It suffices to say that
we cannot reach our goals with this code.

We want to decrease the run time of this application, but it can be difficult to
decide where we should spend our time improving this code. Our first approach is
to observe what goes on inside the program. For that we will use one the simplest
possible profiling tools called gprof (https://sourceware.org/binutils/docs/gprof/).
Alternatively, software like Valgrind is also highly recommended http://valgrind.
org. If you are using integrated development environments (IDEs) like Qt https://
www.qt.io/, performance and debugging tools are integrated with the IDE.

https://sourceware.org/binutils/docs/gprof/
http://valgrind.org
http://valgrind.org
https://www.qt.io/
https://www.qt.io/
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Table 8.3 Total runtime for
the MBPT2 implementation
in Listing 8.1 for different
model spaces and particle
numbers

Number of Number of Number of Runtime (s)

states protons neutrons Listing 8.1

342 0 2 < 0.01

0 14 0.15

0 38 1.00

0 54 1.81

684 2 2 0.88

14 14 2.43

38 38 15.7

54 54 28.2

1598 0 2 0.04

0 14 3.32

0 38 25.0

0 54 58.9

3196 2 2 0.88

14 14 54.3

38 38 399

54 54 797

Table 8.4 Flat profile for the MBPT2 implementation in Listing 8.1 using 1598 states calculat-
ing pure neutron matter with 54 neutrons

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
58.01 26.26 26.26 2523524846 0.00 0.00 V_Minnesota(...)
39.64 44.21 17.95 mbpt2V00::getEnergy()
2.35 45.27 1.07 spinExchangeTerm(...)

To use gprof the code must first be compiled and linked with the -pg flag. This
flag enables the collection of runtime information so that a call graph and a profile
can be constructed when your program is run.

Table 8.4 shows the top few lines of the flat profile generated for MBPT2 version
in Listing 8.1. The leftmost column shows the percentage of run time spent in the
different functions and it shows that about 58% of the time is spent calculating the
potential while about 40% is spent in the loops in the actual MBPT2 function. The
remaining part is spent in the spinExchangeTerm function which is called from the
potential function. Even though the application spends most of its time generating
the potential, we don’t want to spend too much time on improving this code. We use
the Minnesota potential for testing and benchmark purposes only. For more realistic
calculations, one should employ the chiral interaction models discussed earlier. It
is, however, possible to reduce the number of times this function is called. The 4th
column in Table 8.4 shows that for this particular instance, the potential function
was called 2.5 billion times. However, due to known symmetries of the nuclear
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interaction we know that most of these calls result in matrix elements that are zero.
If we can exploit this structure to reduce the number of calls to the potential function
we will greatly reduce the total run time of this program. The details of how this is
done is presented in Sect. 8.7.4.

Code Listing 8.2 Block-sparse implementation of a MBPT2 diagram

1 double mbpt2V02::getEnergy() {
2 double energy = 0.0;
3 double energy0;
4 int nhh, npp, i, j, a, b;
5 for(int chan = 0; chan < channels.size; ++chan){
6 nhh = channels.nhh[chan];
7 npp = channels.npp[chan];
8 if(nhh*npp == 0){ continue; }
9

10 for(int hh = 0; hh < nhh; ++hh){
11 i = channels.hhvec[chan][2*hh];
12 j = channels.hhvec[chan][2*hh + 1];
13 for(int pp = 0; pp < npp; ++pp){
14 a = channels.ppvec[chan][2*pp];
15 b = channels.ppvec[chan][2*pp + 1];
16 energy0 = V_Minnesota(modelspace, i, j, a, b, L);
17 energy0 *= energy0;
18 energy0 /= (modelspace.qnums[i].energy + modelspace.qnums[

j].energy -
19 modelspace.qnums[a].energy - modelspace.qnums[b

].energy);
20 energy += energy0;
21 }
22 }
23 }
24 energy *= 0.25;
25 return energy;
26

27 }

Listing 8.2 shows a version of this code where the potential function is not called
when we know that the matrix element is zero. This code loops over channels, which
are the dense blocks of the full interaction. We have pre-computed the two-body
configurations allowed in each channel and store them in the channels structure.
The potential is computed in the same way as before, but for fewer combinations of
indices.

The profile in Table 8.5 shows that the potential function is now only called 2.5
million times, a reduction of three orders of magnitude. Table 8.6 summarizes the
execution times of these two versions of MBPT2.

Code Listing 8.3 Block-sparse implementation of a MBPT3 diagram

1 double mbpt3V02::getEnergy() {
2 double energy = 0.0;
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Table 8.5 Flat profile for the MBPT2 implementation in Listing 8.2 using 1598 states calculat-
ing pure neutron matter with 54 neutrons

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
66.69 0.08 0.08 2520526 0.00 0.00 V_Minnesota(...)
16.67 0.10 0.02 4770508 0.00 0.00 Chan_2bInd(...)
8.34 0.11 0.01 1 10.00 10.00 Build_Model_Space(...)
8.34 0.12 0.01 1 10.00 30.01 Setup_Channels_MBPT(...)

Table 8.6 Total runtime for different MBPT2 implementations for different model spaces

Number of Number of Number of Runtime (s)

states protons neutrons Listing 8.1 Listing 8.2

342 0 2 < 0.01 < 0.01

0 14 0.15 < 0.01

0 38 1.00 0.03

0 54 1.81 0.05

684 2 2 0.88 < 0.01

14 14 2.43 0.04

38 38 15.7 0.19

54 54 28.2 0.31

1598 0 2 0.04 < 0.01

0 14 3.32 0.03

0 38 25.0 0.23

0 54 58.9 0.44

3196 2 2 0.88 < 0.01

14 14 54.3 0.21

38 38 399 1.40

54 54 797 2.67

3 double energy0, energy1;
4 int nhh, npp, i, j, a, b, c, d;
5 for(int chan = 0; chan < channels.size; ++chan){
6 nhh = channels.nhh[chan];
7 npp = channels.npp[chan];
8 if(nhh*npp == 0){ continue; }
9

10 for(int hh = 0; hh < nhh; ++hh){
11 i = channels.hhvec[chan][2*hh];
12 j = channels.hhvec[chan][2*hh + 1];
13 for(int ab = 0; ab < npp; ++ab){
14 a = channels.ppvec[chan][2*ab];
15 b = channels.ppvec[chan][2*ab + 1];
16 energy0 = V_Minnesota(modelspace, i, j, a, b, L);
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17 energy0 /= (modelspace.qnums[i].energy + modelspace.qnums[
j].energy -

18 modelspace.qnums[a].energy - modelspace.qnums[b
].energy);

19 for(int cd = 0; cd < npp; ++cd){
20 c = channels.ppvec[chan][2*cd];
21 d = channels.ppvec[chan][2*cd + 1];
22 energy1 = V_Minnesota(modelspace, a, b, c, d, L);
23 energy1 *= V_Minnesota(modelspace, c, d, i, j, L);
24 energy1 /= (modelspace.qnums[i].energy + modelspace.

qnums[j].energy -
25 modelspace.qnums[c].energy - modelspace.qnums[

d].energy);
26 energy += energy0*energy1;
27 }
28 }
29 }
30 }
31 energy *= 0.125;
32 return energy;
33 }

Table 8.7 Flat profile for the MBPT3 implementation in Listing 8.3 using 3196 states calculat-
ing nuclear matter with 14 protons and 14 neutrons

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
90.76 177.21 177.21 6068445596 0.00 0.00 V_Minnesota(...)
8.76 194.31 17.11 mbpt3V02::getEnergy()

Listing 8.3 shows an implementation of MBPT3 that uses a block-sparse
representation of the interaction. Compared to MBPT2 it loops over two additional
particle indices which increases the computational complexity by several orders of
magnitude. However, we are now calculating the interaction many more times than
what is necessary. The profile in Table 8.7 shows that we calculated over six billion
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matrix elements. By moving the construction of the interaction out of the main loops
and storing the elements, we can eliminate these redundant calls to the potential
function at the expense of using memory to store the elements.

Code Listing 8.4 Block-sparse implementation of a MBPT3 diagram with interaction stored in
memory

1 double mbpt3V05::getEnergy() {
2 double energy = 0.0;
3 double *V1, *S1, *V2, *S2;
4 char N = 'N';
5 char T = 'T';
6 double fac0 = 0.0;
7 double fac1 = 1.0;
8 int nhh, npp, i, j, a, b, c, d, idx;
9 double energy0;

10 for(int chan = 0; chan < channels.size; ++chan){
11 nhh = channels.nhh[chan];
12 npp = channels.npp[chan];
13 if(nhh*npp == 0){ continue; }
14

15 V1 = new double[nhh * npp];
16 S1 = new double[nhh * npp];
17 V2 = new double[npp * npp];
18 S2 = new double[nhh * nhh];
19 for(int ab = 0; ab < npp; ++ab){
20 a = channels.ppvec[chan][2*ab];
21 b = channels.ppvec[chan][2*ab + 1];
22 for(int hh = 0; hh < nhh; ++hh){
23 i = channels.hhvec[chan][2*hh];
24 j = channels.hhvec[chan][2*hh + 1];
25 idx = hh * npp + ab;
26 energy0 = V_Minnesota(modelspace, i, j, a, b, L);
27 energy0 /= (modelspace.qnums[i].energy + modelspace.qnums[j].

energy -
28 modelspace.qnums[a].energy - modelspace.qnums[b].

energy);
29 V1[idx] = energy0;
30 }
31 for(int cd = 0; cd < npp; ++cd){
32 c = channels.ppvec[chan][2*cd];
33 d = channels.ppvec[chan][2*cd + 1];
34 idx = ab * npp + cd;
35 V2[idx] = V_Minnesota(modelspace, a, b, c, d, L);
36 }
37 }
38

39 RM_dgemm(V1, V2, S1, &nhh, &npp, &npp, &fac1, &fac0, &N, &N);
40 RMT_dgemm(S1, V1, S2, &nhh, &nhh, &npp, &fac1, &fac0, &N, &T);
41 delete V1; delete V2; delete S1;
42 for(int hh = 0; hh < nhh; ++hh){
43 energy += S2[nhh*hh + hh];
44 }
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45 delete S2;
46 }
47 energy *= 0.125;
48

49 return energy;
50 }

Listing 8.4 shows the new version of the code that stores matrix elements of
the interaction. The explicit summation to calculate the energy can now be done
by using matrix products by calling the BLAS (Basic Linear Algebra Subpro-
grams) [76] dgemm wrappers RM_dgemm and RMT_dgemm. Note that the code
has grown more complicated for every new optimization we have introduced. This
increases the possibility of introducing errors significantly. It is a good thing we
have tests to make sure that the results haven’t changed between versions. Table 8.8
shows the profile for this version and we have reduced considerably the number of
calls to the function which sets up the interaction.

Table 8.9 summarizes the execution times so far.
Table 8.8 shows that the potential function is still the most expensive function

in our program, but we would like to get a more detailed profile of this function.
The code to calculate the potential is filled with calls to the exponential function
which is part of the standard library. Since we have linked to the standard library
dynamically, gprof is not able to show time spent in these functions. We can get a
little bit more detail by linking statically. This is done by introducing the static flag
to the compiler. Table 8.10 shows the new profile.

The profile is now a lot more busy and it shows a longer runtime than the
previous profile. This is because gprof doesn’t sample time spent in dynamically
linked libraries. The total runtime in this profile corresponds better with Table 8.9,
but it is also more difficult to read. What is clear is that the call to the function
labelled __ieee754_exp_avx takes up almost 70% of the total run time. This
function represents the calls to the exponential function in the potential code. If we
can reduce the number of evaluations of the exponential function, we can further
reduce the run time of this application. We leave that as an exercise to the reader.

The next level of optimization that we will discuss here is the introduction of
parallelism. Most modern computers have more than one cpu core available for

Table 8.8 Flat profile for the MBPT3 implementation in Listing 8.4 using 3196 states calculat-
ing nuclear matter with 14 protons and 14 neutrons

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
91.16 14.59 14.59 484191644 0.00 0.00 V_Minnesota(...)
7.68 15.82 1.23 mbpt3V05::getEnergy()
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Table 8.9 Total runtime for the MBPT3 implementation in Listing 8.3 for different model spaces

Number of Number of Number of Runtime (s)

states protons neutrons Listing 8.3 Listing 8.4

342 0 2 0.08 0.02

0 14 2.38 0.31

0 38 9.20 0.49

684 2 2 1.05 0.18

14 14 27.8 2.00

38 38 107 3.18

1598 0 2 1.81 0.46

0 14 80.0 10.5

0 38 456 29.8

3196 2 2 23.1 4.00

14 14 884 69.8

38 38 > 103 190

Table 8.10 Flat profile for the MBPT3 implementation in Listing 8.4 compiled with the static
flag enabled using 3196 states calculating nuclear matter with 14 protons and 14 neutrons

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
68.06 44.68 44.68 __ieee754_exp_avx
21.26 58.64 13.96 484191644 0.00 0.00 V_Minnesota(...)
5.37 62.17 3.53 exp
2.18 63.60 1.43 mbpt3V05::getEnergy()
0.94 64.22 0.62 dgemm_otcopy
0.55 64.58 0.36 dgemm_kernel
0.53 64.93 0.35 __mpexp_fma4
0.25 65.09 0.17 __floor_sse41

computation, but the codes we have presented so far will only run on one of
these cores. The simplest way to make this code run in parallel is to introduce
OpenMP (http://www.openmp.org/) directives. This will split the work between
multiple execution streams that all share the same view of memory. Listing 8.5
shows a new version of the MBPT3 function where we have introduced OpenMP
directives in lines 19 and 21. The first line marks the start of a parallel region and
defines which variables the cores can share and which must be duplicated. The
second line defines a parallel loop, where each core is responsible for only a section
of the loop. As long as we have enough work in the outermost loop, this strategy
will work quite well as shown in Fig. 8.3. Here we show the total run time of this
code using different number of cores compared to the best run times we could have
gotten with this approach if our parallel regions scaled perfectly with the number of
cores. In reality this never happens. In this particular case, we could have made

http://www.openmp.org/
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Fig. 8.3 Total runtime for
the mbpt3 code in Listing 8.5
using different number of
OpenMP threads on a 16 code
node of a Cray XK7

the potential function more cache friendly. With this version the different cores
are fighting each other for access to memory and cache. This reduces performance
somewhat.

Code Listing 8.5 Block-sparse implementation of a MBPT3 diagram with interaction stored in
memory and openmp directives

1 double mbpt3V04::getEnergy() {
2 double energy = 0.0;
3 double *V1, *S1, *V2, *S2;
4 char N = 'N';
5 char T = 'T';
6 double fac0 = 0.0;
7 double fac1 = 1.0;
8 int nhh, npp, i, j, a, b, c, d, idx;
9 double energy0;

10 for(int chan = 0; chan < channels.size; ++chan){
11 nhh = channels.nhh[chan];
12 npp = channels.npp[chan];
13 if(nhh*npp == 0){ continue; }
14

15 V1 = new double[nhh * npp];
16 S1 = new double[nhh * npp];
17 V2 = new double[npp * npp];
18 S2 = new double[nhh * nhh];
19 #pragma omp parallel shared(V1, V2) private(i, j, a, b, c, d,

idx, energy0)
20 {
21 #pragma omp for schedule(static)
22 for(int ab = 0; ab < npp; ++ab){
23 a = channels.ppvec[chan][2*ab];
24 b = channels.ppvec[chan][2*ab + 1];
25 for(int hh = 0; hh < nhh; ++hh){
26 i = channels.hhvec[chan][2*hh];
27 j = channels.hhvec[chan][2*hh + 1];
28 idx = hh * npp + ab;
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29 energy0 = V_Minnesota(modelspace, i, j, a, b, L);
30 energy0 /= (modelspace.qnums[i].energy + modelspace.

qnums[j].energy -
31 modelspace.qnums[a].energy - modelspace.qnums[

b].energy);
32 V1[idx] = energy0;
33 }
34 for(int cd = 0; cd < npp; ++cd){
35 c = channels.ppvec[chan][2*cd];
36 d = channels.ppvec[chan][2*cd + 1];
37 idx = ab * npp + cd;
38 V2[idx] = V_Minnesota(modelspace, a, b, c, d, L);
39 }
40 }
41 }
42

43 RM_dgemm(V1, V2, S1, &nhh, &npp, &npp, &fac1, &fac0, &N, &N);
44 RMT_dgemm(S1, V1, S2, &nhh, &nhh, &npp, &fac1, &fac0, &N, &T)

;
45 delete V1; delete V2; delete S1;
46 for(int hh = 0; hh < nhh; ++hh){
47 energy += S2[nhh*hh + hh];
48 }
49 delete S2;
50 }
51 energy *= 0.125;
52

53 return energy;
54 }

In this function we have used the matrix-matrix multiplication function dgemm of
BLAS [76]. Finally, the above codes can easily be extended upon by including
MPI [77, 78] and/or a mix of OpenMP and MPI commands for distributed memory
architectures. We leave this as a challenge to the reader. The coding practices and
examples developed in this section, are reused in our development of the coupled
cluster code discussed in the next section. There we discuss however in more detail
how to develop an efficient coupled cluster code for infinite matter, with a focus on
validation and verification and simplifications of the equations.

8.7.4 Developing a CCD Code for Infinite Matter

This section focuses on writing a working CCD code from scratch. Based on the
previous discussion, what follows serves also the scope of outlining how to start a
larger numerical project. We will in particular pay attention to possible benchmarks
that can be used to validate our codes.

We will assume that you have opted for a specific mathematical method
for solving Schrödinger’s equation. Here the mathematics is given by the CCD
equations. Our basic steps can then be split up as follows
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• Write a first version of the CCD code which is as close as possible to the math-
ematics of your equations. In this stage we will not focus on high-performance
computing aspects and code efficiency. This will mimick our discussion of many-
body perturbation theory, in particular the calculation of the correlation energy
to second order discussed above.

• Try to find possible benchmarks you can test your code against. In our case, the
pairing model serves as an excellent testcase.

• With a functioning code that reproduces possible analytical and/or numerical
results, we can start to analyze our code. In particular, if there are mathematical
operations which can be simplified and/or can be represented in simpler ways
etc. The modified code can hopefully reduce memory needs and time spent on
computations. The usage of specific symmetries of the interaction will turn out
particularly useful.

In this specific section, we will try to follow the above three steps, with less attention
on speed and numerical efficiency. Our aim is to have a code which passes central
tests and can be properly validated and verified. If you are familiar with high-
performance computing topics, you are obviously not limited to follow the basic
steps outlined here. However, when developing a numerical project we have often
found it easier and less error-prone to start with the basic mathematical expressions.
With a first functioning code, we will delve into high-performance computing
topics. A good read on developing numerical projects and clear code is Martin’s
recent text [79]. We recommend it highly and have borrowed many ideas and coding
philosophies therefrom.

We start with implementing the CCD equations as they stand here



�i C �j � �a � �b

�
tab
ij D habj Ovjiji C 1

2

X
cd

habj Ovjcditcd
ij C

1

2

X
kl

hklj Ovjijitab
kl

C OP.ijjab/
X

kc

hkbj Ovjcjitac
ik C

1

4

X
klcd

hklj Ovjcditcd
ij tab

kl

C OP.ij/
X
klcd

hklj Ovjcditac
ik tbd

jl �
1

2
OP.ij/

X
klcd

hklj Ovjcditdc
ik tab

lj

� 1
2
OP.ab/

X
klcd

hklj Ovjcditac
lk tdb

ij ; (8.34)

for all i < j and all a < b, using the standard notation that a; b; : : : are particle states
and i; j; : : : are hole states. The CCD correlation energy is given by

�ECCD D 1

4

X
ijab

hijj Ovjabi tab
ij : (8.35)
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One way to solve these equations, is to write Eq. (8.34) as a series of iterative
nonlinear algebraic equations

tab
ij
.nC1/ D 1

�ab
ij


habj Ovjiji C 1

2

X
cd

habj Ovjcditcd
ij
.n/ C 1
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X
kl

hklj Ovjijitab
kl
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C OP.ijjab/
X

kc

hkbj Ovjcjitac
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.n/

C 1
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X
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hklj Ovjcditcd
ij
.n/tab

kl
.n/ C OP.ij/

X
klcd

hklj Ovjcditac
ik
.n/tbd

jl
.n/

� 1
2
OP.ij/

X
klcd

hklj Ovjcditdc
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.n/tab
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.n/ � 1

2
OP.ab/

X
klcd

hklj Ovjcditac
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.n/
�
;

(8.36)

for all i < j and all a < b, where �ab
ij D



�i C �j � �a � �b

�
, and tab

ij
.n/ is

the t amplitude for the nth iteration of the series. This way, given some starting
guess tab

ij
.0/, we can generate subsequent t amplitudes that converge to some value.

Discussions of the mathematical details regarding convergence will be presented
below; for now we will mainly focus on implementing these equations into a
computer program and assume convergence. In pseudocode, the function that
updates the t amplitudes looks like

CCD_Update()
for i 2 f0;NFermi � 1g do

for j 2 f0;NFermi � 1g do
for a 2 fNFermi;Nsp � 1g do

for b 2 fNFermi;Nsp � 1g do
sum TBMEŒindex.a; b; i; j/]
for c 2 fNFermi;Nsp � 1g do

for d 2 fNFermi;Nsp � 1g do
sum  sum C 0:5 � TBMEŒindex.a; b; c; d/
 �

t_amplitudes_oldŒindex.c; d; i; j/

end for

end for
...
sum sum + (all other terms)
...
energy_denom = SP_energy[i]+SP_energy[j]-

SP_energy[a]-SP_energy[b]
t_amplitudes[index(a; b; i; j)] = sum/energy_denom

(continued)
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end for
end for

end for
end for

Here we have defined NFermi to be the fermi level while Nsp is the total number
of single particle (s.p.) states, indexed from 0 to Nsp � 1. At the most basic level,
the CCD equations are just the addition of many products containing tab

ij amplitudes
and two-body matrix elements (TBMEs) hijj Ovjabi. Care should thus be placed into
how we store these objects. These are objects with four indices and a sensible first
implementation of the CCD equations would be to create two four-dimensional
arrays to store the objects. However, it is often more convenient to work with simple
one-dimensional arrays instead. The function index./ maps the four indices onto
one index so that a one-dimensional array can be used. An example of a brute force
implementation of such a function is

function INDEX(p; q; r; s)
return p � N3

sp C q � N2
sp C r � Nsp C s

end function

Because elements with repeated indices vanish, tab
ii D taa

ij D 0 and hppj Ovjrsi D
hpqj Ovjrri D 0, data structures using this index function will contain many elements
that are automatically zero. This means that we need to discuss more efficient
storage strategies later. Notice also that we are looping over all indices i; j; a; b,
rather than the restricted indices. This means that we are doing redundant work.
The reason for presenting the equations this way is merely pedagogical. When
developing a program, we would recommend to write a code which is as close as
possible to the mathematical expressions. The first version of our code will then
often be slow, as discussed in Sect. 8.7.3. Below we will however unrestrict these
indices in order to achieve a better speed up of our code.

The goal of our code is to calculate the correlation energy,�ECCD, meaning that
after each iteration of our equations, we use our newest t amplitudes to update the
correlation energy

�E.n/CCD D
1

4

X
ijab

hijj Ovjabi tab
ij
.n/: (8.37)
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We check that our result is converged by testing whether the most recent iteration
has changed the correlation energy by less than some tolerance threshold �,

� > j�E.nC1/
CCD ��E.n/CCDj: (8.38)

The basic structure of the iterative process looks like

while (abs(energy_Diff)> tolerance) do
CCD_Update()
correlation_Energy CCD_Corr_Energy()
energy_Diff correlation_Energy - correlation_Energy_old
correlation_Energy_old correlation_Energy
t_amplitudes_old t_amplitudes

end while

Prior to this algorithm, the t amplitudes should be initialized, tab
ij
.0/. A particularly

convenient choice, as discussed above, is to use many-body perturbation theory for
the wave operator with

tab
ij
.0/ D habj Ovjiji

�ab
ij

; (8.39)

which results in the correlation energy

�E.1/CCD D
1

4

X
ijab

hijj Ovjabihabj Ovjiji
�ab

ij

: (8.40)

This is the familiar result from many-body perturbation theory to second order
(MBPT2). It is a very useful result, as one iteration of the CCD equations can be ran,
and checked against MBPT2 to give some confidence that everything is working
correctly. Additionally, running a program using a minimal test case is another
useful way to make sure that a program is working correctly. For this purpose, we
turn our attention to the simple pairing model Hamiltonian of Problem 8.10,

OH0 D ı
X
p�

.p � 1/a�p�ap� (8.41)

OV D �1
2

g
X
pq

a�pCa�p�aq�aqC (8.42)

which represents a basic pairing model with p levels, each having a spin degeneracy
of 2. The form of the coupled cluster equations uses single-particle states that are
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Table 8.11 Single-particle
states and their quantum
numbers and their energies
from Eq. (8.43)

State label p 2sz E Type

0 1 1 �g/2 Hole

1 1 �1 �g/2 Hole

2 2 1 1 � g/2 Hole

3 2 �1 1 � g/2 Hole

4 3 1 2 Particle

5 3 �1 2 Particle

6 4 1 3 Particle

7 4 �1 3 Particle

The degeneracy for every quantum number
p is equal to 2 due to the two possible spin
values

eigenstates of the Hartree-Fock operator, .OuC OuHF/ jpi D �pjpi. In the pairing
model, this condition is already fulfilled. All we have to do is define the lowest
NFermi states as holes and redefine the single-particle energies,

�q D hqq C
X

i

hqij Ovjqii : (8.43)

To be more specific, let us look at the pairing model with four particles and eight
single-particle states. These states (with ı D 1:0) could be labeled as shown in
Table 8.11. The Hamiltonian matrix for this four-particle problem with no broken
pairs is defined by six possible Slater determinants, one representing the ground
state and zero-particle-zero-hole excitations 0p� 0h, four representing various 2p�
2h excitations and finally one representing a 4p� 4h excitation. Problem 8.10 gives
us for this specific problem

H D

2
66666664

2ı � g �g=2 �g=2 �g=2 �g=2 0

�g=2 4ı � g �g=2 �g=2 �0 �g=2
�g=2 �g=2 6ı � g 0 �g=2 �g=2
�g=2 �g=2 0 6ı � g �g=2 �g=2
�g=2 0 �g=2 �g=2 8ı � g �g=2
0 �g=2 �g=2 �g=2 �g=2 10ı � g

3
77777775

The python program (included for pedagogical purposes only) at https://github.com/
ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs
/python/mbpt.py diagonalizes the above Hamiltonian matrix for a given span of
interaction strength values, performing a full configuration interaction calculation.
It plots the correlation energy, that is the difference between the ground state energy
and the reference energy. Furthermore, for the pairing model we have added results
from perturbation theory to second order (MBPT2) and third order in the interaction
MBPT3. Second order perturbation theory includes diagram (2) of Fig. 8.2 while
MBPT3 includes diagrams (3), (4), (5), (8) and (9) as well. Note that diagram (3)

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python/mbpt.py
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python/mbpt.py
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python/mbpt.py
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is zero for the pairing model and that diagrams (8) and (9) do not contribute either
if we work with a canonical Hartree-Fock basis. In the case of the simple pairing
model it is easy to calculate �EMBPT2 analytically. This is a very useful check of
our codes since this analytical expression can also be used to check our first CCD
iteration. We restate this expression here but restrict the sums over single-particle
states

�EMBPT2 D 1

4

X
abij

hijj Ovjabi habj Ovjiji
�ab

ij

D
X

a<b;i<j

hijj Ovjabi habj Ovjiji
�ab

ij

For our pairing example we obtain the following result

�EMBPT2 D h01j Ovj45i
2

�4501
C h01j Ovj67i

2

�6701
C h23j Ovj45i

2

�4523
C h23j Ovj67i

2

�6723
;

which translates into

�EMBPT2 D �g2

4


 1

4C g
C 1

6C g
C 1

2C g
C 1

4C g

�
:

This expression can be used to check the results for any value of g and provides
thereby an important test of our codes. Figure 8.4 shows the resulting correlation
energies for the exact case, MBPT2 and MBPT3. We note from the above program

Fig. 8.4 Correlation energy for the pairing model with exact diagonalization, MBPT2 and
perturbation theory to third order MBPT3 for a range of interaction values. A canonical Hartree-
Fock basis has been employed in all MBPT calculations
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Fig. 8.5 Correlation energy for the pairing model with exact diagonalization, CCD and perturba-
tion theory to third (MBPT3) and fourth order (MBPT4) for a range of interaction values

that we have coded the expressions for the various diagrams following strictly
the mathematical expressions of for example Eqs. (8.24)–(8.26). This means that
for every diagram we loop explicitly over every single-particle state. The python
program linked to above is included mainly for pedagogical reasons. As we have
already seen, this approach is extremely inefficient from a computational point
of view. In our discussions of MBPT, as well as for CCD code, we rewrite the
computations of most diagrams in terms of efficient matrix-matrix multiplications
or matrix-vector multiplications. Figure 8.4 shows us that the approximation to
both second and third order are very good when the interaction strength is small
and contained in the interval g 2 Œ�0:5; 0:5
, but as the interaction gets stronger
in absolute value the agreement with the exact reference energy for MBPT2 and
MBPT3 worsens. We also note that the third-order result is actually worse than
the second order result for larger values of the interaction strength, indicating that
there is no guarantee that higher orders in many-body perturbation theory may
reduce the relative error in a systematic way. Adding fourth order contributions as
shown in Fig. 8.5 for negative interaction strengths gives a better result than second
and third order. The fourth order contributions include also four-particle-four-hole
correlations. However, the disagreement for stronger interaction values hints at the
possibility that many-body perturbation theory may not converge order by order.
Perturbative studies of nuclear systems may thus be questionable, unless selected
contributions that soften the interactions are properly softened. We note also the
non-variational character of many-body perturbation theory, with results at different
levels of many-body perturbation theory either overshooting or undershooting the
true ground state correlation energy. The coupled cluster results are included in
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Table 8.12 Coupled cluster
and MBPT2 results for the
simple pairing model with
eight single-particle levels
and four spin 1=2 fermions
for different values of the
interaction strength g

g Eref �EMBPT2 �ECCD

�1:0 3 �0:46667 �0:21895
�0:5 2.5 �0:08874 �0:06306

0.0 2 0 0

0.5 1.5 �0:06239 �0:08336
1.0 1 �0:21905 �0:36956

Fig. 8.5 where we display the difference between the exact correlation energy and
the correlation energy obtained with many-body perturbation theory to third order.
Coupled cluster theory with doubles only shows a very good agreement with the
exact results. For larger values of g one will however observe larger discrepancies. In
Table 8.12 we list for the sake of completeness also our coupled cluster results at the
CCD level for the same system. The g D �1:0 case diverges without implementing
iterative mixing. Sometimes iterative solvers run into oscillating solutions, and
mixing can help the iterations break this cycle.

t.i/ D ˛t.i/no_mixing C .1 � ˛/t.i�1/ (8.44)

Once a working pairing model has been implemented, improvements can start to
be made, all the while using the pairing model to make sure that the code is still
working and giving correct answers. Realistic systems will be much larger than this
small pairing example.

One limitation that will be ran into while trying to do realistic CCD calculations
is that of memory. The four-indexed two-body matrix elements (TBMEs) and t-
amplitudes have to store a lot of elements, and the size of these arrays can quickly
exceed the available memory on a machine. If a calculation wants to use 500 single-
particle basis states, then a structure like hpqjvjrsi will need a length of 500 for each
of its four indices, which means it will have 5004 D 625 � 108 elements. To get a
handle on how much memory is used, consider the elements as double-precision
floating point type. One double takes up 8 bytes of memory. This specific array
would take up 8 � 625 � 108 bytes = 5000 � 108 bytes = 500GB of memory. Most
personal computers in 2016 have 4–8 GB of RAM, meaning that this calculation
would be way out of reach. There are supercomputers that can handle applications
using 500 GB of memory, but we can quickly reduce the total memory required
by applying some physical arguments. In addition to vanishing elements with
repeated indices, mentioned above, elements that do not obey certain symmetries
are also zero. Almost all realistic two-body forces preserve some quantities due to
symmetries in the interaction. For example, an interaction with rotational symmetry
will conserve angular momentum. This means that a two-body ket state jrsi, which
has some set of quantum numbers, will retain quantum numbers corresponding to
the interaction symmetries after being acted on by Ov. This state is then projected
onto jpqi with its own set of quantum numbers. Thus hpqjvjrsi is only non-zero if
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jpqi and jrsi share the same quantum numbers that are preserved by Ov. In addition,
because the cluster operators represent excitations due to the interaction, tab

ij is only
non-zero if jiji has the same relevant quantum numbers as jabi.

To take advantage of this, these two-body ket states can be organized into
symmetry “channels” of shared quantum numbers. In the case of the pairing model,
the interaction preserves the total spin projection of a two-body state, Sz D sz1Csz2.
The single particle states can have spin of C1=2 or �1=2, so there can be three
two-body channels with Sz D �1; 0;C1. These channels can then be indexed
with a unique label in a similar way to the single particle index scheme. In
more complicated systems, there will be many more channels involving multiple
symmetries, so it is useful to create a data structure that stores the relevant two-
body quantum numbers to keep track of the labeling scheme.

It is more efficient to use two-dimensional array data structures, where the first
index refers to the channel number and the second refers to the element within
that channel. So to access matrix elements or t amplitudes, you can loop over the
channels first, then the indices within that channel. To get an idea of the savings
using this block diagonal structure, let’s look at a case with a plane wave basis, with
three momentum and one spin quantum numbers, with an interaction that conserves
linear momentum in all three dimensions, as well as the total spin projection. Using
502 basis states, the TBME’s require about 0.23 Gb of memory in block diagonal
form, which is an enormous saving from the 500 Gb mentioned earlier in the naïve
storage scheme.

Since the calculation of all zeros can now be avoided, improvements in speed
and memory will now follow. To get a handle on how these CCD calculations are
implemented we need only to look at the most expensive sum in Eq. (8.34). This
corresponds to the sum over klcd. Since this sum is repeated for all i < j and a < b,
it means that these equations will scale as O.n4pn4h/. However, they can be rewritten
using intermediates as

0 D habj Ovjiji C OP.ab/
X

c

hbj�jci hacjtjiji � OP.ij/
X

k

hkj�j ji habjtjiki

C 1

2

X
cd

habj�jcdi hcdjtjiji C 1

2

X
kl

habjtjkli hklj�jiji (8.45)

C OP.ij/ OP.ab/
X

kc

hacjtjiki hkbj�jcji ;

for all i; j; a; b, the reason why these indices are now unrestricted will be explained
later. The intermediates � are defined as

hbj�jci D hbj f jci � 1
2

X
kld

hbdjtjkli hkljvjcdi ; (8.46)

hkj�jji D hkj f j ji C 1

2

X
cdl

hkljvjcdi hcdjtjjli ; (8.47)
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hklj�jiji D hkljvjiji C 1

2

X
cd

hkljvjcdi hcdjtjiji ; (8.48)

hkbj�jcji D hkbjvjcji C 1

2

X
dl

hkljvjcdi hdbjtjlji ; (8.49)

habj�jcdi D habjvjcdi : (8.50)

With the introduction of the above intermediates, the CCD equations scale now
as O.n2hn4p/, which is an important improvement. This is of course at the cost of
computing the intermediates at the beginning of each iteration, where the most
expensive one, hkbj�jcji scales as O.n3hn3p/. To further speed up these computations,
we see that these sums can be written in terms of matrix-matrix multiplications. It
is not obvious how to write all of these sums in such a way, but it is useful to first
recall that the expression for the multiplication of two matrices OC D OA � OB can be
written as

Cij D
X

k

Aik � Bkj: (8.51)

We see then that Eq. (8.48) can be written as

hKj�jIi D hKjvjIi C 1

2

X
C

hKjvjCi hCjtjIi

by mapping the two index pairs kl ! K; ij ! I; cd ! C. The sum looks
now like a matrix-matrix multiplication. This is useful because there are packages
like BLAS (Basic Linear Algebra Subprograms) [76] which have extremely fast
implementations of matrix-matrix multiplication, as discussed in connection with
the listing 8.5. The simplest example to consider is the expression for the correlation
energy from MBPT2. We rewrite

�EMBPT2 D 1

4

X
abij

hijj Ovjabi habj Ovjiji
�ab

ij

; (8.52)

by defining the matrices OA and OB with new indices I D .ij/ and A D .ab/. The
individual matrix elements of these matrices are

AIA D hIj OvjAi;

and

BAI D hAj OvjIi
�A

I

:
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Fig. 8.6 MBPT2 contribution to the correlation for pure neutron matter with N D 14 neutrons and
periodic boundary conditions. Up to approximately 1600 single-particle states have been included
in the sums over intermediate states in Eqs. (8.52) and (8.53)

We can then rewrite the correlation energy from MBPT2 as

�EMBPT2 D 1

4
OA � OB: (8.53)

Figure 8.6 shows the difference between the brute force summation over single-
particle states of Eq. (8.52) and the smarter set up in terms of indices including
two-body configurations only, that is Eq. (8.53). In these calculations we have only
considered pure neutron matter with N D 14 neutrons and a density n D 0:08 fm�3
and plane wave single-particle states with periodic boundary conditions, allowing
for up to 1600 single-particle basis states. The Minnesota interaction model [57]
has been used in these calculations. With 40 single-particle shells, see Table 8.1 for
example, we have in total 2713 single-particle states. Using the smarter algorithm
the final calculation time is 2:4 s (this is the average time from ten numerical
experiments). The total time using the brute force summation over single-particle
indices is 100:6 s (again the average of ten numerical experiments), resulting in a
considerable speed up. It is useful to dissect the final time in terms of different
operations. For the smarter algorithm most of the time is spent setting up the matrix
elements for the two-body channels and to load the matrix elements. The final
matrix-matrix multiplication takes only 1% of the total time. For the brute force
algorithm, the multiplication and summation over the various single-particle states
takes almost half of the total time. Here we have deliberately only focused on the
difference between the two ways of computing Eqs. (8.52) and (8.53). We have, on
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purpose, not performed a proper timing analysis since this was done in the previous
subsection. In this section we have chosen to focus on the development of a program
which produces the correct results. As mentioned above, the true elephant in the
room, in terms of computational time, is our computation of the matrix elements
of the nucleon-nucleon potential. We have deliberately omitted the time spent on
setting up the interactions here. For the rest of this section we will focus on various
physics applications of our newly developed CCD code.

With the definition of the intermediates and appropriate matrix-matrix multi-
plications and a working CCD program, we can move on to more realistic cases.
One such case is infinite nuclear matter using a plane-wave basis. These states are
solutions to the free-particle Hamiltonian,

�„2
2m
r2 .x/ D � .x/ : (8.54)

For a finite basis, as discussed earlier, we approximate the problem by constructing
a box with sides of length L, which quantizes the momentum, and impose periodic
boundary conditions in each direction by requiring .xi/ D .xi C L/.

The first step in calculating infinite matter is to construct a model space by
finding every single-particle state relevant to a given problem. In our case, this
amounts to looping over the quantum numbers for spin, isospin, and the three
momentum directions. To control the model space size, the momentum can be
truncated to give a cubic space, where ni 	 nmax, or a spherical space, where
n2xCn2yCn2z 	 Nmax. The number of single-particle states in a cubic space increases
rapidly with nmax compared to the spherical case with Nmax. For example, in pure
neutron matter a cubic space with nmax D 3 has 668 states while the spherical space
with Nmax D 17 has 610 states. Therefore, the spherical case will be used for the
rest of the calculations here. The loop increases in energy by counting the number
of shells, so states can be ‘filled’ by labeling the first P proton and N neutron states
as holes. The following loop is for pure neutron matter and requires the number of
neutrons, N and density, � D N=L3, as input. Symmetric nuclear matter requires an
extra loop over isospin.

n D 0
for shell 2 f0; : : : ;Nmaxg do

for �pNmax 	 nx 	 pNmax do
for �pNmax 	 ny 	 pNmax do

for �pNmax 	 nz 	 pNmax do
for sz 2 f� 12 ; 12g do

if n2x C n2y C n2z D shell then

EnergyD 4�2„2
2m � shell

if n < N then

(continued)
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type D “hole”
else

type D “particle”
end if
STATES (n, nx, ny, nz, sz, Energy, type)
n nC 1

end if
end for

end for
end for

end for
end for

The next step is to build every two-body state in the model space and separate
them by their particle/hole character and combined quantum numbers. While each
single-particle state is unique, two-body states can share quantum numbers with
other members of a particular two-body channel. These channels allow us to
remove matrix elements and cluster amplitudes that violate the symmetries of the
interaction. This reduces greatly the size and speed of the calculation. Our structures
will depend on direct two-body channels, T, where the quantum numbers are added,
and cross two-body channels, X, where the quantum numbers are subtracted. Before
filling the channels, it is helpful to order them with an index function which returns
a unique index for a given set of two-body quantum numbers. Without an index
function, one has to loop over all the channels for each two-body state, adding a
substantial amount of time to this algorithm. An example of an index function for the
direct channels in symmetric nuclear matter is, for Nx D nx;1Cnx;2, Ny D ny;1Cny;2,
Nz D nz;1C nz;2, Sz D sz;1C sz;2, Tz D tz;1C tz;2, m D 2bpNmaxc, and M D 2mC 1,

Ind


Nx;Ny;Nz; Sz;Tz

� D 2 .Nx C m/M3 C 2 
Ny Cm
�

M2 C 2 .Nz Cm/M

C 2 .Sz C 1/C .Tz C 1/ : (8.55)

This function, which can also be used for the cross-channel index function, is well
suited for a cubic model space but can be applied in either case. An additional
restriction for two-body states is that they must be composed of two different states
to satisfy the Pauli-exclusion principle.
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for sp1 2 STATES do
for sp2 2 STATES do

if sp1 ¤ sp2 then
Ni  ni;1 C ni;2

Sz  sz;1 C sz;2

Tz  tz;1 C tz;2
i_dir Ind



Nx;Ny;Nz; Sz;Tz

�
T  (sp1, sp2, i_dir)
N0

i  ni;1 � ni;2

S0
z  sz;1 � sz;2

T 0
z  tz;1 � tz;2

i_cross Ind


N0

x;N
0
y;N

0
z; S

0
z;T

0
z

�
X  (sp1, sp2, i_cross)

end if
end for

end for

From the cross channels, one can construct the cross channel complements, X0,
where X .pq/ � X0 .qp/. Also from the direct channels, one can construct one-body,
and corresponding three-body, channels for each single-particle state, K by finding
every combination of two two-body states within a direct channel that contains that
single particle state, T .pq/ D T .rs/) Kp  .qrs/.

for Chan 2 T do
for tb1 2 Chan do

for tb2 2 Chan do
K  tb11
Ktb11  tb12; tb21; tb22

end for
end for

end for

These different structures can be further categorized by a two-body state’s
particle-hole character, hppjtjhhi ; hhhjvjhhi ; hppjvjppi ; hhhjvjppi, and hhpjvjhpi,
which greatly simplifies the matrix-matrix multiplications of the CCD iterations by
indexing the summed variables in a systematic way. Summations are constructed by
placing two structures next to each other in such a way that the inner summed indices
are of the same channel. The resulting structure is indexed by the outer channels as
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shown here for several of the intermediates defined above

hbj�jci D hbj f jci � 1
2

X
kld

hbdjtjkli hkljvjcdi ! f b
c .K .b/ ;K .c//

� 1
2

tbd
kl .K .b/ ;Kb .kld// vkl

cd .Kc .kld/ ;K .c// ;

hklj�jiji D hkljvjiji C 1

2

X
cd

hkljvjcdi hcdjtjiji ! vkl
ij .T .kl/ ; T .ij//

C 1

2
vkl

cd .T .kl/ ; T .cd// tcd
ij .T .cd/ ; T .ij// ;

hkbj�jcji D hkbjvjcji C 1

2

X
dl

hkljvjcdi hdbjtjlji ! vkb
cj .X .kc/ ;X .jb//

C 1

2
vkl

cd .X .kc/ ;X .dl// tdb
lj .X .dl/ ;X .jb// ;

habj�jcdi D habjvjcdi ! vab
cd .T .ab/ ; T .cd// ;

X
c

hbj�jci hacjtjiji ! �b
c .K .b/ ;K .c// � tac

ij .K .c/ ;Kc .ija// ;

X
k

hkj�j ji habjtjiki ! �k
j .K .j/ ;K .k// � tab

ik .K .c/ ;Kc .ija// ;

X
cd

habj�jcdi hcdjtjiji ! �ab
cd .T .ab/ ; T .cd// � tcd

ij .T .cd/ ; T .ij// ;

X
kl

habjtjkli hklj�jiji ! tab
kl .T .ab/ ; T .kl// � �kl

ij .T .kl/ ; T .ij// ;

and finally

X
kc

hacjtjiki hkbj�jcji D
X

kc

hai�1jtjkc�1i hkc�1j�jjb�1i

! tac
ik .X .ia/ ;X .kc// � �kb

cj .X .kc/ ;X .jb// :

Figure 8.7 displays the convergence of the energy per particle for pure neutron
matter as function of number particles for the CCD approximation with the
Minnesota interaction model [57] for different with Nmax D 20. Similarly, Fig. 8.8
shows the convergence in terms of different model space sizes Nmax D 20 with a
fixed number of neutrons N D 114. We see from Fig. 8.8 that at the CCD level
and neutron matter only there is a good convergence with Nmax D 25. These results
depends however on the type of interaction and many-body approximation.

In these calculations we approximated our problem with periodic boundary
conditions, .xi/ D .xi C L/, but we could have chosen anti-periodic boundary
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Fig. 8.7 Energy per particle of pure neutron matter computed in the CCD approximation with the
Minnesota interaction model [57] for different numbers of particles with Nmax D 20

Fig. 8.8 Energy per particle of pure neutron matter computed in the CCD approximation with the
Minnesota interaction model [57] for different model space sizes with A D 114



376 J.G. Lietz et al.

conditions, .xi/ D �.xi C L/. The difference between these two shows how the
correlation energy contains finite-size effects [80–83]. One solution to this problem
is by integrating over solutions between periodic and anti-periodic conditions,
known as twist-averaging [84]. First, we multiply the single-particle states by a
phase for each direction, characterized by a twist-angle, �i.

k.xC L/! ei�k.x/ (8.56)

�i D 0 for PBC and �i D � for APBC

k! kC �

L
(8.57)

�k ! �k C �

L
k � � C �2

L2
(8.58)

Adding these phases changes the single-particle energies, the correction of which
disappear as L ! 1, depending on � and thus changes the shell structure so that
hole states can jump up to particle states and vice versa. It is thence necessary to fill
hole states separately for each � . Integration over a quantity is approximated by a
weighted sum, such as Gauss-Legendre quadrature, over the quantity for each set of
twist angles. The algorithm becomes then

Build mesh points and weights for each direction i: f�i;wig
Etwist D 0
for .�x;wx/ 2 f�x;wxg do

for .�y;wy/ 2 f�y;wyg do
for .�z;wz/ 2 f�z;wzg do

Build Basis States with ki ! ki C �i
L

Order States by Energy and Fill Holes
Get Result E (T,HF,CCD)
Etwist D Etwist C 1

�3
wxwywzE

end for
end for

end for

This technique gives results which depend much less on the particle number, but
requires a full calculation for each set of twist angles, which can grow very quickly.
For example, using 10 twist angles in each direction requires 1000 calculations. To
see the effects of twist averaging, it is easy to calculate the kinetic energy per particle
and the Hartree-Fock energy per particle, which avoids the full CCD calculation.
These calculations can be compared to the exact values for infinite matter, which
are calculated by integrating the relevant values up to the fermi surface. The kinetic



8 Computational Nuclear Physics and Post Hartree-Fock Methods 377

energy is given by

Tinf D
3„2k2f
10m

;

while the potential energy to first order (corresponding to the Hartree-Fock contri-
bution) reads

HFinf D 1

.2�/6
L3

2�

Z kf

0

dk1

Z kf

0

dk2 hk1k2j Ovjk1k2i :

Figure 8.9 shows the CCD kinetic energy of pure neutron matter computed with
the Minnesota interaction model [57] as a function of the number of particles for
both periodic boundary conditions (PBC) and twist-averaged boundary conditions
(TABC5). We see clearly that the twist-averaged boundary conditions soften the
dependence on finite size effects. Similarly, Fig. 8.10 displays the corresponding
Hartree-Fock energy (the reference energy) obtained with Minnesota interaction
using both periodic and twist-average boundary conditions.

The results show again a weaker dependence on finite size effects.
With all these ingredients, we can now compute the final CCD energy and thereby

the equation of state for infinite neutron matter. Figure 8.11 displays the total CCD
energy (including the reference energy) as well as the reference energy obtained
with the Minnesota interaction model. The computations have been performed with

Fig. 8.9 Finite-size effects in the kinetic energy of pure neutron matter computed with the
Minnesota interaction model [57] as a function of the number of particles for both periodic
boundary conditions (PBC) and twist-averaged boundary conditions (TABC5)
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Fig. 8.10 Finite-size effects in the Hartree-Fock energy of pure neutron matter computed with
the Minnesota interaction model [57] as a function of the number of particles for both periodic
boundary (PBC) conditions and twist-averaged boundary conditions (TABC5)

Fig. 8.11 Energy per particle for pure neutron matter as function of density from coupled cluster
calculations with doubles correlations only. The reference energy is included for comparison. The
results have been obtained with Minnesota interaction model using periodic boundary conditions
and N D 66 neutrons and single-particle states up to Nmax D 36, resulting in a total of 2377
single-particle states
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Table 8.13 CCD and
MBPT2 results for infinite
neutron matter with N D 66

neutrons and a maximum
number of single-particle
states constrained by
Nmax D 36

Density � fm�3 EMBPT2 ECCD

0.04 6:472 6:468

0.06 7:919 7:932

0.08 9:075 9:136

1.0 9:577 10:074

1.2 10:430 10:885

1.4 11:212 11:565

1.6 11:853 12:136

1.8 12:377 12:612

2.0 12:799 13:004

N D 66 neutrons and a maximum number of single-particle states constrained by
Nmax D 36. This corresponds to 2377 single-particle states.

We see from this figure that the correlations brought by coupled cluster theory
are at the order of 10% roughly of the reference energy. It means that for this
system (neutrons only) with the Minnesota potential, higher-order correlations can
most likely be treated in a perturbative way. Many-body perturbation theory to
second order gives results which are very close to our CCD results, as seen in
Table 8.13. For low densities we observe a good agreement while higher densities
bring in particle-particle correlations that become more important as the density
increases. Coupled cluster theory sums to infinite order for example particle-particle
correlations and with increasing densities this is reflected in differences between
the two many-body approximations. The above results agree well with the recent
coupled cluster calculations of [36, 37], obtained with interaction models from
effective field theory. With the inclusion of proton correlations as well as other
potential models we may expect larger differences between different methods
and interactions. In Chaps. 9, 10 and 11 we compare the above results with
those obtained with Monte Carlo methods, the in-medium renormalization group
approach and Green’s function theory.

The discussions hitherto have focused on the development of an efficient and
flexible many-body code. The codes have been structured to allow users and
developers to study and add different physical systems, spanning from the simple
pairing model to quantum dots and infinite nuclear matter. Structuring the codes in
for example an abstract system class and a solver class allows an eventual user to
study different physical systems and add new many-body solvers without having to
write a totally new program. As demonstrated in Chap. 10, with few additions one
can add the widely popular similarity renormalization group method.

Till now we have limited our discussion to the construction of a many-body
code following the underlying mathematical expressions, including elements like
how to structure a code in terms of functions, how to modularize the code, how
to develop classes and how to verify and validate our computations (our checks
provided by the simple pairing model and many-body perturbation theory to second
order) against known results. With the rewriting of our equations in terms of efficient
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matrix and vector operations we have also shown how to make our code more
efficient. Matrix and vector operations can easily be parallelized, as demonstrated
in our discussion of many-body perturbation theory to second and third order. Such
algorithmic improvements are necessary in order to be able to study complicated
physical systems. Our codes can also be easily parallelized in order to run on shared
memory architectures using either OpenMP [85] and/or MPI/OpenMPI [77, 78].

We conclude this section by summarizing and emphasizing some topics we feel
can help in structuring a large computational project. Amongst these, the validation
and verification of the correctness of the employed algorithms and programs are
central issues which can save you a lot of time when developing a numerical
project. In the discussions above we used repeatedly the simple pairing model of
Problem 8.10. This model allows for benchmarks against exact results. In addition,
it provides analytical answers to several approximations, from perturbation theory
to specific terms in the solution of the coupled cluster equations, the in-medium
similarity renormalization group approach of Chap. 10 and the Green’s function
approach of Chap. 11.

It is also important to develop an understanding of how our algorithms can go
wrong and how they can be implemented in order to run as efficiently as possible.
When working on a numerical project it is important to keep in mind that computing
covers numerical as well as symbolic computing and paper and pencil solutions.
Furthermore, version control is something we strongly recommend. It does not
only save you time in case you struggle with odd errors in a new version of your
code. It allows you also to make science reproducible. Making your codes available
to a larger audience and providing proper benchmarks allows fellow scientists to
test what you have developed, and perhaps come with considerable improvements
and/or find flaws or errors you were not aware of. Sharing your codes using for
example modern version control software makes thus your science reproducible and
adds in a natural way a sound ethical scientific element to what you develop. In this
chapter we have thus provided several code examples, hoping they can serve as good
examples.

8.8 Conclusions

In this chapter we have presented many of the basic ingredients that enter theoretical
studies of infinite nuclear matter, with possible extensions to the homogeneous
electron gas in two and three dimensions or other quantum mechanical systems.
We have focused on the construction of a single-particle and many-body basis
appropriate for such systems, as well as introducing post Hartree-Fock many-body
methods like full configuration interaction theory, many-body perturbation theory
and coupled cluster theory. The results here, albeit being obtained with a simpler
model for the nuclear forces, can easily be extended to more complicated and
realistic models for nuclear interactions and to include other many-body methods.
We have however, for pedagogical reasons, tried to keep the theoretical inputs to the
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various many-body methods as simple as possible. The reader should however, with
the inputs from Chaps. 2–6, be able to have a better understanding of nuclear forces
and how these can be derived from the underlying theory for the strong force and
effective field theory. The last exercise in this chapter replaces the simple Minnesota
potential with realistic interactions from effective field theory.

The subsequent Chaps. 9, 10 and 11 show how many of the theoretical concepts
and code elements discussed in this chapter can be used to add other many-
body methods, without having to develop a new numerical project. With a proper
modularization and flexible classes, we can add new physical systems as well as new
many-body methods. The codes which have been developed in this chapter can be
reused in the development and analysis of the in-medium similarity renormalization
group approach of Chap. 10 or the Green’s function approach in Chap. 11. Similarly,
the theoretical concepts we have developed in this chapter, such as the definition of
a single-particle basis using plane wave functions and correlations from many-body
perturbation theory or coupled cluster theory, can be used in Chaps. 9, 10 and 11
as well. Chapter 9 for example, uses results from coupled cluster theory in order to
provide better ways to constrain the Jastrow factor, which accounts for correlations
beyond a mean-field picture, in Monte Carlo calculations.

8.9 Exercises

8.1 Show that the one-body part of the Hamiltonian

OH0 D
X
pq

h pj Oh0 jqi a�paq

can be written, using standard annihilation and creation operators, in normal-ordered
form as

OH0 D
X

pq

h pj Oh0 jqi
˚
a�paq

�CX
i

hij Oh0 jii

Explain the meaning of the various symbols. Which reference vacuum has been
used?

8.2 Show that the two-body part of the Hamiltonian

OHI D 1

4

X
pqrs

h pqj Ov jrsi a�pa�qasar
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can be written, using standard annihilation and creation operators, in normal-ordered
form as

OHI D 1

4

X
pqrs

h pqj Ov jrsi a�pa�qasar

D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�CX

pqi

h pij Ov jqii ˚a�paq
�C 1

2

X
ij

hijj Ov jiji

Explain again the meaning of the various symbols.

8.3 Derive the normal-ordered form of the threebody part of the Hamiltonian.

OH3 D 1

36

X
pqr
stu

hpqrj Ov3 jstui a�pa�qa�r auatas;

and specify the contributions to the two-body, one-body and the constant part.

8.4 Develop a program which sets up a single-particle basis for nuclear matter
calculations with input a given number of nucleons and a user specified density
or Fermi momentum. Follow the setup discussed in Table 8.1. You need to define
the number of particles A and the density of the system using

� D g
k3F
6�2

:

Here you can either define the density itself or the Fermi momentum kF. With the
density/Fermi momentum and a fixed number of nucleons A, we can define the
length L of the box used with our periodic boundary contributions via the relation

V D L3 D A

�
:

We can then can use L to define the spacing between various k-values, that is

�k D 2�

L
:

8.5 The interaction we will use for these calculations is a semirealistic nucleon-
nucleon potential known as the Minnesota potential [57] which has the form,
V˛ .r/ D V˛ exp�.˛r2/. The spin and isospin dependence of the Minnesota
potential is given by,

V .r/ D 1

2

�
VR C 1

2



1C P�12

�
VT C 1

2



1 � P�12

�
VS

� 

1� P�12P

�
12

�
;
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where P�12 D 1
2
.1C �1 � �2/ and P�12 D 1

2
.1C �1 � �2/ are the spin and isospin

exchange operators, respectively. Show that a Fourier transform to momentum space
results in

hkpkqjV˛jkrksi D V˛
L3

��
˛

�3=2
exp
�q2

4˛
ıkpCkq;krCks :

Write thereafter a function which sets up the full anti-symmetrized matrix elements
for the Minnesota potential using the parameters listed in Table 8.2.

8.6 Consider a Slater determinant built up of orthogonal single-particle orbitals �,
with � D 1; 2; : : : ;A.

The unitary transformation

 a D
X
�

Ca��;

brings us into the new basis. The new basis has quantum numbers a D 1; 2; : : : ;A.
Show that the new basis is orthogonal.

(a) Show that the new Slater determinant constructed from the new single-particle
wave functions can be written as the determinant based on the previous basis
and the determinant of the matrix C.

(b) Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. Hint: C is a unitary matrix.

8.7 Use the ansatz for the ground state in second quantization

j˚0i D
 Y

i�F

Oa�i
!
j0i;

where the index i defines different single-particle states up to the Fermi level, to
calculate using Wick’s theorem (see the appendix) the expectation value

EŒ˚0
 D ERef D
AX

i�F

hijOh0jii C 1

2

AX
ij�F

hijj Ovjiji:

Insert thereafter the plane wave function basis for the various single-particle states
and show that the above energy can be written as

EŒ˚0
 D
AX

i�F

hkijOtjkii C 1

2

AX
ij�F

hkikjj Ovjkikji;

where we use the shorthand jkii D jki; �i; �zii for the single-particle states in three
dimensions.
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Replace then the discrete sums with integrals, that is

X
i

!
X
�i

X
�zi

L3

.2�/3

Z kF

0

dk;

and show that the energy per particle A can be written as (for symmetric nuclear
matter)

ERef

A
D 3„2k2F
10MN

C 1

2n

L3

.2�/6

X
�i�j

X
�zi �zj

Z kF

0

dki

Z kF

0

dkjhkikjj Ovjkikji;

with the density n D V=A D L3=A.
Find the following expression for pure neutron matter. Use the Minnesota

interaction and try to simplify the above six-dimensional integral for pure neutron
matter (Hint: the interaction depends only the momentum transfer squared and fix
one of the momentum integrations along the z-axis. Integrate out the dependence on
the various angles).

Finally, write a program which computes the above energy for pure neutron
matter using the Minnesota potential.

8.8 We will assume that we can build various Slater determinants using an
orthogonal single-particle basis  �, with � D 1; 2; : : : ;A.

The aim of this exercise is to set up specific matrix elements that will turn useful
when we start our discussions of different many-body methods. In particular you
will notice, depending on the character of the operator, that many matrix elements
will actually be zero.

Consider three A-particle Slater determinants j˚0, j˚a
i i and j˚ab

ij i, where the
notation means that Slater determinant j˚a

i i differs from j˚0i by one single-particle
state, that is a single-particle state  i is replaced by a single-particle state  a. It
will later be interpreted as a so-called one-particle-one-hole excitation. Similarly,
the Slater determinant j˚ab

ij i differs by two single-particle states from j˚0i and is
normally thought of as a two-particle-two-hole excitation.

Define a general one-body operator OF D PA
i
Of .xi/ and a general two-body

operator OG D PA
i>j Og.xi; xj/ with g being invariant under the interchange of the

coordinates of particles i and j.

(a)

h˚0j OFj˚0i;

and

h˚0j OGj˚0i:
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(b) Find thereafter

h˚0j OFj˚a
i i;

and

h˚0j OGj˚a
i i;

(c) Finally, find

h˚0j OFj˚ab
ij i;

and

h˚0j OGj˚ab
ij i:

(d) What happens with the two-body operator if we have a transition probability of
the type

h˚0j OGj˚abc
ijk i;

where the Slater determinant to the right of the operator differs by more than
two single-particle states?

(e) With an orthogonal basis of Slater determinants ˚�, we can now construct an
exact many-body state as a linear expansion of Slater determinants, that is, a
given exact state

�i D
1X
�D0

Ci�˚�:

In all practical calculations the infinity is replaced by a given truncation in the
sum.

If you are to compute the expectation value of (at most) a two-body
Hamiltonian for the above exact state

h�ij OHj�ii;

based on the calculations above, which are the only elements which will
contribute? [there is no need to perform any calculation here, use your results
from exercises (a), (b), and (c)].

These results simplify to a large extent shell-model calculations.
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8.9 Write down the analytical expressions for diagrams (8) and (9) in Fig. 8.2 and
discuss whether these diagrams should be accounted for or not in the calculation
of the energy per particle of infinite matter. If a Hartree-Fock basis is used, should
these diagrams be included? Show also that diagrams (2), (6)–(7) and (10)–(16) are
zero in infinite matter due to the lack of momentum conservation.

8.10 We present a simplified Hamiltonian consisting of an unperturbed Hamil-
tonian and a so-called pairing interaction term. It is a model which to a large
extent mimicks some central features of atomic nuclei, certain atoms and systems
which exhibit superfluidity or superconductivity. To study this system, we will use
a mix of many-body perturbation theory (MBPT), Hartree-Fock (HF) theory and
full configuration interaction (FCI) theory. The latter will also provide us with the
exact answer. When setting up the Hamiltonian matrix you will need to solve an
eigenvalue problem.

We define first the Hamiltonian, with a definition of the model space and the
single-particle basis. Thereafter, we present the various exercises (some of them are
solved).

The Hamiltonian acting in the complete Hilbert space (usually infinite dimen-
sional) consists of an unperturbed one-body part, OH0, and a perturbation OV .

We limit ourselves to at most two-body interactions and our Hamiltonian is
represented by the following operators

OH D
X
˛ˇ

h˛jh0jˇia�˛aˇ C 1

4

X
˛ˇ	ı

h˛ˇjVj	ıia�˛a�ˇaıa	 ;

where a�˛ and a˛ etc. are standard fermion creation and annihilation operators,
respectively, and ˛ˇ	ı represent all possible single-particle quantum numbers. The
full single-particle space is defined by the completeness relation

O1 D
1X
˛D1
j˛ih˛j:

In our calculations we will let the single-particle states j˛i be eigenfunctions of the
one-particle operator Oh0. Note that the two-body part of the Hamiltonian contains
anti-symmetrized matrix elements.

The above Hamiltonian acts in turn on various many-body Slater determinants
constructed from the single-basis defined by the one-body operator Oh0. As an
example, the two-particle model space P is defined by an operator

OP D
mX

˛ˇD1
j˛ˇih˛ˇj;
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where we assume that m D dim.P/ and the full space is defined by

OPC OQ D O1;

with the projection operator

OQ D
1X

˛ˇDmC1
j˛ˇih˛ˇj;

being the complement of OP.
Our specific model consists of N doubly-degenerate and equally spaced single-

particle levels labelled by p D 1; 2; : : : and spin � D ˙1. We write the
Hamiltonian as

OH D OH0 C OV;

where

OH0 D ı
X
p�

.p� 1/a�p�ap�

and

OV D �1
2

g
X
pq

a�pCa�p�aq�aqC:

Here, H0 is the unperturbed Hamiltonian with a spacing between successive single-
particle states given by ı, which we will set to a constant value ı D 1 without loss
of generality. The two-body operator OV has one term only. It represents the pairing
contribution and carries a constant strength g.

The indices � D ˙ represent the two possible spin values. The interaction can
only couple pairs and excites therefore only two particles at the time.

(a) Show that the unperturbed Hamiltonian OH0 and OV commute with both the spin
projection OSz and the total spin OS2, given by

OSz WD 1

2

X
p�

�a�p�ap�

and

OS2 WD OS2z C
1

2
. OSC OS� C OS� OSC/;



388 J.G. Lietz et al.

where

OS˙ WD
X

p

a�p˙ap�:

This is an important feature of our system that allows us to block-diagonalize the
full Hamiltonian. We will focus on total spin S D 0. In this case, it is convenient
to define the so-called pair creation and pair annihilation operators

OPC
p D a�pCa�p�;

and

OP�
p D ap�apC;

respectively.
(b) Show that you can rewrite the Hamiltonian (with ı D 1) as

OH D
X
p�

.p � 1/a�p�ap� � 1
2

g
X
pq

OPC
p
OP�

q :

(c) Show also that Hamiltonian commutes with the product of the pair creation
and annihilation operators. This model corresponds to a system with no broken
pairs. This means that the Hamiltonian can only link two-particle states in so-
called spin-reversed states.

(d) Construct thereafter the Hamiltonian matrix for a system with no broken pairs
and total spin S D 0 for the case of the four lowest single-particle levels. Our
system consists of four particles only that can occupy four doubly degenerate
single-particle states. Our single-particle space consists of only the four lowest
levels p D 1; 2; 3; 4. You need to set up all possible Slater determinants. Find
all eigenvalues by diagonalizing the Hamiltonian matrix. Vary your results for
values of g 2 Œ�1; 1
. We refer to this as the exact calculation. Comment the
behavior of the ground state as function of g.

8.11 (a) We will now set up the Hartree-Fock equations by varying the coeffi-
cients of the single-particle functions. The single-particle basis functions are
defined as

 p D
X
�

Cp� �:

where in our case p D 1; 2; 3; 4 and � D 1; 2; 3; 4, that is the first four lowest
single-particle orbits. Set up the Hartree-Fock equations for this system by
varying the coefficients Cp� and solve them for values of g 2 Œ�1; 1
. Comment
your results and compare with the exact solution. Discuss also which diagrams
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in Fig. 8.2 that can be affected by a Hartree-Fock basis. Compute the total
binding energy using a Hartree-Fock basis and comment your results.

(b) We will now study the system using non-degenerate Rayleigh-Schrödinger
perturbation theory to third order in the interaction. If we exclude the first
order contribution, all possible diagrams (so-called anti-symmetric Goldstone
diagrams) are shown in Fig. 8.2.

Based on the form of the interaction, which diagrams contribute to the
binding energy of the ground state? Write down the expressions for the diagrams
that contribute and find the contribution to the ground state energy as function
g 2 Œ�1; 1
. Comment your results. Compare these results with those you
obtained from the exact diagonalization with and without the 4p � 4h state.
Discuss your results for a canonical Hartree-Fock basis and a non-canonical
Hartree-Fock basis.

Diagram 1 in Fig. 8.2 represents a second-order contribution to the energy
and a so-called 2p � 2h contribution to the intermediate states. Write down
the expression for the wave operator in this case and compare the possible
contributions with the configuration interaction calculations without the 4p�4h
Slater determinant. Comment your results for various values of g 2 Œ�1; 1
.

We limit now the discussion to the canonical Hartree-Fock case only. To third
order in perturbation theory we can produce diagrams with 1p�1h, 2p�2h and
3p� 3h intermediate excitations as shown in

Define first linked and unlinked diagrams and explain briefly Goldstone’s
linked diagram theorem. Based on the linked diagram theorem and the form of
the pairing Hamiltonian, which diagrams will contribute to third order?

Calculate the energy to third order with a canonical Hartree-Fock basis for
g 2 Œ�1; 1
 and compare with the full diagonalization case in exercise (b).
Discuss the results.

8.12 This project serves as a continuation of the pairing model with the aim being
to solve the same problem but now by developing a program that implements
the coupled cluster method with double excitations only. In doing so you will
find it convenient to write classes which define the single-particle basis and the
Hamiltonian. Your functions that solve the coupled cluster equations will then just
need to set up variables which point to interaction elements and single-particle states
with their pertinent quantum numbers.

(a) Explain why no single excitations are involved in this model.
(b) Set up the coupled cluster equations for doubles excitations and convince

yourself about their meaning and correctness.
(c) Write a class which holds single-particle data like specific quantum numbers,

single-particle Hamiltonian etc. Write also a class which sets up and stores
two-body matrix elements defined by the single-particle states. Write thereafter
functions/classes which implement the coupled cluster method with doubles
only.
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(d) Compare your results with those from the exact diagonalization with and
without the 4p4h excitation. Compare also your results to perturbation theory at
different orders, in particular to second order. Discuss your results.

8.13 Derive the amplitude equations of Eq. (8.31) starting with

0 D h˚a1:::an
i1:::in
jHj˚0i:

8.14 Replace the Minnesota interaction model with realistic models for nuclear
forces based on effective field theory. In particular replace the Minnesota interaction
with the low-order (LO) contribution which includes a contact term and a one-
pion exchange term only. The expressions are discussed in Sect. 8.2.4 and Eq. (8.4).
Reference [62] contains a detailed compilation of all terms up to order NNLO,
with tabulated values for all constants. When adding realistic interaction models
we recommend that you use the many-body perturbation theory codes to second
order in the interaction, see the code link at https://github.com/ManyBodyPhysics/
LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT2/src/.

8.10 Solutions to Selected Exercises

8.1 To solve this problem, we start by introducing the shorthand label for single-
particle states below the Fermi level F as i; j; : : : 	 F. For single-particle states
above the Fermi level we reserve the labels a; b; : : : > F, while the labels p; q; : : :
represent any possible single particle state. Using the ansatz for the ground state j˚0
as new reference vacuum state, the anticommutation relations are

˚
a�p; aq

� D ıpq; p; q 	 F;

and

˚
ap; a

�
q

� D ıpq; p; q > F:

It is easy to see then that

aij˚0i D j˚ii ¤ 0; a�aj˚0i D j˚ai ¤ 0;

and

a�i j˚0i D 0 aaj˚0i D 0:

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT2/src/
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/cpp/MBPT2/src/
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We can then rewrite the one-body Hamiltonian as

OH0 D
X
pq

h pj Oh0 jqi a�paq

D
X
pq

h pj Oh0 jqi
˚
a�paq

�C ıpq2i

X
pq

h pj Oh0 jqi

D
X
pq

h pj Oh0 jqi
˚
a�paq

�CX
i

hij Oh0 jii ;

where the curly brackets represent normal-ordering with respect to the new vacuum
state. Withe respect to the new vacuum reference state, the

8.2 Using our anti-commutation rules, Wick’s theorem discussed in the appendix
and the definition of the creation and annihilation operators from the previous
problem, we can rewrite the set of creation and annihilation operators of

OHI D 1

4

X
pqrs

h pqj Ov jrsi a�pa�qasar

as

a�pa�qasar D
˚
a�pa�qasar

�

C
n
a�pa�qasar

o
C
n
a�pa�qasar

o
C
n
a�pa�qasar

o

C
n
a�pa�qasar

o
C
�

a�pa�qasar

�
C
�

a�pa�qasar

�

D ˚a�pa�qasar
�C ıqs2i

˚
a�par

� � ıqr2i
˚
a�pas

� � ıps2i
˚
a�qar

�

C ıpr2i
˚
a�qas

�C ıpr2iıqs2i � ıps2iıqr2i:

Inserting the redefinition of the creation and annihilation operators with respect to
the new vacuum state, we have

OHI D 1

4

X
pqrs

h pqj Ov jrsi a�pa�qasar

D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�C 1

4

X
pqrs

�
ıqs2i h pqj Ov jrsi ˚a�par

�

� ıqr2i h pqj Ov jrsi ˚a�pas
� � ıps2i h pqj Ov jrsi ˚a�qar

�

C ıpr2i h pqj Ov jrsi ˚a�qas
�C ıpr2iıqs2i � ıps2iıqr2i

�
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D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�

C 1

4

X
pqi

�
h pij Ov jqii � h pij Ov jiqi � hipj Ov jqii C hipj Ov jiqi

� ˚
a�paq

�

C 1

4

X
ij

�
hijj Ov jiji � hijj Ov jjii

�

D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�CX

pqi

h pij Ov jqii ˚a�paq
�C 1

2

X
ij

hijj Ov jiji :

Summing up, we obtain a two-body part defined as

OVN D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�
;

a one-body part given by

OFN D
X
pqi

h pij Ov jqii ˚a�paq
�
;

and finally the so-called reference energy

Eref D 1

2

X
ij

hijj Ov jiji :

which is the energy expectation value for the reference state. Thus, our normal-
ordered Hamiltonian with at most a two-body nucleon-nucleon interaction is defined
as

OHN D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�CX

pq

f p
q

˚
a�paq

� D OVN C OFN ;

with

OFN D
X

pq

f p
q

˚
a�paq

�
;

and

OVN D 1

4

X
pqrs

h pqj Ov jrsi ˚a�pa�qasar
�
;
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where

f p
q D h pj Oh0 jqi C

X
i

h pij Ov jqii

8.4 The following python code sets up the quantum numbers for both infinite
nuclear matter and neutron matter employing a cutoff in the value of n. The full
code can be found at https://github.com/ManyBodyPhysics/LectureNotesPhysics/
tree/master/Programs/Chapter8-programs/python/spstatescc.py.

from numpy import *

nmax =2
nshell = 3*nmax*nmax
count = 1
tzmin = 1

print "Symmetric nuclear matter:"
print "a, nx, ny, nz, sz, tz, nx^2 + ny^2 + nz^2"
for n in range(nshell):

for nx in range(-nmax,nmax+1):
for ny in range(-nmax,nmax+1):

for nz in range(-nmax, nmax+1):
for sz in range(-1,1+1):

tz = 1
for tz in range(-tzmin,tzmin+1):

e = nx*nx + ny*ny + nz*nz
if e == n:

if sz != 0:
if tz != 0:

print count, " ",nx," ",ny, " ",nz,"
",sz," ",tz," ",e

count += 1

nmax =1
nshell = 3*nmax*nmax
count = 1
tzmin = 1
print "------------------------------------"
print "Neutron matter:"
print "a, nx, ny, nz, sz, nx^2 + ny^2 + nz^2"
for n in range(nshell):

for nx in range(-nmax,nmax+1):
for ny in range(-nmax,nmax+1):

for nz in range(-nmax, nmax+1):
for sz in range(-1,1+1):

e = nx*nx + ny*ny + nz*nz
if e == n:

if sz != 0:
print count, " ",nx," ",ny, " ",sz," ",tz,"

",e
count += 1

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python/spstatescc.py
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter8-programs/python/spstatescc.py
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Appendix, Wick’s Theorem

Wick’s theorem is based on two fundamental concepts, namely normal ordering
and contraction. The normal-ordered form of OA OB:: OX OY, where the individual terms
are either a creation or annihilation operator, is defined as

n OA OB:: OX OYo � .�1/p Œcreation operators
 � Œannihilation operators
 : (8.59)

The p subscript denotes the number of permutations that is needed to transform
the original string into the normal-ordered form. A contraction between to arbitrary
operators OX and OY is defined as

OX OY � h0j OX OYj0i: (8.60)

It is also possible to contract operators inside a normal ordered products. We define
the original relative position between two operators in a normal ordered product as
p, the so-called permutation number. This is the number of permutations needed to
bring one of the two operators next to the other one. A contraction between two
operators with p ¤ 0 inside a normal ordered is defined as

�
OA OB:: OX OY

�
D .�1/p

�
OA OB:: OX OY

�
: (8.61)
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In the general case with m contractions, the procedure is similar, and the prefactor
changes to

.�1/p1Cp2C::Cpm : (8.62)

Wick’s theorem states that every string of creation and annihilation operators
can be written as a sum of normal ordered products with all possible ways of
contractions,

OA OB OC OD:: OR OX OY OZ D
n OA OB OC OD:: OR OX OY OZo (8.63)

C
X
Œ1


�
OA OB OC OD:: OR OX OY OZ

�
(8.64)

C
X
Œ2


(
OA OB OC OD:: OR OX OY OZ

)
(8.65)

C : : : (8.66)

C
X
Œ N
2 


(
OA OB OC OD:: OR OX OY OZ

)
: (8.67)

The
P

Œm
 means the sum over all terms with m contractions, while
�

N
2

	
means

the largest integer that not do not exceeds N
2

where N is the number of creation and
annihilation operators. When N is even,

�
N

2


D N

2
; (8.68)

and the last sum in Eq. (8.63) is over fully contracted terms. When N is odd,

�
N

2


¤ N

2
; (8.69)

and none of the terms in Eq. (8.63) are fully contracted.
An important extension of Wick’s theorem allow us to define contractions

between normal-ordered strings of operators. This is the so-called generalized
Wick’s theorem,

n OA OB OC OD::o n OR OX OY OZ::o D n OA OB OC OD:: OR OX OY OZo (8.70)

C
X
Œ1


�
OA OB OC OD:: OR OX OY OZ

�
(8.71)



396 J.G. Lietz et al.

C
X
Œ2


(
OA OB OC OD:: OR OX OY OZ

)
(8.72)

C : : : (8.73)

Turning back to the many-body problem, the vacuum expectation value of
products of creation and annihilation operators can be written, according to Wick’s
theorem in Eq. (8.63), as a sum over normal ordered products with all possible
numbers and combinations of contractions,

h0j OA OB OC OD:: OR OX OY OZj0i D h0j
n OA OB OC OD:: OR OX OY OZo j0i (8.74)

C
X
Œ1


h0j
�
OA OB OC OD:: OR OX OY OZ

�
j0i (8.75)

C
X
Œ2


h0j
(
OA OB OC OD:: OR OX OY OZ

)
j0i (8.76)

C : : : (8.77)

C
X
Œ N
2 


h0j
(
OA OB OC OD:: OR OX OY OZ

)
j0i: (8.78)

All vacuum expectation values of normal ordered products without fully con-
tracted terms are zero. Hence, the only contributions to the expectation value are
those terms that is fully contracted,

h0j OA OB OC OD:: OR OX OY OZj0i D
X
Œall


h0j
(
OA OB OC OD:: OR OX OY OZ

)
j0i (8.79)

D
X
Œall


OA OB OC OD:: OR OX OY OZ: (8.80)

To obtain fully contracted terms, Eq. (8.68) must hold. When the number of
creation and annihilation operators is odd, the vacuum expectation value can be
set to zero at once. When the number is even, the expectation value is simply the
sum of terms with all possible combinations of fully contracted terms. Observing
that the only contractions that give nonzero contributions are

a˛a�ˇ D ı˛ˇ; (8.81)

the terms that contribute are reduced even more.
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Wick’s theorem provides us with an algebraic method for easy determination of
the terms that contribute to the matrix element.
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Chapter 9
Variational and Diffusion Monte
Carlo Approaches to the Nuclear
Few- and Many-Body Problem

Francesco Pederiva, Alessandro Roggero, and Kevin E. Schmidt

9.1 Monte Carlo Methods in Quantum Many-Body Physics

9.1.1 Expectations in Quantum Mechanics

In the previous chapters the authors pointed out in several different ways that the
non-relativistic quantum many-body problem is equivalent to the solution of a very
complicated differential equation, the many-body Schrödinger equation.

As it was illustrated, in the few-body case (A < 6) it possible to find compute
exact solutions. At the very least, one can expand the eigenfunctions on a basis
set including M elements, diagonalize the Hamiltonian matrix, and try to reach
convergence as a function of M . Unfortunately, this procedure becomes more and
more expensive when the number of bodies A increases. There are many ingenuous
ways to improve the speed of convergence and the quality of the results. The price
to pay often is the introduction of more or less controlled approximations.
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All these approaches have one common feature: they end up with some closed
expression for the eigenfunctions. However, we should remember that the wavefunc-
tion per se is not an observable. In order to make predictions to be compared with
experiments, we only need a way to compute expectations of operators OO describing
the observables we are interested in.

Given a many-body Hamiltonian OH, we might want, for instance, to look for the
ground state eigenfunction and eigenvalue. This means that we want to solve the
following equation:

OHj�0i D E0j�0i: (9.1)

At this point we to provide a representation of the Hilbert space in term of some
basis set. This set will be denoted as fjXig. Its elements could be eigenstates of the
position or of the momentum operators, or eigenstates of a simpler Hamiltonian of
which we know the exact spectrum. In order to make the notation less cumbersome,
we will assume that the quantum numbers X characterizing the basis states are in
the continuum. In the case of a discrete spectrum, integrals in the following have to
be replaced by sums over all their possible values, without any loss of generality. As
an example, X could include the positions or the momenta of A nucleons, and their
spin and isospin values.

All the physical information we need about the time-independent problem is then
included in integrals of the form:

hOi � h�0j OO�0i D

Z
dXdX0h�0jXihXj OOjX0ihX0j�0iZ

dXjhXj�0ij2
: (9.2)

These integrals are apparently as hard to solve as the Schrödinger equation itself,
even if we had access to the explicit form of the wavefunction. Is there any real gain
in reformulating the problem this way?

We can first notice that expectations can in general be written in a slightly
different form, independent of the nature of the operator OO:

hOi D

Z
dXjhXj�0ij2 hXj

OO�0i
hXj�0iZ

dXjhXj�0ij2
: (9.3)

For the moment we will just assume that the quotient appearing at numerator of
the expectation is always well defined, and we will later discuss this aspect in more
detail. The standard quantum mechanical interpretation of the wavefunction tells us
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that the quantity:

PŒX
 D jhXj�0ij2Z
dXjhXj�0ij2

; (9.4)

is the probability density of finding the system in the state jXi labeled by the set of
quantum numbers X. Thereby, the expectation integral has the general form:

hOi D
Z

dXPŒX

hXj OO�0i
hXj�0i ; (9.5)

i.e. the average of what we will call the local operator Oloc � hXj OO�0i
hXj�0i weighted

with the probability of finding the system in a given state jXi. Integrals like that
in Eq. (9.5) have a direct physical interpretation. In a measurement process what
we would observe is essentially the result of a sampling process of PŒX
. The
expectation of our operator is approximated by:

hOi ' 1

M

MX
kD1

O.Xk/; (9.6)

where M is the number of measurements performed, and O.Xk/ is a shorthand
notation to indicate the value assumed by the observable OO in the state labeled by
the quantum numbers Xk. The laws of statistics also give us a way of estimating
a statistical error on hOi, and we know that the error decreases by increasing the
number of measurements.

There is here an important point to notice: in a physical measurement process we
have no direct knowledge of the wavefunction, we just sample its squared modulus!

This argument suggests that if we had a numerical way of sampling the squared
modulus of a wavefunction, we could in principle compute expectations and
make comparisons with experiments without needing an explicit expression of the
wavefunction itself. Quantum Monte Carlo methods aim exactly at solving the
many-body Schrödinger equation by sampling its solutions, eventually without any
need of an explicit analytical form.

The remainder of this chapter will be organized as follows. First we will
discuss how to perform calculations based on an accurate, explicit ansatz for
the wavefunction of an A-body system interacting via a purely central potential,
exploiting the variational principle of quantum mechanics (Variational Monte Carlo
methods). Then we will discuss how to sample the exact ground state of the system
by projecting it out of an initial ansatz (Projection Monte Carlo methods). Finally,
we will see how these methods need to be extended when we are interested in
studying Hamiltonians that have an explicit dependence on the spin and isospin
states of the particles, as it happens for the modern interactions employed in nuclear
physics.
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9.2 Variational Wavefunctions and VMC for Central
Potentials

9.2.1 Coordinate Space Formulation

As previously discussed, we are in principle free to choose any representation of
the Hilbert space of the system we like, in order to compute expectations. The most
convenient choice, for a system of particles interacting via a purely central potential,
with no explicit dependence on the spin or isospin state, is to use the eigenstates of
the position operator. If R D r1; : : : rA are the coordinates of the A (identical)1

particles of mass m constituting the system, we have that:

jXi � jRi (9.7)

with the normalization:

hR0jRi D ı.R� R0/ : (9.8)

Notice that we are here considering a 3A-dimensional Cartesian space, without
decomposing it in the product of A3-dimensional spaces. In this representation the
wavefunction is simply given by:

hRj�0i � �0.R/ D �0.r1; : : : rA/: (9.9)

The Hamiltonian instead reads:

OH D
AX

iD1

p2i
2m
C V.r1; : : : rA/; (9.10)

or

OH D
Z

dRjRi
"
� „

2

2m

AX
iD1
r2i C V.r1; : : : rA/

#
hRj ; (9.11)

where V is the interparticle potential. Substituting this form into Eq. (9.1), operating
from the left with hRj gives the Schrödinger differential equation

"
� „

2

2m

AX
iD1
r2i C V.r1; : : : rA/

#
�0.R/ D E0�0.R/ : (9.12)

1We will always refer to systems of identical particle throughout the text. The generalization to
mixtures is normally straightforward, and it will not be discussed here.
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We will often use the same symbol for the Hilbert space operator and its differential
form and write this simply as OH�0.R/ D E0�0.R/; whether the operator or
differential form is used can be discerned readily from context. In this representation
the states of the Hilbert space are sampled by sampling the particle positions from
the squared modulus of the wavefunction j�0.R/j2.

9.2.2 Variational Principle and Variational Wavefunctions

As already seen in the previous chapters, one of the possible ways to approximate
a solution of the many-body Schrödinger equation is to exploit the variational
principle. Given a trial state j�Ti, the following inequality holds:

ET D h�T j OH�Ti
h�T j�Ti 
 E0; (9.13)

where E0 is the ground state eigenvalue of the Hamiltonian OH. The equality holds
if and only if j�Ti D j�0i. The variational principle holds for the ground state, but
also for excited states, provided that j�Ti is orthogonal to all the eigenstates having
eigenvalue lower than that of the state one wants to approximate.

In coordinate space the formulation of the variational principle can be directly
transformed in a form equivalent to that of Eq. (9.5):

ET D

Z
dRj�T.R/j2

OH�T.R/

�T.R/Z
dRj�T.R/j2


 E0; (9.14)

where
OH�T .R/
�T .R/

is called the local energy. Contrary to what happens in functional min-
imization approaches (such as the Hartree-Fock method), the variational principle is
used to determine the best trial wavefunction within a class defined by some proper
ansatz. The wavefunction will depend on a set of variational parameters f˛g. The
solution of the variational problem will therefore be given by the solution of the
Euler problem:

ıET.f˛g/
ıf˛g D 0: (9.15)

This means that in order to find the variational solution to the Schrödinger problem
we need to evaluate many times the integral of Eq. (9.14) using different values of
the variational parameters, and find the minimum trial eigenvalue.



406 F. Pederiva et al.

9.2.3 Monte Carlo Evaluation of Integrals

The integral in Eq. (9.14) is in general defined in a 3A-dimensional space. Since
particles interact, we expect that the solution cannot be expressed as a product
of single particle functions, and therefore the integral cannot be factorized in a
product of simpler integrals. In this sense, the problem is strictly analogous to that
of a classical gas at finite temperature ˇ D 1=KBT . In that case, given a classical

Hamiltonian H. p; q/ D PA
iD1

p2i
2m C V.q1 : : : qA/, the average energy of the system

is given by:

E D 3A

2
KBT C 1

Z

Z
dq1 � � � dqAV.q1 � � � qA/e

�ˇV.q1���qA/; (9.16)

where

Z �
Z

dq1 � � � dqAe�ˇV.q1 ���qA/ (9.17)

is the configurational partition function of the system. Also in this case the integral
to be evaluated is of the same form as Eq. (9.14). We can distinguish in the integrand
the product of a probability density:

P.q1 : : : qA/ D e�ˇV.q1���qA/

Z
; (9.18)

and a function to be integrated which is the potential energy V . For classical systems
we have a quite intuitive way of proceeding, which is at the basis of statistical
mechanics. If we are able to compute (or measure) the potential for some given
set of particle coordinates, and we average over many different configurations (sets
of particle positions), we will obtain the estimate of the potential energy we need.

This fact can be easily formalized by making use of the Central Limit Theorem.
Given a probability density PŒX
 defined in a suitable event space X, let us consider
an arbitrary function F.X/. One can define a stochastic variable:

SN.F/ D 1

N

NX
iD1

F.Xi/; (9.19)

where the events Xi are assumed to be statistically independent, and are distributed
according to PŒX
. The stochastic variable SN.F/will in turn have its own probability
density PŒSN 
, which in general depends on the index N. The Central Limit Theorem
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states that for large N the probability density PŒSN 
 will be a Gaussian, namely:

lim
N!1 PŒSN 
 D 1q

2��2N.F/
exp

�
� .SN � hFi/2

2�2N.F/

�
; (9.20)

where we define the expectation of F as:

hFi D
Z

PŒX
F.X/dX;

hF2i D
Z

PŒX
F2.X/dX;

(9.21)

and

�2N.F/ D
1

N

�hF2i � hFi2	 (9.22)

is the variance of the Gaussian. The reported average is estimated as SN.F/, while
hF2i � hFi2 is estimated by N

N�1
�
SN.F2/ � S2N.F/

	
. This well known result is at

the basis of all measurement theory. Averages over a set of measurements of a
system provide the correct expectation of the measured quantity with an error that
can be in turn estimated, and that decreases with the square root of the number of
measurements N.

This result is very important from the point of view of numerical evaluation of
integrals. If we had a way to numerically sample an arbitrary probability density
PŒX
, we could easily estimate integrals like that in Eq. (9.14). The statistical error
associated with the estimate would decrease as the square root of the sampled points
regardless of the dimensionality of the system.

For a classical system, configurations might be generated by solving Newton’s
equations, possibly adding a thermostat in order to be consistent with the canonical
averaging. However, this is not certainly possible for a quantum system. The
solution is to use an artificial dynamics, provided that it generates (at least in some
limit) configurations that are distributed according to the probability density we
want to use. Once again, in order to simplify the following description we will work
in the space of the coordinates of the A particles, but the argument can be generalized
to arbitrary spaces.

A very detailed description of what follows in this section can be found in the
book of Kalos and Whitlock [1] and references therein.

We start defining a transition matrix Tk.RkC1  Rk/ expressing the probability
that in the k-th step of the dynamics the system moves from the configuration R to
a configuration R0. If at the first step the system is in a configuration R0, sampled
from an arbitrary distribution P0ŒR0
, the probability density of finding the system



408 F. Pederiva et al.

in a configuration R1 at the next step will be given by:

P1ŒR1
 D
Z

dR0P0ŒR0
T0.R1  R0/: (9.23)

We the introduce an integral operator OT0 such that:

P1ŒR1
 D OT0PŒR0
: (9.24)

With this notation, the probability density of the configuration at an arbitrary step k
will become:

PkŒRk
 D OTk�1PŒRk�1
 D OTk�1 � � � OT1 OT0P0ŒR0
: (9.25)

The sequence of stochastic variables Rk generated at each step of this procedure
is called a Markov Chain. Let us assume that OTk does not depend on the index k.
What we will generate is then a stationary Markov Chain, for which the probability
density generated at each step will only depend on the transition matrix and the
probability density of the first element. In fact:

PkŒRk
 D OTPŒRk�1
 D OT � � � OT OTP0ŒR0
 D OTkP0ŒR0
: (9.26)

Under these assumptions one might wonder if the sequence is convergent (in
functional sense), i.e. if a limiting probability density P1ŒR
 exists. It is interesting
to notice that if such function exists, it has to be an eigenvector of the integral
operator OT . In fact, since we assume OT to be independent of k we have:

limk!1 OTPkŒRk
 D limk!1 PkC1ŒRkC1


OTP1ŒR
 D P1ŒR
:

It is also easy to realize that the eigenvalue is indeed 1. In fact, let us consider the
general relation:

OTP1ŒR
 D 	P1ŒR
: (9.27)

The recursive application of OT would give:

OTkP1ŒR
 D 	 kP1ŒR
: (9.28)

If 	 ¤ 1 we would lose the normalization property of P1ŒR
.
These properties of stationary Markov chains can be exploited to sample a

generic probability density PŒR
. In fact, if we can determine the transition operator
that has as eigenvector a given P1ŒR
, a repeated application of such operator to
an arbitrary initial distribution of points will eventually generate a chain in which
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each element is distributed according to P1ŒR
. There is a simple recipe to construct
such transition operator. We will assume that we have at hand a transition operator
ONT that we can sample (it could be as simple as a uniform probability within a given

volume). We will split the searched transition operator in the product of ONT and an
unknown factor OA that we will call “acceptance probability”, defined in such a way
that:

ONT OA D OT: (9.29)

In order for the system to preserve its equilibrium state once the probability
distribution is reached, we expect that the dynamics described by the random
walk will not change the density of sampled points anywhere in the events space.
Transitions carrying away from a state R to anywhere must be balanced by
transitions leading from anywhere to the same state R:

Z
dR0P.R/T.R0  R/ D

Z
dR0P.R0/T.R R0/ : (9.30)

One way to enforce this condition is to impose the more stringent detailed balance
condition, which requires the integrands in Eq. (9.30) be equal:

P.R/T.R0  R/ D P.R0/T.R R0/ : (9.31)

The detailed balance condition can be in turn recast into a requirement on the
acceptance probability. In fact:

A.R0  R/

A.R R0/
D P.R0/

P.R/

NT.R R0/
NT.R0  R/

: (9.32)

The quantities on the r.h.s. of Eq. (9.32) are all known. The configuration R0 has
to be sampled originating in R from the given transition probability NT.R  R0/.
The probability density P.R/ is the one we actually want to asymptotically sample.
If we interpret the A values to be probabilities to actually keep the transition,
then maximizing the possible A values leads to the slightly modified version of
Eq. (9.32):

A.R0  R/ D min

�
P.R0/
P.R/

NT.R R0/
NT.R0  R/

; 1

�
: (9.33)

This expression is often called the acceptance ratio. In practice, it represents the
probability according to which we have to accept the new configuration as the new
member of the Markov chain, rather than keeping the original point as the next
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point in the chain.2 Further analysis shows that existence and uniqueness of the
correct eigenvalue 1 solution and therefore convergence to the correct distribution
will be guaranteed if (1) every allowed state can be reached from any other by a finite
sequence of transitions and (2) there are no cycle of states. The latter is guaranteed if
there are any transitions that leave the system in the same state, that is any rejections.

There is a case in which Eq. (9.32) further simplifies. If the transition matrix is
taken to be symmetric in the arguments R and R0, the ratio becomes unity, and one
is left with:

A.R0  R/ D min

�
P.R0/
P.R/

; 1

�
: (9.34)

At this point we have all the ingredients to describe an algorithm that performs
a Monte Carlo evaluation of an integral such that of Eq. (9.14). In the following
we will describe the simplest version, i.e. the so called “Metropolis-Hastings
algorithm” [2, 3].

1. Start from an arbitrary configuration of the A particles. If the potential has a
strongly repulsive core one has to pay attention to avoid overlapping pairs.

2. Sweep over the coordinates and generate new positions according to some
transition probability. A simple choice is a uniform displacement within a cube
of side �, i.e.:

NT.R0  R/ D
8<
:

1
�

if jR0˛
i � R˛i j < �

2

0 otherwise
(9.35)

with ˛ D x; y; z, and i D 1 : : :A. This choice has the advantage of being
symmetric. If we imagine to store our configuration in an array RŒ0: : :2
Œ0: : :A�
1
 the implementation of this step would read:

MC_Move()
for i 2 f0;A � 1g do

for j 2 f0; 2g do
RnewŒi
Œ j
 RŒi
Œ j
C .rand./ � 0:5/ �

end for
end for

2The standard jargon refers to this as a “rejection” event. However one has not to be confused:
this is the result of a reversed move, and generates a new element in the chain coincident with the
starting point.
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We will assume that the function rand./ generates a random number uniformly
distributed in Œ0; 1/.

3. At this point we need to evaluate the acceptance ratio. This is easily done with
our choice of the transition matrix, since we only need to evaluate the probability
densities in R and R0:

A.R0  R/ D min

� j�T.R0/j2
j�T.R/j2 ; 1

�
: (9.36)

4. Next we need to decide whether we keep the proposed configuration as the next
element in the chain or if we want to resort to the original one. If we define
acc D A.R0  R/, then:

Accept_reject()
� D rand./
if acc > � then

RŒi
Œ j
 RnewŒi
Œ j

end if

5. According to the Central Limit Theorem, we now need to cumulate the values
of the rest of the integrand. In the case of our variational calculation we need
to sum up the local energies. Notice that this step has to be taken whatever the
result of the procedure described at the previous point. If we want to estimate the
statistical error, we also need to cumulate the square of the local energy.

Acuest()

eloc OH�T .R/
�T .R/

ecum ecumC eloc
ecum2 ecum2C eloc  eloc

6. Steps 2–5 need to be repeated Nsteps times, where Nsteps must be sufficiently large
to provide a small enough statistical error. The final estimate of the energy is
given by hEi ˙�E, where:

hEi D 1

Nsteps
� ecum

�E D
s

1

Nsteps � 1
�

1

Nsteps
� ecum2� hEi2

�
(9.37)
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Notice that this algorithm could in principle be used to evaluate arbitrary integrals.
In fact, it is always possible to multiply and divide the integrand by a probability
density P.X/ that can be used to sample the values of X:

I D
Z

F.X/dX D
Z

PŒX

F.X/

PŒX

(9.38)

9.2.3.1 Autocorrelations

The main hypothesis underlying the Central Limit Theorem is that data used to
construct the averages are sampled independently. While in a measurement process
this is a quite reasonable assumption, in the case of the computation of an integral by
means of any method based on the Markov chain theory (including the Metropolis-
Hastings method) this requirement is not satisfied by construction. In fact, data are
sampled based on a transition matrix, and the resulting random walk has a certain
degree of memory of the past events. What are the consequences of such memory?
Let us consider a sequence of points X1;X2; � � � ;XN sampled via the Metropolis
algorithm from some probability density PŒX
. If we assume these data not to be
independent, we have to consider the joint probability for the specific realization of
the chain in order to estimate the integral of a given function F:

I D 1

N

NX
iD1

Z
dX1; dX2; � � � dXNPŒX1;X2; � � �XN 
F.Xi/: (9.39)

If the samples are independent then PŒX1;X2; � � �XN 
 D PŒX1
PŒX2
 � � �PŒXN 
, and
we are in the case previously discussed. However, since we can arbitrarily exchange
the indexes of the integration variables, we can easily see that the value of I
is unchanged despite the presence of correlations. By construction, in a Markov
process two consecutive samples will always be correlated to each other. This seems
to be inconsistent to the use we want to make of these samples, i.e. to apply the
Central Limit Theorem to integration. However, we can hope that after a certain
number of steps memory is lost, and data will become effectively independent. Is
it possible to estimate this typical autocorrelation length? Based on the previous
argument one can define a measure of the autocorrelation by looking at the variance
of the expectation of F with respect to P:

.�I/2 D
*
1

N2

NX
iD1

F.Xi/

NX
iD1

F.Xj/

+
� hFi2: (9.40)
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The corresponding standard deviation is the estimate of the statistical error on the
integral of F. The first term can be recast in the following way:

*
1

N2

NX
iD1

F.Xi/

NX
iD1

F.Xj/

+

D 1

N2

NX
i;jD1

Z
PŒX1;X2; � � �XN 
F.Xi/F.Xj/dX1 � � � dXN

D 1

N2

NX
i;jD1
hF.Xi/F.Xj/i: (9.41)

Since the Markov chain is stationary, this quantity is expected to depend only on
the difference of the indexes � D i � j. We will then define an autocorrelation
coefficient:

c.F/� D hF.Xi/F.XiC� /i � hFi2
hF2i � hFi2 : (9.42)

The coefficient is normalized to the variance �2.F/, in such a way that C.F/0 D 1.
Correlation coefficients are related to the average of the product of the F in the
following way:

hF.Xi/F.XiC� /i D c.F/��
2.F/C hFi2: (9.43)

We can use the previous expression to estimate the error on I:

.�I/2 D 1

N2

NX
i;jD1
hF.Xi/F.Xj/i � hFi2

D 1

N
�2.F/

NX
�D1

c.F/� C hFi2 � hFi2 D �2.F/

N

NX
�D1

c.F/� : (9.44)

As it can be seen the error not only depends on the variance of F, but also on the sum
over all the autocorrelation coefficients of F. This is the main consequence of having
autocorrelated samples: the statistical error is underestimated by the variance of F,
and needs to be corrected by a factor that depends on the autocorrelation length.

Usually the coefficients c.F/� have an exponential decay. If we approximate them
as c.F/� � exp.��= N�/, the sum of the coefficients can be approximated as:

NX
�D1

c.F/� �
Z 1

0

d�e� �
N� D N�: (9.45)
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This means that it is sufficient to fit the exponential decay of the autocorrelation
coefficients in order to find an estimate of the characteristic autocorrelation length
that corrects the estimate of the error on the integral. In particular the correct
expression for the error is:

�I '
r

1

N � 1�
2.F/ N�; (9.46)

which has a simple interpretation: We are not generating N independent samples of
the variable X during our Markov process, but rather N= N� of them, and this number
must be used as the correct count of events for the error estimation.

It is important to be extremely careful about the estimation of autocorrelations.
in many cases an underestimation of the statistical errors leads to a wrong
interpretation of the results and to wrong physical conclusions.

Autocorrelations also play a crucial role in choosing the step width � in the
Metropolis-Hastings algorithm. A common criterion is to choose it in such a way
that the fraction of accepted moves is about 50%. However, the ideal value is clearly
the one minimizing the autocorrelations among samples, and quite often this value
corresponds to acceptances of the order 30 or 40%.

Once the value of N� has been estimated, it is possible to organize the calculation
in such a way that the statistical error computed by the code is more realistic by
using a reblocking technique. In practice the values of the quantity to be averaged
are summed up in blocks of Nb elements each:

Fb
l D

NbX
iD1

F.Xi/: (9.47)

Then, the Fb
l are used as the data on which performing the computation of the

variance and of the standard deviation. If Nb & N� , the standard deviation will
be corrected by the effects of the autocorrelation of the original data. Typically
calculations store block values so that the values can be “reblocked” for example by
combining pairs of blocks. The estimated error should be unchanged if the blocks
are uncorrelated. In addition, the ratio of the block variance to the variance of the
original function can be used to estimate the number of independent samples, and
therefore the autocorrelation time.

9.2.4 Construction of the Wavefunction and Computational
Procedures

When performing a variational calculation, the first step consists of deciding which
model wavefunction we intend to use.
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First of all we have to take care of the symmetry of the particles. Nucleons are
Fermions, and therefore it is necessary to build an antisymmetric wavefunction.
If the Hamiltonian does not contain terms acting on the spin or isospin state of a
nucleon or of a pair of nucleons, each particle will preserve its own initial state. In
this case it is easy to write an antisymmetric wavefunction simply using a product
of Slater determinants, one for each species.

To build the determinants one needs some single particle orbitals. There are
several possible choices. For nuclei linear combinations of Gaussians or the
eigenstates of the harmonic oscillator are definitely an option. Another choice might
be that of using orbitals coming from a Hartree-Fock calculation. In this case the
orbitals contain some information about the fact that nucleons interact, but there
usually is no consistency between the Hamiltonian used to compute the orbitals and
the Hamiltonian we are interested in.

The basic starting point is then a wavefunction of the form:

'.R/ D detŒj.rp"

i
/
detŒj.rp#

i
/
detŒj.rn"

i
/
detŒj.rn#

i
/
; (9.48)

If we just limited ourselves to this kind of wavefunction we would miss most
of the interesting physics that happens when particles are close together. A seen
in the previous chapters, a very important role is played by the short range
correlations, that should introduce the many-body effects due to repulsion/attraction
of particles at short distance. Contrarily to what one does in other methods, such as
coupled clusters, in Quantum Monte Carlo calculations it is easier to work with
wavefunctions containing explicit two-, three- or many-body correlations.

Here we will use the so-called Jastrow factor, i.e. a product of two-body functions
that helps to reproduce the correlations from the pair-wise potential. The simplest
version of a trial wavefunction therefore reads:

�T.R/ D '.R/
AY

i<j

f .rij/; (9.49)

where R D .r1; � � � ; rA/, and f is the so called Jastrow function (JF). How do we
determine the JF? We have some information that we can exploit. In particular we
might seek for analytic forms of f that satisfy what is commonly called the cusp
condition,(see e.g. [4]) i.e. we must have:

OHf .rij/

f .rij/
<1 (9.50)

everywhere in space. It is easy to realize that satisfying the cusp condition helps to
prevent the local energy from fluctuating too much even in presence of a divergence
of the potential, thereby reducing the variance and the statistical error. Usually in
nuclear physics problems it is customary to take a further step. Recognizing that at
small separations, the many-body Schrödinger equation is dominated by the short-
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range pair potential, the two-body problem is solved to determine the f . In particular
one can solve the following Schrödinger equation in relative coordinates:

� „
2

2m
r2 C qV.r/f .r/ D �f .r/; (9.51)

and impose the boundary condition that the function becomes a constant at a
distance h from the origin, where other parts of the Hamiltonian become important.
The quantities q and h are two variational parameters. One could in principle
consider a third variational parameter in the Jastrow factor by using a modified
Jastrow function Qf such that:

Qf .r/ D e�b log f .rij/ (9.52)

The function f is usually determined by numerically solving Eq. (9.51) with the
Numerov or Runge-Kutta methods. One has to be careful that the resulting table
has to be interpolated to compute the function at an arbitrary distance. Therefore
it is important to choose an appropriate number of points (usually of the order of
a few thousands). Single particle orbitals can also be either tabulated or computed
analytically. Tabulation guarantees in general a faster computation at the price of a
loss in numerical accuracy.

In the code it is necessary to compute derivatives of the wavefunction in order
to estimate the local energy. This can be done either numerically or analytically.
A very good test for checking that there are no major mistakes either in the Monte
Carlo evaluation of integrals or in the computation of the local energy is to use the
so-called Jackson-Feenberg identity for the kinetic energy.

The expectation of the kinetic energy is an integral of the form:

hTi D
� „

2

2m

Z
˝

dR��.R/r2�.R/
Z
˝

dRj�.R/j2
; (9.53)

where˝ is the integration volume. Integrating the numerator by parts one gets:

hTi D
„2
2m

Z
˝

dRr��.R/ � r�.R/
Z
˝

dRj�.R/j2
�
„2
2m

Z
S.˝/

dS��.R/r�.R/
Z
˝

dRj�.R/j2
: (9.54)
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The surface term is zero if the wavefunction is well behaved. We are therefore left
with the integral:

hTi D
„2
2m

Z
˝

dRr��.R/r�.R/
Z
˝

dRj�.R/j2
D
„2
2m

Z
˝

dRj�.R/j2r�.R/
�.R/

� r�
�.R/

��.R/Z
˝

dRj�.R/j2
:

(9.55)
We can sum Eqs. (9.53) and (9.55), and divide by 2 in order to obtain a new kinetic
energy estimator:

hTiJF D
„2
4m

Z
˝

dRj�.R/j2
�r��.R/
��.R/

� r�.R/
�.R/

� r
2�.R/

�.R/


Z
˝

dRj�.R/j2
: (9.56)

This is the Jackson-Feenberg kinetic energy estimator. It is easy to see that
configuration by configuration the value of the integrand of T and TJF are different.
However, they have to be the same on average (i.e. always within the current
statistical error). The equivalence of the two estimators checks the integration
procedure, the correctness of the implementation of the boundary conditions, and
the computation of derivatives. If any of these quantities are wrong, the two
estimates of the kinetic energy will differ. This is an extremely useful consistency
check, and should always be used in a variational calculation.

At this point it is necessary to perform several calculations varying the param-
eters in the wavefunction, and looking for a minimum of the energy. In the next
subsection we will describe algorithms that allow for performing this search in an
automatic way. However, when the number of parameters is small, it is also possible
in principle to perform a scan on a grid.

In Fig. 9.1, as an example, we report the behavior of the variational energy
computed in a 4He nucleus, modeled with a two body Minnesota potential, and
a wavefunction containing only a central Jastrow product. The spatial part of the
orbital is an s-wave Gaussian with half width equal to 1.1 fm. The energies have
been computed for a fixed value of the healing distance h D 3:1 fm as a function of
the quencher parameter q, keeping fixed the amplitude parameter b D 1. Each run
consists of an average over 6.4�105 samples, preceded by 6:4 � 104 equilibration
steps.

As it can be seen, there is a clear minimum of the energy. The minimum can
be determined with sufficient accuracy by fitting the resulting curve. A fit with a
quadratic function predicts a minimum at q � 1:4. The corresponding eigenvalue is
ET D �15:31.4/MeV.3 The procedure should be repeated for different values of all
other variational parameters until an absolute minimum is found.

3The number in parenthesis indicates the statistical error on the last figure.
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Fig. 9.1 An example of variational minimization of the energy. The estimate of the binding energy
of a 4He nucleus described by the Minnesota potential is here plotted as a function of the quencher
parameter q, for a fixed value of the healing distance h (see text). The dotted line serves as a guide
for the eye

The variational wavefunctions can be made arbitrarily richer in structure in
order to improve the results, including what our physical intuition suggests as
important terms to describe correlations. We will later discuss how to construct
trial wavefunctions for realistic nuclear Hamiltonians. A full variational calculation
for the 4He nucleus with the Minnesota potential, including Jastrow factors with a
spin/isospin dependence would give a binding energy ET D �25:52.4/MeV. As an
example, the optimized Jastrow function for the central channel of the Minnesota
potential is shown in Fig. 9.2.

9.2.5 Wave Function Optimization

9.2.5.1 Reweighting Methods

The brute-force optimization of the trial wave function becomes quite cumbersome
with more than a few parameters. In general the problem is equivalent to searching
an absolute minimum in a multi-dimensional space, and does not admit a simple
solution. If one is interested in a quick search for local minima, it is possible to
compute the gradient of the energy in the parameter space, and use for instance
some variant of the steepest descent method. Computation of gradients is based on
the so-called “reweighting method”. If we have a trial function depending on a set
of parameters f˛g, and another depending on a set f˛ C ı˛g, it s not necessary to
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Fig. 9.2 The central channel of the Minnesota potential (dashed-dotted line), and the correspond-
ing numerical Jastrow function (solid line) evaluated for h D 3:1, q D 1:4, and b D 1

perform two independent calculations to compute the difference (which would also
be affected by rather large statistical errors). In fact, the following identity holds):

R
dRj�T.R; f˛C ı˛g/j2O.R/R

dRj�T.R; f˛C ı˛g/j2 D
R

dRj�T.R; f˛g/j2 j�T .R;f˛Cı˛gj2
j�T .R;f˛g/j2 O.R/R

dRj�T.R; f˛g/j2 j�T .R;f˛Cı˛g/j2
j�T .R;f˛Cı˛g/j2

(9.57)

It is therefore possible to use the configurations sampled from a trial wavefunction
with a given parametrization f˛g to compute expectations over a wavefunction with
a different parametrization f˛Cı˛g by simply reweighting the values of the operator
with the ration between the square moduli of the two wavefunctions:

hOf˛Cı˛gi � h�T.Rk; f˛ C ı˛g/jO.Rk/j�T.Rk; f˛ C ı˛g/i
h�T.Rk; f˛ C ı˛g/j�T.Rk; f˛C ı˛g/i

D
P

k
j�T .Rk;f˛Cı˛gj2

j�T .Rk;f˛gj2 O.Rk/P
k

j�T .Rk;f˛Cı˛gj2
j�T .Rk;f˛gj2

(9.58)

where the Rk are sampled from j�T.R; f˛g/j2. Besides the obvious advantage
of avoiding multiple calculations to compute the derivatives, the use of this
reweighting technique allows direct computation of expectations of the gradients
in the parameter space with very high accuracy. The access to gradients opens the
way to the use of automated minimization algorithms such as the already mentioned
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steepest descent method, the Levemberg-Marquardt algorithm [5] or the Linear
Method [6] briefly sketched below.

9.2.5.2 Power Method

There is another class of algorithms that have been recently introduced, and based
on the power method. We will here discuss in particular the algorithm due to Sandro
Sorella [7]. This algorithm was originally discussed in terms of the Lanczos method,
but for a single multiplication by his propagator it becomes equivalent to the simpler
power method that we discuss here.

For � larger than the largest eigenvalue of the eigenvectors contained in j ni,
operating with � � H will multiply the ground state by a larger number than any
other state. Therefore iterating the equation

j nC1i D .� �H/j ni (9.59)

will converge to the ground state. One way to implement this is to use a set of
test functions (which, in principle, should be complete), jmi. This gives the set of
equations

hmj nC1i D hmj.��H/j ni : (9.60)

In his original paper Sorella assumes j ni D j�Ti, and next approximates j nC1i
as a linear combination of the original state and the derivatives with respect to the
parameters

j nC1i ' �˛0j�Ti C
X
nD1

�˛n@˛n j T i �
X
nD0

Onj Ti�˛n (9.61)

and he uses the same functions for jmi, so that

jmi D Omj�Ti : (9.62)

When evaluated in the position representation, the Om for m > 0 correspond to
multiplying by the derivative of the logarithm of the trial function. Substituting these
expressions, and dividing by h�T j�Ti, Eq. (9.60) becomes

h�T jOm.�� H/j�Ti
h�T j�Ti D

X
nD0

h�T jOmOnj�Ti
h�T j�Ti �˛n : (9.63)

The expectation values can be calculated and the linear equations solved to get�˛n.
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Alternatively, the m D 0 and n D 0 terms can be separated. Writing the trial
function expectation of an operator O as hOi, Eq. (9.63) becomes

h�� Hi D �˛0 C
X
nD1
hOni�˛n m D 0 (9.64)

hOm.� � H/i D hOmi�˛0 C
X
nD1
hOmOni�˛n m > 0 : (9.65)

Substituting Eq. (9.64) into Eq. (9.65) gives

hOm.� �H/i � h�� HihOmi D
X
nD1

ŒhOmOni � hOmihOni
 �˛n : (9.66)

Solving gives�˛n>0 and Eq. (9.64) then gives the value for�˛0.
In either case, the result gives an approximation to the next trial function as a

linear combination of the original function and its parameter derivatives. The new
parameters are chosen to give this same linear combination as the first two terms
in the Taylor series. Since dividing the approximate expression for j nC1i by �˛0
gives an expression that is the first two terms in the Taylor series, the new parameters
are

˛
.new/
n>0 D ˛.old/

n C �˛n>0

�˛0
(9.67)

More recently Toulouse and Umrigar [6] proposed a much more efficient method
where the Hamiltonian is diagonalized in the reduced space spanned by the jmi.
The parameter variation is then given by the solution of the generalized eigenvalue
equation

X
nD0

h�T jOmHOnj�Ti
h�T j�Ti �˛n D �E

X
nD0

h�T jOmOnj�Ti
h�T j�Ti �˛n : (9.68)

with the lowest eigenvalue�Emin:

˛
.new/
n>0 D ˛.old/

n C �˛min
n>0

�˛min
0

: (9.69)

The gradient of the local energy is required for the expectation values appearing
in Eq. (9.68), and can be efficiently estimated using the reweighting technique
presented in the previous section.

When the parameters are far away from the minimum this approach can be less
stable than the previous one giving rise to large parameter variations that invalidate
the linear approximation Eq. (9.61). A quick strategy is then to use the solution of
Eq. (9.66) early on in the optimization process and then switch to Eq. (9.68) when
the resulting norm of the variation is below some threshold.
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9.3 Projection Monte Carlo Methods in Coordinate Space

9.3.1 General Formulation

Variational calculations provide only an upper bound for the ground-state eigenvalue
of a given Hamiltonian. However, it is possible to use Monte Carlo algorithms to
actually solve the Schrödinger equation for an arbitrary number of interacting parti-
cles. This class of algorithms is based on the idea of imaginary time propagation.

Let us consider a Hamiltonian OH. The imaginary time evolution of an arbitrary
state is defined starting by the standard time-dependent Schrödinger equation:

� i„ @
@t
j�.t/i D OHj�.t/i: (9.70)

It is possible to Wick rotate, and introduce an imaginary time � D it
„ . The time-

dependent Schrödinger equation is transformed into an imaginary-time-dependent
equation:

� @

@�
j�.�/i D OHj�.�/i; (9.71)

where � is defined as an inverse energy that parametrizes the propagation of
the quantum state. The formal solution can be written using the imaginary time
propagator

j�.�/i D e�� OHj�.0/i (9.72)

It is possible to expand the initial state j�.0/i in eigenstates jni of the Hamiltonian
itself, such that OHjni D Enjni. The imaginary time propagation of j�.0/i DP

n cnjni becomes:

j�.�/i D e�� OH X
n

cnjni D
X

n

cne��En jni (9.73)

Let us now consider the limit of the propagation for � !1. The coefficients of the
expansion cne��En will either decrease (if En > 0) or increase (if En < 0) with the
imaginary time, but in the limit the coefficient corresponding to the ground state of
OH, i.e. c0e��E0 will be dominant. This means that the imaginary time propagator has

the interesting property of filtering out of an arbitrary state in the Hilbert space the
ground state of a given Hamiltonian, provided that the state is not orthogonal to the
ground state to begin with. We want to stress a very important point. The ground
state we are referring to is the mathematical ground state of the Hamiltonian OH.
The physical ground state needs to take into account the symmetry of the particles,
either bosons or fermions. It is very easy to convince oneself that such mathematical



9 Variational and Diffusion Monte Carlo Approaches to the Nuclear Few-. . . 423

ground state is always a nodeless function (i.e. it is zero nowhere but possibly on
the boundaries of the domain of existence of the wavefunction expressed in some
representation). This is because the propagator is a positive definite function, at
least for a Hamiltonian of the standard form OH D OT C OV , where OT is the kinetic
energy of a system of free particles and OV is a local potential. In this case the
eigenvector corresponding to the largest eigenvalue of the propagator is positive
definite within the domain that defines the system. The largest eigenvalue of the
propagator corresponds to the lowest eigenvalue of OH.

Notice that the imaginary time propagator is hermitian not unitary, and the
normalization of the projected ground state is not guaranteed in general. By means
of a small change in the propagator definition it is possible to guarantee the
normalization of the projected ground state. In fact, let us define the propagator
as:

j�.�/i D e��.H�E0/j�.0/i: (9.74)

It is easy to realize that in this case the amplitude of the component of the initial
state along the ground state is preserved (while all other amplitudes decrease
exponentially), and therefore the projected state is normalizable.

We will later discuss in detail the implications of these properties as concerns the
application of imaginary-time propagation to many-fermion systems.

9.3.2 Imaginary Time Propagator in Coordinate
Representation

We will focus on a practical implementation of imaginary time propagation, and
we will limit ourselves to a system of bosons (or Boltzmannions) which do
admit a ground-state wavefunction that is positive definite. We will also consider
Hamiltonians of the form mentioned in the previous subsection, in which the
interaction is local. In this case the propagator is easily represented in coordinates.
Formally we would have:

hRj�.�/i D
Z

dR0hRje��.H�E0/jR0ihR0j�.0/i; (9.75)

where we have inserted a complete set of position eigenstates. The propagator

hRje��. OH�E0/jR0i (9.76)
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seems to be still quite difficult to evaluate. However, let us break up the imaginary
time interval � in two equal intervals �=2. We can write

hRje��. OH�E0/jR0i D hRje� �
2 .

OH�E0/e� �
2 .

OH�E0/jR0i; (9.77)

since OH obviously commutes with itself. Inserting a complete set we obtain:

hRje��. OH�E0/jR0i D
Z

dR00hRje� �
2 .

OH�E0/jR00ihR00je� �
2 .

OH�E0/jR0i; (9.78)

This process can be iterated for an arbitrary large number of times M:

hRje��. OH�E0/jR0i D
Z
� � �
Z

dR00 � � � dRMhRje� �
2 .

OH�E0/jR00i � � � hRMje� �
2 .

OH�E0/jR0i:
(9.79)

Each of the factors in the integrand corresponds to a propagation for a short
imaginary time �� D �=M. In this case we can split the propagator using the
Trotter-Suzuki formula:

e���
2 .

OH�E0/ � e���
2 .

OV�E0/e��� OTe���
2 .

OV�E0/ C o.��3/ (9.80)

The representation in coordinates of each factor is known. The factors containing the
potential, under the hypotheses made, are diagonal in the coordinates themselves,
and simply become:

e���
2 .

OV�E0/jRi D jRie���
2 .V.R/�E0/; (9.81)

while the kinetic term is the propagator of a set of A free particles obeying the
equation:

� @

@�
�.R; t/ D � „

2

2m
r2�.R; t/ (9.82)

This is a classical free diffusion equation. If we interpret �.R; t/ as a the density of
the A particles, its evolution in time will be given by the well known diffusion law:

�.R; t/ D 1

.2� „2
m ��/

3A
2

Z
dR0e

� .R�R0/2

2 „
2

m �� �.R0; 0/: (9.83)

The short-time approximation for the propagator, correct at order �� , will then
become:

hRje���
2 .

OH�E0/jR0i � 1

.2� „2
m ��/

3A
2

e���
2 .V.R/�E0/e

� .R�R0/2

2 „
2

m �� e���
2 .V.R/�E0/: (9.84)
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At this point it is possible to proceed in different ways. By substituting Eq. (9.84)
in Eq. (9.79), one obtains an integral in which the integrand is a function of
M replicas of the coordinates of the particles in the system. The ground-state
expectation value of an operator that is a function of the coordinates can then be
computed using on the left and on the right the imaginary time propagation started
from an arbitrary state �.R; 0/. The resulting expression is:

h0jO.R/j0i D lim
�!1h�.R; �/jO.R/j�.R; �/i �

 
1

.2� „2
m ��/

3A
2

!M

�

�
Z Z

� � �
Z

dR dR0 � � � dRM�.R; 0/e���
2 .V.R/�E0/e

� .R�R0/2

2 „
2

m �� e���.V.R0/�E0/ � � �O.RM=2/

� � � e���.V.RM�1/�E0/e
� .RM�1

�RM /2

2 „
2

m �� e���
2 .V.R

M/�E0/�.RM ; 0/ (9.85)

This expression is reminiscent of a path-integral formulation of the problem. The
integral can in principle be computed by means of a Metropolis-like algorithm,
and gives the ground-state expectation of an arbitrary observable, provided that
the number of slices M used is large enough to guarantee a correct filtering of the
ground state. This method is known as Path Integral Ground State Monte Carlo
(PIGS-MC) [8].

However, there is a simpler way to implement the imaginary time propagation.
Let us expand the initial state from which we want to project the ground state in
eigenstates of the position:

j� i '
X

i

�.Ri/jRii (9.86)

We will call each of these points in coordinate space a walker, and we will refer to
the whole ensemble of points as to the population of walkers. If we apply the short-
time propagator to each walker, it is easy to understand its effect. We will call the
application of the short-time propagator to the walker population an imaginary time
step (or simply a time step). Each time step originates a new generation of walkers.

The Gaussian factor in the propagator tells us the probability that a walker
positioned in R0 is displaced to a new position R. Since the probability density is
a Gaussian of variance �2 D „2

m �� , the RMS displacement will be proportional

to
p
�� times a constant, which plays the role of a diffusion constant D, equal to

„2
m . For each coordinate of each particle we need to extract a random number �
distributed as:

PŒ�
 D 1p
2�D��

e� �2

2D�� (9.87)

and add it to the original coordinate.
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DMC_Move()
for i 2 f0;A � 1g do

for j 2 f0; 2g do
RnewŒi
Œ j
 RŒi
Œ j
CD��Œrgaus./


end for
end for

The function rgaus./ generating normally-distributed random numbers is now
universally available as a library routine, but it can easily be implemented starting
from a uniform distribution by using the Box-Muller formula. The part of the
propagator depending on the potential has a slightly different interpretation. In the
classical analogy we could say that the factor W D e���

2 .V.R
M/�E0/ represents the

probability of a process to occur by which new points might be created in the time
interval�� (if W > 1) or destroyed (if W < 1), or in other words, a process related
to the presence of a source or a sink of walkers. W is interpreted as the average
number of walkers that this process would generate over time at the position R. As
we will later see, this creation/absorption (or branching) process is related to the
fact that the normalization of the propagated state is not preserved. Since we cannot
work with a non-integer number of walkers, we can use the following strategy

1. use the quantity W as a weight for the contribution to the estimates from the
walker at a given position. Since in the short-time propagator we have two such
factors, one from the initial position and on from the final position of the walker,
we can use the product of the two as the total weight:

W D exp

�
���

�
V.R/C V.R0/

2
� E0

�
(9.88)

Estimates will be integrals of the form hOi D R
0.R/O.R/dR, and they can be

computed as:

hOi D
PNwk

l WklO.Rkl/PNwk
l Wkl

; (9.89)

where Nwk is the number of walkers in a given generation. We will discuss later
the specific form of the function O for interesting cases.

2. In order to generate a number of points that is correct on average, we can
sample Nmult, the number of points to be generated for the next generation, in
the following way:

Nmult D int.W C �/; (9.90)
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where int./ is the function truncating the argument to an integer, and � is a
random number in Œ0; 1/. Nmult could be 
 1, in which case the next generation
will contain Nmult copies of the walker, or 0, in which case the walker is
suppressed.

The projection of the ground state will be achieved when propagating for a
sufficiently long imaginary time. This means that we need to evolve the population
of walkers for a large number of time steps, and eventually we will sample a density
of points with a distribution proportional to the ground-state wavefunction. In the
initial stage of the run, the energy and other estimators will have a value that is still
strongly biased by the initial state. This means that the initial part of the propagation
should be excluded from the averages. There is no automatic recipe to choose how
much of the walk should be discarded. Usually it is convenient to monitor some
observable (typically energy) and try to see where its value stops having a systematic
trend as a function of the imaginary time.

How is the constant E0 fixed? In principle it should be equal to the ground-state
energy. This would mean that we need to know the solution of the problem. . . before
solving it! In practice it is not strictly necessary to use the exact value of E0, but it
is sufficient to use a realistic variational estimate. The value of E0 can also be used
to reduce the fluctuations in the population of walkers due to the branching process,
at the cost of introducing additional bias. For example, it is possible to modify the
weight of a given configuration in the following way:

QW D Nt

Ng
exp

�
���

�
V.R/C V.R0/

2
� E0

�
(9.91)

where Nt is a “target” number of walkers in the population and Ng is the number
of walkers in the current generation. This modified weight reacts to the variations
of the population, increasing or decreasing the weight depending on whether Ng is
smaller or larger than Nt, respectively. This modification obviously introduces a bias
in the results, since it modifies the propagator. However, this bias will be linearly
decreasing with the time-step �� . The weight can also be rewritten as:

QW D exp

�
���

�
V.R/C V.R0/

2
� QE

�
; (9.92)

where

QE D E0 C 1

��
log

�
Nt

Ng

�
(9.93)

Therefore, at each generation the constant can be modified to keep the size of the
population under control.
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The weight can also be used to estimate the energy. In fact if we take the
logarithm of both members of Eq. (9.92) we obtain:

log QW D ���
�

V.R/C V.R0/
2

� QE


(9.94)

from which we obtain:

E0 D 1

��
log

 
Ng QW

Nt

!
C V.R/C V.R0/

2
: (9.95)

This is the so-called growth energy estimator, and it can be used in principle to
evaluate the ground-state eigenvalue.

A simpler way of evaluating the energy is to use a test function �T.R/. In this
case the idea is to evaluate the following matrix element:

hEi D h0j OHj�Ti
h0j�Ti D

R
dR0.R/ OH�T.R/R
dR0.R/�T.R/

(9.96)

Both numerator and denominator integrals are suitable for Monte Carlo evaluation.
The probability density that we sample is 0.R/, and the functions to be cumulated
following the recipe in Eq. (9.89) are OH�T.R/ and �T.R/. The latter is necessary
whenever �T.R/ is not normalized. We will then have

hEi D h OH�Ti
h�Ti : (9.97)

However, due to the hermiticity of the hamiltonian, one has:

hEi D h0j OHj�Ti
h0j�Ti D

h�T j OHj0i
h0j�Ti D E0; (9.98)

independent of the choice of �T.R/. This is the most practical way to evaluate the
energy eigenvalue and its standard deviation. Other observables can be evaluated
in a similar way. However the results will always depend on the choice of the test
function. We will discuss this aspect later.

A last important remark remains to be made. In devising the algorithm we are
making some approximations. First of all the imaginary time propagator is not exact,
but is correct only at order ��2. This means that for any finite imaginary time step
value, the answer will be biased of an amount proportional to ��2. The same holds
for the population size whenever one wants to apply population control as described
above. For any finite target population Nt there will be a bias on the answer of order
1=Nt. These biases can be corrected by performing several simulations with different
values of �� and Nt, and then extrapolating to �� ! 0 and 1=Nt ! 0. As we will



9 Variational and Diffusion Monte Carlo Approaches to the Nuclear Few-. . . 429

show in the last part of this chapter, methods exist to completely eliminate the time
step bias. However, it is possible to reduce the bias with some minor modifications in
the propagator and by introducing an acceptance/rejection mechanism (cite CYRUS
TIME STEP).

9.3.3 Application to the Harmonic Oscillator

A very simple illustration of the sense of the algorithm can be made by implement-
ing to the one-dimensional harmonic oscillator. We consider the Hamiltonian:

OH D �1
2

@2

@x2
C 1

2
x2 (9.99)

The ground-state eigenvalue is E0 D 1
2

and the ground-state eigenfunction is the

Gaussian �0.x/ D 1

�1=4
e� x2

2 . As we have illustrated in the previous section, the
propagation can start from any distribution of points with a density not orthogonal
to the ground state. A very simple choice in this case is a constant. In Fig. 9.3
we can see how the histogram of the walkers evolves as a function of the
imaginary time applying the algorithm described in the previous section, including
population control. The initial uniform distribution of walkers in the interval Œ�6; 6

is transformed into the correct Gaussian density. The mechanism that leads to this
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Fig. 9.3 Histogram of the walker population after N DMC imaginary time steps for the harmonic
oscillator Hamiltonian described in text. Here we used �� D 10�3, with a target population of
4000 walkers
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result is easy to understand. Any walker finding itself after diffusion in a region
where the potential is larger than the eigenvalue will tend to be suppressed, while
walkers near the origin will tend to multiply themselves. This will result in a
histogram peaked at the origin ad decaying fast to zero when moving away from
it.

In order to estimate the energy we need a test function. An approximation to the
ground state might be given by the function:

�T.x/ D 1

1C x2
: (9.100)

We can therefore estimate the energy by means of the following quotient [see
Eq. (9.97)]:

hEi D
P

i w.xi/
1�3x2i
.1Cx2i /

3
C 1

2

x2i
1Cx2iP

i w.xi/
1

1Cx2i

; (9.101)

where the sums runs first over all the generations (i.e. the imaginary time steps
performed) and then over all the walkers belonging to a given generation.

In Fig. 9.4 we show the logarithm of the energy estimator averaged over each
single generation as a function of the imaginary time. As we would expect from the
general behavior of the coefficients of the excited states as function of the imaginary

321

 τ 

0.5

1

lo
g(

E
)

Fig. 9.4 Logarithm of the estimated energy averaged over a single generation as a function of the
imaginary time in a run with a population target of 4000 walkers, and with an imaginary time step
�� D 10�4
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Fig. 9.5 Typical fluctuations of the walker population in a DMC run for the one dimensional
harmonic oscillator. The target population in this case is 2000. The imaginary time step is set to
�� D 0:075

time, we see a clear exponential decay of the energy towards the exact eigenvalue.
The figure clearly shows how the transient is not made up of a single exponential.
The initial state needs includes a large number of excited states, that all need to be
projected out before reaching the ground state. In Fig. 9.5 the typical behavior of
the fluctuation in the walker number is reported. In the specific case the time step
was set to�� D 0:3. Nevertheless, the walker number never departs from the target
by more than 3%. This is the effect of the population control procedure described
in the previous subsection. Unfortunately population control alone is not sufficient
to guarantee a stable calculation. In presence of particle-particle interactions that
diverge at the origin fluctuations in the number of walkers become extremely
wide. This is the reason why it is necessary to introduce the so-called importance
sampling, that we will discuss in a later section.

Finally, in Fig. 9.6 we show one of the points discussed in the previous section,
that is the bias of the result due to the finite imaginary time step. The difference
between the energy estimate and the exact eigenvalue is plotted as a function of ��
for a target population of 2000 walkers and a total of 105 generations for each value
of�� . The observed bias is quite small, but well outside of the statistical error. The
dependence on �� is quadratic, as expected from the analysis of the propagator.
Interpolating the data with a function of the form E D E0 C ˛.��/2 we predict E0
to be .�3˙ 1/� 10�5. As it can be seen there is still a small residual bias due to the
finiteness of the population. Further extrapolation would be needed to recover the
exact answer.
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Fig. 9.6 Illustration of the imaginary time-step extrapolation procedure. The energy is computed
for different values of �� , and the results are fitted with a linear function. The intercept will give
the correct prediction for the eigenvalue. Notice that the results should still be extrapolated for an
infinite population. Here we use a target number of walkers equal to 2000, and the runs consist of
105 generations each. Errorbars refer to one standard deviation. The plotted value for �� D 0 and
the corresponding errorbar are obtained from the linear fit of the data

9.3.4 Importance Sampling

The simple diffusion algorithm we have illustrated above suffers of a substantial
deficiency when particles interact with a potential having a repulsive or attractive
core. Since the free particle diffusion propagator does not have any information
about the potential, particles have no restrictions to come close to each other. This
means that the weights will suffer of large fluctuations whenever a pair of particles
find themselves at short distance. The consequent fluctuations in the population
make the computation unmanageable.

The use of an importance function to guide the diffusion process [9] was the
key to make Diffusion Monte Carlo algorithms usable. The idea is to give up on
the request of sampling the ground-state wavefunction, and rather try to sample a
distribution that, asymptotically in imaginary time, is the product of the ground-state
wavefunction and of a known function that is the best possible approximation to the
ground state obtained, for instance, by means of a variational calculation. We will
call this function�G. Starting from Eq. (9.75) we can multiply both sides by �G and
obtain:

�G.R/�.R; ��/ D
Z

dR0G0.R0;R; ��/�G.R/�.R
0; 0/; (9.102)
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where we have defined:

G0.R;R0; ��/ D 1

.2� „2
m ��/

3A
2

e���.V.R0/�E0/e
� .R0

�R/2

2 „
2

m �� : (9.103)

Since all the expressions we have written are correct at order �� , for our purposes
we can assume the equivalence of G0 and G. We can multiply and divide the
integrand in Eq. (9.102) by �G.R0/ to obtain:

�G.R/�.R; ��/ D
Z

dR0G0.R0;R; ��/
�G.R/

�G.R0/
�G.R

0/�.R0; 0/; : (9.104)

In Eq. (9.104) we can identify a new walker density to be propagated, namely:

f .R; �/ D �G.R/�.R; �/; (9.105)

and the corresponding propagator:

QG.R;R0; ��/ D G0.R;R0; �/
�G.R/

�G.R0/
: (9.106)

The quotient of the wavefunctions can be included in the weight, and provides a
correction that prevents the walkers to excessively multiply or die near the divergent
points of the potential This point is better illustrated considering the short time limit
it is possible to expand the ratio of the guiding functions. At first order in �� the
result is:

QG.R;R0; ��/ ' G0.R;R
0; �/

�
1C r�G.R0/

�G.R0/
.R � R0/C � � �


(9.107)

At the same order we can regard the terms in bracket as the expansion of an
exponential and write:

QG.R;R0; ��/ ' G0.R;R
0; �/e

r�G.R
0/

�G.R0/
.R�R0/

(9.108)

This can be combined with the Gaussian factor in G0, and by completing the square
(which introduces a term at order��2), the propagator is modified as follows:

QG.R;R0; ��/ ' 1

.2� „2
m ��/

3A
2

e���
2 .V.R

0/�E0/e
�
.R�R0

�
„
2

m ��
r�G.R

0/

�G.R0/
/2

2 „
2

m �� e���
2 .V.R/�E0/:

(9.109)



434 F. Pederiva et al.

The same expansion can be performed to compute the change in normalization of
the propagated density after a time step. The change in normalization is given by:

N D
Z

dR QG.R;R0; �/; (9.110)

i.e. the total weight of the final points R that can be reached starting from R0. Once
more we can expand the ratio of the guiding functions in the propagator, but this
time up to second order:

QG.R;R0; ��/ ' G0.R;R
0; �/

�
1C r�G.R0/

�G.R0/
.R � R0/

C1
2

@i˛@jˇ�G.R0/.R � R0/i˛.R � R0/jˇ
�G.R0/

C � � �


(9.111)

Inserting the previous equation in Eq. (9.110) we can see that after integrating over
R the terms containing odd powers of .R�R0/ disappear by parity. We are therefore
left with:

N D e���ŒV.R0/�E0


�
1C 1

2

r2�G.R0/
�G.R0/

„2
m
�� C � � �


(9.112)

We can now use the same trick used above to write the expression in square
parenthesis as an exponential. The result is:

N D exp

�
���

�
V.R0/� „

2

2m

r2�G.R0/
�G.R0/

� E0z

�
(9.113)

In the previous expression it is possible to immediately recognize the local energy.
In fact, when using importance sampling, the normalization assumes the expression:

N D exp

"
���

 OH�G.R0/
�G.R0/

� E0

!#
(9.114)

This is the new form of the weight factor that one needs to compute in order
to determine the multiplicity of the walker at a given position. It is immediately
clear that the fact that in the exponential we have the difference between the local
energy, instead of the potential energy, and the reference eigenvalue E0 essentially
resolves the issue related to the fluctuations of the population related to a divergent
behavior of the interaction. In fact, if we knew the exact solution the exponent would
be identically zero, and the population would be absolutely stable. However, by
means of an accurate variational calculation it is possible to obtain a very good
approximation of the ground-state wavefunction, thereby reducing the fluctuations
in the population to a minimum.



9 Variational and Diffusion Monte Carlo Approaches to the Nuclear Few-. . . 435

The algorithm including importance sampling is modified in the following
way.

1. For each walker, and for each coordinate perform a “drift” move along the
gradient of the guiding function. This displacement is deterministic.

DMC_Drift()
for i 2 f0;A � 1g do

for j 2 f0; 2g do
RdriftŒi
Œ j
 RŒi
Œ j
C r�G.R/

�G.R/
jŒi
Œ j
D��

end for
end for

2. Cycle again over coordinates and diffuse the position from Rdrift as in the non-
importance sampled case.

3. Compute the new multiplicity of the walker and the weight to assign to estimators
using

W D exp

"
���

 OH�G.R0/
�G.R0/

� E0

!#
(9.115)

In this way the walkers will asymptotically sample the distribution:

f .R/ D �G.R/0.R/: (9.116)

This means that it is possible to evaluate integrals of the form:

hOi D
R

dRf .R/O.R/R
dRf .R/

: (9.117)

As in the previous case the evaluation of the exact energy eigenvalue can be easily
obtained by using the local energy. In fact, the matrix element of the Hamiltonian
between the guiding function4 and the ground-state wavefunction is:

hEi D h0j
OHj�Gi

h0j�Gi D
R

dRf .R/
OH�G.R/
�G.R/R

dRf .R/
(9.118)

Once more, because of the hermiticity of the Hamiltonian we will have that hEi D
E0. All other estimators will be matrix elements of the operator between �G and 0.

4It is always possible to project the energy from a function �T other than �G, by introducing a
further weighing factor �T

�G
. However this is very rarely used in standard applications.
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9.3.5 The Fermion Sign Problem

As we have mentioned, imaginary time propagation projects out of an arbitrary
initial state the absolute (mathematical) ground state of a given Hamiltonian OH,
which is always a nodeless function. One might correctly object that if the initial
state is chosen in such a way not to have any overlap with this ground state, the
projection will correctly give back some excited state of OH. More rigorously, if
our initial state has components only within a certain subspace of the total Hilbert
space, which could be selected, for instance, by the wavefunction symmetry, then
imaginary time propagation will end up projecting out the eigenstate with lowest
eigenvalue within that given subspace.

This seems to be particularly useful when thinking of applying DMC-like
algorithm to the study of many-fermion systems, as the nuclear systems we are
interested in. The antisymmetry property of the fermionic ground state suggests that
it should be sufficient to start from an arbitrary antisymmetric state j�Ai (provided
it is not orthogonal to the fermion ground state) to obtain the sought solution. In
fact, one might speculate that antisymmetry itself would guarantee that there is no
overlap with the symmetric ground state since the beginning:

lim
�!1 e��. OH�EA

0 /j�A.0/i D
X

n

e��.En�EA
0 /hnj�Aijni D

D hA
0 j�AijA

0 i
C lim

�!1h0j�Aij0ie��.E0�EA
0 / (9.119)

However, this abstract formulation forgets that eventually we need to sample a
probability density in order to operate with a Monte Carlo integration, and any
excited state will have a wavefunction changing sign somewhere, thereby breaking
this requirement. If we had an exact knowledge of the nodal surface of the ground
state (i.e. of the set of points such that A

0 .0/ D 0), we could use an antisymmetric
function �A

G.R/ having the same nodal surface, and obtain by importance function
the required positive definite density to sample:

hEi D h
A
0 j OHj�A

Gi
hA
0 j�A

Gi
D

Z
dRA

0 .R/�
A
G.R/

OH�A
G.R/

�A
G.R/Z

dRA
0 .R/�

A
G.R/

: (9.120)

If � a
G.R/ does not have the same nodal surface as A

0 .R/, we are once again in
trouble.

We might have then the idea of separately sampling the positive and the negative
part of the wave function. It is always possible to split an antisymmetric function as:

 A.R/ D �C.R/� ��.R/; (9.121)
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where both �C and �� are positive definite functions. It is easy to see that each
one, by linearity, is a solution of the Schrödinger equation with the same eigenvalue
as the fermionic ground state. We can call jRCi the walkers sampling the positive
part and jR�i the walkers sampling the negative part of �A. The energy expectation
could be computed as:

EA
0 D

Z
dRCf C.RC/

OH�A
G.R

C/
�A

G.R
C/
�
Z

dRCf �.R�/
OH�A

G.R
�/

�A
G.R

�/Z
dRCf C.RC/�A

G.R
C/�

Z
dRCf �.R�/�A

G.R
�/

; (9.122)

where f ˙, as above, has the meaning of the importance sampled density of walkers.
However, once more we have to notice that since both f C and f � will obey the
same imaginary time Schrödinger equation, the two densities will both converge
to the ground-state density for OH. This means that both the numerator and the
denominator of Eq. (9.122) will tend to 0 in the limit � !1, and the ratio becomes
undetermined. The major effect that one can observe during the calculation is that
the variance of the energy will become exponentially large, and the integral will
be dominated by statistical noise. This is the so called fermion sign problem. For
some authors there is a prove that the computation of estimates such as Eq. (9.122)
is an NP complex problem [10], and a solution will always require computer time
that is exponentially increasing with the dimension of the system. However there are
hints that by using methods that break this plus/minus symmetry, based on correlated
dynamics and cancellation methods it is possible to reduce the cost to a polynomial
dependence [11, 12].

9.3.5.1 Fixed-Node Approximation

A possible way of circumventing the sign problem in the case in which the
antisymmetric ground-state wavefunction has to be real is to use some artificial
boundary conditions [13].

We can define a nodal pocket˝.R/ as the set of points that can be reached from R
without crossing the nodal surface at any point. For a standard Hamiltonian we can
expect that for any pair of points R0;R not on the nodal surface of the wavefunction,
there exist a permutation P of the coordinates such that PR0 2 ˝.R/. This in turn
means that all the space (but for the nodal surface, which has zero measure) can
be covered by summing over all the permutations of the points lying in a single
nodal pocket ˝.R/. This the so-called tiling theorem. The tiling theorem implies
that the fermion ground-state eigenvalue of the Schrödinger equation solved inside
any˝.R/ is the same as the eigenvalue of the problem solved on the whole space.

The prove of the tiling theorem is quite simple. If the tiling property does
not hold for the antisymmetric ground state A

0 .R/, then
P

P ˝.PR/ will not
completely cover the space, leaving out some regions. This means that somewhere
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there are two regions ˝.Ra/ and ˝.Rb/ that share part of the nodal surface
and are not equivalent. It is then possible to construct a function with a lower
eigenvalue in the region ˝.Ra/

S
˝.Rb/ by simply removing the common node

and solving for the ground state of OH within that region. Let us call 0ab this
function. Constructing an antisymmetric function �A.R/ D P

P.�1/P0ab we will
have an antisymmetric function with an eigenvalue lower than that of A

0 .R/, thereby
violating the assumption that 0A is the antisymmetric ground state of OH.

By the same kind of construction it is also possible to prove that the solution
of the Schrödinger equation within a given nodal pocket ˝.R/ is always an upper
bound of the true antisymmetric eigenvalue, and that the exact result is recovered
if and only if the nodal surface of the wavefunction generated by replicating the
pocket coincides with that of the exact eigenfunction.

The previous considerations suggest that solving for the ground state of a given
Hamiltonian within a nodal pocket˝.R/ will provide an upper bound of the energy
of a many-fermion system, which can in principle can by improved by improving
the nodal structure of the test function used to determine the boundary conditions.
This is called the fixed-node approximation. In order to have zero density at the
nodal surface we have to assume that at the border of the nodal pocket an infinite
absorbing potential exists, such that walkers never cross that surface. From the point
of view of the algorithm this introduces a very tiny modification in the code. We have
to remember that we can solve for the ground state in any pocket. This means that
we do not need to care either of the initial position of the walkers or of the associated
sign of the wavefunction. We said that the fixed-node approximation corresponds to
modify the Hamiltonian as follows

OQH D OH C V˝.R/; (9.123)

where

V˝.R/ D
�1 if R 2 S.˝/
0 otherwise

(9.124)

This means that every time the walker crosses the border of the nodal pocket S.˝/
its weight becomes zero, and the walker is simply canceled from the population.
Fixed node calculations are presently very widely employed especially in quantum
chemistry and solid state physics applications (for a review of applications to many
electron systems see [14]). When the wavefunction needs to be complex it is no
longer possible to define a nodal surface, and a different kind of approach has to be
used. This will be discussed in the next section concerning the applications to the
nuclear physics case.
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9.4 Quantum Monte Carlo for Nuclear Hamiltonians
in Coordinate Space

9.4.1 General Auxiliary Field Formalism

We begin by looking at the auxiliary field formalism without importance sampling.
All such diffusion Monte Carlo methods can be formulated as

j�.tC�t/i D
Z

dXP.X/T.X/j�.t/i (9.125)

where X is a set of variables which will become our auxiliary fields, P.X/ is a
probability density,

P.X/ 
 0Z
dXP.X/ D 1 ; (9.126)

and T.X/ is an operator that operates in the Hilbert space of j�.t/i. We are free to
choose the variables X, the probability density P.X/, and the operator T.X/ subject
only to the constraint that the integral gives the desired propagator

e�.H�ET /�t D
Z

dXP.X/T.X/ ; (9.127)

at least in the limit that �t! 0.
In diffusion Monte Carlo methods, we represent the state j�.t/i as a linear

combination of basis states which obviously must span the Hilbert space. These can
be a complete set. An example is the position eigenstates used for diffusion Monte
Carlo for central potentials. They can also form an overcomplete set such as or the
position and spin/isospin bases used in the nuclear GFMC method and the position
and overcomplete outer product of single particle spinor basis used in AFDMC, or
the overcomplete single particle bases used in auxiliary field methods such as those
developed by Zhang and coworkers. For either case, we can denote these basis states
as possible “walkers.” We will denote one of these walker states as jRSi since we
will be applying the method to systems where the basis is given by the positions of
the particles, R, and a spinor for each spin-isospin of the particles, S.

The state, j�.t/i, at time t is represented in diffusion Monte Carlo methods as a
linear combination of walker states

j�.t/i D
NWX
iD1

wijRiSii (9.128)

where wi is a coefficient, often called the weight, and NW is the number of walkers.
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The key ingredient to implementing a diffusion Monte Carlo method is to choose
the walker basis and the operator T.X/ such that when T.X/ operates on a walker
basis state, it gives one and only one new walker basis state. That is we want

T.X/jRSi D W.X;R; S/jR0S0i (9.129)

where jR0S0i is normalized in the same way as jRSi, and W.X;R; S/ is the change in
the normalization from the propagation.

Once we have arranged for Eq. (9.129) to be true, we can implement the
diffusion Monte Carlo by starting with j�.0/i written, as in Eq. (9.128), as any,
not unreasonable, linear combination of walkers. For each walker, we sample X
values from P.X/, and use Eq. (9.129) to propagate to a new walker jR0

iS
0
ii, with a

new weight w0
i given by the proportionality constant of Eq. (9.129) multiplied by

the original weight wi. We branch on the magnitude of the weight, so usually, after
branching, w0

i D 1, where we are ignoring the fermion sign or phase problem for
now and assuming that all of the weights are greater than or equal to zero. We will
deal with the fermion case below.

9.4.2 Operator Expectations and Importance Sampling

9.4.2.1 Mixed Averages

Diffusion Monte Carlo methods efficiently calculate ground-state mixed averages

NOmixed D h�T jOj�.t/i
h�T j�.t/i (9.130)

where j�Ti is trial state. If O is the Hamiltonian, operating on j�.t/i shows that
the result is the ground-state energy for large t. For other operators, for which
the ground state is not an eigenstate, either approximate extrapolation methods or
forward walking or its equivalent must be used to extract the correct ground-state
expectation value.

Given a set of walkers as in Eq. (9.128), the mixed estimate can be calculated by

NOmixed '
PNw

iD1 wih�T jOjRiSiiPNw
iD1 wih�T jRiSii

(9.131)

where the right hand side differs from the correct result because of statistical
errors from the sampling which decreases as N�1=2

W , and possible population size
bias which decreases as N�1

W . Statistical errors can be minimized by reducing the
variance through importance sampling. Population bias also can be controlled with
importance sampling, and, since it decays faster with population size, can be readily
detected and removed by either taking larger numbers of walkers or extrapolation.
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Efficient Monte Carlo methods need to have low variance so that the statistical
error bars can be made small. For our walker propagation, this means that we should
sample new walkers not only corresponding to the weight they will receive from our
algorithm, but with this weight multiplied by their expected survival probability. The
imaginary time Schrödinger equation is self adjoint, so the optimum importance
function is the desired function. Typically, a trial function that can be efficiently
evaluated is determined variationally and used as an approximation to the optimum
trial function. Usually this trial wave function is used as the importance function.
Sometimes a different importance function is used, so we will write this more
general case.

9.4.2.2 Importance Sampling

To add importance sampling, we arrange to sample our walkers from a new state
which we call j�I�.t/i such that

hRSj�I�.t/i D h�IjRSihRSj�.t/i (9.132)

so that

j�I�.t/i D
NwX
iD1

wijRiSii (9.133)

An alternative way of looking at this is that the sampling probability for the walkers
at RiSi has been modified so that

j�.t/i D
NwX
iD1

wih�IjRiSii�1jRiSii : (9.134)

Calculating a mixed average now becomes

NOmixed D
PNw

iD1 wi
h�T jRiSii
h�I jRiSii

h�T jOjRiSii
h�T jRiSiiPNw

iD1 wi
h�T jRiSii
h�I jRiSii

: (9.135)

For the usual case where j�Ii D j�Ti, and wi D 1, we have

NOmixed D 1

Nw

NwX
iD1

h�T jOjRiSii
h�T jRiSii : (9.136)
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We substitute Eqs. (9.132) and (9.133) into Eq. (9.125)

j�I�.tC�t/i D
NwX
iD1

wi

Z
dXP.X/

h�IjR0
iS

0
ii

h�IjRiSiiT.X/jRiSii

D
NwX
iD1

wi

Z
dXP.X/

h�IjT.X/jRiSii
h�IjRiSii

T.X/

W.X;Ri; Si/
jRiSii (9.137)

where jR0
iS

0
ii is defined as in Eq. (9.129). Notice that the operator T.X/=W.X;Ri; Si/

operating on jRiSii gives a normalized walker. The additional weight of this walker
is given by P.X/ h�I jT.X/jRiSii

h�I jRiSii . We want to minimize fluctuations in this weight factor,
and to do this we normalize it and sample from the normalized distribution. The
normalization will be the weight.

We write

N D
Z

dXP.X/
h�IjT.X/jRiSii
h�IjRiSii

D h�Ije�.H�ET /�tjRiSii
h�IjRiSii

D e�.EL.Ri;Si/�ET /�t C O.�t2/ (9.138)

where the local energy EL.Ri; Si/ is defined by

EL.Ri; Si/ D h�IjHjRiSii
h�IjRiSii (9.139)

and we now sample X variables from the normalized distribution

QP.X/ D N �1P.X/
h�IjT.X/jRiSii
h�IjRiSii : (9.140)

The importance sampled diffusion Monte Carlo in the auxiliary field formalism
becomes

j�I�.tC�t/i D
NwX
iD1

wi

Z
dX QP.X/e�.EL.Ri;Si/�ET /�t T.X/

W.X;Ri; Si/
jRiSii : (9.141)

We propagate a walker by sampling an X value from QP.X/, we include the local
energy expression in the weight, and construct the new normalized walker position
and spin state as W�1.X;Ri; Si/T.X/jRiSii. In each of the equations above, the ratio
of the wave function terms gives the walker weight. In Eq. (9.141) these terms have
been combined to give a weight that depends on the local energy expectation value.
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All of the expectation values and weights contain ratios of trial wave functions
so that any normalization factor multiplying the jRSi cancels and any convenient
normalization can be used. We can therefore drop the W factors and normalize our
walker kets at the end of a step. Typically just the walker positions are stored and
the walker spinors are normalized to have magnitude 1.

9.4.2.3 Importance Sampling with a Hubbard-Stratonovich
Transformation

We often have Hamiltonians where the Hubbard-Stratonovich transformation

e
O2
2 D 1p

2�

Z 1

�1
dxe� x2

2 exO (9.142)

can be used to write a propagator in the form of Eq. (9.129). Examples are writing
the kinetic energy as an integral over translations, or writing terms like � i � � j D
.� i C � j/

2 � 6 as an integral over spin rotations.
Since we primarily use the Hubbard-Stratonovich transformation to define our

auxiliary fields, it is useful to work out how importance sampling can be included
within the short-time approximation for this particular case. We begin with a
Hamiltonian that is quadratic in a set of NO operators (which for our nuclear
problems will be momentum and spin-isospin operators) On,

H D 1

2

NOX
nD1

�nO2
n (9.143)

so that the imaginary time propagator is

e�H�t D
Z

dx
1

.2�/NO=2
e� 1

2

PNO
nD1 x2n e�i

PNO
nD1 xn

p
�n�tOn

C O.�t2/ (9.144)

where the �t2 terms comes from the possible non-commutativity of the On.
As before, we choose our walker basis and the operators On such that operating

on a walker, jRSi, with a term sampled from the integrand, gives a result propor-
tional to another walker

e�i
PNO

nD1 xn
p
��tOn jRSi D W.fxng;R; S/jR0S0i (9.145)

where fxng represents the set of sampled xn values.
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We now sample QP.X/ which is

QP.X/ D N �1e� 1
2

PNO
nD1 x2n

h�T je�i
PNO

nD1 xn
p
�n�tOn jRSi

h�T jRSi

D N �1e� 1
2

PNO
nD1 x2n

 
1 � i

NOX
nD1

xn

p
�n�t

h�T jOnjRSi
h�T jRSi

�1
2

NOX
nD1;mD1

xnxm

p
�m�n�t

h�T jOnOmjRSi
h�T jRSi C : : :

!

(9.146)

Notice that if we were to expand T.X/=W.X;Ri; Si/ it would have the form 1C
O.xn�t1=2/CO.xnxm�t/C : : :. Therefore if we drop terms of order�t2, the O.�t/
term of P.X/ contributes only when it multiplies the 1 term from T.X/=W.X;Ri; Si/.
We can therefore integrate it over X without changing the result to this order in �t.
This term cancels the normalization, so that

QP.X/ D e� 1
2

PNO
nD1 x2n

 
1 � i

NOX
nD1

xn

p
�n�t

h�T jOnjRSi
h�T jRSi C O.�t3=2/

!

D e� 1
2

PNO
nD1 x2n e�i

PNO
nD1 xn

p
�n�t

h�T jOnjRSi

h�T jRSi
CPNO

nD1 �nŒ
h�T jOnjRSi

h�T jRSi

2 C O.�t3=2/

D exp

(
�1
2

NOX
nD1

�
xn C i

p
�n�t

h�T jOnjRSi
h�T jRSi

2)

(9.147)

where in the last line, we have written the linear term in x in the exponent, and
included a canceling term so that only the linear term survives integration to order
�t.

We sample our expression by sampling xn from the shifted gaussian (Again, we
assume here that i

p
�n�thOni is real. We will discuss what to do for the complex

case below.)

xn D �n � i
p
�n�thOni (9.148)

where �n is sampled from a gaussian with unit variance. The new unnormalized ket
is

jR0S0i D e�i
PNO

nD1 xn
p
��tOn jRSih�TjRSi (9.149)
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and its weight is given by the local energy expression

W.R0; S0/ D e�ŒhHi�ET 
�t (9.150)

9.4.3 Application to Standard Diffusion Monte Carlo

9.4.3.1 Diffusion Monte Carlo Without Importance Sampling

It is helpful to apply the formalism above to derive the well known central potential
diffusion Monte Carlo algorithm [9]. The Hamiltonian is

H D
AX

jD1

3X
˛D1

p2j˛
2m
C V.R/ (9.151)

where pj˛ and R operate on Hilbert space, and pj˛ is the ˛ component of the
momentum operator for the jth particle. Making the short-time approximation, the
propagator can be written as

e�.H�ET /�t D e
PA

jD1

P3
˛D1

p2j˛
2m �te�ŒV.R/�ET 
�t C O.�t2/ : (9.152)

Since the Hamiltonian does not operate on the spin, we can drop the spin variable
from the our walker expressions and take just a position basis jRi. Operating with
the potential term

e�ŒV.R/�ET 
�tjRji D e�ŒV.Rj/�ET 
�tjRji (9.153)

clearly satisfies Eq. (9.129). The kinetic energy part of the propagator does not
satisfy Eq. (9.129). However, by using the Hubbard-Stratonovich transformation,
we can write the kinetic energy in terms of the translation operators e� i

„
pjˇa. We

introduce the auxiliary field or Hubbard-Stratonovich variables, xj˛, and write

e�PA
jD1

P3
˛D1

p2j˛
2m �t

D
Y
j˛

1

.2�/3=2

Z
dxj˛e� x2j˛

2 e� i
„

pj˛xj˛

q
„
2�t
m (9.154)

With this definition, X is the set fxj˛g, for the A particles,

P.X/ D
Y
j˛

1p
2�

e� x2j˛
2 ; (9.155)
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and

T.X/jRi D e�ŒV.R/�ET 
�tjRC�Ri (9.156)

where R0 D RC�R is given by translating each particle’s position in R

r0
j˛ D rj˛ C xj˛

„2�t

m
: (9.157)

This is identical to the standard diffusion Monte Carlo algorithm without importance
sampling. We move each particle with a gaussian distribution of variance „2�t

m , and
include a weight of e�ŒV.R/�ET 
�t. We would then include branching on the weight
to complete the algorithm.

While the Hubbard-Stratonovich transformation is the most common, there are
many other possibilities. For example, the propagator for the relativistic kinetic
energy

p
p2c2 C m2c4 �mc2 can be sampled by using

e�
hp

p2c2Cm2c4�mc2
i
�t D

Z
d3xf .x/e� i

„
p�x (9.158)

with

f .x/ D
Z

d3p

.2�/3
e

i
„

p�xe�
hp

p2c2Cm2c4�mc2
i
�t

D emc2�tK2
�mc

„
p

x2 C c2�t2
�

(9.159)

where K2 is the modified Bessel function of order 2 [15].

9.4.3.2 Importance Sampled Diffusion Monte Carlo in the Auxiliary Field
Formulism

We break up the Hamiltonian as a kinetic and potential part. The potential part
gives the usual e�V.R/�t weight, and we need to work only with the importance
sampled kinetic energy part. The kinetic energy operator is already written as a sum
of squares,

KE D
X

j˛

p2j˛
2m

(9.160)
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where j is the particle label and ˛ is the x, y, or z coordinate. We can identify �j˛ D
m�1, and Oj˛ D pj˛. Substituting this into our previous formalism, we have

i
q
�j˛�thOj˛i D i

r
�t

m

h�T jpj˛jRSi
h�T jRSi

D �
s
„2�t

m

@j˛h�T jRSi
h�T jRSi : (9.161)

The sampled value of xj˛ will be

xj˛ D �j˛ C
s
„2�t

m

@j˛h�T jRSi
h�T jRSi (9.162)

where the �j˛ are sampled from a gaussian with unit variance. The new walker will
be

jR0S0i D e� i
„

P
j˛ xj˛

q
„
2�t
m pj˛ jRSi : (9.163)

Since e� i
„

pj˛a is the translation operator that translates the ket’s j˛ position
coordinate by a. We have

S0 D S

R0
j˛ D Rj˛ C xj˛

s
„2�t

m

D Rj˛ C �j˛

s
„2�t

m
C „

2�t

m

@j˛h�T jRSi
h�T jRSi (9.164)

which is the standard diffusion Monte Carlo propagation. The weight factor is the
local energy.

9.4.4 Fixed-Phase Importance-Sampled Diffusion Monte Carlo

The fixed-phase approximation [16] was developed to extend the fixed-node
approximation to electrons in a magnetic field where the ground-state wave function
is complex. The approximation enforces the trial function’s phase as the phase for
the calculated ground state. Diffusion Monte Carlo is used to sample the magnitude
of the ground state.

If the walker phase has been chosen so that h�T jRi is real, the fixed-phase
approximation requires that after propagation h�T jR0i would also be real since an
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imaginary part would correspond to the calculated ground-state having a different
phase than the trial function. Therefore in the implementation of the fixed-phase
approximation we discard the imaginary part of the weight of a propagated walker.
For an arbitrary initial phase, we discard the imaginary part of the ratio h�T jR0i

h�T jRi which
means that the we replace the importance sampled factor in Eq. (9.146) with its real
part

h�T je�i
PNO

nD1 xn
p
�n�tOn jRSi

h�T jRSi

! Re

"
h�T je�i

PNO
nD1 xn

p
�n�tOn jRSi

h�T jRSi

#
: (9.165)

The fixed-phase algorithm for propagating a walker is then

1. Propagate to the new position (the spin does not change with a central potential)

S0 D S

R0
j˛ D Rj˛ C �j˛

s
„2�t

m
C „

2�t

m
Re

�
@j˛h�T jRSi
h�T jRSi



(9.166)

2. Include a weight factor for the walker of

W D e�.RehHi�ET/�t (9.167)

This is identical to the fixed-phase algorithm of Ortiz et al.
We will see that similar approximations can be used for our spin-isospin

dependent problems.

9.4.5 Application to Quadratic Forms

Quadratic forms in operators that change from one walker to another can be
diagonalized to produce the sum of squares needed for Eq. (9.143). That is for

H D 1

2

X
ij

OiAijOj (9.168)
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with Anm real and symmetric, we can calculate the normalized real eigenvectors and
eigenvalues of the matrix A,

X
j

Aij 
.n/
j D �nj ii

X
j

 
.n/
j  

.m/
j D ınm : (9.169)

The matrix is then

Aij D
X

n

 
.n/
i �n 

.n/
j (9.170)

and substituting back we have

H D 1

2

X
n

�nO
2
n

On D
X

j

 
.n/
j Oj ; (9.171)

which is now in the form of Eq. (9.143).

9.4.6 Auxiliary Field Breakups

There are many possible ways to break up the nuclear Hamiltonian using the
auxiliary field formalism. As a concrete example let’s look at the spinor propagator
when we have a spin-exchange potential between A neutrons

V D
X
i<j

v�.rij/� i � � j (9.172)

Taking the operators to be the x, y, and z components of the Pauli operators for each
particle, we have a quadratic form in these 3A operators. Since walker gives the
positions of the neutrons, we know the value of v� .rij/ for all pairs. We can then
write

V D 1

2

AX
ij

Bij�ix�jx C 1

2

AX
ij

Bij�iy�jy C 1

2

AX
ij

Bij�iz�jz (9.173)
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where Bii D 0, and Bij D v�.rij/ for i ¤ j. Finding the eigenvectors  .n/i and
eigenvalues �n of the B matrix, we can write

V D 1

2

X
n

�n.Onx/
2 C 1

2

X
n

�n.Ony/
2 C 1

2

X
n

�n.Onz/
2

Onx D
AX

iD1
 
.n/
i �ix

Ony D
AX

iD1
 
.n/
i �iy

Onz D
AX

iD1
 
.n/
i �iz : (9.174)

Using the Hubbard-Stratonovich transformation would give us 3A auxiliary fields.
We can modify this transformation. For example, the diagonal elements of the

B matrix are zero. Adding a nonzero diagonal term Bjj, would give us additional
terms proportional to �2jx D �2jy D �2jz D 1, that is, these would be additional purely
central terms. Subtracting a corresponding central contribution would then give an
identical interaction, but different eigenvectors and therefore different spin rotation
operators.

Another alternative would be to look at each term in the sum separately as a
quadratic form of two operators. The resulting 2 � 2 matrices have two eigenvalues
and eigenvectors so that

v�.rij/�ix�jx D 1

4
v� .rij/Œ�ix C �jx


2 � 1
4
v�.rij/Œ�ix � �jx


2 (9.175)

and each of the 3A.A � 1/=2 terms would require 2 auxiliary fields or 3A.A � 1/
total. We can reduce the number of auxiliary fields by including diagonal terms
to our 2 � 2 matrix equal to the off diagonal terms. These make the eigenvector
.1;�1/=p2 have a zero eigenvalue, which then does not contribute

v�.rij/�ix�jx D 1

2
v�.rij/Œ�ix C �jx


2 � v�.rij/ (9.176)

where the second term on the right hand side is a central potential counter term
that would be added to the physical central potential, and 3A.A � 1/=2 auxiliary
fields would be required. This form could also be derived by expanding the square
Œ�ix C �jx


2.
Each of these breakups gives the same net propagator after integration of the

auxiliary fields. If a good importance function is used, and the sampling can
be carried out, we would expect the local energy for a complete step to have
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low variance, and therefore the propagation to have low variance. The trade off
then would be the complexity of constructing the operator combination versus the
number of auxiliary fields needed in the propagation. In our work to date, we have
used the full diagonalization to minimize the number of auxiliary field integrations.
The cost of the diagonalization is order A3 which is the same order as the cost
for calculating a Slater determinant for the trial functions we need. However, it
is easy to imagine having more complicated Hamiltonians where the cost of full
diagonalization would be prohibitive (for example adding � degrees of freedom
to the nuclei) and a simpler breakup using more auxiliary fields would be more
efficient.

The best break up will be the one which optimizes the accuracy and variance of
the results for a given amount of computational resources.

9.4.7 AFDMC with the v0
6
Potential for Nuclear Matter

The Argonne v0
6 potential includes central, spin and isospin exchange, and tensor

interactions. Writing out the components, the Hamiltonian is

H D
X

i˛

p2i˛
2m
C
X
i<j

vc.rij/C
X

i<j;˛ˇ

n
v�.rij/ı˛ˇ C vt.rij/

h
3 Ǫ � Orij

Ǒ � Orij � ı˛ˇ
io
�i˛�jˇ

C
X

i<j;˛ˇ	

n
v�� .rij/ı˛ˇ C vt� .rij/

h
3 Ǫ � Orij

Ǒ � Orij � ı˛ˇ
io
Œ�i˛�i	 
Œ�jˇ�j	 


C
X
i<j;	

v� .rij/�i	 �j	 (9.177)

where ˛ and ˇ refer to the x, y, and z components and Ǫ Ǒ are the corresponding
unit vectors. We work in a position basis. The potential is quadratic in the 15A
spin-isospin operators �i˛ , �i	 , �i˛�i	 . Since each spin-isospin operator can rotate
the corresponding spin-isospinor the natural basis is the overcomplete basis of the
outer product of these spin-isospinors—one for each particle. A walker consists of
an overall weight factor, and x, y, and z coordinates and four complex numbers for
the components of jp "i, jp #i, jn "i, jn #i for each of the A particles.
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9.4.7.1 The v0
6

Hamiltonian as a Sum of Operator Squares

We now follow Sect. 9.4.5 and define matrices

C�
i˛;jˇ D v�.rij/ı˛ˇ C vt.rij/

h
3 Ǫ � Orij

Ǒ � Orij � ı˛ˇ
i

C��
i˛;jˇ D v�� .rij/ı˛ˇ C vt� .rij/

h
3 Ǫ � Orij

Ǒ � Orij � ı˛ˇ
i

C�
i;j D v� .rij/ (9.178)

which have zero matrix elements when i D j. Their eigenvalues and normalized
eigenvectors are defined as

X
jˇ

C�
i˛;jˇ 

� .n/
jˇ D ��n � .n/i˛

X
jˇ

C��
i˛;jˇ 

� .n/
jˇ D ���n  

�� .n/
i˛

X
j

C�
i;j 

� .n/
j D ��n � .n/i (9.179)

with operator combinations

O�
n D

X
i˛

 
� .n/
i˛ �i˛

O��
nˇ D

X
i˛

 
�� .n/
i˛ �i˛�iˇ

O�
n˛ D

X
i

 
� .n/
i �i˛ (9.180)

The Hamiltonian becomes

H D
AX

iD1

3X
˛D1

p2i˛
2m
C
X
i<j

vc.rij/C 1

2

3AX
nD1

��n .O
�
n /
2

C1
2

AX
nD1

3X
˛D1

��n.O
�
n˛/

2 C 1

2

3AX
nD1

3X
˛D1

���n .O
��
n˛ /

2

(9.181)

This is, of course, identical to the original Hamiltonian given in Eq. (9.177), but now
it is in a form that makes the propagator easy to sample using auxiliary fields.
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9.4.7.2 Complex Auxiliary Fields

In realistic nuclear physics problems, the fermion sign problem necessarily becomes
a phase problem since conservation of angular momentum requires that flipping a
spin changes the orbital angular momentum, which induces an angular phase to
the wave function. Various fixed-phase approximations can be used. The Hubbard-
Stratonovich transformation integrates the auxiliary field over all real values with
a gaussian weight. With importance sampling, the gaussian for xn is shifted by
i
p
�n�thOni as shown in the last line of Eq. (9.147). As Zhang and Krakauer [17]

showed for electronic structure problems, it is equally valid to integrate the auxiliary
field over any shifted contour, and by shifting the contour so that xn becomes
complex and takes on the values xn D zC i

p
�n�thOni, �1 < z <1. Integrating

over these values does not change the result. However, now this factor is real. We
implement the fixed phase approximation by taking the real part of hHi.

Note that this method cannot be used for the momentum operator. This is because
the operator e� i

„
pj˛a is not bounded if a has an imaginary part. We therefore

implement the kinetic energy terms exactly as in the central potential fixed-phase
approximation.

There are of course other possible approximations that can be used. The auxiliary
fields can be kept real. We find that the approximation is more accurate with Zhang-
Krakauer prescription for auxiliary fields for the spin operators.

9.4.7.3 The v0
6

Algorithm

We can now give the complete algorithm used for the v0
6 potential.

1. We begin with a set of walkers jRiSii which we sample from our trial function
magnitude squared, jhRSj�Tij2, with Metropolis Monte Carlo. The walkers
consist of the 3A coordinates of the A particles, and A 4-component normalized
spinors.

2. For each walker in turn we calculate the C� , C� and C�� matrices, their
eigenvalues, and their eigenvectors.

3. From the trial function and spinor values we evaluate h�j˛i, h�j˛�jˇi, h�j˛i, hpj˛i,
and hHi.

4. We sample the complex values for the spin-isospin auxiliary fields

xn D �n C i
p
�n�thOni (9.182)

and transform our walker spinors using

jRS0i D e�i
PNO

nD1 xn
p
��tOn jRSi (9.183)

and normalize the spinors
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5. We sample the new positions from

r0
j˛ D rj˛ C �j˛

s
„2�t

m
C „

2�t

m
Re
@j˛h�T jRSi
h�T jRSi (9.184)

6. The weight of the new walker is given by W = e�ŒRehHi�ET 
�t

7. We branch on the walker weight, taking the number of new walkers to be the
integer part of W plus a uniform random value on .0; 1/. If the weight W is
negative, we discard the walker.

9.4.8 Isospin-Independent Spin-Orbit Interaction

Without isospin exchange, the spin orbit term for particles j and k is

1

4„vLS.rjk/Œ.rj � rk/ � .pj � pk/
 � .� j C � k/ (9.185)

We can write the kinetic energy plus spin-orbit interaction Hamiltonian as

X
j˛

p2j˛
2m
C 1

4„
X
j<k

vLS.rjk/Œ.rj � rk/ � .pj � pk/
 � .� j C � k/

D
X

j˛

. pj˛ C m
4„
P

k¤j vLS.rjk/Œ.� j C � k/ � .rj � rk/
˛/
2

2m
C VCounter

VCounter D � 1

2m

X
j˛

2
4 m

4„
X
k¤j

vLS.rjk/Œ.� j C � k/ � .rj � rk/
˛

3
5
2

(9.186)

where the counter terms subtract off the unwanted interaction from completing the
square. The counter terms do not depend on pj, so they can be included with the rest
of the local potential, and will contribute to the drift and the local energy for that
part. However, we will see that the local energy part is canceled below (that is the
final weight will be just the correct total local energy which does not include the
counter terms).

Using the Hubbard-Stratonovich break up with importance sampling, we have
�j˛ D m�1, and

i
q
�j˛�thOj˛i D �

s
„2�t

m

@j˛h�T jRSi
h�T jRSi C i

r
m�t

16„2
X
k¤j

Œ.h� ji C h� ki/ � rjk
˛vLS.rjk/ :

(9.187)
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The sampled value of xj˛ will be

xj˛ D �j˛ C
s
„2�t

m

@j˛h�T jRSi
h�T jRSi � i

r
m�t

16„2
X
k¤j

Œ.h� ji C h� ki/ � rjk
˛vLS.rjk/ :

(9.188)

where our fixed-phase like approximation will modify this to keep the translation
real, so that

xj˛ D �j˛ C Re

8<
:
s
„2�t

m

@j˛h�T jRSi
h�T jRSi � i

r
m�t

16„2
X
k¤j

Œ.h� ji C h� ki/ � rjk
˛vLS.rjk/

9=
; :

(9.189)

The walker propagator is

jR0S0i D e� i
„

P
j˛ xj˛

q
„
2�t
m pj˛e

i
P

j˛ xj˛

q
m�t
16„2

P
k¤jŒ.� jC� k/	rjk
˛vLS.rjk/jRSi (9.190)

The local energy term for the spin orbit will contain the kinetic energy, the spin
orbit, and the negative of the counter terms. Therefore, the counter term contribution
cancels in the weight, and the final weight is the local energy.

9.5 GFMC with Full Spin-Isospin Summation

As mentioned above, current high quality trial wave functions for the coordinate
space nuclear Hamiltonians require the same computational complexity to calculate
either one or all of the spin-isospin amplitudes at a specified position for the
particles. Very roughly for A nucleons, each of which can be a proton or neutron
with spin up or down, the number of spin-isospin amplitudes is 4A. Symmetries can
lower this factor but not change its overall exponential character (see Table 9.1).

Typically these calculations are done in either a good charge or good isospin
basis. In a good charge basis, with A nucleons, with Z protons, the number of
combinations of protons and neutrons is AŠ

ZŠ.A�Z/Š , while the tensor force can flip

any of the spins so there are 2A spin states. The total number of allowed spin-isospin
states is the product of these factors. Sometimes the initial calculations are done with
a Hamiltonian that conserves isospin and the charge symmetry breaking components
are added perturbatively. In this case the number of states can be further reduced.
Since Tz D 2Z�A

2
, the number of isospin states T states for a given Tz 	 T is given

by the difference in the number of charge states with Tz D T and Tz D TC1, which
is AŠ

. A
2�T/Š. A

2 CT/Š
2TC1

A
2 CTC1 .
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Table 9.1 The number of spin-isospin amplitudes for the ground states of some representative
nuclei

Nucleus Spin Charge states Total Isospin/T reversal
4He 16 6 96 16
8Be 256 70 17,920 1792
12C 4096 924 3,784,704 270,336
16O 65;536 12;870 8:4	 108 4:7	 107

Time-reversal invariant states have a further factor of 2 reduction, since in that
case, the time reversal operator

T D
"

AY
iD1
�ix�iz

#
K (9.191)

relates the amplitudes of the states given by flipping all the spins. Here K is the
complex conjugating operator.

To see how this works, we can look at a straightforward generalization of a
Jastrow-Slater trial state,

j�Ti D
2
4S Y

i<j

X
p

f . p/
ij O. p/

ij

3
5 j˚i (9.192)

where j˚i is a model state, typically one or a small linear combination of
antisymmetric products of single particle orbitals. The p sum is over the same sort
of operators as those in the potential (usually operators with gradients are either
omitted or kept only at lowest order), with the Jastrow correlations f . p/

ij depending

only on the spatial operator jri � rjj, while the O. p/
ij contain spin-isospin operators

and the unit vector operators ri�rj

jri�rjj . The S is a symmetrizing operator applied to
the Jastrow product, since the operators in general do not commute, so that the trial
function is properly antisymmetric under interchange.

To form a trial wave function we take the inner product with hRSj to obtain
�T.R; S/ D hRSj�Ti. The spatial operators operating to the left on their eigenstate
hRSj are replaced by their eigenvalues. This leaves just the spin-isospin matrix ele-
ments. The model state is evaluated for all possible spin-isospin states as enumerated
above, hRS0j˚i. In our spin-isospin basis, each of the operators hS00jO. p/

ij jS0i is a
sparse matrix which can either be tabulated or easily calculated as needed. For
example, in the charge basis, acting on a single basis state, the interaction can change
the spins of a pair to any of the four values. If the particles of the pair are a neutron
and a proton, they can be interchanged. This shows that there are at most either 4 or
8 nonzero entries per row or column of the matrix representation. The construction
of the Jastrow product is obtained by these repeated sparse-matrix multiplications.
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The symmetrizing operator has the factorial of the number of pairs terms. It
would be prohibitive to calculate explicitly. However, the commutator terms are
small, so the sum over orders of the operators is done by Monte Carlo sampling.

Since much of the computational time is spent in evaluating the trial wave
functions, wave functions that include more complicated correlations as well as
alpha particle clustering are often included. The simplest wave function above is
adequate for the alpha particle.

A GFMC calculation uses walkers given by positions for all the particles, and
amplitudes for each of the possible spin-isospin states in the basis.

In the simplest GFMC implementation, the so-called primitive approximation
can be used. Here the propagator is

2
4Y

i<j

e� 1
2
�
P

p v
. p/
ij

3
5 e��Pi

p2i
2m

2
4Y

i<j

e� 1
2
�
P

p v
. p/
ij

3
5 (9.193)

where the opposite order of the pairs is taken in the two products to minimize the
time-step errors. The exponentials of the pair operators can be written as a linear
combination of pair operators, and these are then operated on the walker states
giving new amplitudes. The kinetic energy term is implemented by sampling a
gaussian to give new positions.

9.6 General Projection Algorithms in Fock Space
and Non-local Interactions

In recent years, a number of projection algorithms working in a discrete Fock space
(configuration space) rather than in coordinate space have been proposed [18–23].
While more similar to more standard many-body techniques like Coupled Cluster
(CC) and Many Body Perturbation Theory already covered in previous chapters
the adoption of statistical techniques in a configuration space has some advantage.
First of all Monte Carlo techniques can be implemented with a much milder scaling
with the system size enabling the possibility with a much larger number of basis
states that build up the total Hilbert space. Contrary to e.g. CC theory we can ensure
that the final QMC estimate for the ground-state energy would be an upper bound
of the true eigenvalue, thus providing useful benchmark results. Also, working on
a finite many-body space allows practical calculations with non-local interactions,
like those developed within the Chiral Effective Field Theory approach to nuclear
forces, in a far more controllable way than not with the continuous coordinate-space
formulation exposed so far (as was done in [24]). Finally, another great advantage of
performing the Monte Carlo on a discrete Hilbert space is the possibility to devise
an efficient strategy to reduce the impact of the sign-problem by using cancellation
techniques [18–20] in an analogous fashion to what was sketched at the end of
Sect. 9.3.5. Unfortunately we won’t have space here to cover these aspects.
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9.6.1 Fock Space Formulation of Diffusion Monte Carlo

To set the stage let us take a finite set S of single-particle (sp) states of size Ns

and consider a general second-quantized fermionic Hamiltonian including two and
possibly many-body interactions

H D
X
˛2S

�˛a�˛a˛ C
X

˛ˇ	ı2S
V˛ˇ	ıa

�
˛a�ˇaıa	 C : : : : (9.194)

In this expression Greek letter indices indicates sp states (ie. ˛ is a collective label
for all sp quantum numbers), the operator a�˛ (a˛) creates (destroys) a particle in the
sp state ˛ and the V˛ˇ	ı are general (anti-symmetrized) two-body interaction matrix
elements:

V˛ˇ	ı D h˛ˇj OVj	ıi � h˛ˇj OVj	ıi: (9.195)

For an N-fermion system the resulting Fock space would be spanned by the full
set of N-particle Slater determinants that can be generated using the sp orbitals
˛ 2 S . We will denote these Slater-determinants in the occupation number basis
by jni, where n � fn˛g and n˛ D 0; 1 are occupation number of the single-particle
orbital ˛ satisfying

P
˛ n˛ D N. For example in a system composed by two identical

fermions and with Ns D 4 available sp states we will write

j0110i � a�3a
�
2j0i (9.196)

where j0i is our vacuum state (that can be conveniently set to the Hartree-Fock
ground state ˚HF), while a�2 and a�3 creates a particle in sp state 2 and 3 respectively.

We can now use these states as a complete basis in our many-body Hilbert space
and express a generic state in it as

j� i D
X

n

hnj� ijni �
X

n

�.n/jni (9.197)

where the sum is over all possible basis vectors that one can obtain from the NS

single-particle orbitals.
It is important to notice at this point that no assumption is made on the locality of

the interaction, which translates into restrictions on the structure of the tensor V˛ˇ	ı .
This shows already that possible non-local interactions can be cleanly incorporated
in the formalism.

As was already introduced in Sect. 9.3.1, the core idea behind a Diffusion Monte
Carlo algorithm is to extract ground-state informations on the system by evolving in
imaginary-time an initial guess for the lowest eigenstate of the hamiltonian H:

��C��.m/ D
X

n

hmjPjni��.n/: (9.198)
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with a suitable projection operator P [cf. Eq. (9.125) and discussion above]. In order
to illustrate how the evolution in (9.198) can be implemented in a stochastic way, it
will be useful first to express the matrix elements of P as follows

hmjPjni D p.m;n/g.n/ (9.199)

with

g.n/ D
X

m

hmjPjni (9.200)

and

p.m;n/ D hmjPjniP
mhmjPjni

: (9.201)

At this point, provided the matrix elements hmjPjni 
 0 we can interpret p.m;n/
for fixed n as (normalized) probability distribution for the states m and g.n/
as a weight factor. This is analogous to what was done in Sect. 9.3.2 for the
conventional coordinate-space formulations where now p takes the place of the
gaussian Eq. (9.87) while g replaces the weight Eq. (9.88).

Imagine now that at a given imaginary-time � the wave-function �� is non-
negative in configuration space

��.n/ 
 08n; (9.202)

then we can represent it as an ensemble of configurations. Due to the non-negativity
of the matrix elements of P, we also have that the evolution described in (9.198)
preserves the signs

��C��.m/ 
 0 8m: (9.203)

This suggests the following procedure for the stochastic imaginary-time evolu-
tion:

1. walker starts at configuration n with weight w.n/
2. a new configuration m is chosen from the probability distribution p.m;n/
3. the walker’s weight gets rescaled as w.n/! w.m/ D w.n/g.n/
4. repeat from 1:

In order to improve efficiency one can include a branching step where the new
configuration in m is replicated according to its weight as explained in Sect. 9.3.2.
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Expectation values of observables can then be estimated as usual [cf. Eq. (9.130)]
with the mixed estimator

hOimixed D h�T jOj�.�/i
h�T j�.�/i D

PNw
l w.ml/h�T jOjmliPNw

l w.ml/�T.ml/
(9.204)

where �T is a trial state and the sums run over the walker population of size Nw.
In practice we have to choose some form for the evolution operator that appears

in (9.198), a common choice in discrete spaces is on operator very similar to the one
already encountered in the discussion of Sect. 9.2.5.2:

hmjPjni D hmj1��� .H � ET/jni
D ım;n ���hmjH � ET jni

(9.205)

where ET is an energy shift used in the simulation to preserve the norm of the
solution (the constant E0 introduced in Sect. 9.3.2). Convergence to the ground-state
by repeated application of the projector P to the initial state j�0i

j�gsi D lim
M!1 PMj�0i (9.206)

is guaranteed provided that the eigenvalues of P lie between �1 and 1 in order to
ensure the diagonal part remains positive definite. This requirement translates into
a condition on the imaginary-time step �� which has to satisfy the bound

�� < 2=.Emax � Emin/ (9.207)

where Emax and Emin are respectively the maximum and minimum eigenvalue of H
in our finite basis. This upper bound becomes tighter and tighter as we increase
the number of particle N and/or the number of sp-states Ns. As a consequence
the number M of iterations needed for convergence to the ground state increases
dramatically. A way to deal with this problem is to employ a different algorithm
proposed in [25] (see also [26, 27]) that allows us to sample directly from the
exponential propagator

hmjPjni D hmje���.H�ET /jni (9.208)

in analogy to Eq. (9.74), but now without any limitation on the choice of the
imaginary time step�� that can be chosen arbitrarily large. We leave the discussion
of its details in Sect. 9.6.4.

In our discussion so far we have assumed that the matrix elements on the
projector that defines p.m;n/ in Eq. (9.201) are actually positive definite. Under
general circumstances however this is not the case. This clearly prevents the
interpretation of p.m;n/ as a probability distribution invalidating the naive approach
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employed above. In order to circumvent the problem we can use the same idea
behind the fixed node (phase) approximation introduced in Sect. 9.3.5.1.

Before continuing it is worth to mention that in principle one can still produce
a stochastic evolution by absorbing the signs into the weight factor g.n/ while
sampling off-diagonal moves using jhmjPjnij. However as briefly explained in
Sect. 9.3.5.1 this is accompanied by an exponential decay of the signal to noise ratio
as a function of the total projection time � D M�� . Recently it was shown that
by employing an annihilation step in the evolution this problem can be substantially
alleviated [18, 20, 21]. At the end however these algorithms have still an exponential
scaling with system-size, though with a reduced exponent.

9.6.2 Importance Sampling and Fixed-Phase Approximation

As we just mentioned, we can deal with the sign-problem in a way which is similar
to standard coordinate-space QMC: we will use an initial ansatz ˚T for the ground-
state wave-function and use that to constrain the random walk in a region of the
many-body Hilbert space where

hmjPjni 
 0 (9.209)

is satisfied. In order for this scheme to be practical one needs a systematic way
for reducing the bias coming from this approximation, e.g. we want the bias to go
to zero as the ansatz ˚T goes towards the ground-state �gs. That’s exactly what
is done in coordinate-space fixed-node(fixed-phase) QMC simulations presented in
the previous sections.

In this derivation we will follow the work in [26, 27] and generalize it to the
case of complex-hermitian hamiltonians usually found in nuclear theory. Similarly
to what was done in Sect. 9.4.4 the imaginary part of the solution is constrained to
be the same of that of the trial wave-function

<Œ��.n/˚T.n/
 D 0 (9.210)

for every distribution �.n/ sampled in the random walk. In this expression< stands
for the real part and � is complex-conjugation.

We start by defining for any configurations n and m for which j˚T.n/j ¤ 0 the
following quantity:

smn D sign < �˚�
T .m/Hmn˚

�
T .n/

�1	

D sign
< �˚�

T .m/Hmn˚T.n/
	

j˚T.n/j2 D snm:
(9.211)
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Now define a one-parameter family of HamiltoniansH	 defined over configurations
n (again such that j˚T.n/j ¤ 0) with off-diagonal matrix elements given by

hmjH	 jni D
� �	hmjHjni s.m;n/ > 0

hmjHjni otherwise
; (9.212)

while the diagonal terms are

hnjH	 jni D hnjHjni C .1C 	/
X
m¤n

s.m;n/>0

hmjHjni

D hnjHjni C
X

m

hmn:

(9.213)

In the limit where 	 ! �1 we clearly recover the original Hamiltonian:

H	D�1 � H: (9.214)

We proceed to define a corresponding family of propagators P	 for configura-
tions n with j˚T.n/j ¤ 0 by

hmjP	 jni D ım;n ���
< �˚�

T .m/hmjH	 � ET jni˚T.n/
	

j˚T.n/j2 : (9.215)

It is clear now that for any 	 
 0 we have

hmjP	 jni 
 0 (9.216)

and so the propagatorP is, by construction, free from the sign-problem. Performing
the corresponding random-walk allows us to filter the state

˚T.n/0	 .n/; (9.217)

where now 0	 .n/ is the ground-state of the hamiltonian H	 . The ground-state
energy E	 obtained following this procedure can be proved (the proof is left to
the Appendix) to be a strict upper bound for the true ground-state energy E0 of
the true hamiltonian H. Moreover, this upper bound is tighter than the variational
upper-bound provided by

ET D h˚T jHj˚Ti
h˚T j˚Ti 
 E0: (9.218)

As you can show in Problem 9.5 any linear extrapolation of E	 from any two
values 	 
 0 to 	 D �1 (which would correspond to the original hamiltonian)
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also provides an upper-bound on Egs that is tighter than the individual E	 ’s. A good
compromise between the tightness of the upper-bound and the statistical noise in
the extrapolation is to choose two values of 	 : 0 and 1, thus giving the following
energy estimator:

Eextr D 2E	D0 � E	D1 (9.219)

To ensure the success of the proposed method a good choice for the importance
function j˚Ti is critical.

9.6.3 Trial Wave-Functions from Coupled Cluster Ansatz

As have been pointed out before, a crucial role is played by the importance function
˚T used to impose the constraint. This is especially true if we want to estimate
expectation values of operators other than the energy (cf. discussion in Sect. 9.4.2.1).

Fundamental prerequisites for a viable importance function are

1. enough flexibility to be able to account for the relevant correlations in the system
2. availability of an efficient way to evaluate its overlap with states explored during

the random walk

Within a Fock space formulation, an excellent choice for ˚T that satisfy the
first requirement is given by the wave function generated in a Coupled Cluster
calculation. Starting from a reference state, which usually is the Hartree-Fock
solution of the problem, CC theory allows to include dynamical correlations into
a new state as

j�CCi D e OT j˚HFi: (9.220)

In the above equation, correlations are introduced trough the excitation operator OT
which in CC theory is hierarchically divided as

OT D OT1 C OT2 C OT3 C � � � (9.221)

counting the number of creation/annihilation operators that compose them. The first
two terms are:

OT1 D
X
˛;ˇ2S

tˇ˛a�ˇa˛ OT2 D 1

4

X
˛;ˇ;	;ı2S

t	ı˛ˇa�	a�ıa˛aˇ � � � (9.222)

The final state j�CCi will then be uniquely identified by the coefficients tˇ˛ and
t	ı˛ˇ corresponding to single and double particle-hole excitations respectively. The
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exponentiated form of the CC wave-functions enables to effectively include some
correlations up to the maximum N-particle N-hole in a relatively compact way.

But is the wave-function in Eq. (9.220) also quick to evaluate? In order to
simplify the discussion we will focus here on the case of a homogeneous system that
can be described dropping the one-particle-one-hole excitation operator OT1 in the
expansion (which do not contribute due to translational invariance).5 In this situation
the lowest order of CC theory is the Coupled Cluster Doubles (CCD) approximation.

To set the notation, we will express a generic Slater-Determinant state describing
an M-particle-M-hole state as

jmi D a�p1 : : : ; a
�
pM

ah1 : : : ; ahM j˚HFi � j˚p1;:::;pM
h1;:::;hM

i: (9.223)

The required amplitude can then be expressed as a superposition of M � 2

particle/hole states that can be generated from m. Eventually (the proof is tedious
but straightforward) one obtains:

hmj�CCi D
MX
	D2

MX
�<�

.�1/	C�C� tp�p�
h1h	

�M�2
CC

�
p1;p2;:::;p��1;p�C1;:::;p��1;p�C1;:::;pM

h2:::;h	�1;h	C1;:::;hM

�

(9.224)

assuming p1 < p2 < � � � < pM and h1 < h2 < � � � < hM. The normalization is fixed
in such a way that h˚HFj�CCi D 1.

One way to implement Eq. (9.224) is for instance trough a recursive function
that takes as input some K-particle-K-hole state and returns 1:0 for K D 0, the
correct amplitude tab

ij for K D 2 and for K > 2 calls itself again removing two
particle and two hole states. Clearly this approach becomes slow when states with
large values of K are sampled often during the random walk. Just to give an idea,
for calculations of pure neutron matter with soft Chiral EFT interactions we have
K 	 6 at densities � � 0:08 fm�3 (cf. discussion in [28]) and the calculation can be
made very efficient.

Within CC theory the coefficients t	ı˛ˇ appearing in the equations above are to be
obtained as the self-consistent solutions of the following non-linear equation:

h˚	ı

˛ˇ j OH
�
1C OT2 C 1

2
OT22
�
j˚HFi D

0
@1
4

X
˛;ˇ;	;ı2S

h˛ˇjj	ıit	ı˛ˇ

1
A t	ı˛ˇ (9.225)

where h˛ˇjj	ıi are the anti-symmetrized two-body matrix elements of the interac-
tion defined in Eq. (9.195).

Solving Eq. (9.225) is in general a very expensive computational problem and
within the fixed-node approach all that matters are the signs in Eq. (9.211). It could
then be possible to find cheaper approximate ways to determine the doubles coeffi-

5Extension to singlets (p-h states) and triplets (3p-3h states) is simple.
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cients t	ı˛ˇ while still preserving a good quality in the fixed-node approximation. A
quite precise and very cheap approximation that have been used successfully is to
obtain the coefficients within second order Moeller–Plesset perturbation theory:

t	ı˛ˇ D
h˛ˇjj	ıi

�˛ C �ˇ � �	 � �ı with �i D �i C
X
k2S
hikjjiki (9.226)

and �i are the single particle energies appearing in the one body part of the
Hamiltonian Eq. (9.194). This is equivalent to truncating the self-consistent solution
of (9.225) after the first iteration.

9.6.4 Propagator Sampling with No Time-Step Error

As we pointed out before, in simulations employing the linear propagator (9.205)
raising the dimension of the basis set has a detrimental effect on the efficiency of the
algorithm since in order to satisfy the bound Eq. (9.207) we are forced to employ an
exceedingly small time step. Moreover, in practice values of � much smaller than
the maximum value are usually employed due to the difficulty in obtaining reliable
estimates of Emax in realistic situations.

To further complicate the scenario, when lattice fixed-node(fixed-phase)methods
are employed this maximum value is reduced even further because the diagonal
matrix elements of P gets pushed towards the negative region by the addition of the
sign-violating contributions

P
m hmn in Eq. (9.213). If this method is used to control

the sign-problem additional care has to be devoted in the choice of the time-step,
greatly deteriorating the efficiency of the overall scheme.

In a discrete space however we can cope with the problem by using an algorithm
firstly introduced by Trivedi and Ceperley [25], which shares similarities with the
Domains Green’s Function Monte Carlo by Kalos et al. [29]. The idea is to use
directly (meaning sample from) the exponential propagator

Pexp.�;m;n/ D hmje��.H�ET /jni; (9.227)

that clearly has no problem with negative diagonal elements. These schemes usually
come with the name of continuous-time evolution.

For simplicity let us forget the sign-problem for the time being and imagine we
are working with the positive-definite importance-sampled greens function (9.215)
with 	 D 0 and the corresponding Hamiltonian eH which then satisfies

eHm;n 	 0 8 m ¤ n: (9.228)

Furthermore, we will neglect the energy shift ET since its addition is straightforward.
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Recall that the propagator can be written as a product of a stochastic matrixepm;n

and a weight factoregn (cf. Sect. 9.6.1):

ePm;n.��/ D ım;n ���eHm;n Depm;negn (9.229)

where the two factors are given by:

epm;n D
ePm;n.��/

egn
;

egn D
X

m

ePm;n.��/ D 1 ���EL.n/
(9.230)

and in the last equation we have used the expression for the local energy

EL.n/ D h˚T jHjni
h˚T jni D

X
m

˚T.m/hmjHjni
˚T jni �

X
m

eHm;n: (9.231)

The continuous-time limit is recovered by applying M times eP.��/ and letting
�� ! 0 while preserving constant the product � D M�� :

lim
M!1

ePm;n.�/
M D lim

M!1

�
1 � �

M
eHm;n

�M D lim
��!0



1 ���eHm;n

� �
�� D hmje��eHjni:

(9.232)

Now note that if we let �� ! 0 the probability to make a diagonal move in a
single step among the M will accordingly go to� 1, in fact:

Pdiag D
ePn;n.��/

egn
D 1 ���eHn;n

1 ���EL.n/
��!0����! 1 (9.233)

since the local-energy EL does not depend on the time step but just on the current
configuration n. Accordingly, the probability of making K consecutive diagonal
moves will be:

PK
diag D

�ePn;n.��/

egn

�K

D
�
1 ���eHn;n

1 ���EL.n/

�K

K!1����! exp


�.EL.n/ � eHn;n/

� D exp


�eHoff

n

� D fn.�/

(9.234)

where we have implicitly defined the off-diagonal sum

eHoff
n D

X
m¤n

eHm;n < 0 (9.235)

and the inequality holds thanks to Eq. (9.228).
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The elapsed time between consecutive off-diagonal moves is therefore distributed
as an exponential distribution fn.�/ with average time given by

Z 1

0

� fn.�/ D � 1

eHoff
n

D
ˇ̌
ˇ̌ 1eHoff

n

ˇ̌
ˇ̌ : (9.236)

We can then sample the time when the off-diagonal move happens by using a
transformation technique: suppose we have a way to sample values � from a uniform
distribution g.�/ D const, due to conservation of probability the samples � drawn
from the wanted fn.�/ will satisfy:

j f .�/d� j D jg.�/d�j �!
ˇ̌
ˇ̌d�.�/

d�

ˇ̌
ˇ̌ D fn.�/ (9.237)

where � are the samples drawn from the wanted PDF fn. By solving now equa-
tion (9.237) for �.�/ and performing the inversion to � D �.�/ we obtain the
following relation

�� D log.�/

eHoff
n

: (9.238)

that allows to sample exactly from fn using only samples from a uniform distribution
� 2 .0; 1/.

Walkers undergoing such random walk accumulate weight during the K
diagonal-moves as well as from performing the off-diagonal step. The weight
coming from the diagonal moves is given by

wn DegK
n D .1 ���EL.n//

K ��!0����! e��EL.n/: (9.239)

For the off-diagonal moves instead we have at least two options for sampling the
new state jmi:
• heat-bath sampling:

P1.m;n/ D eHm;n=eHoff
n (9.240)

1. new configuration jmi is chosen using the normalized probability P1
2. the off-diagonal weight would be wm;n D 1

• uniform sampling:

P2.m;n/ D 1=Nconn (9.241)
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1. new configuration jmi is chosen among the Nconn states connected to jni
2. reweight the new walker using wm;n D P1.m;n/=P2.m;n/

The first option is clearly more expensive per iteration than the second since an
explicit calculation of the off-diagonal sum eHoff

n is needed in order to normalize P1.
In the uniform sampling case however the weights wm;n can have large fluctuations
forcing the use of smaller time-steps to keep them under control. In our case
since we already need to compute the off-diagonal sum in order to generate the
fixed-phase hamiltonian Eqs. (9.212) and (9.213) the heat-bath sampling comes
with no additional cost. It is worth noting that other choice can be made that are
more efficient when fixed-node(phase) is not employed at all [30] or when the
transformation that produces H	 is carried out only approximately [31].

Finally, in order for the measurements along the path to be unbiased we want to
define equidistant “time-slices” along the random walk. In order to this we simply
choose a target time-step �t at the beginning then for each move we first sample
a value of �� from Eq. (9.238), if �� > �t we set � D �t and use correspondingly
a diagonal move if instead �� < �t we have to sample an off-diagonal move. The
process is preformed until the sum of all the sampled �� reaches the target time �t.
The final algorithm for a single walker at jni is then as follows:

EXP_Move()
� D �t

loop
EL.n/ DPm

eHm;n F Eq. (9.231)
eHoff

n D EL.n/ � eHn;n F Eq. (9.235)
� D rand./
�� D log.�/=eHoff

n F Eq. (9.238)
if �� 
 � then

w.n/! w.n/ exp .�� EL.n//
exit

end if
w.n/! w.n/ exp


��� EL.n/
�

� ! � � ��
m HeatBathŒP1;n
 F Eq. (9.240)
n! m

end loop

where the function HeatBathŒP;n
 generates a new configuration according to
the probability P (e.g. Eq. (9.240)) starting from the current state n. In Problem 9.6
you will try to devise an implementation of this function.

As a final remark, it is evident that the most expensive part of the algorithm
is the computation of the local energy EL.n since it will require a sum over all
states connected to n from the Hamiltonian and for each one m of these we have
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to compute both the matrix element of the Hamiltonian and the overlap with the
trial function �T.m/. The use of symmetries to reduce the size of the sum is thus
of fundamental importance to reach medium-sized systems. We can show this for
the simple case of a homogeneous system with only two-body interactions so that
the connected states will be all the possible 2-particle-2-hole excitations that can be
obtained from the initial state jni. Neglecting the construction of the transformed
matrix eH, we can then implement the calculation of the local energy as

EL_calc1()
EL D 0
for i 2 occ.n/ do

for j 2 occ.n/ do
for a 2 S n occ.n/ do

for b 2 S n occ.n/ do
jmi D a�aa�baiajjni
EL D EL C eHm;n

end for
end for

end for
end for
EL D EL=4

where occ.n/ is the set of single-particle states that are occupied in the initial
state n. The above algorithm requires O.N2

occN
2

s / evaluations of the Hamiltonian.
Many of these are however equivalent to other ones or just zero. For instance all the
terms with i D j or a D b give zero due to the Pauli principle. If we fix an ordering of
the single particle orbitals in the many-body states and use anti-symmetrized matrix
elements the configurations obtained interchanging e.g. i$ j are equivalent. Finally
if both momentum and spin are conserved, given the triple .i; j; a/ there exist only
one single particle state b allowed. An implementation like

EL_calc2()
EL D 0
for i 2 occ.n/ do

for j < i 2 occ.n/ do
for a 2 S n occ.n/ do

b FourthStateŒi; j; a

if b 2 S n occ.n/ and b < a then
jmi D a�aa�baiajjni
EL D EL C eHm;n

(continued)
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end if
end for

end for
end for

will take now only O.N2
occNs/ evaluations of the Hamiltonian at most, and with

a reduced prefactor with respect to the previous version. The function FourthState
returns the only single particle state allowed by symmetry.

9.6.5 Results

The combination of imaginary time projection, use of importance function derived
from CC calculations and no time-step error propagator make up the algorithm that
goes under the name of Configuration Interaction Monte Carlo (CIMC). Actual
calculations with CIMC require a substantial amount of CPU time. Here we
report some results obtained by making use of a simplified Hamiltonian in which
the nucleon-nucleon interaction is described by the Minnesota interaction. The
system under investigation is homogeneous pure neutron matter (PNM). In QMC
calculations PNM is typically modeled as a periodic system containing A neutrons.
The cell size is adjusted in such a way that the average density of the system is �.

In Fig. 9.7 we show how the computed energy depends on the number of plane
wave shells included in the model space. As it can be seen, it is necessary to pay
attention to the convergence of the results, which can strongly depend on the specific
details of the system. In this case, for instance, one can easily see how convergence
is faster when the density is increased.

In Fig. 9.8 the energy computed by CIMC shown for the same neutron matter
model as a function of the density (the so called “Equation of State” of neutron
matter) is compared with the coupled theory results with doubles (CCD) only
discussed in the previous chapter. In this calculation single-particle states up to
Nmax D 36 have been used. The CIMCC and CCD results are converged to the
fifth digit as function of Nmax. The agreement between the two methods is at
the level of the third digit after the decimal point for neutron matter with the
Minnesota interaction. This is a striking agreement between such different many-
body methods, in particular for larger densities where correlations and contributions
from states above and below the Fermi level play a larger role, as seen from the
difference between the reference energy and the CIMC and CCD energies. Most
likely, there will be larger differences between different many-body methods when
proton correlations are brought in, as well as when more realistic interaction models
will be used. Such results will be presented elsewhere. In the next two chapters
we will add results using two additional many-body methods, the in-medium SRG
approach described in Chap. 10 and the Green’s function approach of Chap. 11.
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Fig. 9.7 Convergence of the CIMC energies as a function of the number of shells used for a
periodic cell of 66 neutrons at different densities

9.7 Conclusions and Perspectives

Quantum Monte Carlo methods are still one of the most powerful tools to attack
general many body problems, and in particular the many-nucleon problem. Despite
the fact that the Fermion sign problem prevents us so far from having strictly exact
results for the solution of the Schrödinger equation, the accuracy that can be reached
is very high, and in any cases it constitutes the current benchmark.

Another important general feature of QMC calculations is that they provide a
very flexible framework in which it is possible to explore from low temperature
condensed helium, to trapped fermions, from atoms and molecules ad solid state
devices to nuclei and eventually lattice QCD. It is not rare that technical improve-
ments spread across different disciplines, and the development of the method itself
is a common ground that is often the subject of interdisciplinary workshops and
conferences.

In the field of nuclear physics it is possible that Fock-space based methods will
eventually become the standard. Their main feature is the possibility of dealing with
non-local interactions, which makes it possible to extend the use of QMC to the
original formulations of �-EFT potentials, and a whole class of soft-core interactions
that so far have never been used in this context. On the other hand, the availability
of more and more accurate versions of the AFDMC codes will open the access of
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Fig. 9.8 Equation of state of neutron matter modeled as a periodic cell containing A = 66 neutrons
using the CIMC method and coupled cluster theory with doubles correlations. Single-particle states
up to Nmax D 36 have been included

accurate studies of the equation of state f neutron and nuclear matter, and of general
baryonic matter of extreme importance for astrophysical applications, concerning
in particular the physics of neutron stars. The possibility of extending accurate
calculations to large A systems is also crucial for understanding the phenomenology
of exotic beams.

In this chapter we did not deal with the problem of evaluating excited states
and dynamical quantities within a QMC framework. Several methods are nowadays
available, mostly based on the evaluation of the Laplace transform of a given
response function by means of the calculation of imaginary time correlation
functions. Many technical advances have been recently made in this field (see e.g.
Refs. [32–35]), and the subject is still under very active investigation.

Finally, the hardest wall to climb remains the solution of the Fermion sign
problem. Although there are claims that the problem is NP complete (which is true
in general), thereby preventing any solution within standard classical computation,
there are hints that many Hamiltonians of interest might admit a viable solution with
polynomial scaling in A. This problem would definitely deserve more efforts than
those that are presently devoted to its solution.
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9.8 Problems

9.1 Evaluate the following integral by means of the Metropolis algorithm

I D
Z 1

0

ex � 1 dx

sampling points from

1. P(x) = 1 for x 2 Œ0; 1

2. P(x) = x for x 2 Œ0; 1

• Compare the average and the statistical error for the cases 1) and 2). Which is the

best estimate?
• Try to figure out a way to sample a probability density proportional to xn, and

reevaluate the integral I. How is the convergence and the statistical error behaving
by increasing n? Try to give an explanation of the result.

9.2 Try to sketch the general proof that for a generic integral I defined as in
problem 9.1 the best statistical error is obtained when sampling from a probability
density proportional to F(x).

9.3 Consider the one-dimensional Hamiltonian:

OH D 1

2

d2

dx2
C 1

2
x2

and consider the parametrized family of trial solutions  .x; ˛; ˇ/ D e�˛2x2 � ˇ.
Compute by means of the Metropolis algorithm the energy and the standard
deviation of the energy as a function of ˛ keeping ˇ D 0:01. Is the minimum found
at the same value than for ˇ D 0? Why?

9.4 Prove that the propagator defined in the integrand of Eq. (9.83) is the Green’s
function of the differential equation (9.82).

9.5 Show that the given two fixed-phase energies Ea and Eb obtained using the
hamiltonians H	 defined in Eqs. (9.212) and (9.213) with 	 D a and 	 D b (a; b 

0) the linear extrapolation to 	 D �1 (remember that H�1 D H) is still an upper
bound. (Hint: show that E	 is a convex function of the parameter 	 ).

9.6 Implement the function HeatBathŒP;n
 that appears in the algorithm
EXP_Move() in Sect. 9.6.4.

9.7 In the case of nuclear Hamiltonians spin is not a conserved quantity. Referring
to the calculation of the local energy in Sect. 9.6.4, how would you modify the
subroutine EL_calc2 to take into account the non-conservation of spin?
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Appendix

In this appendix we give the proof of the upper-bound property for the auxiliary
hamiltoniansH	 , defined in Sect. 9.6.2, for the general complex-hermitian case (see
[27] for the original proof in the real symmetric case). We will concentrate in the
simpler case 	 D 0 in Eqs. (9.212) and (9.213), extension to the generic 	 
 0 is
then straightforward. In what follows we will use the shorthand H	D0 � eH. Let
�.n/ be any arbitrary wave function, our goal is to show that

<Œh� jeHj� i
 
 < Œh� jHj� i
 : (9.242)

Let us proceed by considering the following difference:

<Œh� jeHj� i
� < Œh� jHj� i
 DX
mn

< ���.m/.eHmn � Hmn/�.n/
	

D
X
mn

hmnj�.n/j2 C
X
m¤n

< ���.m/.eHmn � Hmn/�.n/
	

D
X

n

X
smn¤�

j�.n/j2<
�
˚�

T .m/Hmn˚T.n/
	

j˚T.n/j2 �< ���.m/Hmn�.n/
	

(9.243)

where the second sum is over all mn pairs such that smn of (9.211) is positive-
definite. The last term can now be rewritten as:

< ���.m/Hmn�.n/
	 D < ���.m/˚T .m/˚T.m/�1Hmn˚

�
T .n/

�1˚�
T .n/�.n/

	
D .��.m/˚.m//< �˚T.m/�1Hmn˚

�
T .n/

�1	 .˚�
T .n/�.n//

D .��.m/˚.m//<
�
˚�

T .m/
j˚T.m/j2Hmn

˚T.n/
j˚T.n/j2


.˚�

T .n/�.n//

(9.244)

where in the second step we used the fact that by employing a real propagator we
are imposing a fixed-phase constraint, ie =.˚�

T .n/�.n// D 0 for every n explored
in the random walk. The equation for the difference becomes:

<Œh� jeHj� i
 � < Œh� jHj� i
 DX
mn

< ���.m/.eHmn � Hmn/�.n/
	

D
X

n

X
smn¤�

< �˚�
T .m/Hmn˚T .n/

	
j˚T .n/j2

�
j�.n/j2 � .�

�.m/˚T .m//.˚�
T .n/�.n//

j˚.m/j2
�
:

(9.245)
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Using again the fixed-phase constraint (ie. .˚�
T .n/�.n// � .˚T.n/��.n//) we can

rewrite the numerator of the second term as:

.��.m/˚T.m//.˚�
T .n/�.n// D �

1

2


j��.m/˚T.n/ �˚�
T .m/�.n/j2

� j˚T.n/j2j�.m/j2 � j˚T.m/j2j�.n/j2
�

(9.246)

and then we have:

< �h� jeHj�i	 �< Œh� jHj�i
 DX
mn

< ���.m/.eHmn � Hmn/�.n/
	

D
X

n

X
smn¤�

< �˚�

T .m/Hmn˚T.n/
	

j˚T.n/j2

j�.n/j2 C j��.m/˚T.n/ �˚�

T .m/�.n/j2
2j˚T.m/j2

�j˚T.n/j2j�.m/j2
2j˚T.m/j2 � j�.n/j

2

2

�

D .positive terms/

C
X

n

X
smn¤�

< �˚�

T .m/Hmn˚T.n/
	

2j˚T.n/j2
�
j�.n/j2 � j˚T.n/j2j�.m/j2

j˚T.m/j2
�

(9.247)

Now we note that

< �˚�
T .m/Hmn˚T.n/

	 D < �˚�
T .n/Hnm˚T.m/

	

for a complex-hermitian hamiltonian, we can then express the sums by allowing
only unique mn combinations:

< �h� jeHj� i	 �< Œh� jHj� i
 DX
mn

< ���.m/.eHmn �Hmn/�.n/
	

D .positive terms/

C
X

n

0X
smn¤�

< �˚�
T .m/Hmn˚T.n/

	  j�.n/j2
2j˚T.n/j2 C

j�.m/j2
2j˚T.m/j2

� j˚T.n/j2j�.m/j2
2j˚T.m/j2j˚T.n/j2 �

j˚T.m/j2j�.n/j2
2j˚T.n/j2j˚T.m/j2

!

D .positive terms/ (9.248)

which by definition is positive. The extension to the case with 	 > 0 is
straightforward since we are basically adding a positive constant to the difference.
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Chapter 10
In-Medium Similarity Renormalization Group
Approach to the Nuclear Many-Body Problem

Heiko Hergert, Scott K. Bogner, Justin G. Lietz, Titus D. Morris,
Samuel J. Novario, Nathan M. Parzuchowski, and Fei Yuan

10.1 Introduction

Effective Field Theory (EFT) and Renormalization Group (RG) methods have
become important tools of modern (nuclear) many-body theory—one need only
look at the table of contents of this book to see the veracity of this claim.

Effective Field Theories allow us to systematically take into account the sepa-
ration of scales when we construct theories to describe natural phenomena. One of
the earliest examples that every physics student encounters is the effective force law
of gravity near the surface of the Earth: For a mass m at a height h above ground,
Newton’s force law becomes

F.RC h/ D G
mM

.RC h/2
D m

GM

R2
1

1C 
 h
R

�2 D m
GM

R2„ƒ‚…

g

CO
�

h2

R2

�
; (10.1)

where M and R are the mass and radius of the Earth, respectively. Additional
examples are the multipole expansion of electric fields [1], which shows that only
the moments of an electric charge distribution with characteristic length scale R
are resolved by probes with long wave lengths � � R, or Fermi’s theory of beta
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decay [2], which can nowadays be derived from the Standard Model by expanding
the propagator of the W˙ bosons that mediate weak processes for small momenta
q� MW D 80GeV (in units where „ D c D 1).

The strong-interaction sector of the Standard Model is provided by Quantum
Chromodynamics (QCD), but the description of nuclear observables on the level
of quarks and gluons is not feasible, except in the lightest few-nucleon systems
(see, e.g., [3] and the chapters on Lattice QCD in this book). The main issue is
that QCD is an asymptotically free theory [4, 5], i.e., it is weak and amenable to
perturbative methods from Quantum Field Theory at large momentum transfer, but
highly non-perturbative in the low-momentum regime which is relevant for nuclear
structure physics. A consequence of the latter property is that quarks are confined
in baryons and mesons at low momentum or energy scales, which makes those
confined particles suitable degrees of freedom for an EFT approach. Chiral EFT, in
particular, is constructed in terms of nucleon and pion fields, with some attention
now also being given to the lowest excitation mode of the nucleon, namely the
� resonance. It provides a constructive framework and organizational hierarchy
for NN, 3N, and higher many-nucleon forces, as well as consistent electroweak
operators (see, e.g., [6–16]). Since Chiral EFT is a low-momentum expansion,
high-momentum (short-range) physics is not explicitly resolved by the theory, but
parametrized by the so-called low-energy constants (LECs). In principle, the LECs
can be determined by matching calculations of the same observables in chiral EFT
and (Lattice) QCD in the overlap region of the two theories. Since such a calculation
is currently not feasible, they are fit to experimental data for low-energy QCD
observables, typically in the �N, NN, and 3N sectors [6, 7, 17, 18].

RG methods are natural companions for EFTs, because they smoothly connect
theories with different resolution scales and degrees of freedom [19, 20]. Since they
were introduced in low-energy nuclear physics around the start of the millennium
[21–24], they have provided a systematic framework for formalizing many ideas
on the renormalization of nuclear interactions and many-body effects that had been
discussed in the nuclear structure community since the 1950s. For instance, soft
and hard-core NN interactions can reproduce scattering data equally well, but have
significantly different saturation properties, which caused the community to all but
abandon the former in the 1970s (see, e.g., [25]). What was missing at that time
was the recognition of the intricate link between the off-shell NN interaction and
3N forces that was formally demonstrated for the first time by Polyzou and Glöckle
in 1990 [26]. From the modern RG perspective, soft- and hard-core interactions
emerge as representations of low-energy QCD at different resolution scales, and the
dialing of the resolution scale necessarily leads to induced 3N forces, in such a way
that observables (including saturation properties) remain invariant under the RG
flow (see Sect. 10.2.4.5 and [23, 24]). In conjunction, chiral EFT and nuclear RG
applications demonstrate that one cannot treat the NN; 3N; : : : sectors in isolation
from each other.

Brueckner introduced the idea of renormalizing the NN interaction in the nuclear
medium by summing correlations due to the scattering of nucleon pairs to high-
energy states into the so-called G-matrix, which became the basis of an attempted



10 In-Medium Similarity Renormalization Group Approach to the Nuclear. . . 479

perturbation expansion of nuclear observables [27–32]. Eventually, the nuclear
structure community uncovered severe issues with this approach, like a lack of
order-by-order convergence [33–37], and a strong model space dependence in
summations over virtual excitations [38]. One of the present authors led a study
that revisited this issue, and demonstrated that the G matrix retains significant
coupling between low- and high-momentum nodes of the underlying interaction
[23], so the convergence issues are not surprising from a modern perspective. In
the Similarity Renormalization Group [39, 40] and other modern RG approaches,
low- and high-momentum physics are decoupled properly, which results in low-
momentum interactions that can be treated successfully in finite-order many-body
perturbation theory (MBPT) [23, 41–43]. These interactions are not just suited as
input for MBPT, but for all methods that work with momentum- or energy-truncated
configuration spaces. The decoupling of low- and high-momentum modes greatly
improves the convergence behavior of such methods, which can then be applied to
heavier and heavier nuclei [44–50].

The idea of decoupling energy scales can also be used to directly tackle the
nuclear many-body problem. We implement it in the so-called In-Medium SRG
[51–53], which is discussed at length in this chapter. In a nutshell, we will use SRG-
like flow equations to decouple physics at different excitation energy scales of the
nucleus, and render the Hamiltonian matrix in configuration space block or band
diagonal in the process. We will see that this can be achieved while working on
the operator level, freeing us from the need to construct the Hamiltonian matrix
in a factorially growing basis of configurations. We will show that the IMSRG
evolution can also be viewed as a re-organization of the many-body perturbation
series, in which correlations that are described explicitly by the configuration space
are absorbed into an RG-improved Hamiltonian. With an appropriately chosen
decoupling strategy, it is even possible to extract specific eigenvalues and eigenstates
of the Hamiltonian, which is why the IMSRG qualifies as an ab initio (first
principles) method for solving quantum many-body problems.

The idea of using flow equations to solve quantum many-body problems
dates back (at least) to Wegner’s initial work on the SRG [40] (also see [54]
and references therein). In the solid-state physics literature, the approach is also
known as continuous unitary transformation theory [55–59]. When we discuss our
decoupling strategies for the nuclear many-body problem, it will become evident
that the IMSRG is related to Coupled Cluster theory (CC), see also Chap. 8, and
a variety of other many-body methods that are used heavily in quantum chemistry
(see, e.g., [49, 60–66]). What sets the IMSRG apart from these methods is that the
Hamiltonian instead of the wave function is at the center of attention, in the spirit
of RG methodology. This seems to be a trivial distinction, but there are practical
advantages of this viewpoint, like the ability to simultaneously decouple ground
and a number of excited states from the rest of the spectrum (see Sects. 10.3.3
and 10.4.3).
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10.1.1 Organization of This Chapter

We conclude our introduction by looking ahead at the remainder of this chapter.
In Sect. 10.2, we will introduce the basic concepts of the SRG, and apply it to a
pedagogical toy model (Sect. 10.2.2), the pairing Hamiltonian that is also discussed
in Chaps. 8, 9, and 11 (Sect. 10.2.3), and last but not least, we will discuss the SRG
evolution of modern nuclear interactions (Sect. 10.2.4).

The issue of SRG-induced operators (Sect. 10.2.4.5) will serve as our launching
point for the discussion of the IMSRG in Sect. 10.3. First, we will introduce normal-
ordering techniques as a means to control the size of induced interaction terms
(Sect. 10.3.1). This is followed by the derivation of the IMSRG flow equations,
determination of decoupling conditions, and the construction of generators in
Sects. 10.3.2–10.3.4. We discuss the essential steps of an IMSRG implementation
through the example of a symmetry-unconstrained Python code (Sect. 10.3.5), and
use this code to revisit the pairing Hamiltonian in Sect. 10.3.6. In Sect. 10.3.7, we
compute the neutron matter equation-of-state in the IMSRG(2) truncation scheme,
and compare our result to that of corresponding Coupled Cluster, Quantum Monte
Carlo, and Self-Consistent Green’s Function results with the same interaction.

Section 10.4 introduces the three major directions of current research: First, we
present the Magnus formulation of the IMSRG (Sect. 10.4.1), which is the key to the
efficient computation of observables and the construction of approximate version of
the IMSRG(3). Second, we give an overview of the multireference IMSRG (MR-
IMSRG), which generalizes our framework to arbitrary reference states, and gives
us new freedom to manipulate the correlation content of our many-body calculations
(Sect. 10.4.2). Third, we will discuss applications of IMSRG-evolved, RG-improved
Hamiltonians as input to many-body calculations, in particular for the nuclear
(interacting) Shell model and Equation-of-Motion (EOM) methods (Sect. 10.4.3).
An outlook on how these three research thrusts interweave concludes the section
(Sect. 10.4.4).

In Sect. 10.5, we make some final remarks and close the main body of the
chapter in Sect. 10.5. Section 10.6 contains exercises that further flesh out subjects
discussed in the preceding sections, as well as outlines for computational projects.
Formulas for products and commutators of normal-ordered operators are collected
in Appendix.

10.2 The Similarity Renormalization Group

10.2.1 Concept

The basic idea of the Similarity Renormalization Group (SRG) method is quite
general: We want to “simplify” our system’s Hamiltonian OH.s/ by means of
a continuous unitary transformation that is parametrized by a one-dimensional
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parameter s,

OH.s/ D OU.s/ OH.0/ OU�.s/ : (10.2)

By convention, OH.s D 0/ is the starting Hamiltonian. To specify what we mean by
simplifying OH, it is useful to briefly think of it as a matrix rather than an operator.
As in any quantum-mechanical problem, we are primarily interested in finding the
eigenstates of OH by diagonalizing its matrix representation. This task is made easier
if we can construct a unitary transformation that renders the Hamiltonian more and
more diagonal as s increases. Mathematically, we want to split the Hamiltonian into
suitably defined diagonal and off-diagonal parts,

OH.s/ D OHd.s/C OHod.s/ ; (10.3)

and find OU.s/ so that

OH.s/ �!
s!1

OHd.s/ ; OHod.s/ �!
s!1 0 : (10.4)

To implement the continuous unitary transformation, we take the derivative of
Eq. (10.2) with respect to s to obtain

d OH.s/
ds
D d OU.s/

ds
OH.0/ OU�.s/C OU.s/ OH.0/d OU�.s/

ds

D d OU.s/
ds
OU�.s/ OH.s/C OH.s/ OU.s/d OU�.s/

ds
: (10.5)

Since OU.s/ is unitary, we also have

d

ds

� OU.s/ OU�.s/
�
D d

ds

�OI� D 0 H) d OU.s/
ds
OU�.s/ D � OU.s/d OU�.s/

ds
:

(10.6)

Defining the anti-Hermitian operator

O�.s/ � d OU.s/
ds
OU�.s/ D �O��.s/ ; (10.7)

we can write the differential equation for the s-dependent Hamiltonian as

d

ds
OH.s/ D Œ O�.s/; OH.s/
 : (10.8)

This is the SRG flow equation for the Hamiltonian, which describes the evolution
of OH.s/ under the action of a dynamical generator O�.s/. Since we are considering
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a unitary transformation, the spectrum of the Hamiltonian is preserved.1 Thus, the
SRG is related to so-called isospectral flows, a class of transformations that has been
studied extensively in the mathematics literature (see for example [67–71]).

The flow equation (10.8) is the most practical way of implementing an SRG
evolution: We can obtain OH.s/ by integrating Eq. (10.8) numerically, without
explicitly constructing the unitary transformation itself. Formally, we can also
obtain OU.s/ by rearranging Eq. (10.7) into

d

ds
OU.s/ D O�.s/ OU.s/ : (10.9)

The solution to this differential equation is given by the S-ordered exponential

U.s/ D S exp
Z s

0

ds0 �.s0/ ; (10.10)

because the generator changes dynamically during the flow. This expression is
defined equivalently either as a product of infinitesimal unitary transformations,

U.s/ D lim
N!1

NY
iD0

e�.si/ısi ; siC1 D si C ısi ;
X

i

ısi D s ; (10.11)

or through a series expansion:

U.s/ D
X

n

1

nŠ

Z s

0

ds1

Z s

0

ds2 : : :
Z s

0

dsnS f�.s1/ : : : �.sn/g : (10.12)

Here, the S-ordering operator S ensures that the flow parameters appearing in
the integrands are always in descending order, s1 > s2 > : : :. Note that neither
Eq. (10.11) nor Eq. (10.12) can be written as a single proper exponential, so we
do not obtain a simple Baker-Campbell-Hausdorff expansion of the transformed
Hamiltonian. Instead, we would have to use these complicated expressions to
construct OH.s/ D OU.s/ OH.0/ OU�.s/, and to make matters even worse, Eqs. (10.11) and
(10.12) depend on the generator at all intermediate points of the flow trajectory. The
associated storage needs would make numerical applications impractical or entirely
unfeasible.

Let us focus on the flow equation (10.8), then, and specify a generator that will
transform the Hamiltonian to the desired structure [Eq. (10.4)]. Inspired by the work
of Brockett [69] on the so-called double-bracket flow, Wegner [40] proposed the

1There are mathematical subtleties due to OH.s/ being an operator that is only bounded from below,
and having a spectrum that is part discrete, part continuous (see, e.g., [67, 68]). In practice, we are
forced to work with approximate, finite-dimensional matrix representations of OH.s/ in any case.
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generator

O�.s/ � ŒHd.s/;Hod.s/
 : (10.13)

A fixed point of the SRG flow is reached when O�.s/ vanishes. At finite s, this can
occur if OHd.s/ and OHod.s/ happen to commute, e.g., due to a degeneracy in the
spectrum of OH.s/. A second fixed point at s ! 1 exists if OHod.s/ vanishes as
required.

Going back over the discussion, you may notice that we never specified in
detail how we split the Hamiltonian into diagonal and off-diagonal parts. By
“diagonal” we really mean the desired structure of the Hamiltonian, and “off-
diagonal” labels the contributions we have to suppress in the limit s!1 to obtain
that structure. The basic concepts described here are completely general, and we will
discuss two examples in which we apply them to the diagonalization of matrices
in the following. The renormalization of Hamiltonians (or other operators) is a
more specific application of continuous unitary transformations. We make contact
with renormalization ideas by imposing a block or band-diagonal structure on the
representation of operators in bases that are organized by momentum or energy. This
implies a decoupling of low and high momenta or energies in the renormalization
group sense. We will conclude this section with a brief discussion of how this SRG
decoupling of scales is used to render nuclear Hamiltonians more suitable for ab
initio many-body calculations [22, 23, 53, 72, 73].

10.2.2 A Two-Dimensional Toy Problem

In order to get a better understanding of the SRG method, we first consider a simple
2�2matrix problem that can be solved analytically, and compare the flow generated
by Eq. (10.8) with standard diagonalization algorithms like Jacobi’s rotation method
(see, e.g., [74]).

Let us consider a symmetric matrix H,

H �
�

H11 H12

H12 H22

�
: (10.14)

and an orthogonal (i.e., unitary and real) matrix U,

U D
�

cos 	 sin 	
� sin 	 cos 	

�
; (10.15)
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that parameterizes a rotation of the basis in which H and U are represented. We want
to find an angle 	 so that H0 D UHUT is diagonal, and to achieve this, we need to
solve

.H22 �H11/ cos 	 sin 	 C H12.cos2 	 � sin2 	/ D 0 : (10.16)

Using the addition theorems cos2 	 � sin2 	 D cos.2	/ and cos 	 sin 	 D
sin.2	/=2, we can rewrite this equation as

tan.2	/ D 2H12

H11 �H22

(10.17)

and obtain

	 D 1

2
tan�1

�
2H12

H11 �H22

�
C k�

2
; k 2 Z; (10.18)

where k�=2 is added due to the periodicity of the tan function. Note that k D 0

gives a diagonal matrix of the form

H0
kD0 D

�
E1 0
0 E2

�
; (10.19)

while k D 1 interchanges the diagonal elements:

H0
kD1 D

�
E2 0
0 E1

�
: (10.20)

Let us now solve the same problem with an SRG flow. We parameterize the
Hamiltonian as

H.s/ D Hd.s/C Hod.s/ �
�

E1.s/ 0

0 E2.s/

�
C
�
0 V.s/

V.s/ 0

�
; (10.21)

working in the eigenbasis of Hd.s/. We can express H.s/ in terms of the 2�2 identity
matrix and the Pauli matrices:

H.s/ D EC.s/OI C E�.s/�3 C V.s/�1 ; (10.22)

where we have introduced

E˙.s/ � 1

2
.E1.s/˙ E2.s// : (10.23)
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The Wegner generator can be determined readily using the algebra of the Pauli
matrices, Œ�j; �k
 D 2i"jkl�l:

�.s/ D ŒHd.s/;Hod.s/
 D 2iE�.s/V.s/�2 : (10.24)

By evaluating both PH.s/ as well as Œ O�.s/; OH.s/
 and comparing the coefficients of
the 2 � 2 matrices, we obtain the following system of flow equations:

PEC D 0 (10.25)

PE� D 4V2E� (10.26)

PV D �4E2�V ; (10.27)

where we have suppressed the flow parameter dependence for brevity. The first
flow equation reflects the conservation of the Hamiltonian’s trace under unitary
transformations,

tr .H.s// D E1.s/C E2.s/ D E1.0/C E2.0/ D tr .H.0// D const. (10.28)

The third flow equation can be rearranged into

1

V
dV D �4E2�ds (10.29)

and integrated, which yields

V.s/ D V.0/ exp

�
�4

Z s

0

ds0 E2�.s0/
�
: (10.30)

Since E�.s/ is real, the integral is positive for all values of s, and this means that the
off-diagonal matrix element will be suppressed exponentially as we evolve s!1
(barring singular behavior in E˙.s/).

To proceed, we introduce new variables˝ and � :

˝ �
q

E2� C V2 ; tan
�

2
� V

E�
: (10.31)

Using Eqs. (10.26) and (10.27), we can show that ˝ is a flow invariant:

P̋ D 1

2˝
.2E� PE� C 2V PV/ D 0 : (10.32)

Rewriting E�.s/ and V.s/ in terms of ˝ and �.s/, we then have

E�.s/ D ˝ cos
�.s/

2
; V.s/ D ˝ sin

�.s/

2
: (10.33)
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Using these expressions, we find that Eqs. (10.26) and (10.27) reduce to a single
differential equation for �.s/:

P� D �8˝2 sin
�.s/

2
cos

�.s/

2
D �4˝2 sin � : (10.34)

Bringing sin � to the left-hand side and using

d

dx
ln tan

x

2
D 1

sin x
; (10.35)

we can integrate the ordinary differential equation (ODE) and obtain

tan
�.s/

2
D tan

�.0/

2
e�4˝2s : (10.36)

At s D 0 we have

�.0/ D 2 tan�1 V.0/

E�.0/
C 2k� D 2 tan�1 2V.0/

E1.0/� E2.0/
C 2k� ; k 2 Z ;

(10.37)

which is just four times the angle of the Jacobi rotation that diagonalizes our initial
matrix, Eq. (10.18). Likewise �.s/ is (up to the prefactor) the angle of the Jacobi
rotation that will diagonalize the evolved H.s/ for s > 0. In the limit s ! 1,
�.s/! 0 because the SRG flow has driven the off-diagonal matrix element to zero
and the Hamiltonian is already diagonal.

When we introduced the parameterization (10.33), we chose ˝ to be positive,
which means that �.s/ must encode all information on the signs of E�.s/ and V.s/.
In Fig. 10.1, we show these quantities as a function of �.s/ over the interval Œ0; 4�
.
We see that the four possible sign combinations correspond to distinct regions in
the interval. We can map any set of initial values—or any point of the flow, really—
to a distinct value �.s/ in this figure, even in limiting cases: For instance, if the
diagonal matrix elements are degenerate, E1 D E2, we have E� D 0, the angle � will
approach ˙� and V.s/=˝ ! ˙1. From this point the SRG flow will drive E�.s/
and V.s/ to the nearest fixed point at a multiple of 2� according to the trajectory for
�.s/, Eq. (10.36). The fixed points and flow directions are indicated in the figure.

10.2.3 The Pairing Model

10.2.3.1 Preliminaries

As our second example for diagonalizing matrices by means of SRG flows, we will
consider the pairing model that was discussed in the context of Hartree-Fock and
beyond-HF methods in Chap. 8. In second quantization, the pairing Hamiltonian is
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Fig. 10.1 E�.s/ and V.s/ as a function of the flowing angle �.s/, in units of the flow invariant ˝.
Black dots and arrows the fixed points at s ! 1 and the directions of the SRG flow, respectively,
in the domains corresponding to specific sign combinations for E�.s/ and V.s/ (see text)

Table 10.1 Single-particle
states and their quantum
numbers and their energies
from Eq. (10.38)

State p 2sz "

0 1 1 0

1 1 �1 0

2 2 1 ı

3 2 �1 ı

4 3 1 2ı

5 3 �1 2ı

6 4 1 3ı

7 4 �1 3ı

The degeneracy for
every quantum number
p is equal to 2 due to the
two possible spin values

given by

OH D ı
X
p�

.p � 1/a�p�ap� � 1
2

g
X
pq

a�pCa�p�aq�aqC ; (10.38)

where ı controls the spacing of single-particle levels that are indexed by a principal
quantum number p D 1; : : : ; 4 and their spin projection � (see Table 10.1), and g
the strength of the pairing interaction.

We will consider the case of four particles in eight single-particle states.
Following the Full Configuration Interaction (FCI) approach discussed in Chap. 8,
we can construct a many-body basis of Slater determinants by placing our particles
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into the available single-particle basis states. Since each single-particle state can
only be occupied by one particle, there are

�
8

4

�
D 70 (10.39)

unique configurations. The specific form of the pairing interaction implies that the
total spin projection Sz D P4

nD1 s.n/z is conserved, and the Hamiltonian will have a
block diagonal structure. The possible values for Sz are �2;�1; 0; 1; 2, depending
on the number of particles in states with spin up (NC) or spin down (N�). The
dimension can be calculated via

dSz D
�
4

NC

�
�
�
4

N�

�
; (10.40)

which yields

d˙2 D 1 ; d˙1 D 16 ; d0 D 36 : (10.41)

Since the pairing interaction only couples pairs of single-particle states with the
same principal quantum number but opposite spin projection, it does not break pairs
of particles that occupy such states—in other words, the number of particle pairs is
another conserved quantity, which allows us to decompose the Sz blocks into even
smaller sub blocks. As in Chap. 8, we consider the Sz D 0 sub block with two
particle pairs. In this block, the Hamiltonian is represented by the six-dimensional
matrix (suppressing block indices)

H D

0
BBBBBBB@

2ı � g �g=2 �g=2 �g=2 �g=2 0

�g=2 4ı � g �g=2 �g=2 �0 �g=2
�g=2 �g=2 6ı � g 0 �g=2 �g=2
�g=2 �g=2 0 6ı � g �g=2 �g=2
�g=2 0 �g=2 �g=2 8ı � g �g=2
0 �g=2 �g=2 �g=2 �g=2 10ı � g

1
CCCCCCCA
: (10.42)

10.2.3.2 SRG Flow for the Pairing Hamiltonian

As in earlier sections, we split the Hamiltonian matrix (10.42) into diagonal and
off-diagonal parts:

Hd.s/ D diag.E0.s/ ; : : : ;E5.s// ; Hod.s/ D H.s/� Hd.s/ ; (10.43)

with initial values defined by Eq. (10.42). Since Hd.s/ is diagonal throughout the
flow per construction, the Slater determinants that span our specific subspace are
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the eigenstates of this matrix. In our basis representation, Eq. (10.8) can be written
as

d

ds
hij OH j ji D

X
k

�
hij O� jkihkj OH j ji � hij OH jkihkj O� j ji

�

D � 
Ei � Ej
� hij O� j ji CX

k

�
hij O� jkihkj OHod j ji � hij OHod jkihkj O� j ji

�
;

(10.44)

where hij OHod jii D 0 and block indices as well as the s-dependence have been
suppressed for brevity. The Wegner generator, Eq. (10.13), is given by

hij O� j ji D hij Œ OHd; OHod
 j ji D .Ei � Ej/hij OHod j ji ; (10.45)

and inserting this into the flow equation, we obtain

d

ds
hij OH j ji D � 
Ei � Ej

�2 hij OHod j ji C
X

k



Ei C Ej � 2Ek

� hij OHod jkihkj OHod j ji :
(10.46)

Let us assume that the transformation generated by O� truly suppresses OHod, and
consider the asymptotic behavior for large flow parameters s > s0 � 0. If
jj OHod.s0/jj � 1 in some suitable norm, the second term in the flow equation can
be neglected compared to the first one. For the diagonal and off-diagonal matrix
elements, this implies

dEi

ds
D d

ds
hij OHd jii D 2

X
k

.Ei � Ek/hij OHod jkihkj OHod jii � 0 (10.47)

and

d

ds
hij OH j ji � � 
Ei � Ej

�2 hij OHod j ji ; (10.48)

respectively. Thus, the diagonal matrix elements will be (approximately) constant
in the asymptotic region,

Ei.s/ � Ei.s0/ ; s > s0 ; (10.49)

which in turn allows us to integrate the flow equation for the off-diagonal matrix
elements. We obtain

hij OHod.s/ j ji � hij OHod.s0/ j ji e�.Ei�Ej/
2.s�s0/ ; s > s0 ; (10.50)
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i.e., the off-diagonal matrix elements are suppressed exponentially, as for the 2 � 2
matrix toy problem discussed in the previous section. If the pairing strength g is
sufficiently small so that OH2

od.0/ � O.g2/ can be neglected, we expect to see the
exponential suppression of the off-diagonal matrix elements from the very onset of
the flow.

Our solution for the off-diagonal matrix elements, Eq. (10.50), shows that the
characteristic decay scale for each matrix element is determined by the square
of the energy difference between the states it couples, .�Eij/

2 D .Ei � Ej/
2.

Thus, states with larger energy differences are decoupled before states with small
energy differences, which means that the Wegner generator generates a proper
renormalization group transformation. Since we want to diagonalize (10.42) in
the present example, we are only interested in the limit s ! 1, and it does
not really matter whether the transformation is an RG or not. Indeed, there are
alternative choices for the generator which are more efficient in achieving the
desired diagonalization (see Sect. 10.3.4 and [53, 73]). The RG property will matter
in our discussion of SRG-evolved nuclear interactions in the next section.

10.2.3.3 Implementation

We are now ready to discuss the implementation of the SRG flow for the pairing
Hamiltonian. The main numerical task is the integration of the flow equations, a
system of first order ODEs. Readers who are interested in learning the nuts-and-
bolts details of implementing an ODE solver are referred to the excellent discussion
in [75], while higher-level discussions of the algorithms can be found, e.g., in [76–
78]. A number of powerful ODE solvers have been developed over the past decades
and integrated into readily available libraries, and we choose to rely on one of these
here, namely ODEPACK (see www.netlib.org/odepack and [79–81]). The SciPy
package provides convenient Python wrappers for the ODEPACK solvers.

The following source code shows the essential part of our Python implementation
of the SRG flow for the pairing model. The full program with additional features can
be downloaded from https://github.com/ManyBodyPhysics/LectureNotesPhysics/
tree/master/Programs/Chapter10-programs/python/srg_pairing.

import numpy as np
from numpy import array, dot, diag, reshape
from scipy.linalg import eigvalsh
from scipy.integrate import odeint

# Hamiltonian for the pairing model
def Hamiltonian(delta,g):

H = array(
[[2*delta-g, -0.5*g, -0.5*g, -0.5*g, -0.5*g, 0.],
[ -0.5*g, 4*delta-g, -0.5*g, -0.5*g, 0., -0.5*g ],
[ -0.5*g, -0.5*g, 6*delta-g, 0., -0.5*g, -0.5*g ],
[ -0.5*g, -0.5*g, 0., 6*delta-g, -0.5*g, -0.5*g ],

www.netlib.org/odepack
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/srg_pairing
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/srg_pairing
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[ -0.5*g, 0., -0.5*g, -0.5*g, 8*delta-g, -0.5*g ],
[ 0., -0.5*g, -0.5*g, -0.5*g, -0.5*g, 10*delta-g

]]
)

return H

# commutator of matrices
def commutator(a,b):

return dot(a,b) - dot(b,a)

# right-hand side of the flow equation
def derivative(y, t, dim):

# reshape the solution vector into a dim x dim matrix
H = reshape(y, (dim, dim))

# extract diagonal Hamiltonian...
Hd = diag(diag(H))

# ... and construct off-diagonal the Hamiltonian
Hod = H-Hd

# calculate the generator
eta = commutator(Hd, Hod)

# dHdt is the derivative in matrix form
dH = commutator(eta, H)

# convert dH into a linear array for the ODE solver
dy = reshape(dH, -1)

return dy

#--------------------------------------------------------------
# Main program
#--------------------------------------------------------------
def main():

g = 0.5
delta = 1

H0 = Hamiltonian(delta, g)
dim = H0.shape[0]

# calculate exact eigenvalues
eigenvalues = eigvalsh(H0)

# turn initial Hamiltonian into a linear array
y0 = reshape(H0, -1)
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# flow parameters for snapshot images
flowparams = array([0.,0.001,0.01,0.05,0.1, 1., 5., 10.])

# integrate flow equations - odeint returns an array of

# solutions, which are 1d arrays themselves
ys = odeint(derivative, y0, flowparams, args=(dim,))

# reshape individual solution vectors into dim x dim

# Hamiltonian matrices
Hs = reshape(ys, (-1, dim,dim))

The routine Hamiltonian sets up the Hamiltonian matrix (10.42) for general
values of ı and g. The right-hand side of the flow equation is implemented
in the routine derivative, which splits H.s/ in diagonal and off-diagonal
parts, and calculates both the generator and the commutator Œ O�; OH
 using matrix
products. Since the interface of essentially all ODE libraries require the ODE
system and derivative to be passed as a one-dimensional array, NumPy’s reshape
functionality used to rearrange these arrays into 6 � 6 matrices and back again.

The main routine calls the ODEPACK wrapper odeint, passing the initial
Hamiltonian as a one-dimensional array y0 as well as a list of flow parameters s
for which a solution is requested. The routine odeint returns these solutions as a
two-dimensional array.

10.2.3.4 A Numerical Example

As a numerical example, we solve the pairing Hamiltonian for ı D 1:0 and g D 0:5.
In Fig. 10.2, we show snapshots of the matrix H.s/ at different stages of the flow.
We can nicely see how the SRG evolution drives the off-diagonal matrix elements
to zero. The effect becomes noticeable on our logarithmic color scale around s D
0:05, where the outermost off-diagonal matrix elements start to lighten. At s D
0:1, H05.s/ has been reduced by four to five orders of magnitude, and at s D 1:0,
essentially all of the off-diagonal matrix elements have been affected to some extent.
Note that the strength of the suppression depends on the distance from the diagonal,
aside from H05 itself, which has a slightly larger absolute value than H04 and H15.
The overall behavior is as expected from our approximate solution (10.50), and the
specific deviations can be explained by the approximate nature of that result. Once
we have reached s D 10, the matrix is essentially diagonal, with off-diagonal matrix
elements reduced to 10�10 or less. Only the 2�2 block spanned by the states labeled
2 and 3 has slightly larger off-diagonal matrix elements remaining, which is due to
the degeneracy of the corresponding eigenvalues.

In Fig. 10.3, we compare the flowing diagonal matrix elements Hii.s/ to the
eigenvalues of the pairing Hamiltonian. As we have just mentioned, the pairing
Hamiltonian has a doubly degenerate eigenvalue E2 D E3 D 6ı � g, which is why
we see only five curves in these plots. For our choice of parameters, the diagonal
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Fig. 10.2 SRG evolution of the pairing Hamiltonian with ı D 1; g D 0:5. The figures show
snapshots of the Hamiltonian’s matrix representation at various stages of the flow, indicated by
the flow parameters s. Note the essentially logarithmic scales of the positive and negative matrix
elements, which are bridged by a linear scale in the vicinity of 0

E
i,
H
ii
(s
)

s

H
ii
(s
)
−
E
i

s

Fig. 10.3 SRG evolution of the pairing Hamiltonian with ı D 1; g D 0:5. The left panel shows
the diagonal matrix elements Hii.s/ as a function of the flow parameter s (dashed lines) and the
corresponding eigenvalues (solid lines), the right panel the difference of the two numbers. The
color coding is the same in both panels

matrix elements are already in fairly good agreement with the eigenvalues to begin
with. Focusing on the right-hand panel of the figure in particular, we see that H00

(blue) and H11 (red) approach their eigenvalues from above, while H44 (orange) and
H55 (light blue) approach from below as we evolve to large s. It is interesting that the
diagonal matrix elements are already practically identical to the eigenvalues once
we have integrated up to s D 1:0, despite the non-vanishing off-diagonal matrix
elements that are visible in the s D 1:0 snapshot shown in Fig. 10.2.
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10.2.4 Evolution of Nuclear Interactions

10.2.4.1 Matrix and Operator Flows

In our discussion of the schematic pairing model in the previous section, we
have used SRG flows to solve the eigenvalue problem arising from a four-body
Schrödinger equation, so we may want to use the same method for the more realistic
case of A nucleons interacting by nuclear NN, 3N, etc. interactions (see Chap. 8).
However, we quickly realize the main problem of such an approach: Working in
a full configuration interaction (FCI) picture and assuming even a modest single-
particle basis size, e.g., 50 proton and neutron states each, a basis for the description
of a nucleus like 16O would naively have

d.16O/ D
�
50

8

�
�
�
50

8

�
� 2:88 � 1017 (10.51)

configurations, i.e., we would need about 2 exabytes (EB) of memory to store all
the coefficients of just one eigenvector (assuming double precision floating-point
numbers), and 7 � 1017 EB to construct the complete Hamiltonian matrix! State-
of-the-art methods for large-scale diagonalization are able to reduce the memory
requirements and computational effort significantly by exploiting matrix sparseness,
and using modern versions of Lanczos-Arnoldi [82, 83] or Davidson algorithms
[84], but nuclei in the vicinity of the oxygen isotopic chain are among the heaviest
accessible with today’s computational resources (see, e.g., [44, 85] and references
therein). A key feature of Lanczos-Arnoldi and Davidson methods is that the
Hamiltonian matrix only appears in the calculation of matrix-vector products. In this
way, an explicit construction of the Hamiltonian matrix in the CI basis is avoided,
because the matrix-vector product can be calculated from the input NN and 3N
interactions that only require O.n4/ and O.n6/ storage, respectively, where n is
the size of the single-particle basis (see Sect. 10.3). However, the SRG flow of the
previous section clearly forces us to construct and store the Hamiltonian matrix in
its entirety—at best, we could save some storage by resizing the matrix once its
off-diagonal elements have been sufficiently suppressed.

Instead of trying to evolve the many-body Hamiltonian matrix, we therefore
focus on the Hamiltonian operator itself instead. Let us consider a nuclear Hamilto-
nian with a two-nucleon interaction for simplicity:

OHint D OTint C OV Œ2
 : (10.52)

Since nuclei are self-bound objects, we have to consider the intrinsic form of the
kinetic energy,

OTint � OT � OTcm : (10.53)
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It is straightforward to show that OTint can be written either as a sum of one- and
two-body operators,

OTint D
�
1 � 1OA

�X
i

Op2i
2m
� 1OA

X
i<j

Opi � Opj

m
(10.54)

or as a pure two-body operator

OTint D 2

OA
X
i<j

Oq2ij
2�

; Oqij � Opi � Opj : (10.55)

Here, OA should be treated as a particle-number operator (see [86]), and � D m=2
is the reduced nucleon mass (neglecting the proton-neutron mass difference). Using
Eq. (10.55) for the present discussion, we can write the intrinsic Hamiltonian as

OHint D 2

OA
X
i<j

Oq2ij
2�
C
X
i<j

OvŒ2
ij ; (10.56)

and directly consider the evolution of this operator via the flow equation (10.8). It is
customary to absorb the flow-parameter dependence completely into the interaction
part of the Hamiltonian, and leave the kinetic energy invariant—in our previous
examples, this simply amounts to moving the s-dependent part of OHd.s/ into OHod.s/.
We end up with a flow equation for the two-body interaction:

d

ds
OvŒ2
ij D Œ O�; OvŒ2
ij 
 : (10.57)

In cases where we can expand the two-body interaction in terms of a finite algebra
of “basis” operators, Eq. (10.57) becomes a system of ODEs for the expansion
coefficients, the so-called running couplings of the Hamiltonian, as explained
in earlier chapters of this book. An example is the toy problem discussed in
Sect. 10.2.2: We actually expanded our 2 � 2 in terms of the algebra fOI; O�1; O�2; O�3g,
and related the matrix elements to the coefficients in this expansion. While the
representation of the basis operators of our algebra would force us to use extremely
large matrices when we deal with an A-body system, we may be able to capture the
SRG flow completely with a small set of ODEs for the couplings of the Hamiltonian!

If we cannot identify a set of basis operators for the two-body interaction, we
can still resort to representing it as a matrix between two-body states. For a given
choice of single-particle basis with size n, OvŒ2
 is then represented by O.n4/ matrix
elements, as mentioned above. In general, we will then have to face the issue of
induced many-body forces, as discussed in Sect. 10.2.4.5.
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10.2.4.2 SRG in the Two-Nucleon System

Let us now consider the operator flow of the NN interaction in the two-nucleon
system, Eq. (10.57). Since the nuclear Hamiltonian is invariant under translations
and rotations, it is most convenient to work in momentum and angular momentum
eigenstates of the form

jq.LS/JMTMTi : (10.58)

Because of the rotational symmetry, the NN interaction conserves the total angular
momentum quantum number J, and it is easy to show that the total spin S of
the nucleon pair is a conserved quantity as well. The orbital angular momentum
is indicated by the quantum number L, and we remind our readers that L is not
conserved, because the nuclear tensor operator

Sij.Or; Or/ D 3

Or2 . O� i � Or/. O� j � Or/ � O� i � O� j (10.59)

can couple states with �L D ˙2. We assume that the interaction is charge-
dependent in the isospin channel T D 1, i.e., matrix elements will depend on the
projection MT D �1; 0; 1, which indicates the neutron-neutron, neutron-proton, and
proton-proton components of the nuclear Hamiltonian.

In Fig. 10.4 we show features of the central and tensor forces of the Argonne
V18 (AV18) interaction [87] in the .S;T/ D .1; 0/ channel, which has the quantum
numbers of the deuteron. This interaction belongs to a group of so-called realistic
interactions that describe nucleon-nucleon scattering data with high accuracy, but
precede the modern chiral forces (see Chap. 8, [6, 7]). AV18 is designed to be
maximally local in order to be a suitable input for nuclear Quantum Monte Carlo
calculations [10, 11, 88]. Because of the required locality, AV18 has a strong
repulsive core in the central part of the interaction. Like all NN interactions, it also
has a strong tensor force that results from pion exchange. The radial dependencies
of these interaction components are shown in the left panel of Fig. 10.4.

When we switch to the momentum representation, we see that the 3S1 partial
wave2 which gives the dominant contribution to the deuteron wave function has
strong off-diagonal matrix elements, with tails extending over the entire shown
range and as high as j Oqj � 20 fm�1. The matrix elements of the 3S1 � 3D1 mixed
partial wave, which are generated exclusively by the tensor force, are sizable as
well. The strong coupling between states with low and high relative momenta forces
us to use large Hilbert spaces in few- and many-body calculations, even if we
are only interested in the lowest eigenstates. Methods like the Lanczos algorithm
(see Chap. 8 and [82]) extract eigenvalues and eigenvectors by repeatedly acting

2We use the conventional partial wave notation 2SC1LJ , where L D 0; 1; 2; : : : is indicated by
the letters S;P;D; : : :. The isospin channel is fixed by requiring the antisymmetry of the NN
wavefunction, leading to the condition .�1/LCSCT D �1.
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Fig. 10.4 Repulsive core and tensor force of the Argonne V18 NN interaction [87] in the
.S; T/ D .1; 0/ channel. In the left panel, the radial dependencies of the central (VC.r/) and tensor
components (VT .r/) of Argonne V18 are shown, while the right panel shows its momentum space
matrix elements in the deuteron partial waves

with the Hamiltonian on an arbitrary starting vector in the many-body space, i.e.,
by repeated matrix-vector products. Even if that vector only has low-momentum
or low-energy components in the beginning, an interaction like AV18 will mix in
high-momentum components even after a single matrix-vector multiplication, let
alone tens or hundreds as in typical many-body calculations. Consequently, the
eigenvalues and eigenstates of the nuclear Hamiltonian converge very slowly with
respect to the basis size of the Hilbert space (see, e.g., [44]). To solve this problem,
we perform an RG evolution of the NN interaction.

In Fig. 10.5, we show examples for two types of RG evolution that decouple the
low- and high-momentum pieces of NN interactions. The first example, Fig. 10.5a,
is a so-called RG decimation, in which the interaction is evolved to decreasing
cutoff scales �0 > �1 > �2, and high-momentum modes are “integrated out”.
This is the so-called Vlow-k approach, which was first used in nuclear physics in the
early 2000s [21, 23]. Note that the resulting low-momentum interaction is entirely
confined to states with relative momentum q 	 �. In contrast, Fig. 10.5b shows
the SRG evolution of the NN interaction to a band-diagonal shape via the flow
equation (10.57), using a generator built from the relative kinetic energy in the two-
nucleon system [22, 23]:

�.�/ � Œ Oq
2

2�
; v.�/
 : (10.60)
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Fig. 10.5 Schematic illustration of two types of RG evolution for NN potentials in momentum
space: (a) Vlow-k running in �, and (b) SRG running in � (see main text). Here, q and q0 denote
the relative momenta of the initial and final state, respectively. At each �i or �i, the matrix
elements outside of the corresponding blocks or bands are negligible, implying that high- and
low-momentum states are decoupled

Instead of the flow parameter s, we have parameterized the evolution by � D s�1=4,
which has the dimensions of a momentum in natural units. Note that the generator
(10.60) would vanish if the interaction were diagonal in momentum space. As
suggested by Fig. 10.5b, � is a measure for the “width” of the band in momentum
space. Thus, momentum transfers between nucleons are limited according to

Q � jOq0 � Oqj . � ; (10.61)

and low- and high-lying momenta are decoupled as � is decreased.
Equation (10.61) implies that the spatial resolution scale of an SRG-evolved

interaction (or a Vlow-k if we determine the maximum momentum transfer in the
low-momentum block) is � 1=Q 
 1=�, i.e., only long-ranged components of the
NN interaction are resolved explicitly and short-range components of the interaction
can just as well be replaced by contact interactions [20, 21, 23, 89]. This is the
reason why the realistic NN interactions that accurately describe NN scattering data
collapse to a universal long-range interaction when RG-evolved, namely one-pion
exchange (OPE). This universal behavior emerges in the range 1:5 fm�1 	 � 	
2:5 fm�1. Any further evolution to lower � starts to remove pieces of OPE, and
eventually generates a pion-less theory that is essentially parameterized in terms of
contact interactions. While it is possible to implement such an evolution in the two-
body system without introducing pathological behavior [90], such an interaction
must be complemented by strong induced many-nucleon forces once it is applied in
finite nuclei, as discussed in Sect. 10.2.4.5. For this reason, NN interactions are only
ever evolved to the aforementioned range of � values.
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Nowadays, SRG evolutions are preferred over Vlow-k style decimations in nuclear
many-body theory, because they can be readily extended to 3N; : : : interactions
and to general observables [23, 91–96]. Moreover, we could easily achieve a block
decoupling as in Fig. 10.5a by using a generator like [97]

�.�/ � ŒP�H.�/P� C Q�H.�/Q�„ ƒ‚ …

Hd.�/

;H.�/
 : (10.62)

where the projection operators P� and Q� partition the relative momentum basis
in states with j Oqj 	 � and j Oqj > �, respectively. In this case, � is an auxiliary
parameter that is eliminated by evolving � ! 0, just like we evolved s ! 1 in
Sects. 10.2.2 and 10.2.3.

10.2.4.3 Implementation of the Flow Equations

We are now ready to implement the flow equations for the NN interaction in the
momentum-space partial-wave representation. Using basis states that satisfy the
orthogonality and completeness relations

hqLSJMTMT jq0L0S0J0M0T 0M0
Ti D

ı.q � q0/
qq0 ıLL0ıSS0ıJJ0ıMM0ıTT0ıMT M0

T
(10.63)

and

OI D
X

LSJMTMT

Z 1

0

dq q2 jqLSJMTMTi hqLSJMTMT j ; (10.64)

respectively, we obtain [22, 23]

�
��

5

4

�
dhqLj Ov jq0L0i

d�
D� .q2 � q02/2hqLj Ov jq0L0i

C
X

NL

Z 1

0

dpp2 .q2 C q02 � 2p2/hqLj Ov jp NLihp NLj Ov jq0L0i ;

(10.65)

where we have used scattering units („2=m D 1) and suppressed the �-dependence
of Ov as well as the conserved quantum numbers for brevity. Note that a prefactor
��5=4 appears due to our change of variables from s to �.

We can turn this integro-differential equation back into a matrix flow equation
by discretizing the relative momentum variable, e.g., on uniform or Gaussian
quadrature meshes. The matrix elements of the relative kinetic energy operator are
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then simply given by

hqiLj Ot jqjL
0i D q2i ıqiqjıLL0 (10.66)

(with „2=m D 1). The discretization turns the integration into a simple summation,

Z 1

0

dq q2 !
X

i

wiq
2
i ; (10.67)

where the weights wi depend on our choice of mesh. For a uniform mesh, all weights
are identical and correspond to the mesh spacing, while for Gaussian quadrature
rules the mesh points and weights have to be determined numerically [75]. For
convenience, we absorb the weights and q2 factors from the integral measure into
the interaction matrix element,

hqiLj v jqjL
0i � pwiwjqiqjhqiLj Ov jqjL

0i : (10.68)

The discretized flow equation can then be written as

d

d�
hqiLj v jqjL

0i D � 4
�5
hqiLj ŒŒOt; v
; OtC v
 jqjL

0i : (10.69)

We can solve Eq. (10.69) using a modified version of our Python code for the
pairing model, discussed in Sect. 10.2.3. The Python code and sample inputs can be
downloaded from https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/
master/Programs/Chapter10-programs/python/srg_nn. Let us briefly discuss the
most important modifications.

First, we have a set of functions that read the momentum mesh and the input
matrix elements from a file:

def uniform_weights(momenta):
weights = np.ones_like(momenta)
weights *= abs(momenta[1]-momenta[0])
return weights

def read_mesh(filename):
data = np.loadtxt(filename, comments="#")
dim = data.shape[1]

momenta = data[0,:dim]

return momenta

def read_interaction(filename):
data = np.loadtxt(filename, comments="#")
dim = data.shape[1]
V = data[1:,:dim]
return V

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/srg_nn
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/srg_nn
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The matrix element files have the following format:

# momentum space matrix elements
# partial wave J=1, L=0/0, S=1, T=0, MT=0
#
# momentum grid [fm^-1]
0.000000 0.050000 0.100000 0.150000 0.200000 0.250000 0.300000

0.350000 0.400000 0.450000
0.500000 0.550000 0.600000 0.650000 0.700000 0.750000 0.800000

0.850000 0.900000 0.950000
...
6.300000 6.350000 6.400000 6.450000 6.500000 6.550000 6.600000

6.650000 6.700000 6.750000
6.800000 6.850000 6.900000 6.950000 7.000000
#
# matrix elements [MeV fm^3]
-36.94918 -36.83554 -36.49896 -35.95649 -35.23306 -34.35875

-33.36536 -32.28337 -31.13985
-29.95722 -28.75281 -27.53904 -26.32400 -25.11217 -23.90513

-22.70231 -21.50158 -20.29973
...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000

Comments, indicated by the # character, are ignored. The first set of data is a row
containing the mesh points. Here, we have 141 points in total, ranging from 0 to
7 fm�1 with a spacing of 0:05 fm�1. The range of momenta is sufficient for the chiral
NN interaction we use in our example, the N3LO potential by Entem and Machleidt
with cutoff � D 500MeV [7, 98], which is considerably softer than the AV18
interaction discussed above. This is followed by a simple 141� 141 array of matrix
elements. It is straightforward to adapt the format and I/O routines to Gaussian
quadrature meshes by including mesh points (i.e., the abscissas) and weights in the
data file.

The derivative routine is almost unchanged, save for the prefactor due to the use
of � instead of s to parameterize the flow, and the treatment of the kinetic energy
operator as explicitly constant:

def derivative(lam, y, T):
dim = T.shape[0]

# reshape the solution vector into a dim x dim matrix
V = reshape(y, (dim, dim))

# calculate the generator
eta = commutator(T, V)

# dV is the derivative in matrix form
dV = -4.0/(lam**5) * commutator(eta, T+V)

# convert dH into a linear array for the ODE solver
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dy = reshape(dV, -1)

return dy

In the main routine of the program, we first set up the mesh and then proceed to
read the interaction matrix elements for the different partial waves. We are dealing
with a coupled-channel problem because the tensor forces connects partial waves
with �L D 2 in all S D 1 channels. In our example, we restrict ourselves to the
partial waves that contribute to the deuteron bound state, namely 3S1, 3D1, and 3S1�
3D1. Indicating the orbital angular momenta of these partial waves by indices, we
have

T D
�

t
t

�
; V D

 
v00 v02

v
�
02 v22

!
; (10.70)

where

t D diag


q20; : : : ; q

2
max

�
; (10.71)

since the kinetic energy is independent of L. As soon as we pass from the S- into the
D-wave in either the rows or the columns, the momentum mesh simply starts from
the lowest mesh point again. We use NumPy’s hstack and vstack functions to
assemble the interaction matrix from the partial-wave blocks:

def main():
...

# read individual partial waves
partial_waves=[]
for filename in ["n3lo500_3s1.meq", "n3lo500_3d1.meq", "

n3lo500_3sd1.meq"]:
partial_waves.append(read_interaction(filename))
# print partial_waves[-1].shape

# assemble coupled channel matrix
V = np.vstack((np.hstack((partial_waves[0], partial_waves

[2])),
np.hstack((np.transpose(partial_waves[2]),

partial_waves[1]))
))

# switch to scattering units
V = V/hbarm

...

As discussed earlier, we work in scattering units with „2=m D 1. Thus, we
have to divide the input matrix elements by this factor. We also need to absorb the
weights and explicit momentum factors into the interaction matrix. It is convenient
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to define a conversion matrix for this purpose, which can be multiplied element-wise
with the entries of V using the regular * operator (recall that the matrix product is
implemented by the NumPy function dot).

Since we changed variables from s to �, we now start the integration at � D 1,
or � � 1 fm�1 in practice. As discussed above, we do not evolve all the way to
� D 0 fm�1, but typically stop before we start integrating out explicit pion physics,
e.g., at � D 1:5 fm�1. For typical NN interactions, especially those with a hard
core like AV18, the flow equations tend to become stiff because they essentially
depend on cubic products of the kinetic energy and interaction. For this reason, we
use SciPy’s ode class, which provides access to a variety of solvers and greater
control over the parameters of the integration process. Specifically, we choose the
VODE solver package and its fifth-order Backward Differentiation method [99],
which is efficient and works robustly for a large variety of input interactions.

...

lam_initial = 20.0
lam_final = 1.5

# integrate using scipy.ode instead of scipy.odeint - this

# gives us more control over the solver
solver = ode(derivative,jac=None)

# equations may get stiff, so we use VODE and Backward
Differentiation

solver.set_integrator('vode', method='bdf', order=5, nsteps
=1000)

solver.set_f_params(T)
solver.set_initial_value(y0, lam_initial)

...

Finally, we reach the loop that integrates the ODE system. We request output
from the solver in regular intervals, reducing these intervals as we approach the
region of greatest practical interest, 1:5 fm�1 	 � 	 2:5 fm�1:
...

while solver.successful() and solver.t > lam_final:
# adjust the step size in different regions of the flow

parameter
if solver.t >= 6.0:
ys = solver.integrate(solver.t-1.0)

elif solver.t < 6.0 and solver.t >= 2.5:
ys = solver.integrate(solver.t-0.5)

elif solver.t < 2.5 and solver.t >= lam_final:
ys = solver.integrate(solver.t-0.1)

# add evolved interactions to the list
flowparams.append(solver.t)
Vtmp = reshape(ys,(dim,dim))
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Vs.append(Vtmp)

print("%8.5f %14.8f"%(solver.t, eigvalsh((T + Vtmp)*hbarm
)[0]))

...

Of course, the ODE solver will typically take several hundred adaptive steps to
propagate the solution with the desired accuracy between successive requested val-
ues of �. At the end of each external step, we diagonalize the evolved Hamiltonian
and check whether the lowest eigenvalue, i.e., the deuteron binding energy, remains
invariant within the numerical tolerances we use for the ODE solver. To illustrate
the evolution of the NN interaction, the code will also generate a sequence of matrix
plots at the desired values of �, similar to Fig. 10.2 for the pairing Hamiltonian.

10.2.4.4 Example: Evolution of a Chiral NN Interaction

As an example of a realistic application, we discuss the SRG evolution of the chiral
N3LO nucleon-nucleon interaction by Entem and Machleidt with initial cutoff� D
500MeV [7, 98]. The momentum-space matrix elements of this interaction in the
deuteron partial waves are distributed with the Python code discussed in the previous
section.

In the top row of Fig. 10.6, we show the matrix elements of the initial interaction
in the 3S1 partial wave; the 3S1 � 3D1 and 3D1 are not shown to avoid clutter.
Comparing the matrix elements to those of the AV18 interaction we discussed in
Sect. 10.2.4.2, shown in Fig. 10.4, we note that the chiral interaction has much
weaker off-diagonal matrix elements to begin with. While the AV18 matrix elements
extend as high as j Oqj � 20 fm�1, the chiral interaction has no appreciable strength
in states with j Oqj � 4:5 fm�1. In nuclear physics jargon, AV18 is a much harder
interaction than the chiral interaction because of the former’s strongly repulsive
core. By evolving the initial interaction to 3 fm�1 and then to 2 fm�1, the offdiagonal
matrix elements are suppressed, and the interaction is almost entirely contained in a
block of states with j Oqj � 2 fm�1, except for a weak diagonal ridge.

Next to the matrix elements, we also show the deuteron wave functions that we
obtain by solving the Schrödinger equation with the initial and SRG-evolved chiral
interactions. For the unevolved NN interaction, the S-wave (L D 0) component of
the wave function is suppressed at small relative distances, which reflects short-
range correlations between the nucleons. (For AV18, the S-wave component of
the deuteron wave function vanishes at r D 0 fm due to the hard core.) There
is also a significant D-wave (L D 2) admixture due to the tensor interaction. As
we lower the resolution scale, the “correlation hole” in the wave function is filled
in, and all but eliminated once we reach � D 2:0 fm�1. The D-wave admixture is
reduced significantly, as well, because the evolution suppresses the matrix elements
in the 3S1 � 3D1 wave, which are responsible for this mixing [23]. Focusing just
on the S-wave, the wave function is extremely simple and matches what we would
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Fig. 10.6 SRG evolution of the chiral N3LO nucleon-nucleon interaction by Entem and Mach-
leidt, with initial cutoff � D 500MeV [7, 98]. In the left column, we show the momentum-space
matrix elements of the interaction in the 3S1 partial wave for different values of the SRG resolution
scale �. The top-most row shows the initial interaction at s D 0 fm4 , i.e., “� D 1”. In the right
column, we show the S- and D-wave components of the deuteron wave function that is obtained by
solving the Schrödinger equation with the corresponding SRG-evolved interaction

expect for two almost independent, uncorrelated nucleons. The Pauli principle does
not affect the coordinate-space part of the wave function here because the overall
antisymmetry of the deuteron wave function is ensured by its spin and isospin parts.

Let us dwell on the removal of short-range correlations from the wave function
for another moment, and consider the exact eigenstates of the initial NN Hamilto-
nian,

OH.0/ j ni D En j ni : (10.72)
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The eigenvalues are invariant under a unitary transformation, e.g., an SRG evolution,

OH.�/ OU.�/ j ni � OU.�/ OH.0/ OU�.�/ OU.�/ j ni D En OU.�/ j ni : (10.73)

We can interpret this equation as a shift of correlations from the wave function
into the effective, RG-improved Hamiltonian. When we solve the Schrödinger
equation numerically, we can usually only obtain an approximation jni of the
exact eigenstate. In the ideal case, this is merely due to finite-precision arithmetic
on a computer, but more often, we also have systematic approximations, e.g.,
mesh discretizations, finite basis sizes, many-body truncations (think of the cluster
operator in Coupled Cluster, for instance, cf. Chap. 8), etc. If we use the evolved
Hamiltonian OH.�/, we only need to approximate the transformed eigenstate,

jni � OU.�/ j ni (10.74)

instead of j ni, which is often a less demanding task. This is certainly true for
our deuteron example at � D 2:0 fm�1, where we no longer have to worry about
short-range correlations.

10.2.4.5 Induced Interactions

As discussed earlier in this section, our motivation for using the SRG to decouple
the low- and high-lying momentum components of NN interactions is to improve the
convergence of many-body calculations. The decoupling prevents the Hamiltonian
from scattering nucleon pairs from low to high momenta or energies, which in turn
allows configuration-space based methods to achieve convergence in much smaller
Hilbert spaces than for a “bare”, unevolved interaction. This makes it possible to
extend the reach of these methods to heavier nuclei [44–48, 52, 53, 100–108].

In practical applications, we pay a price for the improved convergence. To
illustrate the issue, we consider the Hamiltonian in a second-quantized form,
assuming only a two-nucleon interaction for simplicity [cf. Eq. (10.56)]:

OHint D 1

4

X
pqrs

hpqj Oq
2

2�
C Ov jrsia�pa�qasar : (10.75)

If we plug the kinetic energy and interaction into the commutators in Eqs. (10.60)
and (10.8), we obtain

Œa�i a�j alak; a
�
pa�qasar
D ılpa�i a�j a�qasarak Ca�a�a�aaa� ılpıkqa�i a�j asar C a�a�aa ;

(10.76)

where the terms with suppressed indices schematically stand for additional two- and
three-body operators. Even if we start from a pure NN interaction, the SRG flow
will induce operators of higher rank, i.e., 3N, 4N, and in general up to A-nucleon
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Fig. 10.7 Ground state energy of 3H as a function of the flow parameter � for chiral NNLO NN
and NNC3N interactions (see [95] for details). NN-only means initial and induced 3N interactions
are discarded, NN C 3N-induced takes only induced 3N interactions into account, and 3N-full
contains initial 3N interactions as well. The black dotted line shows the experimental binding
energy [111]. Data for the figure courtesy of K. Hebeler

interactions. Of course, these induced interactions are only probed if we study an
A-nucleon system. If we truncate the SRG flow equations at the two-body level, the
properties of the two-nucleon system are preserved, in particular the NN scattering
phase shifts and the deuteron binding energy. A truncation at the three-body level
ensures the invariance of observables in A D 3 nuclei, e.g. 3H and 3He ground-state
energies, and so on.

Nowadays, state-of-the-art SRG evolutions of nuclear interactions are performed
in the three-body system [45, 94, 95, 109, 110]. In Fig. 10.7, we show 3H ground-
state energies that have been calculated with a family of SRG-evolved interactions
that is generated from a chiral NNLO NN interaction by Epelbaum, Glöckle, and
Meißner [112, 113], and a matching 3N interaction (see [95] for full details). As
mentioned above, the SRG evolution is not unitary in the three-body system if
we truncate the evolved interaction and the SRG generator at the two-body level
(NN-only). The depends strongly on �, varying by 5–6% over the typical range that
we consider here (cf. Sect. 10.2.4.2). If we truncate the operators at the three-body
level instead, induced 3N interactions are properly included and the unitarity of the
transformation is restored (NNC3N-induced): The energy does not change as �
is varied. Finally, the curve NNC3N-full shows results of calculations in which a
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3N force was included in the initial Hamiltonian and evolved consistently to lower
resolution scale as well. Naturally, the triton ground-state energy is invariant under
the SRG flow, and it closely reproduces the experimental value because the 3N
interaction’s low-energy constants are usually fit to give the correct experimental
3H ground-state energy (see, e.g., [6, 7, 114]).

Our example shows that it is important to track induced interactions, especially
when we want to use evolved nuclear Hamiltonians beyond the few-body systems
we have focused on here. The nature of the SRG as a continuous evolution works
at least somewhat in our favor: As discussed above, truncations of the SRG flow
equations lead to a violation of unitarity that manifests as a (residual) dependence
of our calculated few- and many-body observables on the resolution scale �. We
can use this dependence as a tool to assess the size of missing contributions,
although one has to take great care to disentangle them from the effects of many-
body truncations, unless one uses quasi-exact methods like the NCSM (see, e.g.,
[23, 46, 48, 52, 94, 95, 100, 108, 115]). If we want more detailed information,
then we cannot avoid to work with 3N; 4N; : : : or higher many-nucleon forces. The
empirical observation that SRG evolutions down to � � 1:5 fm�1 appear to preserve
the natural hierarchy of nuclear forces, i.e., NN > 3N > 4N > : : :, suggests that we
can truncate induced forces whose contributions would be smaller than the desired
accuracy of our calculations.

While we may not have to go all the way to the treatment of induced A-nucleon
operators, which would be as expensive as implementing the matrix flow in the
A-body system (cf. Sect. 10.2.4.2), dealing with induced 3N operators is already
computationally expensive enough. Treating induced 4N forces explicitly is out of
the question, except in schematic cases. However, there is a way of accounting
for effects of induced 3N; : : : forces in an implicit manner, by performing SRG
evolutions in the nuclear medium.

10.3 The In-Medium SRG

As discussed in the previous section, we now want to carry out the operator
evolution (10.8) in the nuclear medium. The idea is to decompose a given N-body
operator into in-medium contributions of lower rank and residual components that
can be truncated safely. To this end, we first have to lay the groundwork by reviewing
the essential elements of normal ordering, as well as Wick’s theorem.
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10.3.1 Normal Ordering and Wick’s Theorem

10.3.1.1 Normal-Ordered Operators

To construct normal-ordered operators, we start from the usual Fermionic creation
and annihilation operators, a�i and ai, which satisfy the canonical anticommutation
relations

˚
a�i ; a

�
j

� D ˚ai; aj
� D 0 ; ˚

a�i ; aj
� D ıij : (10.77)

The indices are collective labels for the quantum numbers of our single-particle
states. Using the creators and annihilators, we can express any given A-body
operator in second quantization. Moreover, we can construct a complete basis for
a many-body Hilbert space by acting with products of a�i on the particle vacuum,

j˚fi1 : : : iAgi D
AY

kD1
a�ik jvaci ; (10.78)

and letting the indices i1; : : : ; iA run over all single-particle states. The states
j˚fi1 : : : iAgi are, of course, nothing but antisymmetrized product states, i.e., Slater
determinants.

Of course, not all of the Slater determinants in our basis are created equal. We can
usually find a Slater determinant that is a fair approximation to the nuclear ground
state, and use it as a reference state for the construction and organization of our
many-body basis. By simple energetics, the ground state and low-lying excitation
spectrum of an A-body nucleus are usually dominated by excitations of particles
in the vicinity of the reference state’s Fermi energy. This is especially true for NN
interactions that have been evolved to a low resolution scale � (see Sect. 10.2.4.2).
For such forces, the coupling between basis states whose energy expectation values
differ by much more than the characteristic energy „2�2=m is suppressed.

Slater determinants that are variationally optimized through a Hartree-Fock (HF)
calculation have proven to be reasonable reference states for interactions with � �
2:0 fm�1 (see, e.g., [23, 43, 44, 49, 53, 116] and references therein), allowing post-
HF methods like MBPT, CC, or the IMSRG discussed below to converge rapidly to
the exact result. Starting from such a HF reference state j˚i, we can obtain a basis
consisting of the state itself and up to A-particle, A-hole (ApAh) excitations:

j˚i; a�p1ah1 j˚i; : : : ; a�p1 : : : a�pA
ahA : : : ah1 j˚i : (10.79)

Here, indices pi and hi run over all one-body basis states with energies above
(particle states) and below the Fermi level (hole states), respectively. Such bases
work best for systems with large gaps in the single-particle spectrum, e.g., closed-
shell nuclei. If the gap is small, excited basis states can be nearly degenerate with the
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reference state, which usually results in spontaneous symmetry breaking and strong
configuration mixing.

We can now introduce a one-body operator that is normal-ordered with respect
to the reference state j˚i by defining

a�i aj �
˚
a�i aj

�C a�i aj ; (10.80)

where the brackets f: : :g indicate normal ordering, and the brace over a pair of
creation and annihilation operators means that they have been contracted. The
contraction itself is merely the expectation value of the operator in the reference
state j˚i:

a�i aj � h˚ j a�i aj j˚i � �ji : (10.81)

By definition, the contractions are identical to the elements of the one-body density
matrix of j˚i [117]. Starting from the one-body case, we can define normal-ordered
A-body operators recursively by evaluating all contractions between creation and
annihilation operators, e.g.,

a�i1 : : : a�iAajA : : : aj1

� ˚
a�i1 : : : a�iA ajA : : : aj1

�

C a�i1aj1

˚
a�i2 : : : a�iA ajA : : : aj2

� � a�i1aj2

˚
a�i2 : : : a�iA ajA : : : aj3aj1

�C singles

C
�

a�i1aj1a
�
i2

aj2 � a�i1aj2a
�
i2

aj1

�˚
a�i3 : : : a�iA ajA : : : aj3

�C doubles

C : : : C full contractions : (10.82)

Here, we have followed established quantum chemistry jargon (singles, doubles,
etc.) for the number of contractions in a term (cf. Chap. 8). Note that the double
contraction shown in the next-to-last line is identical to the factorization formula for
the two-body density matrix of a Slater determinant,

�j1 j2i1i2 � h˚ j a�i1a
�
i2

aj2aj1 j˚i D �i1j1�i2 j2 � �i1 j2�i2j1 : (10.83)

From Eq. (10.80), it is evident that h˚ j ˚a�i aj
� j˚i must vanish, and this is

readily generalized to expectation values of arbitrary normal-ordered operators in
the reference state j˚i,

h˚ j ˚a�i1 : : : ai1

� j˚i D 0 : (10.84)

This property of normal-ordered operators greatly facilitates calculations that
require the evaluation of matrix elements in a space spanned by excitations of



10 In-Medium Similarity Renormalization Group Approach to the Nuclear. . . 511

j˚i. Another important property is that we can freely anticommute creation and
annihilation operators within a normal-ordered string (see Problem 10.2):

˚
: : : a�i aj : : :

� D �˚ : : : aja
�
i : : :

�
: (10.85)

As an example, we consider an intrinsic nuclear A-body Hamiltonian containing
both NN and 3N interactions,

H D
�
1 � 1OA

�
OT Œ1
 C 1

OA
OT Œ2
 C OV Œ2
 C OV Œ3
 ; (10.86)

where the one- and two-body kinetic energy terms are

OT Œ1
 �
X

i

Op2i
2m

; (10.87)

OT Œ2
 � � 1
m

X
i<j

Opi � Opj (10.88)

(see Sect. 10.2.4.2 and [86]). Choosing a single Slater determinant j˚i as the
reference state, we can rewrite the Hamiltonian exactly in terms of normal-ordered
operators,

OH D E C
X

ij

fij
˚
a�i aj

�C 1

4

X
ijkl

�ijkl

˚
a�i a�j alak

�C 1

36

X
ijklmn

Wijklmn

˚
a�i a�j a�kanamal

�
;

(10.89)

where the labels for the individual contributions have been chosen for historical
reasons. For convenience, we will work in the eigenbasis of the one-body density
matrix in the following, so that

�ab D naıab ; na 2 f0; 1g : (10.90)

The individual normal-ordered contributions in Eq. (10.89) are then given by

E D
�
1 � 1

A

�X
a

haj OtŒ1
 jaina C 1

2

X
ab

habj 1
A
OtŒ2
C OvŒ2
 jabinanb

C 1

6

X
abc

habcj OvŒ3
 jabcinanbnc ; (10.91)

fij D
�
1 � 1

A

�
hij OtŒ1
 j ji C

X
a

hiaj 1
A
OtŒ2
C OvŒ2
 j jaina C 1

2

X
ab

hiabj OvŒ3
 j jabinanb ;

(10.92)
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�ijkl D hijj 1
A
Ot.2/C OvŒ2
 jkli C

X
a

hijaj OvŒ3
 jklaina ; (10.93)

Wijklmn D hijkj OvŒ3
 jlmni : (10.94)

Due to the occupation number factors in Eqs. (10.91)–(10.93), the sums run only
over states that are occupied in the reference state. This means that the zero-, one-,
and two-body parts of the Hamiltonian all contain in-medium contributions from
the free-space 3N interaction.

For low-momentum interactions, it has been shown empirically that the omission
of the normal-ordered three-body piece of the Hamiltonian causes a deviation of
merely 1–2% in ground-state and (absolute) excited state energies of light and
medium-mass nuclei [100, 103, 118–120]. This normal-ordered two-body approx-
imation (NO2B) to the Hamiltonian is useful for practical calculations, because
it provides an efficient means to account for 3N force effects in nuclear many-
body calculations without incurring the computational expense of explicitly treating
three-body operators. In Sect. 10.3.2, we will see that the NO2B approximation
also meshes in a natural way with the framework of the IMSRG, which makes it
especially appealing for our purposes.

10.3.1.2 Wick’s Theorem

The normal-ordering formalism has additional benefits for the evaluation of prod-
ucts of normal-ordered operators. Wick’s theorem (see, e.g., [60]), which is a direct
consequence of Eq. (10.82), allows us to expand such products in the following way:

˚
a�i1 : : : a�iN ajN : : : aj1

�˚
a�k1 : : : a�kM

alM : : : al1

�

D .�1/M�N˚a�i1 : : : a�iN a�k1 : : : a
�
kM

ajN : : : aj1alM : : : al1

�

C .�1/M�Na�i1al1

˚
a�i2 : : : a

�
kM

ajN : : : al2

�

C .�1/.M�1/.N�1/ajN a�k1
˚
a�i1 : : : a

�
kM

ajN : : : aj2

�
C singlesC doublesC : : : : (10.95)

The phase factors appear because we anti-commute the creators and annihilators
until they are grouped in the canonical order, i.e., all a� appear to the left of the a.
In the process, we also encounter a new type of contraction,

aia
�
j � h˚ j aia

�
j j˚i D ıij � �ij � �ij ; (10.96)

as expected from the canonical anti-commutator algebra. � is the so-called hole
density matrix.
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The defining feature of Eq. (10.95) is that only contractions between one index
from each of the two strings of creation and annihilation operators appear in the
expansion, because contractions between indices within a single operator string
have already been subtracted when we normal ordered it initially. In practical cal-
culations, this leads to a substantial reduction of terms. An immediate consequence
of Eq. (10.95) is that a product of normal-ordered M and N-body operators has the
general form

OAŒM
 OBŒN
 D
MCNX

kDjM�Nj
OCŒk
 : (10.97)

Note that zero-body contributions, i.e., plain numbers, can only be generated if both
operators have the same particle rank.

10.3.2 In-Medium SRG Flow Equations

10.3.2.1 Induced Forces Revisited

In Sect. 10.2.4.5, we discussed how SRG evolutions naturally induce 3N and higher
many-nucleon forces, because every evaluation of the commutator on the right-hand
side of the operator flow equation (10.8) increases the particle rank of OH.s/, e.g.,

X
ijklpqrs

�ijklHpqrsŒa
�
i a�j alak; a

�
pa�qasar


D �
X
ijkqrs

�ijklHkqrsa
�
i a�j a�qasaral C 3N termsC 2N terms : (10.98)

Note that there are no induced 4N interactions, and that commutators involving at
least one one-body operator do not change the particle rank (see Problem 10.2). In
the free-space evolution, we found that the truncation of 3N forces in the flowing
Hamiltonian caused a significant flow-parameter dependence of observables in A 

3 systems.

Working in the medium and using normal-ordered operators, we can expand the
induced 3N operators:

X
ijkqrs

�ijklHkqrsa
�
i a�j a�qasaral

D
X
ijkqrs

�ijklHkqrs

�˚
a�i a�j a�qasaral

�C nqıqs
˚
a�i a�j aral

�C njnqıjrıqs
˚
a�i al

�

C ninjnqıilıjrıqs C permutations
�
: (10.99)
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If we now truncate operators to the normal-ordered two-body level, we keep all the
in-medium contributions of the induced 3N terms, and retain information that we
would have lost in the free-space evolution. These in-medium contributions contin-
uously feed into the 0B, 1B, and 2B matrix elements of the flowing Hamiltonian as
we integrate Eq. (10.8).

10.3.2.2 The IMSRG(2) Scheme

The evolution of the Hamiltonian or any other observable by means of the flow
equation (10.8) is a continuous unitary transformation in A-nucleon space only if
we keep up to induced A-nucleon forces. Because an explicit treatment of induced
contributions up to the A-body level is simply not feasible, we have to introduce a
truncation to close the system of flow equations.

As explained in the previous subsection, we can make such truncations more
robust if we normal order all operators with respect to a reference state that is a
fair approximation to the ground state of our system (or another exact eigenstate
we might want to target). Here, we choose to truncate operators at the two-
body level, to avoid the computational expense of treating explicit three-body
operators. For low-momentum NNC 3N Hamiltonians, the empirical success of the
NO2B approximation mentioned at the end of Sect. 10.3.1.1 seems to support this
truncation: The omission of the normal-ordered3N term in exact calculations causes
deviations of only� 1% in the oxygen, calcium, and nickel isotopes [48, 103, 119].

Following this line of reasoning, we demand that for all values of the flow
parameter s

O�.s/ � O�.1/.s/C O�.2/.s/ ; (10.100)

OH.s/ � E.s/C f .s/C � .s/ ; (10.101)

d

ds
OH.s/ � d

ds
E.s/C d

ds
f .s/C d

ds
� .s/ : (10.102)

This is the so-called IMSRG(2) truncation, which has been our primary workhorse
in past applications [46, 51–53, 72, 101, 121]. It is the basis for all results that
we will discuss in the remainder of this chapter. The IMSRG(2) is a cousin to
Coupled Cluster with Singles and Doubles (CCSD) and the ADC(3) scheme in Self-
Consistent Green’s Function Theory (see Chaps. 8 and 11). Since all three methods
(roughly) aim to describe the same type and level of many-body correlations, we
expect to obtain similar results for observables.

Let us introduce the permutation symbol Pij to interchange the indices of any
expression, i.e.,

Pijg.: : : ; i; : : : ; j/ � g.: : : ; j; : : : ; i/ ; (10.103)
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Plugging Eqs. (10.100)–(10.102) into the operator flow equation (10.8) and evaluat-
ing the commutators with the expressions from Appendix, we obtain the following
system of IMSRG(2) flow equations:

dE

ds
D
X

ab

.na � nb/�abfba C 1

2

X
abcd

�abcd�cdabnanb Nnc Nnd ; (10.104)

dfij
ds
D
X

a

.1C Pij/�iafaj C
X
ab

.na � nb/.�ab�biaj � fab�biaj/

C 1

2

X
abc

.nanb Nnc C Nna Nnbnc/.1C Pij/�ciab�abcj ; (10.105)

d�ijkl

ds
D
X

a

˚
.1� Pij/.�ia�ajkl � fia�ajkl/� .1 � Pkl/.�ak�ijal � fak�ijal/

�

C 1

2

X
ab

.1� na � nb/.�ijab�abkl � �ijab�abkl/

C
X
ab

.na � nb/.1 � Pij/.1 � Pkl/�aibk�bjal : (10.106)

Here, Nni D 1 � ni, and the s-dependence has been suppressed for brevity. To
obtain ground-state energies, we integrate Eqs. (10.104)–(10.106) from s D 0 to
s ! 1, starting from the initial components of the normal-ordered Hamiltonian
[Eqs. (10.91)–(10.93)] (see Sects. 10.3.6 and 10.3.7 for numerical examples).

By integrating the flow equations, we absorb many-body correlations into the
flowing normal-ordered Hamiltonian, summing certain classes of terms in the many-
body expansion to all orders [53]. We can identify specific structures by looking
at the occupation-number dependence of the terms in Eqs. (10.104)–(10.106): for
instance, Nni and ni restrict summations to particle and hole states, respectively
[cf. Eq. (10.90)]. Typical IMSRG generators (see Sect. 10.3.4) are proportional to
the (offdiagonal) Hamiltonian, which means that the two terms in the zero-body
flow equation essentially have the structure of second-order energy corrections, but
evaluated for the flowing Hamiltonian OH.s/. Thus, we can express the equation in
terms of Hugenholtz diagrams as

d
ds

E = + .

(10.107)

Note that the energy denominators associated with the propagation of the interme-
diate state are consistently calculated with OH.s/ here.
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In the flow equation for the two-body vertex � , terms that are proportional to

1� na � nb D Nna Nnb � nanb (10.108)

will build up a summation of particle-particle and hole-hole ladder diagrams as we
integrate the flow equations s!1. Similarly, the terms proportional to

na � nb D na Nnb � Nnanb ; (10.109)

will give rise to a summation of chain diagrams representing particle-hole terms
at all orders. We can illustrate this by expanding the vertex we obtain after two
integration steps, � .2ıs/, in terms of the prior vertices � .ıs/ and � .0/. Indicating
these vertices by light gray, dark gray, and black circles, we schematically have

= + + + + . . .

= + + + + . . .

+ + + + . . .

+ + + . . .

(10.110)

In the first line, we see that � .2ıs/ is given by the vertex of the previous step, � .ıs/,
plus second-order corrections. As in the energy flow equation, it is assumed that the
energy denominators associated with the propagation of the intermediate states are
calculated with OH.ıs/. For brevity, we have suppressed additional permutations of
the shown diagrams, as well as the diagrams that result from contracting one- and
two-body operators in Eq. (10.106).

In the next step, we expand each of the � .ıs/ vertices in terms of � .0/, and
assume that energy denominators are now expressed in terms of OH.0/. In the second
line of Eq. (10.110), we explicitly show the ladder-type diagrams with intermediate
particle-particle states that are generated by expanding the first two diagrams for
� .ıs/, many additional diagrams are suppressed. Likewise, the third line illustrates
the emergence of the chain summation via the particle-hole diagrams that are
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generated by expanding the fourth diagram for � .ıs/. In addition to the ladder and
chain summations, the IMSRG(2) will also sum interference diagrams like the ones
shown in the last row of Eq. (10.110). Such terms are not included in traditional
summation methods, like the G-matrix approach for ladders, or the Random Phase
Approximation (RPA) for chains [31, 32, 122]. We conclude our discussion at this
point, and refer interested readers to the much more detailed analysis in [53].

10.3.2.3 Computational Scaling

Let us briefly consider the computational scaling of the IMSRG(2) scheme, ahead
of the discussion of an actual implementation in Sect. 10.3.5. When performing a
single integration step, the computational effort is dominated by the two-body flow
equation (10.106), which naively requires O.N6/ operations, where N denotes the
size of the single-particle basis. This puts the IMSRG(2) in the same category as
CCSD and ADC(3) (see Chaps. 8 and 11). Fortunately, large portions of the flow
equations can be expressed in terms of matrix products, allowing us to use optimized
linear algebra libraries provided by high-performance computing vendors.

Moreover, we can further reduce the computational cost by distinguishing
particle and hole states, because the number of hole states Nh is typically much
smaller than the number of particle states Np � N. The best scaling we can achieve
in the IMSRG(2) depends on the choice of generator (see Sect. 10.3.4). If the
one- and two-body parts of the generator only consist of ph and pphh type matrix
elements and their Hermitian conjugates, the scaling is reduced to O.N2

h N4
p /, which

matches the cost of solving the CCSD amplitude equations.

10.3.3 Decoupling

10.3.3.1 The Off-Diagonal Hamiltonian

Having set up the IMSRG flow equations, we now need to specify our decoupling
strategy, i.e., how we split the Hamiltonian into diagonal parts we want to keep, and
off-diagonal parts we want to suppress (cf. Sect. 10.2). To this end, we refer to the
matrix representation of the Hamiltonian in a basis of A-body Slater determinants,
but let us stress that we never actually construct the Hamiltonian matrix in this
representation.

Our Slater determinant basis consists of a reference determinant and all its
possible particle-hole excitations (cf. Sect. 10.3.1):

j˚i; ˚a�pah
� j˚i; ˚a�pa�p0ah0ah

� j˚i; : : : : (10.111)
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Fig. 10.8 Schematic view of single-reference IMSRG decoupling in a many-body Hilbert space
spanned by a Slater determinant reference j˚i and its particle-hole excitations j˚p:::

h::: i

Note that

˚
a�p1 : : : a

�
pi

ahi : : : ah1

� D a�p1 : : : a
�
pi

ahi : : : ah1 (10.112)

because contractions of particle and hole indices vanish by construction. Using
Wick’s theorem, one can show that the particle-hole excited Slater determinants
are orthogonal to the reference state as well as each other (see Problem 10.3). In
the Hilbert space spanned by this basis, the matrix representation of our initial
Hamiltonian in the NO2B approximation (cf. Sect. 10.3.1.1) has the structure shown
in the left panel of Fig. 10.8, i.e., it is band-diagonal, and can at most couple npnh
and .n˙ 2/p.n˙ 2/h excitations.

We now have to split the Hamiltonian into appropriate diagonal and off-diagonal
parts on the operator level [123–125]. Using a broad definition of diagonality is ill-
advised because we must avoid inducing strong in-medium 3N; : : : interactions to
maintain the validity of the IMSRG(2) truncation. For this reason, we choose a so-
called minimal decoupling scheme that only aims to decouple the one-dimensional
block spanned by the reference state from all particle-hole excitations, as shown in
the right panel of Fig. 10.8.

If we could implement the minimal decoupling without approximations, we
would extract a single eigenvalue and eigenstate of the many-body Hamiltonian
for the nucleus of interest in the limit s ! 1. The eigenvalue would simply be
given by the zero-body piece of H.1/, while the eigenstate is obtained by applying
the unitary IMSRG transformation to the reference state, OU�.1/ j˚i. In practice,
truncations cannot be avoided, of course, and we only obtain an approximate
eigenvalue and mapping. We will explicitly demonstrate in Sect. 10.3.6 that the
chosen reference state plays an important role in determining which eigenvalue
and eigenstate of the Hamiltonian we end up extracting in our minimal decoupling
scheme. An empirical rule of thumb is that the IMSRG flow will connect the
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reference state to the eigenstate with which it has the highest overlap. If we are
interested in the exact ground state, this is typically the case for a HF Slater
determinant, because it minimizes both the absolute energy and the correlation
energy.

Analyzing the matrix elements between the reference state and its excitations
with the help of Wick’s theorem, we first see that the Hamiltonian couples the 0p0h
block to 1p1h excitations through the matrix elements

h˚ j OH˚a�pah
� j˚i D Eh˚ j ˚a�pah

� j˚i CX
ij

fijh˚ j
˚
a�i aj

�˚
a�pah

� j˚i

C 1

4

X
ijkl

�ijklh˚ j
˚
a�i a�j alak

�˚
a�pah

� j˚i

D
X

ij

fijıihıpjni Nnj D fhp (10.113)

and their Hermitian conjugates. The contributions from the zero-body and two-body
pieces of the Hamiltonian vanish because they are expectation values of normal-
ordered operators in the reference state [cf. Eq. (10.84)]. Likewise, the 0p0h and
2p2h blocks are coupled by the matrix elements

h˚ j OH˚a�pa�p0ah0ah
� j˚i D �hh0pp0 (10.114)

and their conjugates. It is precisely these two-body matrix elements that couple
npnh and .n˙ 2/p.n˙ 2/h states and generate the outermost side diagonals of the
Hamiltonian matrix. This suggests that we can transform the Hamiltonian to the
shape shown in the top right panel of Fig. 10.8 by defining its offdiagonal part as

OHod �
X

ph

fph
˚
a�pah

�C 1

4

X
pp0hh0

�pp0hh0

˚
a�pa�p0ah0ah

�C H.c. : (10.115)

In Sect. 10.3.6, we will show that the IMSRG flow does indeed exponentially
suppress the matrix elements of OHod and achieve the desired decoupling in the limit
s!1.

10.3.3.2 Variational Derivation of Minimal Decoupling

Our minimal decoupling scheme is very reminiscent of the strategy followed in
Coupled Cluster approaches [49, 60], except that we specifically use a unitary
transformation instead of a general similarity transformation. It is also appealing
for a different reason: As we will discuss now, it can be derived from a variational
approach, tying the seemingly unrelated ideas of energy minimization and renor-
malization in the many-body system together.
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Consider the energy expectation value of the final IMSRG evolved Hamiltonian,

H � OH.1/ ; (10.116)

in the reference state (which is assumed to be normalized):

E D h˚ jH j˚i : (10.117)

We can introduce a unitary variation, which we are free to apply either to the
reference state ,

j˚i ! e OZ j˚i ; OZ� D �OZ ; (10.118)

or, equivalently, to the Hamiltonian:

e OZ�He OZ D e�OZHe OZ : (10.119)

The variation of the energy is

ıE D h˚ j e�OZ.H � E/e OZ j˚i D h˚ jH � E j˚i C h˚ j ŒH � E; OZ
 j˚i C O.jj OZjj2/ ;
(10.120)

where jj � jj is an appropriate operator norm. The first term obviously vanishes, as
does the commutator of OZ with the energy, because the latter is a mere number. Thus,
the energy is stationary if

ıE D h˚ j ŒH; OZ
 j˚i D 0 : (10.121)

Expanding

OZ D
X
ph

Zph
˚
a�pah

�C 1

4

X
pp0hh0

Zpp0hh0

˚
a�pa�p0ah0ah

�C H.c.C : : : ; (10.122)

and using the independence of the expansion coefficients (save for the unitarity
conditions), we obtain the system of equations

h˚ j ŒH; ˚a�pah
�

 j˚i D 0 ; (10.123)

h˚ j ŒH; ˚a�hap
�

 j˚i D 0 ; (10.124)

h˚ j ŒH; ˚a�pa�p0ah0ah
�

 j˚i D 0 ; (10.125)

h˚ j ŒH; ˚a�ha�h0ap0ap
�

 j˚i D 0 ; (10.126)

: : :
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which are special cases of the so-called irreducible Brillouin conditions (IBCs) [64,
126–128]. Writing out the commutator in the first equation, we obtain

h˚ j ŒH; ˚a�pah
�

 j˚i D h˚ jH˚a�pah

� j˚i � h˚ j ˚a�pah
�
H j˚i

D h˚ jH˚a�pah
� j˚i D 0 ; (10.127)

where the second term vanishes because it is proportional to np Nnh D 0. The
remaining equations can be evaluated analogously, and we find that the energy is
stationary if the IMSRG evolved Hamiltonian H no longer couples the reference
state and its particle-hole excitations, as discussed above. However, we need to
stress that the IMSRG is not variational, because any truncation of the flow equation
breaks the unitary equivalence of the initial and evolved Hamiltonians. Thus, the
final IMSRG(2) energy cannot be understood as an upper bound for the true
eigenvalue in a strict sense, although the qualitative behavior might suggest so in
numerical applications.

10.3.4 Choice of Generator

In the previous section, we have identified the matrix elements of the Hamiltonian
that couple the ground state to excitations, and collected them into a definition of
the off-diagonal Hamiltonian that we want to suppress with an IMSRG evolution.
While we have decided on a decoupling “pattern” in this way, we have a tremendous
amount of freedom in implementing this decoupling. As long as we use the same off-
diagonal Hamiltonian, many different types of generators will drive the Hamiltonian
to the desired shape in the limit s ! 1, and some of these generators stand out
when it comes to numerical efficiency [53].

10.3.4.1 Construction of Generators for Single-Reference Applications

A wide range of suitable generators for the single-reference case is covered by the
ansatz

� D
X

ph

�ph
˚
a�pah

�C 1

4

X
pp0hh0

�pp0hh0

˚
a�pa�p0ah0ah

� � H.c. ; (10.128)

constructing the one- and two-body matrix elements directly from those of the
offdiagonal Hamiltonian and a tensor G that ensures the anti-Hermiticity of �:

�ph � Gph f ph ; (10.129)

�pp0hh0 � Gpp0hh0�pp0hh0 : (10.130)
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To identify possible options for G, we consider the flow equations in perturbation
theory (see [53] for a detailed discussion). We assume a Hartree-Fock reference
state, and partition the Hamiltonian as

OH D OH0 C OHI ; (10.131)

with

OH0 � EC
X

i

fii
˚
a�i ai

�C 1

4

X
ij

�ijij
˚
a�i a�j ajai

�
; (10.132)

OHI �
i¤jX
ij

fij
˚
a�i aj

�C 1

4

.ij/¤.kl/X
ijkl

�ijkl
˚
a�i a�j alak

�
: (10.133)

We introduce a power counting in terms of the auxiliary parameter g, and count
the diagonal Hamiltonian OH0 as unperturbed (O.1/), while the perturbation OHI is
counted as O.g/. In the space of up to 2p2h excitations, our partitioning is a second-
quantized form of the one used by Epstein and Nesbet [129, 130].

We now note that the one-body piece of the initial Hamiltonian is diagonal in the
HF orbitals, which implies

fph D 0; �ph D 0 : (10.134)

Inspecting Eq. (10.105), we see that corrections to f that are induced by the flow are
at least of order O.g2/, because no diagonal matrix elements of � appear:

d

ds
fij

ˇ̌
ˇ̌
sD0
D 1

2

X
abc



�iabc�bcja � �iabc�bcja

�
.na Nnb Nnc C Nnanbnc/ D O.g2/ :

(10.135)

Using this knowledge, the two-body flow equation for the pphh matrix elements of
the off-diagonal Hamiltonian reads

d

ds
�pp0hh0 D � 
 fpp C fp0p0 � fhh � fh0h0

�
�pp0hh0 � 
�hh0hh0 C �pp0pp0

�
�pp0hh0

C 
�p0h0p0h0 C �phph C �ph0ph0 C �p0hp0h
�
�pp0hh0 C O.g2/

D ��pp0hh0�pp0hh0 C O.g2/ : (10.136)

Note that O�, which is of order O.g/, is multiplied by unperturbed, diagonal matrix
elements of the Hamiltonian in the leading term. Because of this restriction, the
sums in the particle-particle and hole-hole ladder terms [line 2 of Eq. (10.106)]
collapse, and the pre-factors 1

2
are canceled by factors 2 from the unrestricted
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summation over indices, e.g.,

1

2

X
h1h2

�pp0h1h2�h1h2hh0.1 � nh1 � nh2/ D �
1

2
�pp0hh0�hh0hh0 � 1

2
�pp0h0h�h0hhh0

D ��pp0hh0�hh0hh0 : (10.137)

In Eq. (10.136), we have introduced the quantity

�pp0hh0 � fpp C fp0p0 � fhh � fh0h0 C �hh0hh0 C �pp0pp0

� �phph � �p0h0p0h0 � �ph0ph0 � �p0hp0h

D h˚ j ˚a�ha�h0ap0ap
� OH˚a�pa�p0ah0ah

� j˚i � h˚ j OH j˚i
D h˚ j ˚a�ha�h0ap0ap

� OH0

˚
a�pa�p0ah0ah

� j˚i � h˚ j OH0 j˚i ; (10.138)

i.e., the unperturbed energy difference between the two states that are coupled by
the matrix element �pp0hh0 , namely the reference state j˚i and the excited state˚
a�pa�p0ah0ah

� j˚i. Since it is expressed in terms of diagonal matrix elements,�pp0hh0

would appear in precisely this form in appropriate energy denominators of Epstein-
Nesbet perturbation theory.

Plugging our ansatz for � into Eq. (10.136), we obtain

d

ds
�pp0hh0 D ��pp0hh0Gpp0hh0�pp0hh0 C O.g2/ ; (10.139)

Neglecting O.g2/ terms in the flow equations, the one-body part of OH remains
unchanged, and assuming that G itself is independent of s at order O.g/, we can
integrate Eq. (10.136):

�pp0hh0.s/ D �pp0hh0.0/e��pp0hh0 Gpp0hh0 s : (10.140)

Clearly, the offdiagonal matrix elements of the Hamiltonian will be suppressed for
s!1 if the product�pp0hh0Gpp0hh0 is positive. Gpp0hh0 also allows us to control the
details of this suppression, e.g., the decay scales. To avoid misconceptions, we stress
that we do not impose perturbative truncations in practical applications, and treat all
matrix elements and derived quantities, including the �pp0hh0 , as s-dependent.

10.3.4.2 White’s Generators

A generator that is particularly powerful in numerical applications is inspired by
the work of White on canonical transformation theory in quantum chemistry [51,
53, 61]. In the language we have set up above, it uses Gpp0hh0 to remove the scale
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dependence of the IMSRG flow. This so-called White generator is defined as

O�W.s/ �
X

ph

fph.s/

�ph.s/

˚
a�pah

�C 1

4

X
pp0hh0

�pp0hh0.s/

�pp0hh0.s/

˚
a�pa�p0ah0ah

�� H.c. ;

(10.141)

where the Epstein-Nesbet denominators use the energy differences defined in
Eqs. (10.138) and (10.145).

For the White generator, we find

�pp0hh0.s/ D �pp0hh0.0/e�s ; (10.142)

i.e., all off-diagonal matrix elements are suppressed simultaneously with a decay
scale identical (or close to) 1 [53]. While this means that �W does not generate
a proper RG flow, this is inconsequential if we are only interested in the final
Hamiltonian OH.1/, because all unitary transformations which suppress OHod must
be equivalent up to truncation effects [53].

A benefit of the White generator is that its matrix elements are defined as ratios of
energies, and therefore the Hamiltonian only contributes linearly to the magnitude
of the right-hand side of the flow equations (10.104)–(10.106). This leads to a
significant reduction of the ODE system’s stiffness compared to the other generators
discussed here or in [53], and greatly reduces the numerical effort for the ODE
solver. However, the dependence of O�W on energy denominators can also be a
drawback if �ph and/or �pp0hh0 become small, which would cause the generator’s
matrix elements to diverge. This can be mitigated by using an alternative ansatz that
is also inspired by White’s work [61]:

O�W’.s/ � 1

2

X
ph

arctan
2fph.s/

�ph.s/

˚
a�pah

�C1
8

X
pp0hh0

arctan
2�pp0hh0.s/

�pp0hh0.s/

˚
a�pa�p0ah0 ah

��H.c. :

(10.143)

This form emphasizes that the unitary transformation can be thought of as an
abstract rotation of the Hamiltonian. The matrix elements of �W’ are regularized
by the arctan function, and explicitly limited to the interval 
� �

4
; �
4
Œ. Expanding the

function for small arguments, we recover our initial ansatz for the White generator,
Eq. (10.141).

10.3.4.3 The Imaginary-Time Generator

Using Gpp0hh0 to ensure that the energy denominator is always positive, we obtain the
so-called imaginary-time generator [53, 72, 101], which is inspired by imaginary-
time evolution techniques that are frequently used in Quantum Monte Carlo
methods, for instance (see Chap. 9, [88] and references therein). Explicitly indi-
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cating the flow parameter dependence of all quantities, we define

O�IT.s/ �
X
ph

sgn


�ph.s/

�
fph.s/

˚
a�pah

�

C 1

4

X
pp0hh0

sgn


�pp0hh0.s/

�
�pp0hh0.s/

˚
a�pa�p0ah0ah

� � H.c. ; (10.144)

where

�ph � fpp � fhh C �phph D h˚ j
˚
a�hap

� OH˚a�pah
� j˚i � h˚ j OH j˚i : (10.145)

For this generator, the perturbative analysis of the offdiagonal two-body matrix
elements yields

�pp0hh0.s/ D �pp0hh0.0/e�j�pp0hh0 js ; (10.146)

ensuring that they are driven to zero by the evolution. We also note that the
energy difference�pp0hh0 controls the scales of the decay. Matrix elements between
states with large energy differences are suppressed more rapidly than those which
couple states that are close in energy. This means that �IT generates a proper
renormalization group flow [53, 54].

10.3.4.4 Wegner’s Generator

Last but not least, we want to discuss Wegner’s original ansatz [40], which we have
used in the free-space SRG applications in Sect. 10.2:

O�WE.s/ � Œ OHd.s/; OHod.s/
 : (10.147)

Truncating OHd.s/ and OHod.s/ at the two-body level and using the commutators from
Appendix, it is straightforward to derive the one- and two-body matrix elements of
O�.s/; the operator has no zero-body component because of its anti-Hermiticity. We
obtain
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X
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X
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X
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.nanb Nnc C Nna Nnbnc/.1 � Pij/�
d

ciab�
od

abcj ; (10.148)
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bjal : (10.149)

Structurally, Eqs. (10.148) and (10.149) are identical to the flow IMSRG(2) equa-
tions except for signs stemming from the anti-Hermiticity of the generator.

Superficially, the Wegner generator is quite different from the imaginary-time
and White generators, but we can uncover commonalities by carrying out a
perturbative analysis along the lines of the previous sections. For a HF Slater
determinant, the one-body part of the off-diagonal Hamiltonian vanishes at s D 0,
and corrections that are induced by the flow start at O.g2/ [see Eq. (10.135)]. This
means that the one-body part of the Wegner generator has the form

�ij D 1

2

X
abc

.nanb Nnc C Nna Nnbnc/.1 � Pij/�
d

ciab�
od

abcj C O.g2/ : (10.150)

In the minimal decoupling scheme, the matrix elements appearing here are counted
as follows:

� d
ijij D �� d

jiij D O.1/; � d
ijkl D O.g/ for .ij/ ¤ .kl/; � od

ijkl D O.g/ : (10.151)

To obtain a O.g/ contribution to the one-body generator, we need either a D c and
b D i, or a D i and b D c, but then the occupation number factor becomes

ninc Nnc C Nni Nncnc D 0 : (10.152)

This implies that the leading contributions to �ij are of order O.g2/.
A similar analysis for the two-body part of O�WE (see Problem 10.4) shows that
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ilil C .nj � nl/�
d

jljl

�
� od
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(10.153)

Since � od
ijkl is restricted to pphh matrix elements, we immediately obtain

�pp0hh0 D �pp0hh0�pp0hh0 ; (10.154)
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and plugging this into Eq. (10.136), we have

d

ds
�pp0hh0 D � 
�pp0hh0

�2
Gpp0hh0�pp0hh0 C O.g2/ : (10.155)

Neglecting the O.g2/ terms, we can integrate the flow equation and find that
the Wegner generator suppresses off-diagonal matrix elements with a Gaussian
exponential function,

�pp0hh0.s/ D �pp0hh0.0/e�.�pp0hh0 /2s ; (10.156)

and therefore generates a proper RG flow. Note that this result matches our
findings for the SRG flows of the 2 � 2 matrix toy model (Sect. 10.2.2) and the
pairing Hamiltonian (Sect. 10.2.3), which were using matrix versions of the Wegner
generator.

In numerical applications, Wegner generators are less efficient than our other
choices. The cost for constructing O�WE is of order O.N4

p N2
h /, compared to O.N2

p N2
h /

for the White and imaginary-time generators. More importantly, O�WE generates very
stiff flow equations because the RHS terms are cubic in the Hamiltonian. This
forces us to use ODE solvers that are appropriate for stiff systems, which have
higher storage requirements and need more computing time than solvers for non-
stiff systems, which can be used for imaginary-time and White IMSRG flows.

10.3.5 Implementation

Now that we have all the necessary ingredients, it is time to discuss the numerical
implementation of IMSRG flows. As an example, we use a Python code that
is designed for solving the pairing Hamiltonian (see Sect. 10.3.6) but easily
adaptable to other problems. The IMSRG solver and tools for visualizing the
flow can be found at https://github.com/ManyBodyPhysics/LectureNotesPhysics/
tree/master/Programs/Chapter10-programs/python/imsrg_pairing.

10.3.5.1 Basis and Matrix Element Handling

The code imsrg_pairing.py uses NumPy arrays to store the one- and two-
body matrix elements of the normal-ordered operators. The underlying one- and
two-nucleon states are indexed as integers and pairs of integers, respectively. The
complete lists of states are stored in the variables bas1B and bas2B, respectively.
We also define an additional set of two-nucleon states in the list basph2B, for
reasons that will be explained shortly. The lists are all initialized at the beginning of

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/imsrg_pairing
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-programs/python/imsrg_pairing
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the program’s main routine:

def main():
...

particles = 4

# setup shared data
dim1B = 8

# this defines the reference state
holes = [0,1,2,3]
particles = [4,5,6,7]

# basis definitions
bas1B = range(dim1B)
bas2B = construct_basis_2B(holes, particles)
basph2B = construct_basis_ph2B(holes, particles)

idx2B = construct_index_2B(bas2B)
idxph2B = construct_index_2B(basph2B)

...

Aside from a distinction between occupied (hole) and unoccupied (particle) single-
particle states, we do not impose any constraints on the one- and two-nucleon bases.
All permutations of two-body matrix elements �ijkl are stored explicitly, and so
are the vanishing matrix elements like �iikl or �ijkk that are forbidden by the Pauli
principle. The benefit of using this “naive” basis construction is that we do not
need to worry whether certain combinations of quantum numbers are allowed or
forbidden by symmetries. This is relevant for flow equation terms that cannot be
expressed as matrix products, i.e., the contractions of one- and two-body operators
that appear in Eqs. (10.105) and (10.106). To implement such terms, we also need to
translate pairs of single-particle indices into collective two-nucleon state indices and
back, which is achieved with the help of the lookup arrays idx2B and idxph2B.

The state and lookup lists basph2B and idxph2B are used to work with
matrices in the so-called particle-hole representation. This representation allows
us to write the particle-hole contributions in the third line of Eq. (10.106) as matrix
products. Superficially, these terms look like they require explicit loop summations:

d

ds
�
.ph/

ijkl D .1 � Pij/.1 � Pkl/
X

ab

.na � nb/�aibk�bjal : (10.157)

Since we are working with a Slater determinant reference state and therefore able
to distinguish particle and hole states in the single-particle basis, we can also define
hole creation and annihilation operators (see, e.g., [131]):

h�i � ai ; hi � a�i ; (10.158)
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that satisfy the same anticommutation relations as the regular creators and annihila-
tors. In addition, we also have

˚
h�i ; aj

� D ˚hi; a
�
j

� D 0 ;
˚
h�i ; a

�
j

� D ˚hi; aj
� D ıij : (10.159)

Using Eq. (10.85) for the hole operators, we can rewrite a generic normal-ordered
two-body operator in the following way:

OA � 1

4

X
ijkl

Aijkl
˚
a�i a�j alak

� D 1

4

X
ijkl

Aijkl
˚
a�i hjh

�
l ak
� D �1

4

X
ijkl

Aijkl
˚
a�i h�l hjak

�
:

(10.160)

We can also define OA directly in the particle-hole representation,

OA � 1

4

X
ijkl

Aijkl

˚
a�i h�j hlak

�
; (10.161)

where we have indicated the hole states by lines over the indices. Thus, the
operator’s matrix elements in the regular particle representation and the particle-
hole representation are related by the following expression:

Aijkl D �Ailkj : (10.162)

We see that the switch to particle-hole representation is achieved by a simple
rearrangement of matrix elements. The situation is more complicated if one works
with angular-momentum coupled states, because then the angular momenta must
be recoupled in a different order, giving rise to a so-called Pandya transformation
[131–133].

Using particle-hole matrix elements, the right-hand side of Eq. (10.157) can be
written as

X
ab

.na � nb/�iabk�bjla D
X

ab

.na � nb/�ikba�balj � Miklj ; (10.163)

which makes it possible to evaluate the term using matrix product routines, treating
.na � nb/ as a diagonal matrix. The resulting product matrix M can then be trans-
formed back into the particle representation, where it will be completely antisym-
metrized by the permutation symbols in Eq. (10.157). The necessary transformations
between the particle and particle-hole representations are implemented in the rou-
tines ph_transform_2B and inverse_ph_transform_2B, respectively.
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10.3.5.2 Reference States

After the basis initialization, we need to define the reference Slater determinant j˚i
for the subsequent normal ordering. To this end, we simply create lists of the hole
(occupied) and particle (unoccupied) single-particle states:

def main():
...

particles = 4

# setup shared data
dim1B = 8

# this defines the reference state
holes = [0,1,2,3]
particles = [4,5,6,7]

# basis definitions
...

# occupation number matrices
occ1B = construct_occupation_1B(bas1B, holes, particles)
occA_2B = construct_occupationA_2B(bas2B, occ1B)
occB_2B = construct_occupationB_2B(bas2B, occ1B)
occC_2B = construct_occupationC_2B(bas2B, occ1B)

occphA_2B = construct_occupationA_2B(basph2B, occ1B)

...

In addition to the elementary lists, we set up diagonal matrices for the
various occupation number factors that appear in the IMSRG(2) flow equa-
tions (10.104)–(10.106), i.e., .na � nb/, which is required both in particle and
particle-hole representation (construct_occupationA_2B), .1 � na � nb/

(construct_occupationB_2B), and nanb (construct_occupationC_
2B). The latter appears when we rewrite the last occupation factor in the one-body
flow equation (10.105):

nanb NncC Nna Nnbnc D nanb�nanbncC.1�na�nbCnanb/nc D nanbC.1�na�nb/nc :

(10.164)
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10.3.5.3 Sharing Data and Settings

Since the routines for normal ordering the Hamiltonian and calculating the generator
and derivatives need to access the bases, index lookups, and occupation number
matrices, we store this shared data in a Python dictionary:

...
user_data = {

"dim1B": dim1B,
"holes": holes,
"particles": particles,
"bas1B": bas1B,
"bas2B": bas2B,
"basph2B": basph2B,
"idx2B": idx2B,
"idxph2B": idxph2B,
"occ1B": occ1B,
"occA_2B": occA_2B,
"occB_2B": occB_2B,
"occC_2B": occC_2B,
"occphA_2B": occphA_2B,

"eta_norm": 0.0, # variables for sharing data
# between ODE solver

"dE": 0.0, # and main routine

"calc_eta": eta_white, # specify the generator
# (function object)

"calc_rhs": flow_imsrg2 # specify the right-hand side
# and truncation

}
...

Rather than passing all of the data structures as separate parameters, we can then
pass user_data as a parameter. By passing the data as a dictionary, we can also
avoid the creation of global variables, and make it easier to reuse individual routines
in other projects.

We also want to direct our readers’ attention to the last two entries of the dic-
tionary. These are function objects that are used to define which generator and flow
equation routines the ODE solver will call (see below). Through this abstraction,
users can easily add additional generators, or implement different truncations of the
flow equations. The current version of imsrg_pairing.py implements all of
the generators discussed in Sect. 10.3.4, and the standard IMSRG(2) truncation.
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10.3.5.4 Normal Ordering

The next task of the main routine is the normal ordering of the initial Hamiltonian:

def main():
...

# set up initial Hamiltonian
H1B, H2B = pairing_hamiltonian(delta, g, user_data)

E, f, Gamma = normal_order(H1B, H2B, user_data)
...

In order to facilitate the reuse of our code, we proceed in two steps: First, we set
up the Hamiltonian in the vacuum, in this case the pairing Hamiltonian (10.38)
with single-particle spacing ı and pairing strength g. The one- and two-body matrix
elements are then passed to a generic routine that performs the normal ordering:

def normal_order(H1B, H2B, user_data):
bas1B = user_data["bas1B"]
bas2B = user_data["bas2B"]
idx2B = user_data["idx2B"]
particles = user_data["particles"]
holes = user_data["holes"]

# 0B part
E = 0.0
for i in holes:
E += H1B[i,i]

for i in holes:
for j in holes:
E += 0.5*H2B[idx2B[(i,j)],idx2B[(i,j)]]

# 1B part
f = H1B
for i in bas1B:
for j in bas1B:
for h in holes:
f[i,j] += H2B[idx2B[(i,h)],idx2B[(j,h)]]

# 2B part
Gamma = H2B

return E, f, Gamma

10.3.5.5 Integration

Once the initial Hamiltonian is set up, we use the SciPy ode class to integrate the
flow equations, so that we can switch between non-stiff and stiff solvers, and give
the user as much control over the solver as possible.
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The ODE solver calls the following derivative wrapper function:

def derivative_wrapper(t, y, user_data):
...

calc_eta = user_data["calc_eta"]
calc_rhs = user_data["calc_rhs"]

# extract operator pieces from solution vector
E, f, Gamma = get_operator_from_y(y, dim1B, dim2B)

# calculate the generator
eta1B, eta2B = calc_eta(f, Gamma, user_data)

# calculate the right-hand side
dE, df, dGamma = calc_rhs(eta1B, eta2B, f, Gamma, user_data)

# convert derivatives into linear array
dy = np.append([dE], np.append(reshape(df, -1), reshape(dGamma,

-1)))

# share data
user_data["dE"] = dE
user_data["eta_norm"] = np.linalg.norm(eta1B,ord='fro')+np.linalg.

norm(eta2B,ord='fro')

return dy

This routine is very similar to the ones we used in the SRG codes in Sects. 10.2.3.3
and 10.2.4.3. It extracts E.s/; f .s/; and � .s/ from the solution vector, and calls
appropriate routines to construct the generator and the derivatives. This is where
the function object entries of the user_data dictionary come into play: We use
them as an abstract interface to call the routines we assigned to the dictionary in
our main routine. This is much more elegant than selecting the generator and flow
equation truncation scheme via if...elif clauses. Most importantly, we do not
need to modify the derivative routine at all if we want to add new generators and
truncation schemes, but only need to assign the new functions to calc_eta and
calc_rhs.

In the ODE loop, we do not require output at an externally chosen value of s,
but check and process the intermediate solution after each accepted (not attempted!)
internal step of the solver. This is achieved by setting the option step=True. We
extract E.s/; f .s/; and � .s/, and use it to calculate diagnostic quantities like the
second- and third-order energy corrections, �E.2/.s/ and �E.3/.s/, as well as the
norms of fod.s/ and �od.s/:

def main():
...

while solver.successful() and solver.t < sfinal:
ys = solver.integrate(sfinal, step=True)

dim2B = dim1B*dim1B
E, f, Gamma = get_operator_from_y(ys, dim1B, dim2B)
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DE2 = calc_mbpt2(f, Gamma, user_data)
DE3 = calc_mbpt3(f, Gamma, user_data)

norm_fod = calc_fod_norm(f, user_data)
norm_Gammaod = calc_Gammaod_norm(Gamma, user_data)

print("%8.5f %14.8f %14.8f %14.8f %14.8f %14.8f %14.8f
%14.8f %14.8f"%(

solver.t, E , DE2, DE3, E+DE2+DE3, user_data["dE"],
user_data["eta_norm"], norm_fod, norm_Gammaod))

if abs(DE2/E) < 10e-8: break

As discussed in earlier sections, the off-diagonal matrix elements create 1p1h and
2p2h admixtures to the reference state wave function which give rise to the energy
corrections. These admixtures are suppressed as we decouple, hence the size of
the energy corrections must decrease. In the limit s ! 1, we expect them to
be completely absorbed into the RG-improved Hamiltonian (see Sect. 10.3.6). It
is by this reasoning that we use the relative size of the second-order correction to
the flowing energy, �E2.s/=E.s/, as the stopping criterion for the flow. Once this
quantity falls below 10�8, we terminate the evolution.

10.3.5.6 Optimizations

The Python implementation of the IMSRG that we describe here can solve problems
with small single-particle basis sizes in reasonable time. To tackle large-scale
calculations, we implement the IMSRG in languages like C/C++ or Fortran that
are closer to the hardware.

As mentioned in the course of the discussion, we have favored simplicity in
the design of the Python code, which leaves significant room for optimization.
For instance, we can exploit that nucleons are Fermions, and antisymmetrize the
two-nucleon basis states. This reduces the storage for matrix elements involving
identical particles by a factor of four, because we only need to store one of the
antisymmetrized matrix elements

�ijkl D ��jikl D ��ijlk D �jilk : (10.165)

The storage can be reduced even further if we also exploit the Hermiticity and anti-
Hermiticity of OH and O�, respectively.

Another important tool for optimization are symmetries of the Hamiltonian.
Nuclear Hamiltonians conserve the total angular momentum, parity, and the isospin
projection of quantum states, which implies that f and � are block-diagonal
in the corresponding quantum numbers. Since the generator and the derivatives
are constructed from the Hamiltonian, they have the same symmetries, and are
block-diagonal as well. Exploiting this block structure, we can reduce the storage
requirements, which are naivelyO.N4/ for each operator, by about one to two orders
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of magnitude. We can also explicitly work on the blocks instead of the full matrices
when we evaluate the right-hand sides of the IMSRG flow equations. The complex
couplings between blocks prevents us from evolving individual blocks or small
groups separately, in contrast to the free-space SRG case, where this was possible
(see Sect. 10.2.4.3).

10.3.6 IMSRG Solution of the Pairing Hamiltonian

Let us now use the code from the previous section to solve the Schrödinger equation
for four particles that interact via the pairing Hamiltonian (10.38).

10.3.6.1 Ground-State Calculations

As a first application, we calculate the ground-state energy for the pairing Hamil-
tonian with ı D 1:0 and g D 0:5, which we studied using SRG matrix flows
in Sect. 10.2.3.4. In the left panel of Fig. 10.9, we show the flowing ground-state
energy E.s/. Starting from the energy of the uncorrelated reference state, which is
E.0/ D 2ı � g D 1:5, we obtain a final energy E.1/ D 1:4133, which is slightly
below the exact result 1:4168.

The mechanism by which the flowing ground-state energy is absorbing correla-
tion energy can be understood by considering the zero-body flow equation (10.104)

Fig. 10.9 IMSRG(2) flow for the ground state of the pairing Hamiltonian with ı D 1:0; g D
0:5 (cf. Sect. 10.2.3.4). Calculations were performed with the White generator, Eq. (10.141).
Left panel: Flowing ground-state energy E.s/ plus perturbative second and third-order energy
corrections for OH.s/. The exact ground-state energy is indicated by the dashed line. Right panel:
Norm of the White generator and the off-diagonal Hamiltonian OHod.s/ (note that jjfod.s/jj D 0 )
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in the perturbative approach we introduced in Sect. 10.3.4. We note that
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a
bf b
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C 1
4

X
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�ab
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: (10.166)

For the White generator (10.141),

�
pp0

hh0 .s/ D � pp0

hh0 .0/e�s ; � hh0

pp0 .s/ D � hh0

pp0 .0/e�s : (10.167)

As we can see in the left panel of Fig. 10.9, the off-diagonal matrix elements and
the generator indeed decay exponentially with a single, state-independent scale.
Plugging the matrix elements into the energy flow equations to O.g2/, we have

dE

ds
D 1

2

X
pp0hh0

j� pp0

hh0 .0/j2
�

pp0

hh0.0/
e�2s : (10.168)

Integrating over the flow parameter, we obtain

E.s/ D E.0/� 1
4

X
pp0hh0

j� pp0

hh0 .0/j2
j�pp0

hh0.0/j


1 � e�2s

�
: (10.169)

We recognize the second-order energy correction, evaluated with the initial Hamilto-
nian, and see that E.s/will decrease with s (i.e., the binding energy increases). In the
limit s!1, the entire correction is shuffled into the zero-body piece of the evolved
Hamiltonian. As discussed in Sect. 10.3.2, the complete IMSRG(2) flow performs
a more complex re-summation of correlations, but we can see from Fig. 10.9 that
it certainly encompasses the complete second order. In fact, we see that the third-
order correction is completely absorbed into the final E.1/ as well. Readers who
are interested in more details are referred to the extensive discussion in [53] (also
see [72]).

In Fig. 10.10, we show the IMSRG(2) correlation energy

Ecorr D E.1/� EHF (10.170)

as a function of the pairing strength g, holding the single-particle level spacing
constant at ı D 1:0. As we see in the left panel, the IMSRG(2) results for the White
[Eq. (10.141)], imaginary time [Eq. (10.144)] and Wegner generators [Eq. (10.147)]
are practically identical as we evolve to s!1. This behavior is expected, because
all three generators are based on the same off-diagonal Hamiltonian, and we have
explained in the previous sections that the specific choice of the generator then only
affects the numerical aspects of the flow, with the potential exception of accumulated
truncation errors. Such errors clearly do not matter for the present case.
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Fig. 10.10 Ground-state correlation energies as a function of the pairing strength, for ı D 1:0.
Left panel: IMSRG(2) correlation energies for different flow generators. Right panel: Comparison
of IMSRG(2) and other many-body methods

In the range �0:5 . g . 0:5, the IMSRG(2) is in excellent agreement with
the exact diagonalization. This range corresponds to a region of weak correlations
between the four particles that we consider in our system, because the ratio
between the characteristic excitation scale of the uncorrelated many-body states
[diagonal matrix elements of Eq. (10.42)] and the pairing strength (off-diagonal
matrix elements) is small,

ˇ̌
ˇ g

2�E

ˇ̌
ˇ D

ˇ̌
ˇ g

4ı

ˇ̌
ˇ 	 0:125 : (10.171)

Going beyond g 
 0:5, the correlations grow stronger, and the IMSRG(2) starts to
overestimate the size of the correlation energy. The absolute deviation is about 0:1
at g D 1:0, where the exact eigenvalue of the pairing Hamiltonian is 0:6355.

Interestingly, the deviations are much smaller in the opposite case, g D �1:0.
The right-hand panel of Fig. 10.10 sheds further light on this matter. There, we
compare the IMSRG(2) correlation energy to results from finite-order many-
body perturbation theory (MBPT) and Coupled Cluster with Doubles Excitations
(CCD)—see Chap. 8 for details. We see that the correlation energies from finite-
order MBPT alternate in sign for a repulsive interaction, which suggests that the
agreement between the exact solution, IMSRG(2), and CCD is due to cancellations
at all orders that these methods take into account. Looking back at the attractive
pairing force for g � 1:0, we observe that the MBPT results have converged to the
exact solution once fourth-order corrections are taken into account, and CCD gives
the same result. The IMSRG(2) overestimates the correlation energy in this region
because it undercounts a set of four repulsive fourth-order diagrams by a factor 1=2,
while CCD takes them into account completely (see [53, 134]).



538 H. Hergert et al.

10.3.6.2 Targeting Excited States

In Sect. 10.3.3.1, we mentioned that the choice of reference state will affect which
eigenstate of the Hamiltonian the IMSRG evolution is targeting. To illustrate
this, Fig. 10.11 shows the IMSRG(2) flows starting from uncorrelated states with
energies 4� g (with nucleons occupying the p D 1 and p D 2 single-particle states,
see Table 10.1) and 6�g (with p D 0 and p D 2 occupied), respectively. For g D 0:5
and ı D 1:0, the exact eigenvalues are 3:4707 and 5:5.

As we can see in the left panel, the IMSRG(2) flow towards the correct energy.
Between s D 1 and s D 3, it overshoots the exact energy. As discussed in
Sect. 10.3.3.2, the IMSRG(2) is not a variational method, so this is unproblematic.
In the limit s ! 1, the flow converges to 3:4708, matching the energy of the
first excited state. The flow shown in the right panel of Fig. 10.11 is particularly
interesting. Recall from Sect. 10.2.3.4 that the state with energy 5:5 is already a
degenerate eigenstate of the Hamiltonian, and therefore supposed to be invariant
under a unitary flow. This is indeed the case, at least to the eight digits recorded in
the flow data file imsrg-white_d1.0_g+0.5_N4_ev3.flow. It also means
that all perturbative corrections in the IMSRG(2) summation must cancel out. While
the second- and third-order energy corrections are of opposite sign, they are not of
the same size. Thus, contributions from fourth and higher orders are involved in the
cancellation, and the invariance of E.s/ demonstrates that they are indeed generated
by the IMSRG(2) flow. We conclude our discussion of the IMSRG treatment of the
pairing Hamiltonian here.

Fig. 10.11 IMSRG(2) flow for different reference states, using the pairing Hamiltonian with ı D
1:0; g D 0:5. Calculations were performed with the White generator, Eq. (10.141). For Slater
determinants with uncorrelated energies 4� g D 3:5 (left panel) and 6 � g D 5:5 (right panel),
the IMSRG(2) flow targets the 2nd and 3rd excited states, see Sect. 10.2.3.4
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10.3.7 Infinite Neutron Matter

After discussing the pairing Hamiltonian, we now want to apply the IMSRG(2)
to a large-scale problem, namely the calculation of the equation of state for
pure neutron matter. Python scripts and data are available at https://github.
com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-
programs/python/imsrg_pnm. The C++ program is available from https://github.
com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter10-
programs/cpp/imsrg_pnm.

We work in a basis of plane wave states, which is set up just like in the CC case
discussed in Sect. 8.7. We work in a spherical periodic cell L D .N=�/1=3, where
N is the number of neutrons in the cell, and � the neutron matter density. Because
of the periodic boundary conditions, the momenta px; py; pz are discretized, and we
can write the single-particle states as jnx; ny; nz; szi (sz is the spin projection of the
neutron). We impose the truncation

n2x C n2y C n2z 	 Nmax : (10.172)

In Fig. 10.12, we show the IMSRG(2) results for neutron matter for the semi-
realistic Minnesota NN potential [135], using N D 66 neutrons in an Nmax D
36 basis. The left panel shows the IMSRG(2) equation of state (EOS) which is
essentially the same as that of methods with comparable correlation content, namely
CCD, the Configuration Interaction Monte Carlo based on CCD wave functions
(CIMC, see Sect. 9.6.1) and the Self-Consistent Green’s Functions in the ADC(3)
scheme (Sect. 11.3). We also include the MBPT(2) EOS, which is in very good
agreement with the more sophisticated methods. This shows that pure neutron
matter is only weakly correlated, and the many-body expansion is clearly converging
rapidly. The IMSRG(2) (and other methods) gain an additional 10% additional
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Fig. 10.12 Equation of state for pure neutron matter from IMSRG(2) and other many-body
methods, based on the Minnesota NN potential [135]. The left panel shows the energy per particle
obtained with IMSRG(2), CCD (Chap. 8), CIMC (Chap. 9), and the ADC(3) Self-Consistent
Green’s Function scheme (Chap. 11), the right panel the correlation energy per particle from the
same methods
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energy compared to the uncorrelated HF EOS, all the way from dilute matter at
� D 0:05 fm�3 to � D 0:2 fm3, which is more than twice the neutron density of
typical stable nuclei.

In the right panel of Fig. 10.12, we show the correlation energy per particle,
which reveals some differences between the various methods. As the neutron matter
density comes and correlations are expected to become increasingly important,
MBPT(2) gains the highest amount of correlation energy, just as in our results for the
pairing Hamiltonian (cf. Fig. 10.10). Curiously, CCD gives the most binding of all
methods in dilute neutron matter, but eventually, the CCD correlation energy is very
similar to that of CIMC and ADC(3), which should be superior approximations to
the exact ground state (see Chaps. 9 and 11). As the density increases the IMSRG(2)
starts to gain more binding from correlations than CCD, its closest cousin among
the considered methods, but not as much additional binding energy as MBPT(2).
This reflects our findings for the pairing Hamiltonian, where we observed the
same phenomenon (see Fig. 10.10). As explained in Sect. 10.3.6, the reason for this
energy gain compared to CCD is the under-counting of certain repulsive fourth-
order diagrams in the IMSRG(2), see [53].

10.4 Current Developments

After covering the essential concepts of the SRG and IMSRG, and discussing both
the formal and technical aspects of their applications, we want to introduce our
readers to the three major directions of current IMSRG research: These are the use of
the so-called Magnus expansion to explicitly construct the IMSRG transformation
(Sect. 10.4.1), the Multireference IMSRG for generalizing the method to correlated
reference states (Sect. 10.4.2), and the construction of effective Hamiltonians for
use in configuration interaction and Equation-of-Motion methods, which allows us
to tackle excited states (Sect. 10.4.3).

10.4.1 Magnus Formulation of the IMSRG

Despite its modest computational scaling and the flexibility to tailor the generator
to different applications, IMSRG calculations based on the direct integration of
Eqs. (10.8) are limited by memory demands of the ODE solver in many realistic
cases. The use of a high-order solver is essential, as the accumulation of integration-
step errors destroys the unitary equivalence between H.s/ and H.0/ even if no
truncations are made in the flow equations. State-of-the-art solvers can require
the storage of 15–20 copies of the solution vector in memory, which is the main
computational bottleneck of the method (see, e.g., [79, 81, 136]).

Matters are complicated further if we also want to calculate expectation values
for observables besides the Hamiltonian. General operators have to be evolved
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consistently using the flow equation

d

ds
OO.s/ D Œ O�.s/; OO.s/
 ; (10.173)

but since storage of O�.s/ at every point of the flow trajectory is prohibitively expen-
sive, we are forced to solve Eq. (10.173) simultaneously with the flow equation for
the Hamiltonian. The evaluation of N observables besides the Hamiltonian implies
that the dimension of the ODE system (10.104)–(10.106) grows by a factor N C 1.
In addition, generic operators can evolve with rather different characteristic scales
than the Hamiltonian, increasing the likelihood of the ODEs becoming stiff.

We can now overcome these limitations by re-formulating the IMSRG using
the Magnus expansion from the theory of matrix differential equations [137, 138].
Magnus proved that the path-ordered series defining the IMSRG transformation,
Eq. (10.12), can be summed into a true exponential expression if the generator O�
meets certain conditions (see [137]):

OU.s/ � e Ő .s/ : (10.174)

This allows us to derive a flow equation for the anti-Hermitian Magnus operator
Ő .s/:

d Ő
ds
D

1X
kD0

Bk

kŠ
adk

Ő . O�/ ; (10.175)

where Bk are the Bernoulli numbers, and

ad0Ő . O�/ D O� (10.176)

adk
Ő . O�/ D Œ Ő ; adk�1

Ő . O�/
 : (10.177)

As in the standard IMSRG(2), we truncate O� and Ő as well as their commutator at
the two-body level. We refer to the resulting calculation scheme as the Magnus(2)
formulation of the IMSRG. The series of nested commutators generated by adk

Ő
is evaluated recursively, until satisfactory convergence of the right-hand side of
Eq. (10.175) is reached [72]. At each integration step, we use OU.s/ to construct the
Hamiltonian OH.s/ via the Baker-Campbell-Hausdorff (BCH) formula

OH.s/ � e Ő .s/ OH.0/e� Ő .s/ D
1X

kD0

1

kŠ
adk

Ő .s/
� OH.0/� ; (10.178)

(the flow parameter dependence is stated explicitly here for clarity). Like O� and Ő ,
the Hamiltonian is truncated at the two-body level.
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Fig. 10.13 IMSRG(2) and Magnus(2) ground-state energy of 16O, starting from the NNLOsat

NN C 3N interaction [17]. The solid black line is the IMSRG(2) flow obtained with an adaptive
solver based on the Adams-Bashforth method [80], while the other lines show Magnus(2) and
IMSRG(2) flows obtained with a simple Forward Euler method and different fixed step sizes. All
calculations were done in an emax D 8 model space, with „! D 24MeV for the underlying
harmonic-oscillator basis

A major advantage of the Magnus formulation stems from the fact that the flow
equations for Ő .s/ can be solved using a simple first-order Euler step method
without any loss of accuracy, resulting in substantial memory savings and a modest
reduction in CPU time. While sizable integration-step errors accumulate in ˝.s/
with a first-order method, upon exponentiation the transformation is still unitary,
and the transformed H.s/ D OU.s/H OU�.s/ is unitarily equivalent to the initial
Hamiltonian aside from the truncations made while evaluating the BCH formula.
For further details on the implementation of the Magnus formulation, see [72].

The insensitivity of the Magnus scheme to integration-step errors is illustrated
in Fig. 10.13, which shows flowing ground-state energy for 16O, calculated with
the chiral NNLOsat NN C 3N interaction by Ekström et al. [17]. The black solid
line denotes the results of a standard IMSRG(2) calculation using a high-order
predictor-corrector solver [79, 136], while the other curves denote IMSRG(2) and
Magnus(2) calculations using a first-order Euler method with different step sizes
ıs. Unsurprisingly, the IMSRG(2) calculations using a first-order Euler method
are very poor, with different step sizes converging to different large-s limits. The
Magnus(2) calculations, on the other hand, converge to the same large-s limit in
excellent agreement with the standard IMSRG(2) results.
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A second major advantage of the Magnus formulation of the IMSRG is that we
can evaluate arbitrary observables by simply using the final Magnus operator Ő .1/
to calculate

OO.1/ � e Ő .1/ OO.0/e� Ő .1/ : (10.179)

This is obviously much more convenient than dealing with observables in the direct
IMSRG(2) approach, because we do not have to deal with the doubling, tripling,
. . . of the already large system of flow equations. In contrast to the prohibitive space
required to store O�.s/ for all values of s, we can also easily archive the ˝.1/ for
long-term use, e.g., when we want to look at new observables in future studies.

10.4.2 The Multi-Reference IMSRG

10.4.2.1 Correlated Reference States

Many-body bases built from a single Slater determinant and its particle-hole
excitations work best for systems with large gaps in the single-particle spectrum,
e.g., closed-shell nuclei. If the gap is small, particle-hole excited basis states
can be near-degenerate with the reference determinant, which results in strong
configuration mixing. When the mixing involves configurations in which many
nucleons are excited simultaneously, many-body physicists speak of static or
collective correlations in the wave function, as opposed to dynamic correlations
that are caused by the excitations of a small number of nucleons only.

Important examples are the emergence of nuclear superfluidity [139] or diverse
rotational and vibrational bands in open-shell nuclei (see, e.g., [140]). These phe-
nomena are conveniently described by using the concept of intrinsic wave functions
that explicitly break appropriate symmetries of the Hamiltonian. For instance,
nuclear superfluidity can be treated in to leading-order in the self-consistent
Hartree-Fock-Bogoliubov (HFB) approach, which is formulated in terms of anti-
symmetrized product states of fermionic quasi-particles that are superpositions
of particles and holes. Because of this, the intrinsic HFB wave functions are
superpositions of states with different particle numbers. The broken symmetries
must eventually be restored by means of projection methods, which have a long
history in nuclear many-body theory [117, 141–151]).

The standard IMSRG framework as described in Sect. 10.3 works with an
uncorrelated reference state, and therefore puts the entire onus of describing
correlations on the transformation OU.s/. The computational cost limits us to the
IMSRG(2) scheme, or an eventual approximate IMSRG(3) that is roughly analogous
to completely renormalized Coupled Cluster schemes with approximate triples
[119]. An IMSRG(4), let alone the complete IMSRG(A) scheme, are not feasible.
Thus, the IMSRG, like CC, is best suited to the description of dynamic correlations.
We can mitigate this shortcoming by extending the IMSRG to work with correlated
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reference states, and building static correlation that would otherwise require an
IMSRG(4),. . . scheme directly into the reference state. This leads us to the Multi-
Reference IMSRG (MR-IMSRG) [46, 73, 101], which is constructed using the
generalized normal ordering and Wick’s theorem developed by Kutzelnigg and
Mukherjee [152, 153].

10.4.2.2 Generalized Normal Ordering

In [152], Kutzelnigg and Mukherjee developed a generalized normal ordering for
arbitrary reference states. In the brief discussion that follows, we use the slightly
different notation of Kong et al. [154].

First, we introduce a pseudo-tensorial notation for strings of creation and
annihilation operators, to facilitate book-keeping and make the formalism more
compact. A product of k creators and annihilators each is written as

OAi1:::ik
j1:::jk
� a�i1 : : : a

�
ik

ajk : : : aj1 : (10.180)

We do not consider particle-number changing operators in the present work, because
they cause ambiguities in the contraction and sign rules for the A operators that are
defined in the following. The anticommutation relations imply

OAP.i1:::ik/
P0.j1:::jk/

D .�1/�.P/C�.P0/ OAi1:::ik
j1:::jk

; (10.181)

where �.P/ D ˙1 indicates the parity (or signature) of a permutation P . A
general k-body operator can now be written as

O.k/ D 1

.kŠ/2
X
i1:::ik
j1:::jk

oi1:::ik
j1:::jk
OAi1:::ik

j1:::jk
; (10.182)

where we assume that the coefficients oi1:::ik
j1:::jk

are antisymmetrized, and therefore also
obey Eq. (10.181) under index permutations.

Next, we introduce irreducible k-body density matrices �.k/. In the one-body
case, we have the usual density matrix

�i
j � h˚ j OAi

j j˚i ; (10.183)

and for future use, we also define

� i
j � �i

j � ıi
j : (10.184)

Up to a factor .�1/ that unifies the sign rules for one-body contractions presented
below, �.1/ is simply the generalization of the hole density matrix for a correlated
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state [cf. Eq. (10.96)]. In the natural orbital basis, both one-body density matrices
are diagonal, with fractional occupation numbers 0 	 ni; Nni 	 1 as eigenvalues.

For k 
 2, we denote full density matrices by

�
i1:::ik
j1:::jk
D h˚ j OAi1:::ik

j1:::jk
j˚i ; (10.185)

and define

�
ij
kl � �ij

kl �A f�i
k�

j
lg ; (10.186)

�
ijk
lmn � �ijk

lmn �A f�i
l�

jk
mng �A f�i

l�
j
m�

k
ng ; (10.187)

etc., where A f: : :g fully antisymmetrizes the indices of the expression within the
brackets, e.g.,

A f�i
k�

j
lg D �i

k�
j
l � �i

l�
j
k : (10.188)

From Eq. (10.186), it is easy to see that �.2/ encodes the two-nucleon correlation
content of the reference state j˚i. If the reference state is a Slater determinant, i.e.,
an independent-particle state, the full two-body density matrix factorizes, and �.2/

vanishes:

�
ij
kl D �ij

kl �A f�i
k�

j
lg D �i

k�
j
l � �i

k�
j
l �

�
�i

k�
j
l � �i

k�
j
l

�
D 0 : (10.189)

Equation (10.187) shows that �.3/ is constructed by subtracting contributions from
three independent particles as well as two correlated nucleons in the presence of an
independent spectator particle from the full three-body density matrix, and therefore
encodes the genuine three-nucleon correlations. This construction and interpretation
generalizes to irreducible density matrices of rank k.

Normal-ordered one-body operators are constructed in the same manner as in the
standard normal ordering of Sect. 10.3.1:

˚
Aa

b

� � Aa
b � h˚ jAa

b j˚i D Aa
b � �a

b : (10.190)

For a two-body operator, we have the expansion

Aab
cd D

˚
Aab

cd

�C �a
c

˚
Ab

d

� � �a
d

˚
Ab

c

�C �b
d

˚
Aa

c

�� �b
c

˚
Aa

d

�C �a
c�

b
d � �a

d�
b
c C �ab

cd :

(10.191)

As a consequence of Eq. (10.181), the sign of each term is determined by the product
of the parities of the permutations that map upper and lower indices to their ordering
in the initial operator. Except for the last term, this expression looks like the result
for the regular normal ordering, with pairwise contractions of indices giving rise
to one-body density matrices. The last term, a contraction of four indices, appears
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because we are dealing with an arbitrary, correlated reference state here. For a three-
body operator, we obtain schematically

Aabc
def D

˚
Aabc

def

�CA f�a
d

˚
Abc

ef

�g CA f�a
d�

b
e

˚
Ac

f

�g CA f�ab
de

˚
Ac

f

�g
C �abc

def CA f�a
d�

bc
ef g CA f�a

d�
b
e�

c
f g ; (10.192)

and the procedure can be extended to higher particle rank in an analogous fashion.
When we work with arbitrary reference states, the regular Wick’s theorem of

Sect. 10.3.1 is extended with additional contractions:

˚
Aa b

cd

�˚
Aij

k l

� D �� b
k

˚
Aaij

cdl

�
; (10.193)

˚
Aab

c d

�˚
A

i j
kl

� D �� j
c

˚
Abia

dkl

�
; (10.194)

˚
A ab

cd

�˚
Aij

kl

� D C� ab
kl

˚
Aij

cd

�
; (10.195)

˚
Aa b

cd

�˚
A i j

kl

� D �� ib
kl

˚
Aaj

cd

�
; (10.196)

˚
Aab

c d

�˚
A

ij

k l

� D �� ij

ck

˚
Aab

dl

�
; (10.197)

˚
A ab

c d

�˚
A i j

kl

� D �� abi

dkl

˚
Aj

c

�
; (10.198)

˚
A ab

cd

�˚
A

ij

kl

� D C� abij

cdkl
: (10.199)

The new contractions (10.195)–(10.199) increase the number of terms when
we expand operator products. Fortunately, the overall increase in complexity is
manageable.

Applying the generalized normal ordering to the intrinsic nuclear A-body
Hamiltonian (10.86) we obtain

OH D EC
X

ij

f i
j

˚
Ai

j

�C 1

4

X
ijkl

�
ij

kl

˚
Aij

kl

�C 1

36

X
ijklmn

Wijk
lmn

˚
Aijk

lmn

�
; (10.200)

with the individual contributions

E �
�
1 � 1

A

�X
ab

ta
b�

a
b C

1

4

X
abcd

�
1

A
tab
cd C vab

cd

�
�ab

cd C
1

36

X
abcdef

vabc
def �

abc
def ;

(10.201)

f i
j �

�
1 � 1

A

�
ti
j C

X
ab

�
1

A
tia
jb C via

jb

�
�a

b C
1

4

X
abcd

viab
jcd�

ab
cd ; (10.202)
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�
ij

kl �
1

A
tij
kl C vij

kl C
X
ab

v
ija
klb�

a
b ; (10.203)

Wijk
lmn � vijk

lmn : (10.204)

Here, we use the full density matrices for compactness, but it is easy to express
Eqs. (10.201)–(10.203) completely in terms of irreducible density matrices by using
Eqs. (10.186) and (10.187).

10.4.2.3 MR-IMSRG Flow Equations

We evaluate the operator flow equation (10.8) using the generalized Wick’s theorem,
truncating all operators the two-body level, and obtain the MR-IMSRG(2) flow
equations [46, 73, 101]:

dE

ds
D
X

ab

.na � nb/�
a
bf b

a C
1

4

X
abcd



�ab

cd�
cd

ab � � ab
cd �

cd
ab

�
nanb Nnc Nnd

C 1

4

X
abcd

�
d

ds
� ab

cd

�
�ab

cd C
1

4

X
abcdklm



�ab

cd�
kl

am � � ab
cd �

kl
am

�
�bkl

cdm ; (10.205)

d

ds
f i
j D

X
a



�i

af a
j � f i

a�
a
j

�CX
ab



�a

b�
bi

aj � f a
b �

bi
aj

�
.na � nb/

C 1

2

X
abc



�ia

bc�
bc

ja � � ia
bc�

bc
ja

�
.na Nnb Nnc C Nnanbnc/

C 1

4

X
abcde



�ia

bc�
de

ja � � ia
bc �

de
ja

�
�de

bc C
X
abcde



�ia

bc�
be

jd � � ia
bc�

be
jd

�
�ae

cd

� 1
2

X
abcde



�ia

jb�
cd

ae � � ia
jb �

cd
ae

�
�cd

be C
1

2

X
abcde



�ia

jb�
bc

de � � ia
jb �

bc
de

�
�ac

de ;

(10.206)

d

ds
�

ij
kl D

X
a

�
�i

a�
aj

kl C �j
a�

ia
kl � �a

k�
ij

al � �a
l �

ij
ka � f i

a�
aj
kl � f j

a�
ia
kl C f a

k �
ij
al C f a

l �
ij
ka

�

C 1

2

X
ab

�
�

ij
ab�

ab
kl � � ij

ab�
ab
kl

�
.1 � na � nb/

C
X
ab

.na � nb/
��
�ia

kb�
jb

la � � ia
kb�

jb
la

�
�
�
�

ja
kb�

ib
la � � ja

kb�
ib
la

��
: (10.207)
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All single-particle indices and occupation numbers (cf. Sect. 10.3.1) refer to natural
orbitals, and the s-dependence has been suppressed for brevity. Because we use
general reference states, the MR-IMSRG flow equations also include couplings to
correlated pairs and triples of nucleons in that state through the irreducible density
matrices �.2/ and �.3/. The single-reference limit [Eqs. (10.104)–(10.106)] can be
obtained by setting the irreducible density matrices �.2/ and �.3/ to zero in the
previous expressions.

Superficially, the computational cost for the evaluation of the MR-IMSRG(2)
flow equations is dominated by the final term of Eq. (10.205), which is of O.N7/.
However, since storage of the complete �.3/ is prohibitive in large-scale calculations,
we impose certain constraints on the reference state, which in turn restrict the non-
zero matrix elements to small subsets of the entire matrix. For example, for particle-
number projected HFB reference states, �.3/ is almost diagonal, which reduces the
effort for the zero-body flow equation to O.N4/. We have also explored reference
states from No-Core Shell Model calculations in a small model space [155], which
limit the indices of �.3/ to 5–10 single-particle states out of a complete single-
particle basis that is one to two orders of magnitude larger. In a similar scenario,
we have used reference states consisting of a valence space (or active space, in
chemistry parlance) on top of an inert core, as in the traditional nuclear Shell model
(cf. Sect. 10.4.3). In that case, the correlations are restricted to this valence space,
and �.3/ is only non-zero if all indices refer to valence space (active space) single-
particle states. Thus, the main driver of the computational effort is still the two-body
flow equation, at O.N6/, just like in the regular IMSRG(2). Equation (10.207)
actually has exactly the same for as its single-reference counterpart, Eq. (10.106),
except that the occupation numbers can now have arbitrary values between 0 and 1.

10.4.2.4 Decoupling and Generators

In the multireference case, we choose a suitable correlated reference state, and
construct its excitations by applying all possible one- and two-body operators:

j˚i; ˚ OAi
j

� j˚i; ˚ OAij
kl

� j˚i; : : : : (10.208)

The properties of the normal ordering ensure that the excited states are orthogonal to
the reference state, but they are in general not orthogonal to each other: for instance,

h˚ j ˚Ai
j

�˚
Ak

l

� j˚i D ��i
l�

k
j C �ij

kl D ni Nnjı
i
lı

k
j C �ij

kl ; (10.209)

where 0 	 ni; Nni 	 1. Moreover, there can be linear dependencies between the
excitations of the correlated reference state, so the matrix representations of the
Hamiltonian and other operators in this basis can be rank deficient. While the rank
deficiency poses a major challenge for multireference CC methods (see, e.g., [156]),
for us it only means that we are implementing the MR-IMSRG flow on a matrix that
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has spurious zero eigenvalues that are typically far removed from the low-lying part
of the spectrum in which we are most interested.

To identify the off-diagonal Hamiltonian, we can proceed like in the single-
reference IMSRG, and try to satisfy the decoupling conditions

h˚ j OH.1/˚ OAi
j

� j˚i D 0 ; (10.210)

h˚ j OH.1/˚ OAij
kl

� j˚i D 0 ; (10.211)

: : :

and corresponding conditions for the conjugate matrix elements. The matrix
elements can be evaluated with the generalized Wick’s theorem, e.g.,

h˚ jH˚ OAi
j

� j˚i D Nninjf
j
i C

X
ab

f a
b �

ai
bj C

1

2

X
abc

�
Nni�

bc
ja�

bc
ia � nj�

ja
bc�

ia
bc

�

C 1

4

X
abcd

� ab
cd �

iab
jcd : (10.212)

The first term is merely the generalization of the one-body particle-hole matrix
element from Sect. 10.3.3: In the single-reference limit, the occupation number
prefactor is nonzero if i and j are particle and hole indices, respectively. In addition,
the matrix element depends on the irreducible densities �.2/ and �.3/ due to the
coupling of the Hamiltonian to correlated pairs and triples of nucleons in the
reference state. The coupling condition to two-nucleon excitations, Eq. (10.211), not
only has a much more complicated structure than its single-reference counterpart,
but even depends on �.4/ (see [73] for details). Constructing and storing �.4/ is
essentially out of the question in general MR-IMSRG applications, hence we are
forced to introduce truncations to evaluate Eq. (10.212) and similar matrix elements.
This implies that we can only achieve approximate decoupling in general.

In recent applications, we have found the variational perspective introduced in
Sect. 10.3.3.2 to be useful. We can write the decoupling conditions as

h˚ jH˚ OAi
j

� j˚i D 1

2
h˚ j ˚H; ˚ OAi

j

�� j˚i C 1

2
h˚ j ŒH; ˚ OAi

j

�

 j˚i ; (10.213)

h˚ jH˚ OAij
kl

� j˚i D 1

2
h˚ j ˚H; ˚ OAij

kl

�� j˚i C 1

2
h˚ j ŒH; ˚ OAij

kl

�

 j˚i ; (10.214)

and at least suppress the second terms in both equations through what amounts to
a minimization of the ground-state energy under unitary variation. This means that
we aim to satisfy the IBCs introduced in Sect. 10.3.3.2, (also see [64, 126–128]).
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Evaluating the commutators, we obtain

h˚ j ŒH; ˚ OAi
j

�

 j˚i D .nj � ni/f

j
i �

1

2

X
abc

�
�

ja
bc�

ia
bc � � ab

ic �
ab
jc

�
; (10.215)

h˚ j ŒH; ˚ OAij
kl

�

 j˚i D � kl

ij .Nni Nnjnknl � ninj Nnk Nnl/C
X

a

�
.1 � Pij/f

a
i �

aj
kl � .1 � Pkl/f

k
a �

ij
al

�

C 1

2



.�� /kl

ij



1 � ni � nj

� � .� �/kl
ij .1 � nk � nl/

�

C .1 � Pij/.1 � Pkl/
X

ac



nj � nk

�
� ak

cj �
ai
cl

C 1

2

X
abc

�
.1 � Pkl/�

ka
bc �

aij
bcl � .1 � Pij/�

ab
ic �

abj
ckl

�
: (10.216)

Like the MR-IMSRG(2) flow equations (10.205)–(10.207), these expressions only
depend linearly on �.2/ and �.3/, which makes untruncated implementations feasi-
ble.

We use the IBCs to define the so-called Brillouin generator as

�i
j � h˚ j ŒH; W OAi

j W
 j˚i (10.217)

�
ij
kl � h˚ j ŒH; W OAij

kl W
 j˚i (10.218)

Because the matrix elements of O� are directly given by the residuals of the IBCs, it
can be interpreted as the gradient of the energy with respect to the parameters of the
unitary transformation at each step of the flow. At the fixed point of the flow, O� D 0,
and the flowing zero-body part of the Hamiltonian, E.1/, will be an extremum of
the energy. Indeed, O� has behaved in this manner in all numerical applications to
date, generating a monotonic flow of the energy towards the converged results [73].

10.4.2.5 Example: The Oxygen Isotopic Chain

As a sample application of the MR-IMSRG(2), we use spherical, particle-number
projected HFB vacua (see, e.g., [117, 157] to compute the ground-state energies
and radii of the even oxygen isotopes (odd isotopes have irreducible densities that
are non-scalar under rotation, which requires a future extension of our framework)
[46, 158]. Our results are shown in Fig. 10.14. We use various chiral NN C 3N
interactions.

The NN C 3N.400/ Hamiltonian consists of the N3LO interaction by Entem and
Machleidt [7, 98], with cutoff�NN D 500MeV, and a local NNLO interaction with
a reduced cutoff �NN D 400MeV [100, 114]. The low-energy constants (LECs),
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Fig. 10.14 MR-IMSRG(2) ground-state energies and charge radii of the oxygen isotopes for
NNLOsat and NN C3N.400/ at � D 1:88; : : : ; 2:24 fm�1 (emax D 14;E3max D 14, and optimal
„!). Black bars indicate experimental data [111, 159]

i.e., the parameters of the chiral Hamiltonian, are entirely fixed by fitting data in
the A D 2; 3; 4 systems, and it is evolved to lower resolution scales � via free-
space SRG, as discussed in Sect. 10.2.4.2. In contrast, the LECs of NNLOsat are
also optimized with respect to selected many-body data [17], and it is sufficiently
soft that we use it as is.

While NN C 3N.400/ gives a good reproduction of the oxygen ground-state
energies, an issue with the Hamiltonian’s saturation properties is revealed by
inspecting the oxygen charge radii (see Fig. 10.14). The theoretical charge radii are
about 10% smaller than the experimental charge radius of 16O, Rch D 2:70 fm [159],
and the sharp increase for 18O is missing entirely. The variation of � produces only
a 0.2% change in the ground-state energies, but this is the result of a fine-tuned
cancellation between induced 4N forces that are generated by the NN and 3N pieces
of the Hamiltonian, and should not be seen as representative for chiral interactions
in general. The charge radii grow larger as � decreases, which is consistent with a
study for light nuclei by Schuster et al. [92]. The authors found that two- and three-
body terms that are induced by consistently evolving the charge radius operator to
lower � have the opposite effect and reduce its expectation value. These terms have
not been included here, but need to be considered for complete consistency in the
future.

The MR-IMSRG(2) ground-state energies obtained with NNLOsat are slightly
lower than those for NNC3N.400/ in the proton-rich isotopes 12;14O, and above the
NNC3N.400/ energies in 16�28O. From 16�22O, the NNLOsat ground-state energies
exhibit a parabolic behavior as opposed to the essentially linear trend we find for
NNC3N.400/. A possible cause is the inclusion of the 22;24O ground-state energies
in the optimization protocol, which constrains the deviation of the energies from
experimental data in these nuclei. NNLOsat predicts the drip line at 24O, and the
trend for the 26;28O resonance energies is similar to the NNC3N.400/ case. For
NNLOsat, the charge radii for the bound oxygen isotopes are about 10% larger than
for NNC 3N.400/, which is expected given the use of the 16O charge radius in
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Fig. 10.15 IMSRG(2) flow
for the ground state of the
pairing Hamiltonian with
ı D 1:0; g D 0:5

(cf. Sect. 10.2.3.4).
Calculations were performed
with the White generator,
Eq. (10.141). The figures
shows the flowing
ground-state energy E.s/ plus
perturbative second and
third-order energy corrections
for OH.s/. The exact
ground-state energy is
indicated by the dashed line

the optimization of the LECs (also see [158]). For the resonant states, the increase
is even larger, but continuum effects must be considered to make a meaningful
comparison. We note that NNLOsat also fails to describe the sharp jump in Rch at
18O.

10.4.3 Effective Hamiltonians

A recurring theme of this chapter has been the transformation of nuclear Hamil-
tonians to a shape that facilitates their subsequent application in many-body
calculations. We have stressed this point in our discussion of the free-space SRG, in
particular (see Sect. 10.2.4.2), but it applies to the IMSRG (or the MR-IMSRG)
as well. Recall our application of the IMSRG to the pairing Hamiltonian in
Sect. 10.3.6, where we primarily focused on how correlations that are usually probed
by perturbative corrections are shuffled into the flowing ground-state energy E.s/ in
the limit s ! 1 (see Fig. 10.15). We can also interpret the results shown in this
figure in a slightly different way: At any given value of s, E.s/ would result from a
simple HF calculation with the Hamiltonian OH.s/, which has absorbed correlations
because of an RG improvement. The result of the simple HF calculation approaches
the exact result as we evolve, aside from truncation errors, of course. The same is
true for the MBPT(2) and MBPT(3) calculations, summing E.s/ plus perturbative
corrections through the indicated order. Of course, these approaches are already
closer to the exact result in the first place.

This example illustrates the potential benefits of using Hamiltonians that have
been improved through IMSRG evolution as input for other many-body methods.
In this section, we will briefly discuss applications in the traditional nuclear Shell
model, which will give us access to a wealth of spectroscopic observables like
excitation energies and transition rates. We will also look at the use of IMSRG
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Fig. 10.16 Separation of the
single-particle basis into hole
(h), valence particle (v) and
non-valence particle (q)
states. The Fermi energy of
the fully occupied core, "F , is
indicated by the red dashed
line

Hamiltonians in Equation-of-Motion methods, which are an alternative approach to
the computation of excited-state properties.

10.4.3.1 Non-empirical Interactions for the Nuclear Shell Model

In IMSRG ground-state applications, we use the RG flows to decouple a suitable
reference state from npnh excitations (see Sect. 10.3.3). From a more general
perspective, we can view this as a decoupling of different sectors of the many-
body Hilbert space by driving the couplings of these sectors to zero. We are not
forced to restrict the decoupling to a single state, but could target multiple states at
once [73, 121, 134]—all we need to do is tailor our definition of the off-diagonal
Hamiltonian to the problem, as in all SRG and IMSRG applications!

In the nuclear Shell model, we split the single-particle basis in our calculation
into core or hole (h), valence particle (v) and non-valence particle (q) orbitals (see
Fig. 10.16).3 The actual many-body calculation for a nucleus with A nucleons is an
exact diagonalization of the Hamiltonian matrix in a subspace of the Hilbert space
that is spanned by configurations of the form

ja�v1 : : : a�vAv
i � a�v1 : : : a

�
vAv
j˚i ; (10.219)

where j˚i is the wave function for a suitable core with Ac nucleons, and the Av
valence nucleons are distributed over the valence orbitals vi in all possible ways.
Since the core is assumed to be inert, it can be viewed as a vacuum state for the
valence configurations. The matrix representation of the Hamiltonian in the space
spanned by these configurations is

hv0
1 : : : v

0
Av j OH jv1 : : : vAv i D h˚ j av0

Av
: : : av0

1

OHa�v1 : : : a
�
vAv
j˚i : (10.220)

This expression suggests that we normal order the Hamiltonian and other operators
with respect to the core wave function j˚i, which can be obtained from a simple

3In quantum chemistry, what we call a valence space is usually refereed to as the active space.
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Fig. 10.17 Schematic view of IMSRG valence-space decoupling for two valence nucleons (p D
v, q)

spherical HF calculation. The state j˚i takes on the role of the reference state for
the IMSRG flow, but recent studies have shown that choosing either individual
configurations for the target nucleus or ensembles of configurations as references
will reduce truncation errors due to omitted induced terms, see [160, 161]. When
the resulting valence-space interactions are used to calculate nuclear ground-state
energies, we find excellent agreement with direct IMSRG ground-state calculations,
which indicates that the introduction of the inert core is justified, at least for the used
NN C 3N forces with low resolution scales �.

We want to use the IMSRG evolution to decouple the configurations (10.219)
from states that involve excitations of the core, just as in the ground-state calcu-
lations. In addition, we need to decouple them from states containing nucleons in
non-valence particle states (see Fig. 10.17). Working in IMSRG(2) truncation, i.e.,
assuming up to two-body terms in OH.s/, we can identify the matrix elements that
couple pairs of valence-space particles to 1q1v, 2q, 3p1h, and 4p2h excitations,
respectively, where p D v; q. For each type of matrix element, we show the
antisymmetrized Goldstone diagrams [60] that represent the excitation process.
Additional diagrams due to permutations of the nucleons or Hermitian adjoints are
suppressed for brevity.

Diagrams (I) and (II) are eliminated if matrix elements of f and � that contain
at least one q index are chosen to be off-diagonal. Diagrams (III) and (V) are
eliminated by decoupling the reference-state, i.e., the core, which requires f p

h and

�
pp0

hh0 to be off-diagonal (cf. Sect. 10.3.3). This only leaves diagram (IV), which

vanishes if matrix elements of the type � pp0

vh vanish. Thus, we define [73, 121]

Hod �
X
i¤i0

f i
i0
˚ OAi

i0
�C 1

4

0
@X

pp0hh0

�
pp0

hh0

˚ OApp0

hh0

�CX
pp0vh

�
pp0

vh

˚ OApp0

vh

�CX
pqvv0

�
pq
vv0

˚ OApq
vv0

�
1
AC H.c. :

(10.221)



10 In-Medium Similarity Renormalization Group Approach to the Nuclear. . . 555

Table 10.2 Classification of matrix elements of the many-body Hamiltonian in the many-body
Hilbert space spanned by .n C 2/pnh excitations of the reference state (cf. Fig. 10.17)

No. Type Diagram Energy difference �

I h2pj OH j2pi

p

p′

f p
p � f p0

p0

II h2pj OH j2pi

p p′

p′′ p′′′

f p
p C f

p0

p0 � f
p00

p00 � f
p000

p000 C �
pp0

pp0 � �
p00p000

p00p000

III h3p1hj OH j2pi
p h

f p
p � f h

h � �
ph

ph

IV h3p1hj OH j2pi

p p′ h

p′′

f p
p C f p0

p0 � f p00

p00 � f h
h C �

pp0

pp0 � �
ph

ph � �
p0h

p0h

V h4p2hj OH j2pi
p h p′ h′

f p
p C f p0

p0 � f h
h � f h0

h0 C �
pp0

pp0 C � hh0

hh0 � �
ph

ph �
�

p0h0

p0h0 � �
ph0

ph0 � �
p0h

p0h

For each matrix element, we show the corresponding antisymmetrized Goldstone diagrams [60]
involving the one- and two-body parts of OH (permutations involving spectator particles which are
required by antisymmetry are implied), as well as the energy differences appearing in the matrix
elements for �.s/ in each case (see text)

This definition of the off-diagonal Hamiltonian holds for an arbitrary number of
valence particles Av . For Av D 1, diagram (II) vanishes, while diagrams (I) and (III)-
(V) have the same topology, but one less spectator nucleons. Analogously, diagrams
(I)-(V) merely contain additional spectator nucleons for Av > 2 (Table 10.2).

Using OHod in the construction of generators, we evolve the Hamiltonian by
solving the IMSRG(2) flow equations (10.104)–(10.106). The evolved Hamiltonian
is given by

OH.1/ D EC
X
v

f vv
˚ OAvv�C 1

4

X
vi ;vj;vk ;vl

�
vivj
vkvl

˚ OAvivj
vkvl

�C : : : ; (10.222)

where the explicitly shown terms are the core energy, single-particle energies, and
two-body matrix elements that are used as input for a subsequent Shell model
diagonalization.
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A possible subtlety is associated with the treatment of the mass-number depen-
dence of the intrinsic Hamiltonian (10.86). We interpret it as a dependence on the
mass-number operator OA, which acts on the many-body states on which we are
operating, i.e., configurations in the target nucleus, and therefore the mass number
of the target should be used in the intrinsic Hamiltonian at all stages of a calculation
[86, 160, 161]. This is appropriate because the combined IMSRG + Shell model
calculation is supposed to approximate the results of an exact diagonalization for
that particular nucleus.

The naive computational scaling for the valence-decoupling procedure described
here is O.N6/, just like that of IMSRG(2) ground-state calculations. On 2015/16
computing hardware, typical evolutions require about 100–1000 core hours, assum-
ing a single major shell as the valence space. The Shell model calculation is typically
less expensive in that case. However, it will start to dominate the computational
scaling as soon as we have to consider extended valence spaces consisting of two
or more major shells, because of the factorial growth of the Shell model basis
(cf. Sect. 10.2.3).

As an example, Fig. 10.18 shows the low-lying excitation spectra of 22�24O
from Shell model calculations with IMSRG-derived valence-space interactions.
These interactions were generated from an underlying chiral NNC 3N Hamiltonian
consisting of the N3LO NN interaction by Entem and Machleidt with �NN D
500MeV, and an NNLO 3N interaction with �3N D 400MeV, which has been
evolved to � D 1:88 fm�1 [7, 98, 100, 114] (also cf. Sects. 10.2.4.2, 10.4.2). We
compare our results to the gold-standard phenomenological USDB interaction by
Brown and Richter, which describes more than 600 ground-state and excitation
energies in sd-shell (8 	 Z;N 	 20) nuclei with an rms deviation of merely
� 130 keV [162], and to experimental data. In the nuclei shown, the agreement is
quite satisfactory given that the chiral input Hamiltonian is entirely fixed by A 	 4

Fig. 10.18 Excited-state spectra of 22;23;24O based on the chiral NN C 3N.400/ interaction with
� D 1:88 fm�1, compared to results with the phenomenological USDB interaction [162] and
experimental data, see [73, 163] for full details. Dotted and solid lines are results for „! D 20MeV
and „! D 24MeV, respectively, which are shown as an indicator of convergence
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data. The IMSRG interactions turn out to perform quite well in the entire lower
sd-shell, achieving an rms deviation of � 580 keV in about 150 states [73, 160].
The chiral 3N interactions are found to be of crucial importance for the correct
reproduction of level orderings and spacings.

10.4.3.2 Equation-of-Motion Methods

Equation-of-Motion (EOM) methods [164] are a useful alternative to the Shell
model when it comes to the calculation of excited states, in particular when extended
valence spaces lead to prohibitively large Shell model basis dimensions. In these
approaches, the Schrödinger equation is rewritten in terms of ladder operators that
create excited eigenstates from the exact ground state:

OH j�ni D En j� i �! OH OX�n j�0i D En OX�n j�0i : (10.223)

Formally, OX�n is given by the dyadic product j�ni h�0j, and by thinking of the exact
eigenstates in a CI sense, it is easy to see that they can be expressed as a linear
combination of up to A-body excitation and de-excitation operators acting on the
ground state. We can further rewrite Eq. (10.223) as the Equation of Motion

Œ OH; OX�n 
 j�0i D .En � E0/ OX�n j�0i � !n OX�n j�0i ; (10.224)

and introduce systematic approximations to the OX�n and the ground-state j�0i. For
example, by replacing j�0i with a simple Slater determinant and using the ansatz

OX�n D
X

k

Xnka�k ; (10.225)

we obtain Hartree-Fock theory, for

OX�n D
X

ph

X.n/ph a�pah ; (10.226)

we have the Tamm-Dancoff Approximation (TDA) for excited states, and

OX�n D
X

ph

X.n/ph a�pah � Y.n/ph a�hap ; (10.227)

yields the Random Phase Approximation (RPA) in quasi-boson approximation
[117, 131]. Plugging the Slater determinant reference state and the ansatz for the
ladder operators into Eq. (10.224), we end up with a regular or a generalized
eigenvalue problem, which we solve for the amplitudes appearing in the OX�n
operators. Since the computed amplitudes can be used to improve the ground-
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state ansatz, it is usually possible to construct self-consistent solutions of the EoM
(10.224) in a given truncation.

Since we have casually referred to the approximate ground state as a reference
state already, it will not come as a surprise to our readers that we can quite naturally
combine EOM methods with the IMSRG. Per construction, the reference state j˚0i
will be the ground state of the final IMSRG Hamiltonian

H � OU.1/ OH.0/ OU�.1/: (10.228)

Multiplying Eq. (10.224) by OU.1/ and recalling that

OU.1/ j�0i D j˚0i ; (10.229)

we obtain the unitarily transformed EOM

ŒH;X
�

n
 j˚0i D !nX
�

n j˚0i : (10.230)

The solutions X
�

n can be used to obtain the eigenstates of the unevolved Hamiltonian
via

j�ni D OU�.1/X�n j˚0i : (10.231)

In current applications, we include up to 2p2h excitations in the ladder operator
[134]:

X
�

n D
X

ph

NX.n/ph

˚
a�pah

�C 1

4

X
pp0hh0

NX.n/pp0hh0

˚
a�pa�p0ah0ah

�
: (10.232)

Note that the operator only contains excitation operators because de-excitation
operators annihilate the reference state j˚0i and therefore do not contribute in the
EOM:

Œ
˚
a�ha�h0ap0ap

�
;H
 j˚0i D .H � E/

˚
a�ha�h0ap0ap

� j˚0i D 0 : (10.233)

The ladder operator X
�

can be systematically improved by including higher particle-
hole excitations, until we reach the ApAh level which would amount to an exact
diagonalization of H. Denoting the operator rank of the ladder operator by m and
the IMSRG truncation by n, we refer to a specific combined scheme as EOM-
IMSRG(m,n).

Like TDA and RPA, the EOM (10.230) can be implemented as an eigenvalue
problem that can be tackled with the Lanczos-Arnoldi or Davidson algorithms [82–
84] that are also used in CI approaches. As mentioned throughout this chapter,
these algorithms only require knowledge of matrix-vector products. In the EOM-
IMSRG, the required product is identified once we realize that the commutator in
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Fig. 10.19 EOM-IMSRG(2,2) excitation spectra of 14C and 22O, calculated with the chiral NN C
3N.400/ Hamiltonian for � D 1:88 fm�1 (cf. Fig. 10.18), compared with experimental data

Eq. (10.230) can be rewritten as the connected product of H and X
�
:

ŒH;X
�

n
 D fHX
�

ngC : (10.234)

Thus, the matrix-vector product can be computed with the same commutator
routines that are used in the evaluation of the IMSRG flow equations. Thus, the
scaling of EOM-IMSRG(m,n) is the same as that of the IMSRG(max m; n), e.g.,
O.N6/ for the EOM-IMSRG(2,2) scheme that is the method we primarily use at
this point [134].

In Fig. 10.19, we show sample spectra of 14C and 22O from EOM-IMSRG(2,2)
calculations with the chiral NN C 3N.400/ Hamiltonian (� D 1:88 fm�1). We see
that certain levels seem to be reproduced quite well, while experimentally observed
states below 8MeV are either missing in the calculation in the case of 14C), or
found at higher excitation theoretical excitation energy in the case of 22O. In the
latter case, we can compare the EOM-IMSRG(2,2) calculation to the IMSRG+SM
spectrum shown in Fig. 10.18, in which the group of 2C; 3C; 4C states is found much
closer to their experimental counterparts. This suggests that the overestimation of
the excitation energy in the EOM approach is caused by the truncation of the
ladder operator at the 2p2h level, while the Shell model contains all allowed npnh
excitations in the valence space. Conversely, we can conclude that the states that the
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EOM-IMSRG(2,2) is reproducing well are dominated by 1p1h and 2p2h excitations
[134].

An advantage of the EOM-IMSRG(2,2) over the IMSRG+SM is that it allows us
to compute negative parity states, to the level of accuracy that the truncation allows.
In the Shell model, the description of such states requires a valence space consisting
of two major shells, which usually makes the exact diagonalization prohibitively
expensive, especially in sd-shell nuclei and beyond.

10.4.4 Final Remarks

Superficially, the discussion in Sect. 10.4 focused on three different subject areas,
namely Magnus methods, MR-IMSRG, and the construction of effective Hamilto-
nians, but we expect that our readers can already tell that these directions are heavily
intertwined.

The Magnus formulation of the IMSRG will greatly facilitate the evaluation of
general observables not just in the regular single-reference version of the method,
but also in the MR-IMSRG. Magnus methods can also be readily adapted to the con-
struction of effective valence-space operators besides the nuclear interaction, e.g.,
radii and electroweak transitions. In addition, it allows us to construct systematic and
computationally tractable approximations to the full IMSRG(3) [134, 165], similar
to the non-iterative treatment of triples in Coupled Cluster methods [119, 166–168].

While the current version of our EOM technology is based on the single-
reference IMSRG, we will formulate a multireference EOM scheme based on
final Hamiltonians from the MR-IMSRG evolution next. Such a MR-EOM-IMSRG
will hold great potential for the description of excitations in deformed or weakly
bound nuclei, which would require excessively large valence spaces in traditional CI
approaches, and at the same time require an explicit treatment of static correlations
that the uncorrelated reference wave functions used in the IMSRG and EOM-
IMSRG cannot provide.

The MR-IMSRG has also recently been used to pre-diagonalize Hamiltonians
that serve as input for the No-Core Shell Model (NCSM), merging the two
approaches into an iterative scheme that we call the In-Medium NCSM (IM-NCSM
for short) [155]. In this combined approach, we can converge NCSM results in
model spaces whose dimensions are orders of magnitude smaller than those of
the regular NCSM or its importance-truncated variant [47, 169, 170], which should
significantly expand its range of applicability. A similar idea might be used fruitfully
in the traditional Shell model with a core as well, where the use of statically
correlated reference states and an MR-IMSRG evolution might help to overcome
shortcomings in the Shell model interactions for specific nuclei.
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10.5 Conclusions

In this chapter, we have presented a pedagogical introduction to the SRG and
IMSRG, and discussed their applications in the context of the nuclear many-body
problem. The former has become maybe the most popular tool for pre-processing
nuclear interactions and operators, leading to vast improvements in the rate of
convergence of many-body calculations, and extending the range of nuclei that can
be tackled in ab initio approaches [44, 48, 49, 53, 73, 108]. The IMSRG implements
SRG concepts directly in the A-body system, relying on normal-ordering methods
to control the size of induced operators and make systematic truncations feasible.
As we have demonstrated through a variety of applications, the IMSRG is an
extremely versatile and powerful addition to the canon of quantum many-body
methods. In Sect. 10.4, we have given an overview of the main thrusts of current
IMSRG research, and we hope that our readers will be inspired to contribute to
these developments, or find ways in which the IMSRG framework can be useful to
their own research programs.

The explicit RG aspect of the IMSRG framework is a unique feature that sets
it apart from most other many-body methods on the market. When the comparison
with those other methods and experimental data is our first and foremost concern,
we are primarily interested in the s ! 1 limit of the IMSRG or MR-IMSRG
evolution, but the flow trajectory is an enormous source of additional insight. By
studying the flows, not just the final fixed points, we can gain a new understanding
of how many-body correlations are reshuffled between the wave function and the
Hamiltonian, or different pieces of the Hamiltonian, making transparent what is
only implicitly assumed in other methods. Like in the free-space SRG (or other RG
methods), we have the freedom to work at intermediate values of s if this is more
practical than working at s D 0 or in the limit s ! 1, especially if either of these
extremes would lead to the accrual of unacceptable numerical errors in our results
(see, e.g., [155, 171, 172]). This is the inherent power of a framework that integrates
many-body and renormalization group techniques, and the reason why we consider
the IMSRG to be an extremely valuable tool for quantum many-body theory.

10.6 Exercises and Projects

10.1

(a) Prove that the two forms of the intrinsic kinetic energy operator given in
Eqs. (10.54) and (10.55) are equivalent.

(b) Now consider the expectation values of the two forms of OTint in a state that
does not have a fixed particle number, e.g., as in Bardeen-Cooper-Schrieffer
(BCS) [173, 174] or Hartree-Fock-Bogoliubov (HFB) theory (see, e.g., [117]).
Expand the 1

OA dependence of Eqs. (10.54) and (10.55) into series around h OAi by



562 H. Hergert et al.

introducing� OA D OA � h OAi, and compare the series expansions order by order.
(A thorough discussion of the issue can be found in [86].)

10.2

(a) Prove that the expectation value of a normal-ordered operator in the reference
state vanishes [Eq. (10.84)]:

h˚ j ˚a�i1 : : : aj1

� j˚i D 0 : (10.235)

Start by considering a one-body operator, and extend your result to the general
case by induction.

(b) Show that a�i and aj anticommute freely in a normal-ordered string [Eq. (10.85)].

˚
: : : a�i aj : : :

� D �˚ : : : aja
�
i : : :

�
: (10.236)

Consider the one-body case first, as in Problem 10.2(a).
(c) Prove the following schematic expression for products of normal-ordered

operators:

OAŒM
 OBŒN
 D
MCNX

kDjM�Nj
OCŒk
 : (10.237)

(d) Show that the following rule applies for commutators of normal-ordered
operators:

Œ OAŒM
; OBŒN

 D
MCN�1X

kDjM�Nj
OCŒk
 : (10.238)

Thus, the largest particle rank appearing in the expansion of the commutator of
normal-ordered M- and N-body operators is M C N � 1.

(e) We can view the free-space operators as being normal-ordered with respect to
the vacuum state. How are the expansion formulas for products and commuta-
tors modified in that case?

10.3 Use Wick’s theorem to show that the basis consisting of a Slater determinant
j˚i and its particle-hole excitations,

j˚i; ˚a�pah
� j˚i; ˚a�pa�p0ah0ah

� j˚i; : : : ; (10.239)

is orthogonal if the underlying single-particle basis is orthonormal.
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10.4

(a) Validate the leading-order perturbative expression for the Wegner generator,
Eq. (10.153).

(b) Let us now assume that we have used a Slater determinant reference state
that has not been optimized by performing a Hartree-Fock calculation. Using
Epstein-Nesbet partitioning, the one-body part of the off-diagonal Hamiltonian
is then counted as f od

ij D O.g/ instead of O.g2/ during the flow. Show that the
one-body part of the Wegner generator has the following perturbative expansion
in this case:

�ij D



f d
ii � f d

jj � .ni � nj/�
d

ijij

�
f od
ij C O.g2/ : (10.240)

Interpret the expression in the parentheses.

10.5 (Project: Optimization of the IMSRG(2) Code) In Sect. 10.3.5, we mention
several ways of optimizing the performance of the Python code, like taking
into account antisymmetry of two-body (and three-body) states, or exploiting
symmetries and the resulting block structures.

(a) Optimize the storage requirements and speed of the Python code by taking the
antisymmetry of states as well as the Hermiticity (anti-Hermiticity) of OH (�)
into account.

(b) Identify the symmetries of the pairing Hamiltonian, and construct a variant
of imsrg_pairing.py that is explicitly block diagonal in the irreducible
representations of the corresponding symmetry group.

(c) A significant portion of the code imsrg_pairing.py consists of infras-
tructure routines that are used to convert between one- and two-body bases.
We could avoid this inversion if we treat � and the two-body part of the
generator as rank-four tensors instead of matrices. NumPy offers tensor routines
that can be used to evaluate tensor contractions and products, in particular
numpy.tensordot(). Rewrite imsrg_pairing.py in terms of tensors,
and compare the performance of your new code to the original version.

10.6 (Project: IMSRG(3) for the Pairing Hamiltonian) Throughout this chapter,
we used a single-particle basis consisting of only 8 states in our discussions of
the pairing Hamiltonian. For such a small basis size, it is possible to implement
to include explicit 3N operators in the IMSRG evolution, that is, to work in the
IMSRG(3) scheme.

(a) Derive the IMSRG(3) flow equations. (Note: compare your results with [53]).
(b) Implement the IMSRG(3). The Python code discussed in Sect. 10.3.5 provides

a good foundation, but you may find it necessary to switch to a language like
C/C++ or Fortran for performance reasons.

(c) “Interpolate” between IMSRG(2) and IMSRG(3) by selectively activating flow
equation terms, and document the impact of these intermediate steps.
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Appendix: Products and Commutators of Normal-Ordered
Operators

In this appendix, we collect the basic expressions for products and commutators of
normal-ordered one- and two-body operators. All single-particle indices refer to the
natural orbital basis, where the one-body density matrix is diagonal

�kl D h˚ j a�l ak j˚i D nkıkl ; nk 2 f0; 1g ; (10.241)

(notice the convention for the indices of �, cf. [117]). We also define the hole density
matrix

N�kl � h˚ j aka�l j˚i D ıkl � �kl � Nnkıkl (10.242)

whose eigenvalues are

Nnk D 1 � nk ; (10.243)

i.e., 0 for occupied and 1 for unoccupied single-particle states. Finally, we will again
use the permutation symbol OPij to interchange the indices in any expression,

OPijg.: : : ; i; : : : ; j/ � g.: : : ; j; : : : ; i/ (10.244)

(see Sect. 10.3 and Chap. 8).

Operator Products

˚
a�aab

�˚
a�kal

� D ˚a�aa�kalab
� � naıal

˚
a�kab

�C Nnbıbk
˚
a�aal

�C na Nnbıalıbk

(10.245)
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˚
a�aab

�˚
a�ka�l anam

� D ˚a�aa�ka�l anamab
�C �1 � OPmn

�
naıan

˚
a�ka�l amab

�

�
�
1 � OPkl

�
Nnbıbl

˚
a�aa�kanam

�

�
�
1 � OPkl

� �
1 � OPmn

�
na Nnbıamıbl

˚
a�kan

�
(10.246)

˚
a�aa�badac

�˚
a�ka�l anam

�

D ˚a�aa�ba�ka�l anamadac
�

C .1 � OPab/.1� OPmn/naıam
˚
a�ba�ka�l anadac

�

� .1 � OPcd/.1� OPkl/Nncıck
˚
a�aa�ba�l anamad

�

C .1 � OPmn/nanbıamıbn
˚
a�ka�l adac

�C .1 � OPcd/Nnc Nndıckıdl
˚
a�aa�banam

�

C .1 � OPab/.1� OPcd/.1 � OPkl/.1 � OPmn/na Nncıamıck
˚
a�ba�l anad

�

C .1 � OPab/.1� OPkl/.1 � OPmn/nb Nnc Nndıbnıckıdl
˚
a�aam

�

C .1 � OPcd/.1 � OPkl/.1 � OPmn/Nndnanbıdlıanıbm
˚
a�kac

�

C .1 � OPkl/.1 � OPmn/nanb Nnc Nndıamıbnıckıdl (10.247)

Commutators

Œ
˚
a�aab

�
;
˚
a�kal

�

 D ıbk

˚
a�aal

� � ıal
˚
a�kab

�C .na � nb/ıalıbk (10.248)

Œ
˚
a�aab

�
;
˚
a�ka�l anam

�

 D

�
1 � OPkl

�
ıbk
˚
a�aa�l anam

� � �1 � OPmn

�
ıam
˚
a�ka�l anab

�

C
�
1 � OPkl

� �
1 � OPmn

�
.na � nb/ıanıbl

˚
a�kam

�
(10.249)

Œ
˚
a�aa�badac

�
;
˚
a�ka�l anam

�



D
�
1 � OPab

� �
1 � OPmn

�
ıam
˚
a�ba�ka�l anadac

�

�
�
1 � OPcd

� �
1 � OPkl

�
ıkc
˚
a�aa�ba�l anamad

�
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C .1 � OPcd/ .Nnc Nnd � ncnd/ ıckıdl
˚
a�aa�banam

�

C .1 � OPab/ .nanb � Nna Nnb/ ıamıbn
˚
a�ka�l adac

�

C .1 � OPab/.1 � OPcd/.1 � OPkl/.1 � OPmn/ .nb � nd/ ıbnıdl
˚
a�aa�kamac

�

C .1 � OPab/.1 � OPmn/ .nb Nnc Nnd � Nnbncnd/ ıbnıckıdl
˚
a�aam

�

� .1� OPcd/.1 � OPkl/ .nd Nna Nnb � Nndnanb/ ıdlıamıbn
˚
a�kac

�

C .1 � OPab/.1 � OPcd/ .nanb Nnc Nnd � Nna Nnbncnd/ ıamıbnıckıdl (10.250)
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Chapter 11
Self-Consistent Green’s Function Approaches

Carlo Barbieri and Arianna Carbone

11.1 Introduction

Ab initio methods that present polynomial scaling with the number of particles have
proven highly useful in reaching finite systems of rather large sizes up to medium
mass nuclei [1–3] and even infinite matter [4–6]. Most approaches of this type that
are discussed in previous chapters aim at the direct evaluation of the ground state
energy of the system, where several other quantities of interest can be addressed in
a second stage through the equation of motion and particle removal or attachment
techniques. Here, we will follow a different route and focus on gaining from the
start a global view of the spectral structure of a system of fermions. Our approach
will be that of calculating directly the self-energy (also know as mass operator),
which describes the complete response of a particle embedded in the true ground
state of the system. This not only provides an effective in medium interaction for
the nucleon, but it is also the optical potential for elastic scattering and it yields
the spectral information relative to the attachment and removal of a particle. Once
the one body Green’s function has been obtained, the total energy of the system is
calculated, as the final step, by means of appropriate sum rules [7, 8].

Two main approaches have become standard choices for calculations of Green’s
functions in nuclear many-body theory. The Algebraic Diagrammatic Construction
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(ADC) method, that was originally devised for quantum chemistry applications [9,
10], has proven to be optimal for discrete bases, as it is normally necessary to
exploit for finite nuclei. However, this can also be applied to fermion gases in a
box with periodic boundary conditions, which simplifies the analysis even more
thanks to translational invariance. We will focus on the case of infinite nucleonic
matter and provide an example of a working numerical code. ADC(n) methods
are part of a larger class of approaches based on intermediate-state representations
(ISRs) to which also the equation-of-motion coupled cluster belongs [11, 12]. The
other method consists in solving directly the nucleon-nucleon ladder scattering
matrix for dressed particles in the medium, which can be done effectively in a finite
temperature formalism [13, 14]. Hence, this makes possible to study thermodynamic
properties of the infinite and liquid matter. For these studies to be reliable, it
is mandatory to ensure the satisfaction of fundamental conservation laws and to
maintain thermodynamic consistency in the infinite size limit. We show here how
to achieve this by preforming fully self-consistent calculations of the Green’s
function. In this context, ‘self-consistency’ means that the input information about
the ground state and excitations of the systems no longer depend on any reference
state but instead it is taken directly from the computed correlated wave function
(or propagator, in our case). To achieve this, the computed spectral function is fed
back into the working equations and calculations are repeated until a consistency
between input and output is obtained. This approach is referred to as self-consistent
Green’s function (SCGF) method and it is always implemented, partially or in full,
for nuclear structure applications.

Very recent advances in computational applications concern the extension of
SCGF theory to the Gorkov-Nambu formalism for the breaking of particle number
symmetry [15–17]. This allows to treat pairing systematically in systems with
degenerate reference states and, therefore, to calculate open-shell nuclei directly.
As a result, these developments have opened the possibility of studying large set of
semi-magic nuclei that were previously beyond the reach of ab initio theory. We will
not discuss the Gorkov-SCGF method here, but we will focus on the fundamental
features of the standard approaches instead. The interested reader is referred to
recent literature on the topic [16, 18–20].

In the process of discussing the relevant working equations of SCGF theory, we
will also deal with applications to the same pairing model and the neutron matter
with the Minnesota potential already discussed in the previous chapters. Together
with presenting the most important steps for their numerical implementations, this
book provides two examples of working codes in FORTRAN and C++ that can
solve these models. Results for the self-energy and spectral functions should serve
to gain a deeper understanding of the many-body physics that is embedded in the
SCGF method. In discussing this, we will also benchmark the SCGF results with
those obtained in other chapters of this book: coupled cluster (Chap. 8), Monte Carlo
(Chap. 9) and in-medium similarity renormalization group (Chap. 10).
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11.2 Many-Body Green’s Function Theory

This chapter will focus on many-body Green’s functions, which are also referred to
as propagators. These are defined in the second quantization formalism by assuming
the knowledge of the true ground state j�A

0 i of a target system of A nucleons,
which is taken to be a vacuum of excitations. The one-body Green’s function (or
propagator) is then defined as [21, 22]:

i„ g˛ˇ.t � t0/ D h�A
0 jT Œa˛.t/a�ˇ.t0/
j�A

0 i ; (11.1)

where T is the time ordering operator, a�˛.t/ (a˛.t/) are the creation (annihilation)
operators in Heisenberg picture, and Greek indices ˛, ˇ, . . . label a complete single
particle basis that defines our model space. These can be the continuum spaces of
momentum or coordinate, or any other discrete set of single particle states. Note
that g.t � t0/ depends only on the time difference t � t0 due to time translation
invariance. For t > t0, Eq. (11.1) gives the probability amplitude to add a particle
to j�A

0 i in state ˇ at time t0 and then to let it propagate to reach state ˛ at a later
time t. Vice versa, for t < t0 a particle is removed from state ˛ at t and added to ˇ
at t0.

In spite of being the simplest type of propagator, the one-body Green’s function
does contain a wealth of information regarding single particle behavior inside
the many-body system, one-body observables, the total binding energy, and even
elastic nucleon-nucleus scattering. The propagation of a particle or a hole excitation
corresponds to the time evolution of an intermediate many-body system with AC 1
or A � 1 particles. One can better understand the physics information included in
Eq. (11.1) from considering the eigenstates j�AC1

n i, j�A�1
k i and eigenvalues EAC1

n ,
EA�1

k of these intermediate systems. By expanding on these eigenstates and Fourier
transforming from time to frequency, one arrives at the spectral representation of the
one-body Green’s function:

g˛ˇ.!/ D
Z

d� ei!�g˛ˇ.�/

D
X

n

h�A
0 ja˛j�AC1

n ih�AC1
n ja�

ˇ
j�A
0 i

„! � .EAC1
n � EA

0 /C i�
C

X
k

h�A
0 ja�ˇj�A�1

k ih�A�1
k ja˛j�A

0 i
„! � .EA

0 � EA�1
k / � i�

;

�
X

n

.X n
˛ /

�X n
ˇ

„! � "C

n C i�
C

X
k

Y k
˛.Y k

ˇ/
�

„! � "�

k � i�
; (11.2)

where the operators a�˛ and a˛ are now in Schördinger picture. Equation (11.2)
was derived by a number of authors in the 1950s but is usually referred to as
the ‘Lehmann’ representation in many-body physics [23–25]. For the rest of this
chapter (with the only exception of Appendix 1) we will work in dimensionless
units „ D c D 1 to avoid carrying over unnecessary „ terms. From Eq. (11.2), we see
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that the poles of the Green’s function, "C
n � .EAC1

n � EA
0 / and "�

k � .EA
0 � EA�1

k /,
are one-nucleon addition and removal energies, respectively. Note that these are
generically referred to in the literature as “separation” or “quasiparticle” energies
although the first naming should normally refer to transitions involving only
(A˙ 1)-nucleon ground states. We will use the second convention in the following,
unless the two naming are strictly equivalent. In the last line of Eq. (11.2) we have
also introduced short notations for the spectroscopic amplitudes associated with the
addition (X n

˛ � h�AC1
n ja�˛j�A

0 i) and the removal (Y k
˛ � h�A�1

k ja˛j�A
0 i) of a particle

to and from the initial ground state j�A
0 i. We will use the Latin letter n to label one-

particle excitations and to distinguish them from one-hole states that are indicated
by k instead. This compact form will simplify deriving the working formalism in
the following sections.

The one-body Green’s function (11.2) is completely determined by solving the
Dyson equation:

g˛ˇ.!/ D g.0/˛ˇ .!/ C
X
	ı

g.0/˛	 .!/˙
?
	ı.!/ gıˇ.!/ (11.3a)

D g.0/˛ˇ .!/ C
X
	ı

g˛	 .!/˙
?
	ı.!/ g.0/ıˇ .!/ ; (11.3b)

where we have put in evidence that there exists two different conjugate forms
of this equation, corresponding to the first and second lines. In Eqs. (11.3), the
unperturbed propagator g.0/˛ˇ .!/ is the initial reference state (usually a mean-field
or Hartree-Fock state), while g˛ˇ.!/ is called the correlated or dressed propagator.
The quantity ˙?

	ı.!/ is the irreducible self-energy and it is often referred to
as the mass operator. This operator plays a central role in the GF formalism
and can be interpreted as the non-local and energy-dependent potential that each
fermion feels due to the interactions with the medium. For frequencies ! > 0,
the solution of Eqs. (11.3) yields a continuum spectrum with EAC1

n > EA
0 and the

state j�AC1
n i describes the elastic scattering of the additional nucleon off the j�A

0 i
target. It can be shown that ˙?.!/ is an exact optical potential for scattering of a
particle from the many-body target [26–28]. The Dyson equation is nonlinear in its
solution, g.!/, and thus it corresponds to an all-orders resummation of diagrams
involving the self-energy. The Feynman diagrams representations of both forms of
the Dyson equation are shown in Fig. 11.1. In both cases, by recursively substituting
the exact Green’s function (indicated by double lines) that appears on the right
hand side with the whole equation, one finds a unique expansion in terms of the
unperturbed g.0/.!/ and the irreducible self-energy. The solution of Eqs. (11.3)
is referred to as dressed propagators since it formally results by ‘dressing’ the
free particle (shown as a single line) by repeated interactions with the system
(˙?.!/).

A full knowledge of the self-energy ˙?.!/ [see Eqs. (11.3)] would yield the
exact solution for g.!/ but in practice this has to be approximated somehow.
Standard perturbation theory, expands˙?.!/ in a series of terms that depend on the
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= + Σ ∗

a)

= + Σ ∗

b)

Fig. 11.1 Diagrammatic representations of the Dyson equation. The diagram on the left represents
Eq. (11.3a), while its conjugate equation (11.3b) is shown to the right. Single lines with an arrow
represent the unperturbed propagator g.0/.!/ and double lines are the fully dressed propagator
g.!/ of Eq. (11.2). Both equations, when expanded in terms of g.0/.!/, give rise to the same series
of diagrams for the correlated propagator

interactions and on the unperturbed propagator g.0/.!/. However, it is also possible
to rearrange the perturbative expansion in diagrams that depend only on the exact
dressed propagator itself (that is, ˙? D ˙?Œg.!/
). Since any propagator in this
diagrammatic expansion is already dressed, one only needs to consider a smaller
set of contributions—the so-called skeleton diagrams. These are diagrams that do
not explicitly include any self-energy insertion, as these are already generated
by Eqs. (11.3). We will discuss these aspects in more detail in Sect. 11.2.2. For
the present discussion, we only need to be aware that the functional dependence
of ˙?Œg.!/
 requires an iterative procedure in which ˙?.!/ and Eqs. (11.3) are
calculated several times until they converge to a unique solution. This approach
defines the SCGF method and it is particularly important since it can be shown
that full self-consistency allows to exactly satisfy fundamental symmetries and
conservation laws [29, 30]. In practical applications, and especially in finite systems,
this scheme may not be achievable exactly and self-consistency is implemented only
partially for the most important contributions. Normally this is still sufficient to
obtain highly accurate results. We will present suitable approximation schemes to
calculate the self-energy in the following sections. In particular, we will focus on
the ADC(n) method that can be applied with discretized bases in finite and infinite
systems in Sects. 11.3 and 11.4. The case of extended systems at finite temperature
is discussed in Sect. 11.5. Before going into the actual approximation schemes,
we need to see how experimental quantities can be calculated once the one-body
propagator is known, as well as to discuss the basic results of perturbation theory.

11.2.1 Spectral Function and Relation to Experimental
Observations

Once the one-body Green’s function is known, it can be used to calculate the
total binding energy and the expectation values of all one-body observables. The
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attractive feature of the SCGF approach is that g.!/ describes the one-body
dynamics completely. This information can be recast in the particle and hole spectral
functions, which contain the separate responses for the attachment and removal of a
nucleon. They can be obtained directly from Eq. (11.2), as follows:

Sp
˛ˇ.!/ D �

1

�
Im g˛ˇ.!/ D

X
n



X n
˛

�
� X n

ˇ ı
�
! � .EAC1

n � EA
0 /
�
; for ! 
 "C

0 ;

Sh
˛ˇ.!/ D

1

�
Im g˛ˇ.!/ D

X
k

Y k
˛.Y k

ˇ/
� ı
�
! � .EA

0 � EA�1
k /

�
; for ! 	 "�

0 :

(11.4)

The diagonal parts of Eqs. (11.4), have a straightforward physical interpretation [21,
22]. The particle part, Sp

˛˛.!/, is the joint probability of adding a nucleon with
quantum numbers ˛ to the A-body ground state, j�A

0 i, and then to find the system
in a final state with energy EAC1 D EA

0 C !. Likewise, Sh
˛˛.!/ gives the probability

of removing a particle from state ˛ while leaving the nucleus in an eigenstate of
energy EA�1 D EA

0 � !. These are demonstrated in coordinate space in Fig. 11.2
for neutrons around 56Ni. Below the Fermi energy, EF � 1

2
."C
0 C "�

0 /, one can see
a single dominant quasihole peak corresponding to the f7=2 orbit. The states from
the sd shell are at lower energies and are instead very fragmented. Just above EF ,
there are sharp quasiparticles corresponding to the attachment of a neutron to the
remaining pf orbits. Finally, for ! > 0, one has neutron-56Ni elastic scattering
states. Remarkably, one can see that dominant quasiparticle peaks persist around
the Fermi surface, which confirms the underlying shell structure outside the 40Ca
core for this nucleus.

Fig. 11.2 Calculated single-particle spectral function for the addition and removal of a neutron
to and from 56Ni, from [31]. The diagonal part, Sr;r.!/, is shown in coordinate space. Energies
below the Fermi level EF correspond to the one-hole spectral function Sh

r;r.!/ which describes the
distribution of nucleons in energy and coordinate space. Integrating over all the quasihole energies
yields the matter density distribution, Eq. (11.9). Energies above EF are for the one-particle spectral
function Sp

r;r.!/
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The existence of isolated dominant peaks as those shown in Fig. 11.2 indicates
that the eigenstates j�AC1

n i and j�A�1
k i are to a very good approximation constructed

of a nucleon or a hole independently orbiting the ground state j�A
0 i. This is the

basic hypothesis at the origin of the nuclear shell-model. How much a real nucleus
deviates from this assumption can be gauged by the deviations in the values of
their spectroscopic factors. These are defined as the normalization overlap of the
spectroscopic amplitudes for the attachment or removal of a particle:

SFC
n D

X
˛

jX n
˛ j2 ; SF�

k D
X
˛

jY k
˛j2 : (11.5)

The energy distribution of spectroscopic factors is given by

S.!/ D
X
˛

Sp
˛˛.!/ C

X
˛

Sh
˛˛.!/

D
X

n

SFC
n ı.! � EAC1

n C EA
0 / C

X
k

SF�
k ı.! � EA

0 C EA�1
k / ; (11.6)

where each ı-peak corresponds to eigenstates of a neighboring isotope with A ˙
1 particles. These quasiparticle energies are directly observed in nucleon addition
and removal experiments. Note that the total strength seen in similar experiments
results from a convolution of the spectroscopic amplitudes with the dynamics of the
reaction mechanisms. Hence, while the quasiparticle energies appearing in the poles
of Eq. (11.2) are strictly observed, the magnitude of the spectral strength S.!/ only
gives a semi-quantitative description of the strength of the observed cross sections.

Any one-body observable can be calculated via the one-body density matrix �˛ˇ ,
which is obtained from g˛ˇ.!/ as follows:

�˛ˇ � h�A
0 ja�ˇa˛j�A

0 i D
Z "�0

�1
Sh
˛ˇ.!/ d! D

X
k

.Y k
ˇ/

�Y k
˛: (11.7)

The expectation value of a one-body operator, bO1B
, can then be written in terms of

the Y amplitudes as:

hbO1Bi D
X
˛ˇ

O1B
˛ˇ �ˇ˛ D

X
k

X
˛ˇ

.Y k
˛/

� O1B
˛ˇ Y k

ˇ : (11.8)

However, evaluating two- and many-nucleon observables requires the knowledge of
many-body propagators. Equation (11.7) also implies that the density profile of the
system can be obtained by integrating over the hole spectral function in coordinate
space (cf. Fig. 11.2):

�.r/ D
Z "�0

�1
Sh

r;r.!/ d! : (11.9)
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Likewise, a second sum (or integration) over the coordinate space yields the total
number of particles,

Z
d r

Z "�0

�1
Sh

r;r.!/ d! D
X
˛

Z "�0

�1
Sh
˛˛.!/ d! D A : (11.10)

A very special case is the Koltun sum-rule that allows calculating the total energy
of the system by means of the exact one-body propagator alone, g.!/ [7, 32].
This relation is exact for any Hamiltonian containing at most one- and two body
interactions. When many-particle interactions are present, it is necessary to correct
for the over countings that arise from these additional terms [33]. For the specific
case in which a three-body interaction bW is included, the exact relation for the
ground state energy is given by the following modified Koltun rule:

EA
0 D

X
˛ˇ

1

2

Z "�0

�1
ŒT˛ˇ C ! ı˛ˇ 
 Sh

ˇ˛.!/ d! � 1

2
hbWi : (11.11)

This still relies on the use of a one-body propagator but it requires the additional
evaluation of the expectation value of the three-body interaction, hbWi (which in
principle requires the knowledge of more complex Green’s functions). Thankfully,
in most cases the total strength of bW is much smaller than other terms in the
Hamiltonian. Thus, one can safely approximate its expectation value at lowest order,
in terms of three correlated density matrices, as

hbWi ' 1

6

X
˛ˇ�	ı�

W˛ˇ�;	ı� �	˛ �ıˇ ��� : (11.12)

As a typical example in finite nuclei, the error from this approximation has been
estimated not to exceed 250 keV for the total binding energies for 16O and 24O [34].
However, the accuracy of Eq. (11.12) is not guaranteed and needs to be verified case
by case.

11.2.2 Perturbation Expansion of the Green’s Function

In order to understand the following sections and to devise appropriate
approximations to the self-energy ˙?.!/ it is necessary to understand the basic
elements of perturbation theory. These will be also fundamental to derive all-
order summation schemes leading to non-perturbative solutions and to discuss
the concept of self-consistency. We summarize here the material needed to
understand the following sections, while the full set of Feynman rules is reviewed in
Appendix 1.
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We work with a system of A non-relativistic fermions interacting by means of
two-body and three-body interactions. We divide the Hamiltonian into two parts,bH D bH0 C bH1. The unperturbed term, bH0 D bT C bU, is given by the sum
of the kinetic term and an auxiliary one-body operator bU. Its choice defines the
reference state, j˚A

0 i, and the corresponding unperturbed propagator g.0/.!/ that
are the starting point for the perturbative expansion.1 The perturbative term is thenbH1 D �bU CbV C bW, where bV denotes the two-body interaction operator and bW is
the three-body interaction. In a second-quantized framework, the full Hamiltonian
reads:

bH DX
˛

"0˛ a�˛a˛ �
X
˛ˇ

U˛ˇ a�˛aˇ C 1

4

X
˛	
ˇı

V˛	;ˇı a�˛a�	aıaˇ

C 1

36

X
˛	�
ˇı�

W˛	�;ˇı� a�˛a�	a��a�aıaˇ : (11.13)

In Eq. (11.13) we continue to use Greek indices ˛,ˇ,	 ,. . . to label the single particle
basis that defines the model space. But we make the additional assumption that
these are the same states which diagonalize the unperturbed Hamiltonian, bH0, with
eigenvalues "0˛. This choice is made in most applications of perturbation theory but
it is not strictly necessary here and it will not affect our discussion in the following
sections. The matrix elements of the one-body operator bU are given by U˛ˇ . And
we work with properly antisymmetrized matrix elements of the two-body and three-
body forces, V˛	;ˇı and W˛	�;ˇı� .

In time representation, the many-body Green’s functions are defined as the
expectation value of time-ordered products of annihilation and creation operators
in the Heisenberg picture. This is shown by Eq. (11.1) for the single particle
propagator. Every Green’s function can be expanded in a perturbation series in
powers of bH1. For the one-body propagator this reads [22, 35]:

g˛ˇ.t˛ � tˇ/ D .�i/
1X

nD0
.�i/n

1

nŠ

Z
dt1 : : :

Z
dtn

�h˚A
0 jT ŒbHI

1.t1/ : : :bHI
1.tn/a

I
˛.t˛/a

I
ˇ

�
.tˇ/
j˚A

0 iconn ; (11.14)

where bHI
1.t/, aI

˛.t/ and aI
ˇ

�
.t/ are now intended as operators in the interaction

picture with respect to H0. The subscript “conn” implies that only connected
diagrams have to be considered when performing the Wick contractions of the
time-ordered product T . Each Wick contraction generates an uncorrelated single
particle propagator, g.0/.!/, which is associated with the system governed by the

1A typical choice in nuclear physics would be a Slater determinant such as the solution of the
Hartree-Fock problem or a set of single-particle harmonic oscillator wave functions.
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Hamiltonian H0. At order n D 0, the expansion of Eq. (11.14) simply gives g.0/.!/.
H1 contains contributions from one-body, two-body and three-body interactions that
come from the last three terms on the right hand side of Eq. (11.13). Thus, for
n 
 1 the expansion involves terms with individual contributions of each force,
or combinations of them, that are linked by uncorrelated propagators. To each term
in the expansion there corresponds a Feynman diagram that gives an intuitive picture
of the physical process accounted by its contribution. The full set of Feynman
diagrammatic rules that stems out of Eq. (11.14) in the presence of three-body
interactions is detailed in Appendix 1.

A first reorganization of the contributions generated by Eq. (11.14) is obtained
by considering one-particle reducible diagrams, that is diagrams that can be
disconnected by cutting a single fermionic line. In general, the reducible diagrams
generated by expansion (11.14) will always have separate structures that are linked
together by only one g.0/.!/ line. These are the same class of diagrams that are
created implicitly in the all-orders resummation of the Dyson equation (11.3). Thus,
the irreducible self-energy ˙?.!/ is defined as the kernel that collects all the one-
particle irreducible (1PI) diagrams (with the external legs stripped off). As already
discussed above, ˙?.!/ plays the role of an effective potential that is seen by a
nucleon inside the system. It splits in static and frequency dependent terms:

˙?
˛ˇ.!/ D �U˛ˇ C ˙

.1/

˛ˇ C ė
˛ˇ.!/ ; (11.15)

where we have separated bU since this is auxiliary defined and it eventually cancels
out when solving the Dyson equation. The term ˙.1/ plays the role of the static
mean-field that a nucleon feels due to the average interactions will all other particles
in the system. The frequency-dependent part, ė.!/, describes the effects of
dynamical excitations of the many-body state that are induced by the nucleon itself.
In general, this means the propagation of (complex) intermediate excitations and
therefore it must have a Lehmann representation analogous to that of Eq. (11.2). For
very large energies (! ! ˙1) the poles of such Lehmann representation become
vanishingly small and one is left with just ˙.1/ and the auxiliary potential bU.

A further level of simplification in the self-energy expansion can be obtained
if unperturbed propagators, g.0/.!/, in the internal fermionic lines are replaced by
dressed Green’s functions, g.!/. This choice further restricts the set of diagrams to
the so-called skeleton diagrams [22], which are defined as 1PI diagrams that do not
contain any portion that can be disconnected by cutting any two fermion lines at
different points. These portions would correspond to self-energy insertions, which
are already re-summed into the dressed propagator g.!/ by Eq. (11.3). The SCGF
approach is precisely based on expressing the irreducible self-energy in terms of
such skeleton diagrams with dressed propagators. The SCGF framework offers great
advantages. First, it is intrinsically non-perturbative and completely independent
from any choice of the reference state and auxiliary one-body potential. This is so
because˙?.!/ no longer depends on g.0/.!/ and bU always drops out of the Dyson
equation (see Eq. (11.45) below). Second, many-body correlations are expanded
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directly in terms of single particle excitations of the true propagator, which are
generally closer to the exact solution than those associated with the unperturbed
state, j˚A

0 i. Third, given an appropriate truncation of self-energy, if a full SCGF
calculation is possible then it automatically satisfies the basic conservation laws
of particle number, angular momentum, etc. . . [22, 29, 30]. Finally, the number of
diagrams to be considered is vastly reduced to 1PI skeletons one. However, this is
not always a simplification since a dressed propagator contains a very large number
of poles, which can be much more difficult to deal with than for the corresponding
uncorrelated g.0/.!/.

If three- or many-body forces are included in the Hamiltonian, the number of
Feynman diagrams that need to be considered at a given order increases very rapidly.
In this case it becomes very useful and instructive to restrict the attention to an even
smaller class of diagrams that are interaction-irreducible [33]. An interaction vertex
is said to be reducible if the whole diagram can be disconnected in two parts by
cutting the vertex itself. In general, this happens for an m-body interaction when
there is a smaller number of n lines (n < m) that leave the interaction, may interact
only among themselves, and eventually all return to it. The net outcome is that one is
left with a (m�n)-body operator that results from the average interactions with other
n-spectator nucleons. This plays the role of a system dependent effective force that
is irreducible. Figure 11.3 shows diagrammatically howbV and bW can be reduced to
one- and two-body effective interactions in this way.

Hence, for a system with up to three-body forces, we define an effective
Hamiltonian

eH1 D eU CeV C bW ; (11.16)

where eU andeV are the effective interaction operators. The diagrammatic expansion
arising from Eq. (11.14) with the effective Hamiltonian eH1 is formed only of (1PI,
skeleton) interaction-irreducible diagrams. Note that the three-body interaction, bW,
remains the same as in Eq. (11.13) but enters only diagrams as an interaction-
irreducible three-body force. The explicit expressions for the one-body and two-

+ + 1
4

GII

−
a)

=

+=
b)

Fig. 11.3 Graphical representation of the effective one-body interaction of Eq. (11.17a), top row
(a), and the effective two-body interaction (11.17b), bottom row (b). Dashed lines represent
the one-, two,- and three-body interactions entering Eq. (11.13) and wavy lines are the effective
operatorseU andeV
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body effective interaction operators can be obtained form the Feynman diagrams of
Fig. 11.3 and they are given by:

eU˛ˇ D � U˛ˇ C
X
ı	

V˛	;ˇı �ı	 C 1

4

X
��	ı

W˛��;ˇ	ı �	ı;�� ; (11.17a)

eV˛ˇ;	ı D V˛ˇ;	ı C
X
��

W˛ˇ�;	ı� ��� : (11.17b)

where we used the reduced two-body density matrix � , which can be computed
from the exact two-body Green’s function:

�	ı;�� D lim
�!0�

�i GII
	ı;��.�/ D h�A

0 ja��a��a	aıj�A
0 i : (11.18)

The effective Hamiltonian of Eq. (11.16) not only regroups Feynman diagrams
in a more efficient way, but also defines the effective one-body and two-body
terms from higher order interactions. As long as interaction-irreducible diagrams
are used together with the effective Hamiltonian, eH1, this approach provides a
systematic way to incorporate many-body forces in the calculations and to generate
effective in-medium interactions. More importantly, the formalism is such that all
symmetry factors are guaranteed to be correct and no diagram is over-counted [33].
Equations (11.17) can be seen as a generalization of the normal ordering of the
Hamiltonian with respect to the reference state j˚A

0 i discussed in Chap. 8. However,
these contractions go beyond normal ordering because they are performed with
respect to the exact correlated density matrices. To some extent, one can intuitively
think of the effective HamiltonianeH1 as being ordered with respect to the interacting
many-body ground-state j�A

0 i, rather than the non-interacting j˚A
0 i.

Since the static self-energy does not propagate any intermediate excitations, it
can only receive a contribution when the incoming and outgoing lines of a Feynman
diagram are attached to the same interaction vertex. Thus, by definition,˙.1/ must
include the one body term in bH1 plus any higher order interaction that are reduced
to effective one-body interactions, hence:

eU˛ˇ D � U˛ˇ C ˙
.1/

˛ˇ ; (11.19)

which defines˙.1/ by comparison with Eq. (11.17a). The two terms that contribute
to ˙.1/ represent extensions of the Hartree-Fock (HF) potentials to correlated
ground states. The correlated Hartree-Fock potential from bV is the only effective
operator when just two-body forces are present. In this case there is very little gain
in using the concept of the effective Hamiltonian (11.16). However, with three-body
interactions, additional effective interaction terms appear in both eU and eV . From
Eq. (11.19) we see that the perturbative SCGF expansion with the eH1 Hamiltonian
has only one (1PI, skeleton and interaction-irreducible) term at first order. The first
contributions to ė.!/ appear at second order with the two diagrams in Fig. 11.4.
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Fig. 11.4 Second-order interaction-irreducible contributions to the self-energy arising from both
two-nucleon [diagram (a)] and three-nucleon forces [diagram (b)]. The diagram (a) that depends
on the effective two-body interactions also shows the indices and labels that are used for calculating
its contribution in Example 11.2

a) b) c)

Fig. 11.5 The three simplest skeleton and interaction-irreducible diagrams contributing to the self-
energy at third order. All these terms involve intermediate state configurations of at most 2p1h and
2h1p. The first two contain only two-nucleon interactions and are the first terms in the resummation
of ladders [diagram (a)] and rings [diagram (b)]. The diagram (c) is the first contribution containing
an irreducible three-nucleon interaction. All the remaining 14 diagrams at third order require
explicit three-body interactions and ISCs with 3p2h and 3h2p excitations [33, 36]

Expanding with respect to bH1, there would have been five diagrams instead of only
the two interaction-irreducible ones shown in Fig. 11.4. These diagrams indeed have
a proper Lehmann representation (see Example 11.2 below and Exercise 11.2) and
propagate intermediate state configurations (ISCs) of type 2-particle 1-hole (2p1h),
2h1p, 3p2h, etc. . . At third order, eH1 generates 17 SCGF diagrams two of which
contain only two-body interactions. The simplest of these, that involve at most 2p1h
and 2h1p ISCs, are shown in Fig. 11.5. All interaction-irreducible contributions to
the proper self-energy up to third order in perturbation theory are discussed in details
in [33].

Example 11.1 Calculate the Feynman-Galitskii propagator, GII;f .�/, that corre-
sponds to the propagation of two particles or two holes that do not interact with
each other.

This is the lowest order approximation to the two-times and two-body propagator
which evolves two particle from states ˛ and ˇ to states 	 and ı after a time � > 0,
or two holes from 	 and ı to ˛ and ˇ when � < 0. By applying the perturbative
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expansion equivalent to Eq. (11.14) at order n D 0, we find:

GII .0/
˛ˇ;	ı.�/ D �ih˚A

0 jT Œ aI
ˇ.�/ aI

˛.�/ aI
	

�
.0/ aI

ı

�
.0/ 
j˚A

0 i
D ig.0/˛	 .�/ g.0/ˇı .�/ � ig.0/˛ı .�/ g.0/ˇ	 .�/ � GII .0/;f

˛ˇ;	ı .�/ �GII .0/;f
˛ˇ;ı	 .�/ :

(11.20)

The Feynman-Galitskii propagator is precisely defined as the non antisymmetrized
part of Eq. (11.20). We now transform this to frequency space and apply the
Feynman rules of Appendix 1 to calculate the GII;f for the more general case of
two dressed propagator lines:

GII;f
˛ˇ;	ı.!/ D

Z
d� ei!� GII;f

˛ˇ;	ı.�/ D .�i/
Z

d!1
2�

i g˛	 .! � !1/ i gˇı.!1/

D �
Z

d!1
2�i

(
.X n1

˛ /
�X n1

	

! � !1 � "C
n1 C i�

C Y k1
˛ .Y k1

	 /
�

! � !1 � "�
k1
� i�

)

�
(
.X n2

ˇ /
�X n2

ı

!1 � "C
n2
C i�

C Y k2
ˇ .Y

k2
ı /

�

!1 � "�
k2
� i�

)
; (11.21)

where we have used the convention that repeated indices are summed over. The
integral in the above equation can be performed with the Cauchy theorem by
closing an arch on either the positive or the negative imaginary half planes. Hence,
contributions where all the poles are on the same side of the real axis cancel out.
Extracting the residues of the other contributions leads to the following result:

GII;f
˛ˇ;	ı.!/ D

X
n1; n2

.X n1
˛ X n2

ˇ /
�X n1

	 X n2
ı

! � ."C
n1 C "C

n2/C i�
�

X
k1; k2

Y k1
˛ Y k2

ˇ .Y k1
	 Y k2

ı /
�

! � ."�
k1
C "�

k2
/� i�

: (11.22)

11.1 Exercise: Calculate the contribution of the three-body force bW to the effective
one body potential, in the approximation of two dressed but non interacting spectator
nucleons.

Solution

This is the last term in Fig. 11.3a and Eq. (11.17a) but with GII.�/ approximated
by two independent fermion lines, as for the dressed Feynman-Galitskii propagator.
Using Eq. (11.18) and re-expressing the second line of (11.20) in terms of g.�/, we
arrive at:

eU.W/
˛ˇ D

1

2

X
��	ı

W˛��;ˇ	ı �	� �ı� : (11.23)
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Example 11.2 Calculate the expression for the second-order contribution to˙?.!/

from two-nucleon interactions only.

This is the diagram of Fig. 11.4a. By applying the Feynman rules of Appendix 1
we have:

˙
.2;2N/
˛ˇ .!/ D � .i/

2

2

Z
d!1
2�

d!2
2�

V˛�;	ı g	�.! C !2 � !1/ gı�.!1/ g��.!2/V��;ˇ�

D C1
2

Z
d!2
2�i

V˛�;	ı GII;f
	ı;��.! C !2/ g�� .!2/V��;ˇ�

D 1

2

Z
d!2
2�i

V˛�;	ı

(
.X n1

	 X n2
ı /

�X n1
� X n2

�

! C !2 � ."C
n1 C "C

n2 /C i�

� Y k1
	 Y k2

ı .Y k1
� Y k2

� /
�

! C !2 � ."�
k1
C "�

k2
/� i�

)

�
(
.X n3

� /
�X n3

�

!2 � "C
n3 C i�

C Y k3
� .Y k3

� /
�

!2 � "�
k3
� i�

)
V��;ˇ� ; (11.24)

where we have used the two-body interaction bV , but it could have been equally
calculated with the effective interaction eV . Note that the integration over !1 is
exactly the same as in Eq. (11.21). Thus, we can directly substitute the expression for
the Feynman-Galitskii propagator (11.22) in the last two lines above. By performing
the last Cauchy integral we find that only two out of four possible terms survive. The
final result for the second-order irreducible self-energy is:

˙
.2;2N/
˛ˇ .!/ D 1

2
V˛�;	ı

8̂
<
:̂
X
n1; n2

k3

.X n1
	 X n2

ı Y k3
� /

�X n1
� X n2

� Y k3
�

! � ."C
n1 C "C

n2 � "�
k3
/C i�

C
X
k1; k2

n3

Y k1
	 Y k2

ı X n3
� .Y k1

� Y k2
� X n3

� /
�

! � ."�
k1
C "�

k2
� "C

n3
/ � i�

9>=
>;V��;ˇ� ; (11.25)

where repeated Greek indices are summed over implicitly but we show the explicit
summation over the poles corresponding to 2p1h and 2h1p ISCs.

11.2 Exercise: Calculate the expression for the other second-order contribution to
˙?.!/ arising from three-nucleon interactions (diagram of Fig. 11.4b). Show that
this contains ISCs of 3p2h and 3h2p.
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Solution

Upon performing the four frequency integrals, one obtains:

˙
.2;3N/
˛ˇ .!/ D 1

12
W˛	ı;���

8̂
<
:̂

X
n1; n2; n3

k4; k5

.X n1
� X n2

� X n3
� Y k4

	 Y k5
ı /

�X n1
�0 X n2

�0 X n3
�0 Y k4

	 0Y k5
ı0

! � ."C
n1 C "C

n2 C "C
n3 � "�

k4
� "�

k5
/C i�

C
X

k1; k2; k3
n4; n5

Y k1
� Y k2

� Y k3
� X n4

	 X n5
ı .Y k1

�0Y k2
�0 Y k3

�0 X n4
	 0 X n5

ı0 /
�

! � ."�
k1
C "�

k2
C "�

k3
� "C

n4 � "C
n5/ � i�

9>=
>;W�0�0�0 ;ˇ	 0ı0 :

(11.26)

11.3 The Algebraic Diagrammatic Construction Method

The most general form of the irreducible self-energy is given by Eq. (11.15).
The ˙.1/ is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),
while ė.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25)
and (11.26). Similarly to the case of a propagator, the pole structure of the energy-
dependent part is dictated by the principle of causality with the correct boundary
conditions coded by the ˙i� terms in the denominators. This implies a dispersion
relation that can link the real and imaginary parts of the self-energy [22, 26].
Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and
2h1p character or more complex) imposes the separable structure of the residues. In
this section we consider the case of a finite system, for which it is useful to use a
discretized single particle basis f˛g as the model space. From now on we will use
the Einstein convention that repeated indices (n, k, ˛. . . ) are summed over even if
not explicitly stated. Thus, the above constraints impose the following analytical
form for the self-energy operator:

˙
.?/

˛ˇ .!/ D �U˛ˇ C ˙
.1/

˛ˇ C M�
˛;r

�
1

! � ŒE> C C
r;r0 C i�


r;r0

Mr0;ˇ

CN˛;s

�
1

! � .E< C D/ � i�


s;s0

N�

s0;ˇ ; (11.27)

where, here and in the following, ! and ˙i� are to be intended as multiplication
operators (that is, with matrix elements Œ!C i�
s;s0 D .!C i�/ıs;s0) and the fraction
means a matrix inversion. In Eq. (11.27), the E> and E< are the unperturbed energies
for the forward and backward ISCs and r and s are collective indices that label sets of
configurations beyond single particle structure. Specifically, r is for particle addition
and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, s is for
particle removal and we will use it to label 2h1p states (or higher configurations).
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However, for the approximations presented in this chapter and for our discussion
below we will only be limited to 2p1h and 2h1p ISCs.

The expansion of the self-energy at second order in perturbation theory trivially
satisfies Eq. (11.27). In the results of Eq. (11.25), the sums over r and s can be taken
to run over ordered configurations r � fn1 < n2; k3g and s � fk1 < k2; n3g. Because
of the Pauli principle, the half residues of each pole are antisymmetric with respect
to exchanging two quasiparticle or two quasihole indices. Therefore the constraints
n1 < n2 and k1 < k2 can be imposed to avoid counting the same configurations
twice. Thus, we can identify the expressions for the residues and poles as follows:

Mr;˛ D X n1
� X n2

� Y k3
� V��;˛� (11.28a)

E>r;r0 D diag


"C

n1 C "C
n2 � "�

k3

�
(11.28b)

Cr;r0 D 0 (11.28c)

and

N˛;s D V˛�;�� Y k1
� Y k2

� X n3
� (11.29a)

E<s;s0 D diag


"�

k1
C "�

k2
� "C

n3

�
(11.29b)

Ds;s0 D 0 ; (11.29c)

where the factor 1=2 from Eq. (11.25) disappears because we restricted the sums to
triplets of indices where n1 < n2 and k1 < k2. As we will discuss in the next section,
Eqs. (11.28) and (11.29) define the algebraic diagrammatic method at second order
[ADC(2)].

Unfortunately, ˙?.!/ loses its analytical form of Eq. (11.27) as soon as one
moves to higher orders in perturbation theory. To demonstrate this, let us calculate
the contribution of the third-order ‘ladder’ diagram of Fig. 11.5a. By exploiting the
Feynman rules and Eq. (11.21) we obtain:
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Performing the Cauchy integrals, only six terms out of the eight combinations of
poles survive. To simplify the discussion we will focus on the three integrals that
contribute to the forward propagation of the self-energy [third term on the r.h.s.
of (11.27)]. This is done by retaining only the poles .!3 � "�

k3
� i�/�1 in the last

propagator of Eq. (11.30), which lie above the real axis with respect to the integrand
!3. Thus, we have:
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� M.2;ld/ � 1

! � E> C i�
M.1/

C M.1/ � 1
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M.2;ld/

C M.1/ � 1
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M.1/ ; (11.31)

where M.1/ and E> are the same as in Eqs. (11.28) and the factors 1/2 are again
absorbed by summing over the ordered configurations for r and r0. The 2p1h ladder
interaction C.ld/ is at first order in V , while the coupling matrix M.2;ld/ is at second
order. These can be read from the previous lines of Eq. (11.31) and turn out to be
(showing all summations explicitly):
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: (11.32)

Equation (11.31) clearly breaks the known Lehmann representation for the self-
energy and would even lead to inconsistent results unless its contribution is very
small compared to the second-order contribution of Eq. (11.25). That is, Eq. (11.31)
would invalidate the perturbative expansion unless V is small. Therefore, we need
to identify proper corrections that allow to retain these third order contributions
but at the same time let us recover the correct analytical form (11.27). For the first
two terms on the right hand side of Eq. (11.31), this issue can be easily solved by
remembering that the corresponding diagram from ˙.2/.!/ [see Eq. (11.25)] is to
be included. If then one adds an extra term that is quadratic in M.2;ld/, this leads to:

˙.2/.!/C˙.3;ld/.!/CM.2;ld/ � 1

! � E> C i�
M.2;ld/

�! �
M.1/ CM.2;ld/

	� 1

! � E> C i�

�
M.1/ CM.2;ld/

	
; (11.33)

which resolves the issue of obtaining the residues in separable form. Note that
this new correction is just one specific Goldstone diagram among the many
that contribute to the self-energy at fourth order. On the other hand, adding all
of the fourth-order diagrams would lead to new terms that break the Lehmann
representation themselves and that in turn would call for the inclusions of selected
Goldstone terms at even higher orders. In other words, we have achieved to recover
the structure of Eq. (11.27) but at the price of giving up a systematic perturbative
expansion that is complete at each order in eV . Given that the Lehmann representa-
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tion is dictated by physical properties, this is a more satisfactory rearrangement of
the perturbation series.

The last term in Eq. (11.31) is more tricky to correct since it contains second-
order poles as .! � E � i�/�2, which cannot be canceled by single contributions at
higher order. Instead, we are forced to perform a non-perturbative resummation of
Goldstone diagrams to all orders that results in a geometric series. This is done by
considering the relation

1

A� B
D 1

A
C 1

A
B

1

A� B
D 1

A
C 1

A
B
1

A
C 1

A
B
1

A
B
1

A
C 1

A
B
1

A
B
1

A
B
1

A
C : : :

(11.34)

for two operators A and B. If we chose A � ! � E> C i� and B � C.ld/, the first
and second term on the right hand side can then be identified respectively with the
contribution from ˙.2/.!/ and the last term of Eq. (11.31). Also in this case, all
perturbative terms up to third order have been kept unchanged but we are forced to
select a series of Goldstone diagrams up to infinite order.

If then one adds an extra term that is quadratic in M.2;ld/, this lead to:

˙.2/.!/ C ˙.3;ld/.!/ C terms beyond
3rd order

�! �
M.1/ CM.2;ld/

	� 1

! � E> � C.ld/ C i�

�
M.1/ CM.2;ld/

	
; (11.35)

which now contains all the perturbation theory terms at second (11.25) and third
order (11.31) while preserving the expected analytical form for ė.!/.

It can be shown that the summation implicit in Eq. (11.35) is equivalent to a full
resummation of two-particle ladder diagrams in the Tamn-Dancoff approximation
(TDA) [37]. In this sum the remaining quasi hole state appearing in the 2p1h ISC
remains uncoupled from the ladder series, as it can be seen in Fig. 11.5a, which is the
first term in the series. Likewise, one would find that the remaining backward-going
terms in Eq. (11.30) would lead to resumming the two-hole TDA ladders within the
2h1p configurations. Instead, diagram in Fig. 11.5b involves a resummation of ph
ring diagrams. Extensions of these series to random-phase approximation (RPA) is
also possible, this would introduce a larger set of high-order Goldstone diagrams
but it would not be required to enforce consistency with perturbation theory at third
order.

11.3 Exercise: Complete the calculation of Eq. (11.30) and derive the remaining
corrections to the 2h1p interaction D.ld/ and the 1h-2h1p coupling term N.2;ld/.
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11.3.1 The ADC(n) Approach and Working Equations at Third
Order

The procedure discussed above to devise reliable approximations for the self-
energy is at the heart of the ADC method, originally introduced by J. Schirmer
and collaborators [9, 10]. This approach generates a hierarchy of approximations
of increasing accuracy such that, at a given order n, the ADC(n) equations will
maintain the analytic form of Eq. (11.27) and will be consistent with perturbation
theory up to order n. Note that this does not mean that ADC(n) is a perturbative
truncation but that it must contain at least all the Feynman diagrams for ˙?.!/ up
to order n, among higher terms. In fact, we will see below that for n > 2 it always
involve an infinite resummation of diagrams [see also Eqs. (11.34) and (11.35)]. To
implement this scheme for the dynamic self-energy, ė.!/, we expand its Lehmann
representation in powers of the perturbation interaction bH1 (or, equivalently, eH1).
The interaction matrices C and D appearing in the denominators of Eq. (11.27) can
only be of first order in eitherbU,bV or bW. However, the coupling matrices can contain
terms of any order:

M D M.1/ CM.2/ CM.3/ C : : :
N D N.1/ C N.2/ C N.3/ C : : : (11.36)

Using Eqs. (11.34) and (11.36) one finds the following expansion for Eq. (11.27):
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4
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where all terms up to third order in bH1 are shown explicitly. The ADC procedure
is then to simply calculate all possible diagrams up to order n. By comparing
them to Eq. (11.37), one then reads the minimum expressions for the coupling and
interaction matrices, M, N, C and D that are needed to retain all the n-order diagrams
for ė.!/. Correspondingly, the energy-independent self-energy ˙.1/ needs to be



592 C. Barbieri and A. Carbone

computed at least up to order n as well. Note that the dynamic part of the self-
energy, which propagates ISCs, appears only starting from second order. This is so
because any such diagram needs at least one perturbing interaction V to generate an
ISC and a second one to annihilate it back to a single particle state. In general, if
the Hamiltonian contains up to m-body forces and i is an integer, then the ADC(2i)
and ADC(2i C 1) will require ISCs up to (k+1)-particle–k-hole and (k C 1)-hole–
k-particle, where k D .m � 1/  i. Thus, with two-nucleon forces ADC(2) and
ADC(3) include 2p1h and 2h1p states, ADC(4) and ADC(5) need up to 3p2h and
2h3p states, and so on. However, the full ADC(2/3) sets with three-nucleon forces
already includes 3p2h and 3h2p configurations [36].

At first order, ADC(1) requires to only calculate diagram(s) that contribute toeU D �bU C ˙.1/, see Fig. 11.3a, and thus the scheme reduces to Hartree-Fock
theory. At second order and with at most two-body interactions, there is only one
diagram contributing to ė.!/ which is already in the proper Lehmann form. Hence,
Eqs. (11.25), (11.28) and (11.29) fully define the ADC(2) approximation. In this
case, ˙.1/ also requires a second-order non-skeleton term.

Higher order cases are more complicated. For a two-body Hamiltonian, the
only skeleton diagrams at third order are the ladder and ring diagrams shown
in Fig. 11.5a, b. As long as one works with a Hartree-Fock reference state or a
fully self-consistent (dressed) propagators, no other diagram is needed because
the additional non-skeleton terms either vanish or must not be included (see
Exercise 11.5). In these cases, one obtains the following working expressions the
for the ADC(3) approximation:
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and
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where only ordered configurations r D fn1 < n2; k3g and s D fk1 < k2; n3g
need to be considered, in accordance with the Pauli principle. Note that these
equations apply to the case of two-body interactions but they remain unchanged
for an effective operator eV that is derived from three-body forces. However the
full inclusion of bW would require the inclusion of the diagram of Fig. 11.4b at
the ADC(2) level and several other interaction-irreducible diagrams for ADC(3).
The non-skeleton contributions to ė.!/ that arise at third order when the reference
propagator is not dressed are shown in Fig. 11.6. The case of three-nucleon forces
is discussed in full detail in [36].

To remain consistent with the ADC(n) formulation, the static self-energy ˙.1/

must also be computed at least to the same order n. However, this involves a large
number of non-skeleton diagrams when self-consistency is not implemented. In
practice, it is relatively inexpensive to compute it directly from dressed propagators,
as given by (11.17a) and therefore it can be iterated to self-consistency. This
prescription, in which ė.!/ is calculated from an unperturbed reference state
g0/.!/ but ˙.1/ is obtained self-consistently, is often used in nuclear physics
applications and we refer to it as the sc0 approximation [19]. When dealing with
the Coulomb force in molecular systems, the dynamic self-energy can be simply
calculated in terms of a Hartree-Fock reference state. In nuclear physics, a Hartree-
Fock reference state is adequate only if the chosen Hamiltonian is particularly soft.
Otherwise, it is necessary to optimize the reference state by choosing a bH0 and
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a) b)

c) d)

Fig. 11.6 Self-energy insertion diagrams that appear, at third order, in the perturbative expansion
for ė.!/ with two- and three-nucleon interactions. These non-skeleton diagrams need to be
considered when the reference propagators are not self-consistent. Diagrams (a) and (b) involve
only one- and two-body interactions and results from self-energy insertions into the diagram of
Fig. 11.4a. With the inclusion of three-nucleon interactions, the diagrams (c) and (d) arise from the
one of Fig. 11.4b. When a Hartree-Fock reference state is used all these contributions cancel out
(see Exercise 11.5)

g0/.!/ that better represent the correlated single particle energies in the dressed
propagator. In all cases, at least the sc0 approach to ˙.1/ is always required when
computing finite nuclei and infinite nucleonic matter.

The standard ADC(n) prescription is to identify the minimal matrices M, N, C
and D that make the self-energy consistent with perturbation theory up to order
n. However, other intermediate approximations are also possible and have been
exploited in the past. The so-called 2p1h-TDA method is an extension of the second
order scheme of Eqs. (11.28) and (11.29) where the matrices C and D are calculated
at first order instead, as given by Eqs. (11.38c) and (11.39c). As a rule of thumb,
the ADC(2) approximation yields roughly 90% of the total correlation energy in
most applications, while the ADC(3) can account for about 99% of it—hence, with
a 1% error in binding energies. The 2p1h-TDA contains the ADC(2) in full but
it further resumes the full set of two-particle (pp), two-holes (hh) and particle-
hole (ph) diagrams. This can result in a sensible improvement in the accuracy of
binding energies but without the price of computing corrections to the M and N
coupling matrices. Nevertheless, the 2p1h-TDA misses the second order terms from
Eqs. (11.36) that are known to contribute strongly to quasiparticle energies. As a
consequence the one nucleon addition and separation energies (or, equivalently,
ionization potentials and electron affinities in molecules) would be predicted poorly
in 2p1h-TDA and in general they require full ADC(3) calculations [38]. In nuclear
physics applications, the description of collective excitations often requires that
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particle-hole configurations are diagonalized at least in the RPA scheme. While
this is similar to the TDA all-order summations included in 2p1h-TDA and in
ADC(3), extra ground state correlations effects from the RPA series are deemed
important to reproduce collective modes typical of nuclear systems [37]. To account
for these effects on needs to separate the partial summations in the pp, hh and ph
channels, substitute them with equivalent RPA series and recouple these through
a Faddeev-like expansion, in order to eventually reconstruct the self-energy [39–
42]. The Faddeev-RPA (FRPA) method contains the ADC(3) in full but it also
generates additional ground state correlation terms that are induced by the RPA
summation and are at fourth and higher order in the perturbative expansion of
the self-energy. The working implementation of the FRPA approach has been
formulated in [40, 43, 44].

Another important extension of the ADC(3) framework comes from the realiza-
tion that Eqs. (11.36) still imply a perturbative truncation for M and N. This causes
the energy denominators in Eqs. (11.38a) and (11.39a) to become unstable if the
system is close to being degenerate. The way out from this situation is again to
perform an all-orders summation. Since the coupling matrices correspond to specific
energy-independent parts of Goldstone diagrams, they can be resummed in the same
way as for the coupled cluster (CC) technique (C. Barbieri, 2016, unpublished). We
show this for the second term on the right hand side of (11.38a), which can be
rewritten as follows:
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where the amplitude
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generalizes the zeroth approximation to the CC operator OT2 (see Sect. 8.7.4). In
case of a dressed propagator, the spectroscopic amplitudes X (Y) account for
the fragmentation of single particle strength. However, for a standard mean-field
reference, they simply select the particle (hole) reference orbits and t.0/ is exactly
the same as for the CC approach. In order to mitigate effects of the perturbative
truncation in Eqs. (11.38a) and (11.39a) (and to resum the 2p2h ISCs) one simply
substitutes t.0/ with the corresponding CC solution. In general, when t is computed
using the CC doubles (CCD) approach we refer to the whole self-energy as being
in the ADC(3)-D approximation, when t is obtained by resumming both singles
and doubles (CCSD) it will give the ADC(3)-SD approximation, and so on. In
Sect. 11.3.3, we will see a case when these corrections are important.

The working equations for the self-energy at the ADC(4) level and beyond are
discussed in [10].



596 C. Barbieri and A. Carbone

11.4 Exercise: Calculate the ladder and ring diagrams in Fig. 11.5 and prove
Eqs. (11.38) and (11.39) in full. [Hint: for the ring diagrams it is simpler to first per-
form integrations for the free polarization propagator,˘ f

˛ˇ;	ı.!/ D
R d!1

2� i g˛	 .! C
!1/gıˇ.!1/, which describes non interacting particle-hole states.]

11.5 Exercise: In case of a reference propagator that is not fully self-consistent,
it is necessary to also include non-skeleton diagrams. For ė.!/ these first appear
at third order with the diagrams shown in Fig. 11.6. Calculate the expressions for
diagrams in (a) and (b), then:

• Deduct the corresponding corrections to Eqs. (11.38) and (11.39). These will be
the complete ADC(3) working equations.

• Show that they cancel out exactly if the reference propagator is of Hartree-Fock
type. Hence these corrections do not need to be taken into account even tough the
Hartree-Fock reference state is not a dressed—and fully self-consistent—input in
this case.

[Hint: In Hartee-Fock theory, the static self-energy ˙.1/ reduces to the Hartree-
Fock potential. The reference state in this case is given by bH0 D bT C bUHF �bHHF , which is also the Hartree-Fock Hamiltonian. Additionally, in the notation of
Eqs. (11.42) below, the (orthogonal) single particle wave functions are the solutions
of fT C˙HFgZ i D "iZ i.]

11.3.2 Solving the Dyson Equation

Once we have a suitable approximation to the self-energy, it is necessary to solve
the Dyson equation (11.3) to obtain the single particle propagator, the associated
observables and the spectral function. The latter will also yield spectroscopic
amplitudes and their spectroscopic factor for the addition and removal of a nucleon
form the correlated state j�A

0 i. In doing this, Eqs. (11.3) take the form of a one-body
Schrödinger equation for the scattering of a particle or a hole inside the medium.
Given that all the Cauchy integrals associated with Feynman diagrams have been
carried out, we can safely take the limit˙i�! 0 in all denominators for simplicity.
The same equation applies to states both above and below the Fermi surface. Thus,
it is convenient to take a general index i and using "i and Z i to label energies and
spectroscopic amplitudes for all quasiparticle and quasihole states. Specifically,

"i �!

8̂
<
:̂
"C

n for i D n, particle,

"�

k for i D k, hole,
and Z i

˛ �!

8̂
<
:̂
.X n

˛ /
� for i D n, particle,

Y k
˛ for i D k, hole.

(11.42)
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In order to extract the solution for the pole i in the Lehmann representation, we
extract the corresponding residue on both the left and right hand side of Eq. (11.3a):

lim
!!"i

.! � "i/
n
g˛ˇ.!/ D g.0/˛ˇ .!/C g.0/˛	 .!/˙

?
	ı.!/gıˇ.!/

o
; (11.43)

which gives

Z i
˛.Z i

ˇ/
� D g.0/˛	 .!/˙

?
	ı.!/Z i

ı.Z i
ˇ/

�
ˇ̌
ˇ
!D"i

: (11.44)

By dividing out .Z i
ˇ/

� and using the fact that Œg.0/.!/
�1 D !�bH0 we finally obtain
the eigenvalue equation

"iZ i
˛ D

nbT CbU C˙?.!/
o
˛ ı

Z i
ı

ˇ̌
ˇ
!D"i

D
�
bT C˙.1/ CM� 1

! � E> � CC i�
M C N

1

! � E< � D � i�
N�

�
˛ ı

Z i
ı

ˇ̌
ˇ̌
!D"i

;

(11.45)

where the potential bU defining the unperturbed state completely cancels out. From
here we see that the true irreducible self-energy ˙.1/ C ė.!/ acts as a non-
local and energy dependent potential that accounts for the motion of both particles
and holes inside the system and for their coupling to intermediate excitations.
At positive energies (! > 0) this equation describes the elastic scattering of a
nucleon off the j�A

0 i ground state and the self-energy can be identified with a fully
microscopic optical potential [27, 28, 45]. In this case the spectroscopic amplitudes
Z i correspond to scattering wave functions with the usual asymptotic normalization.
Instead, at ! < 0, Eq. (11.45) describes the transition to states of j�A˙1

i iwith bound
amplitudes. The norm of each Z i gives the corresponding spectroscopic factor and
it is obtained as

SFi D
X
˛

jZ i
˛j2 D

1

1 � .Z i
ˇ/

� d˙?
ˇ	 .!/

d!

ˇ̌
ˇ
!D"i

Z i
	

; (11.46)

where Z i � Z i=
p

SFi is the spectroscopic amplitude normalized to 1.
Equations (11.45) and (11.46) are the central equations of the Green’s function

formalism and show how the single-particle propagator is the solution of an effective
one-body Schrödinger equation for a nucleon or a hole propagating inside the
correlated system. The energy dependence of ˙?.!/ and its non-locality are a
consequence of the underlying many-body dynamics. Equation (11.46) also shows
that the reduction of spectral strength commonly observed in correlated systems
arises from the dispersion properties of the self-energy.
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In spite of its beauty, Eq. (11.45) is also the worst starting point to solve the
Dyson equation in a discretized finite basis. Unless one is interested in just a few
solutions near the Fermi surface or the model space is extremely small, this approach
will require high computational times due to the large amounts of diagonalizations
required to extract the correct eigenvalues. The reason is that root-finding algorithms
are needed to match the eigenvalues "i with the argument of ˙?."i/, but simple
searching algorithms may miss a large amount of solutions. The consequences
of missing a large portion of spectral strength are that wrong results would be
obtained for the ground state observables computed as in Sect. 11.2.1. This can also
deteriorate the self-consistency already at the level of the static self-energy,˙.1/ DeU. If Eq. (11.45) must be used, it is possible to gather all the necessary solutions
by starting from extremely fine energy meshes to be sure that all eigenvalues are
bracketed first. However, this easily becomes suicidal in terms of the increase of
computing time. We discuss here a different approach that is not affected by these
problems and that will also give some further insight into the physics content of the
Dyson equation.

First, for each solution of the Dyson equation we define two new vectors W i and
V i which live in the ISCs space as follows:

Œ! � E> � C
r;r0 W i
r0 � Mr;ıZ

i
ı ;

Œ! � E< � D
s;s0 V i
s0 � N�

s;ıZ
i
ı ; (11.47)

where we have let i� ! 0 as this is no longer needed in a finite and discretized
basis. With these definitions, Eq. (11.45) is easily rearranged into a single eigenvalue
problem of larger dimensions but where the corresponding matrix is energy
independent:

0
BBBBB@

bT C˙.1/ M� N

M E> C C

N� E< C D

1
CCCCCA

0
BBBBB@

Z i

W i

V i

1
CCCCCA
D

0
BBBBB@

Z i

W i

V i

1
CCCCCA
"i (11.48)

and the normalization condition (11.46) becomes

X
˛

jZ i
˛j2 C

X
r

jW i
rj2 C

X
s

jV i
sj2 D 1 : (11.49)

The advantage of this approach is that it linearizes the Dyson equation and yields
all solutions in one single diagonalization. Although the dimension of the Dyson
matrix in Eq. (11.48) is much larger than a one-body Schrödinger problem and that
it requires a substantial amount of memory storage, it typically provides the full
spectral strength 100 times faster than using Eq. (11.45) directly. Furthermore, it
is possible to reduce the dimensionality of the eigenvalue problem by projecting



11 Self-Consistent Green’s Function Approaches 599

matrices ŒE> C C
 and ŒE< C D
 (separately!) onto smaller Lanczos/Krylov
subspaces [19, 46]. In this way one reduces the number of poles of g.!/ far away
from the Fermi surface—where only their average is physically meaningful—but
conserves the overall strength needed to compute ground state observables.

Equation (11.48) also puts in evidence how the Dyson equation is very closely
related to a configuration interaction (CI) approach. For solutions ("C

n ,X n) in the
single particle spectrum, the eigenstates of j�AC1

n i are expanded in terms of 1p
configurations (from the bT C ˙.1/ sector) and 2p1h or larger configurations,
which is evident from the matrix C, in Eq. (11.38c). However, additional 2h1p
configurations are included through matrix D. This is in spirit very similar to
how ground state correlations are included in the random phase approximation
approach [37]. Furthermore, the matrices that couples these subspaces are the same
as in CI only at first order (M.1/ and N.1/). The eigenstates of Eq. (11.48) will
approach the exact solution as the approximation of the self-energy is systematically
improved. Similarly, the propagation of hole states that correspond to the eigenstates
of j�A�1

k i are obtained in a CI fashion. Equation (11.49) is then the natural
normalization condition for the CI expansion and shows that the spectroscopic
amplitudes are the projection of more complex many-body wave functions onto a
single-particle space.

11.6 Exercise: Perform a Taylor expansion of the propagator g.!/ at zeroth order
around a given pole "i̇ . Then, use this and the conjugate Dyson equation (11.3b) to
obtain the normalization condition for spectroscopic factors given in Eq. (11.46).

11.7 Exercise: Based on the definitions of vectors W i and V i, Eqs. (11.47), show
that (11.46) and (11.49) are equivalent.

11.3.3 A Simple Pairing Model

As a first demonstration of the ADC formalism, we consider the pairing Hamiltonian
already discussed in Chap. 8. This is a system of four spin-1/2 fermions in a 4-level
model space that interact through a pairing force:

bH D bH0 CbV D �
4X

pD1

X
�DC;�

. p� 1/a�p�ap� � g

2

4X
p;qD1

a�pCa�p�aq�aqC :

(11.50)

In spite of its simplicity, this model poses a particularly difficult test for many-
body approximations based on ISRs because the Hamiltonian (11.50) does not
allow for admixtures of leading order excitations, that is of the particle-hole type.
The ground state contains only 2p2h and higher excitations. Correspondingly,
the pairing interactions bV cannot couple particle states to 2p1h configurations,
neither hole states with 2h1p ones. This is obvious looking at the leading terms,
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Eqs. (11.28a) and (11.29a), that would involve interactions between a particle and
a hole (which cannot be connected by pairing) but it applies to the full ADC(3)
couplings (11.38a) and (11.39a) as well. It follows that the spectra for particle
attachment and removal are dominated by 3p2h and 3h2p ISCs. These are partially
included in the Dyson equation by couplings between particles and backward going,
2h1p, terms in the self-energy (or between holes and the forward 2p1h terms).
However, a complete account of them would require many-body truncations at the
ADC(4) level and higher. Remarkably, it is still possible to reach rather accurate
results as demonstrated by Figs. 11.7 and 11.8.

The unperturbed propagator, associated with the bH0 term of Eq. (11.50), is given
by

g.0/p�p ; q�q
.!/ D ıpqı�p �q

( X
nD3;4

ın p

! � ".0/n C i�
C

X
kD1;2

ık p

! � ".0/k � i�

)
(11.51)

where ".0/p D �. p�1/ are the unperturbed single particle energies and the gap at the
Fermi surface is E.0/ph D ".0/3 � ".0/2 D � . For this particular model, the unperturbed
state is also the same state that solves the HF equations. Thus, the HF propagator is
written exactly in the same way but with only a shift in the single particle energies
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Fig. 11.7 Correlation energy for the pairing Hamiltonian of Eq. (11.50) as a function of the
coupling g, obtained for different ADC(n) approximations to the self-energy and in the sc0 scheme.
The dotted, dot-dashed, short dashed and full lines are all obtained from the HF reference of
Eq. (11.52) and show successive approximations of the ADC(n) hierarchy [respectively: ADC(2),
2p1h-TDA, ADC(3) and ADC(3)-D]. The long dashed line is the same ADC(3) truncation but
based on the unperturbed reference propagator of Eq. (11.51). The purple line shows the exact
result calculated from a full configuration interaction diagonalization
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Fig. 11.8 Correlation energy for the pairing Hamiltonian of Eq. (11.50) as a function of the
coupling g, for different many-body methods discussed in this book. The purple line is the exact
results from configuration interaction theory. The results for second-order perturbation theory
(MBPT2), for IMSRG(2), for the CC-corrected ADC(3)-D and for the standard CC with doubles
(CCD) are compared. See also Sect. 10.3.6 for higher truncations of MBPT

of the hole states (see also Sect. 8.7.4 and Table 8.11):

gHF
p�p ; q�q

.!/ D ıpqı�p �q

( X
nD3;4

ın p

! � "HF
n C i�

C
X

kD1;2

ık p

! � "HF
k � i�

)

(11.52)

where

"HF
p D

8<
:
�. p � 1/ ; for p D 3; 4

�. p � 1/� g=2 ; for p D 1; 2
(11.53)

and the particle-hole gap now depends on the coupling constant, EHF
ph D "HF

3 � "HF
2 D

� C g=2. One may chose either of these propagators as the reference state for
calculating the ADC(n) self-energy. However, g.0/.!/ will also require additional
corrections terms for the interactions matrices C and D, as seen in Exercise 11.5. In
practice, these corrections are already included in the shifts of Eq. (11.53) and the
HF reference is normally a better starting point for calculating the self-energy.

We now set � D 1 and perform calculations at different levels of approximations
in the ADC(n) approach, by using the gHF.!/ as reference (except when indicated)
and by calculating ˙.1/ self-consistently in the sc0 scheme. After solving the
Dyson equation, we extract the ground state energy from the Koltun sum rule (11.11)
and calculate the correlation energy �E D Eg:s: � .2� � g/. The result of the
ADC(2) equations (11.28) and (11.29) is shown by the dotted line in Fig. 11.7.
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The 2p1h-TDA approximation improves upon this by using the interaction matrices
from Eqs. (11.38c) and (11.39c), which resumes infinite ladders of 2p and 2h states.
However, this brings only a very small improvement to this system. The ADC(3)
approximation gives better results and it is shown for both the g.0/.!/ and gHF.!/

choices of the reference state with long dashed and short dashed lines, respectively.
Remarkably, these results depend strongly on the reference state and are much closer
to the exact solution for the g.0/.!/ case, which would have been expected to be a
poorer choice. Furthermore, gHF.!/ behaves erratically for negative values of g,
corresponding to a repulsive pairing interaction bV . These two calculations differ
only in the single particle energies used to calculate the coupling matrices M and N.
Such behavior is simply explained by the dependence of EHF

ph on g, which can make
the denominator in Eqs. (11.38c) and (11.39c) very small and causes the breakdown
of the perturbation expansion (11.36). To resolved his problem we substitute the t.0/

of Eq. (11.41) with the converged solution from the CCD equations. The resulting
ADC(3)-D is now completely independent of the choice between the two reference
states and it also reproduces the exact result closely. This is shown by the two solid
lines in Fig. 11.7.

Figure 11.8 compares the ADC approach with CC, in-medium similarity renor-
malization group (IMSRG) and second-order perturbation theory. The ADC(3)-D,
the two-body truncation of IMSRG (IMSRG(2), see Chap. 10) and the CC methods
perform similarly at g < 0, where they are all close to the exact solution all the
way to g � �1:3. For smaller values of the coupling the CCD iterations stop
converging. At large positive values of g (corresponding to attractive pairing) the
various approaches eventually deviate from the exact result but with CCD being
slightly better. Clearly the full ADC(3)-D is a more complex calculation than
CCD but leads to similar results for the binding energy. On the other hand, this
does not only yield the ground state energy but also the whole spectral function
for the addition and removal of a particle is generated when solving the Dyson
equation (11.45) or (11.48). The next section will demonstrate examples of the self-
energy and the spectral distribution obtained when calculating the single particle
propagator.

The FORTRAN code that generated these results is available online at
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/
Chapter11-programs/Pair_Model. We do not examine this code here but we will
give a detailed discussion of how to structure a complex ADC(n) code for infinite
matter computations in the next section.

11.4 Numerical Solutions for Infinite Matter

In this section we discuss how to implement the calculation of the self-energy
and the single particle propagator in the ADC(n) formalism. We will demonstrate
this for the case of infinite nucleonic matter and use our results to discuss general
features of the spectral function. A general code that can solve for both symmetric
and pure neutron matter up to ADC(3) is provided with this chapter at the URL

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter11-programs/Pair_Model
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter11-programs/Pair_Model
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https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/
Chapter11-programs/Inf_Matter. We will use the C++ programming language and
will refer to this code for describing the technical details of the implementation.
We then show results based on the Minnesota nuclear potential from [47]. This
is a very simplified model of the nuclear interaction that allows for an easy
implementation. On the other hand, it still retains some physical properties of
the nuclear Hamiltonian that will allow us to discuss the basic features of the
spectral function of nucleonic matter (and of infinite fermionic systems in general).
The reader interested in these physics aspects could refer directly to Sect. 11.4.2.

11.4.1 Computational Details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model
space. For infinite matter, translational invariance imposes that the Dyson equation
is diagonal in momentum and therefore it becomes much easier to solve the problem
in momentum space. However, there remain two possible choices for how to encode
single particle degrees of freedom. The first one is to subdivide the infinite space in
boxes of finite size and to impose periodic boundary conditions (see also Chap. 8).
In this way, the number of fermions included in each box is finite and determined by
the particle density of the system. The resulting model space is naturally expressed
by a set of discretized single particle states and one solves the working equations in
the form of Eqs. (11.38), (11.39) and (11.48). This path requires the same technical
steps needed to calculate finite systems in a box. Numerical results then need to
be converged with respect to the truncation of the k-space (and, for an infinite
system, with respect to the number of nucleons inside each periodic box). We will
follow this approach for the present computational project. The other approach is to
retain the full momentum space and write the SCGF equations already in the full
thermodynamic limit. This choice is best suited to solve the Dyson equation at finite
temperatures and in a full SCGF fashion and will be discussed further in Sect. 11.5.

Construction of the Model Space For simplicity, we assume a total number A of
nucleons in each (cubic) periodic box. For boxes of length L, the density and the
Fermi momentum are expressed, respectively as („=1):

� D A

L
and pF D 3

s
6�2�

�d
; (11.54)

where the degeneracy �d is twice the number of different spin- 1
2

fermions and the
basis states are defined by the cartesian quantum numbers nx, ny, nz= 0, 1, 2. . . with
momentum

p D 2�

L

0
@ nx

ny

nz

1
A : (11.55)

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter11-programs/Inf_Matter
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter11-programs/Inf_Matter
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The kinetic energies, and hence the unperturbed single particle energies, will depend
on j pj2 and hence the values of Nsq D n2x C n2y C n2z define a set of separate shells.
Since we need closed shell reference states, only certain values for the number of
nucleons in each box, A, are possible. The size of the model space is given by
Nmax

sq D maxfn2x C n2y C n2z g. The construction of the single particle model space
is then straightforward. We will do it constructing a specific class with pointers
to arrays for each relevant quantum number and additional arrays for the kinetic
energies or any other useful quantity associated with each state.

class SpBasisK {

public:
int SpNmax, SpNAlloc; // total number of s.p. states and

allocated space
int *nx, *ny, *nz, *spin; // quantum numbers
double *e_kin; // kinetic energy

double Lbox; // side length of the periodic box
int N_holes; // number of nucleons in a box (# of occupied

states)

// grouping s.p. states of equal symmetry
int N_grps; // number of different groups
int *gr_mlt, *gr_rep;

// functions
public:
void Build_sp_basis(int, double, int);

int Build_groups_table(void );

};

The constructor for the model space will be necessary to order the basis with
increasing values of Nsq, so that the orbits corresponding to the A hole states come
first. This will become useful to construct ISCs later on. We first count the total
number of possible .nx; ny; nz/ configurations. Once it is known how many single
particle k states there are, we can allocate arrays in memory to store the relevant
quantum numbers of each of them:

const double PI = 3.141592653589793;
const double hbarc = 197.326968; // [MeV*fm]
const double NUCLEONmass = 939.565; // [MeV]

void SpBasisK::Build_sp_basis(int Nsq_max, double Lbox, int A) {

int imax = int( sqrt(double Nsq_max) + 1 ); // max value of |
n_x|, |n_y| or |n_z|

int i_count = 0; // counts the number of basis states:
for (int ix=-imax; ix<=imax; ++ix)
for (int iy=-imax; iy<=imax; ++iy)
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for (int iz=-imax; iz<=imax; ++iz)
if (ix*ix + iy*iy + iz*iz <= Nsq_max) ++i_count;

SpNAlloc = 2 * i_count; // 2 is the spin-1/2 degeneracy; we
assume PNM here

cout << "\n Allocating space for "<< SpNAlloc << " sp states
... \n";

nx = new int[SpNAlloc]; // Allocate basis' arrays
ny = new int[SpNAlloc];
nz = new int[SpNAlloc];
spin = new int[SpNAlloc];
e_kin = new double[SpNAlloc];

double xek;

cout << "\n Single particle basis:\n ----------------------";
cout << "\n orbit n_x n_y n_z Nsq E_kin\n";

i_count = 0;
for (int isq=0; isq<=Nsq_max; ++isq) {
for (int ix=-imax; ix<=imax; ++ix)
for (int iy=-imax; iy<=imax; ++iy)
for (int iz=-imax; iz<=imax; ++iz) {
if ((ix*ix + iy*iy + iz*iz) != isq) continue;

xek = double(isq) * pow((hbarc * 2.0 * PI / Lbox), 2.0)
/ 2.0 / NUCLEONmass;

cout <<i_count <<" " <<ix <<" " <<iy <<" " <<iz <<" " <<
isq <<" " <<xek <<endl;

for (int is=-1; is<2; is+=2) {
nx[i_count] = ix;
ny[i_count] = iy;
nz[i_count] = iz;
spin[i_count] = is;
e_kin[i_count] = xek;
++i_count;

}

} // end of ix, iy, iz loop
} // end of isq loop
SpNmax = i_count;

this->N_holes = A; // very important! Must set the # of
occupied states

return;}
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Construction of the ISCs Due to translational invariance the Dyson equa-
tion (11.3) separates in a set of uncoupled equations for each values of fpi; s

i
zg

in the model space (where sz is the spin projection and i labels the basis states):

g.pi; s
i
zI!/ D g.0/.pi; s

i
zI!/C g.0/.pi; s

i
zI!/˙?.pi; s

i
zI!/ g.pi; s

i
zI!/ : (11.56)

This diagonal equation can be formally inverted as shown in Eqs. (11.83)
and (11.86) below. However, we will solve for all of its eigenstates instead and this
is better done by diagonalizing Eq. (11.48). For each state i, we need to generate
tables for the relevant 2p1h and 2h1p ISCs and then calculate the elements of the
Dyson matrix. One can build a class whose objects are associated to a particular
orbit of the given model space and then construct the ISCs in accordance with the
conservation of momentum and other symmetries of the Hamiltonian, which are
implicit in the matrix elements for the coupling (M and N) and interaction (C and
D) matrices. Schematically, looking only at the 2p1h configurations for simplicity,
this will be:

class ADC3BasisK {

public:
int *Bas_2p1h, *Bas_2h1p; // pointers to 2p1h/2h1p bases
int Nbas_2p1h, Nbas_2h1p; // dimensions of the 2p1h/2h1p

bases

int iSpLoc; // {p,s_z} state in the s.p. basis associated
with the 2p1h/2h1p

SpBasisK *SpBasLoc;

// functions
public:
void Build_2p1h_basis(SpBasisK*, int );

};

void ADC3BasisK::Build_2p1h_basis(SpBasisK *InBasis, int isp) {

this->SpBasLoc = InBasis; // keep track of the basis and the s
.p. states associated

this->iSpLoc = isp; // to this 2p1h ICSs, for use by other
functions

Nbas_2p1h = ... ; // must compute the number of expected 2p1h
configurations

if (NULL != Bas_2p1h) delete [] Bas_2p1h;
this->Bas_2p1h = new int[3*(Nbas_2p1h)]; // need 3 indices for

each config (n1, n2, k3)

int k3_x, k3_y, k3_z, k3_sp;

i_count = 0;
for (int n1=SpBasLoc->N_holes; n1<SpBasLoc->SpNmax; ++n1) {
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for (int n2=n1+1; n2<SpBasLoc->SpNmax; ++n2) { // n1 < n2 due
to Pauli

// expected q.#s for 3rd index (k3), imposed by the
Hamiltonian's symmetries:

k3_x = SpBasLoc->nx[n1] + SpBasLoc->nx[n2] - SpBasLoc->nx[
isp];

k3_y = SpBasLoc->ny[n1] + SpBasLoc->ny[n2] - SpBasLoc->ny[
isp];

k3_z = SpBasLoc->nz[n1] + SpBasLoc->nz[n2] - SpBasLoc->nz[
isp];

k3_sp = SpBasLoc->spin[n1] + SpBasLoc->spin[n2] - SpBasLoc
->spin[isp];

for (int k3=0; k3<SpBasLoc->N_holes; ++k3) {
if ( (k3_x != SpBasLoc->nx[k3]) || (k3_y != SpBasLoc->ny[

k3] ) ||
(k3_z != SpBasLoc->nz[k3]) || (k3_sp != SpBasLoc->

spin[k3]) ) continue;

this->Bas_2p1h[3*i_count ] = n1;
this->Bas_2p1h[3*i_count + 1] = n2;
this->Bas_2p1h[3*i_count + 2] = k3;
++i_count;

} // end k3 loop
} // end n2 loop

} // end n1 loop
if (i_count > Nbas_2p1h) {/* This is a trouble */} else {

Nbas_2p1h = i_count;}

return;}

Spectral Representation Both the propagator and the self-energy have spectral
representations in terms of poles, with residues in separable form. Hence, we can
devise a general class that could store both objects. Specifically, by using the
conservation of spin and the fact that the propagator is diagonal in momentum space,
one can write the Lehmann representation (11.2) as

g.pi; s
i
zI!/ D

X
n

Sp.pi; s
i
zI "piC

n /

! � "piC
n C i�

C
X

k

Sh.pi; s
i
zI "pi�

k /

! � "pi�
k � i�

; (11.57)

where Sp.h/.pi; s
i
zI!/ are the particle and hole parts of the spectral function [see

Eqs. (11.4)]. Hence, it is simpler and more efficient to store the full residues rather
than separate spectroscopic amplitudes. The self-energy can be casted in the same
simple pole structure by diagonalizing the interactions matrices. Assuming that
UC .E> C C/U�

C D diag.�r
C/ and UD .E< C D/U�

D D diag.�q
D/, with �C;D being
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the eigenvalues, we rewrite Eq. (11.27) as follows:

˙?.pi; s
i
zI!/ D ˙.1/.pi; s

i
z/ C

X
r

jeMr I pi;si
z
j2

! � �r
C C i�

C
X

q

jeNpi;si
z I qj2

! � �q
D � i�

;

(11.58)

where eM D UCM and eN D NU�
D. A full pre-diagonalization of the interaction

matrices C and D is not needed to construct the Dyson matrix. Thus, storing
the self-energy in the form of Eq. (11.58) is worth only if self-energy is to be
calculated for specific values of its arguments (for example to plot it). However,
in most cases, a reduction of these matrices through a Lanczos algorithm is still
necessary to reduce the dimensionality of the problem, as discussed below here.
The resulting tridiagonal matrices can be accommodated in the same structure as
for the propagator by simply adding an extra array for the sub-diagonal elements.
Thus, the class for the Lehmann representation has the following structure:

class SpctDist {

public:
SpBasisK *SpBasLoc; // associated s.p. basis

int N_LEH_ALLOC; // number of Lehmann representations to
store

int *N_fw_pls, *N_bk_pls, *N_PLS_ALLOC;
double **ek_fw, **ek_bk; // - poles of the propagator/self-

energy
double **eb_fw, **eb_bk; // - eb_xx Lanczos subdiagonal for

storing self-energy
double **Sk_fw, **Sk_bk; // - this is the FULL residue (not

the amplitude X,Y)
double *Sig_inf; // static self-energy

// functions
public:
SpctDist(SpBasisK* ); // constructor
int add_k_channel(int, int, double*, double*, int, double*,

double*,
double in_Sig_inf=0.0, double *B_fw_in=NULL

, double *B_bk_in=NULL);
};

void SpctDist::SpctDist(SpBasisK *InBasis ) {
//
// Use constructor to initialize the object with a table
// of pointers for all basis states

this->SpBasLoc = InBasis; // keeps track of the associated
model space
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N_LEH_ALLOC = this->SpBasLoc->SpNmax;

Sig_inf = new double[N_LEH_ALLOC];

N_fw_pls = new int[N_LEH_ALLOC]; N_bk_pls = new int[
N_LEH_ALLOC];

N_PLS_ALLOC = new int[N_LEH_ALLOC];
ek_fw = new double*[N_LEH_ALLOC]; ek_bk = new double*[

N_LEH_ALLOC];
Sk_fw = new double*[N_LEH_ALLOC]; Sk_bk = new double*[

N_LEH_ALLOC];
eb_fw = new double*[N_LEH_ALLOC]; eb_bk = new double*[

N_LEH_ALLOC];

for (int isp=0; isp<N_LEH_ALLOC; ++isp) {
Sig_inf[isp] = 0.0;

N_fw_pls [isp] = -100; N_bk_pls [isp] = -100;
N_PLS_ALLOC[isp] = -100;
ek_fw[isp] = NULL; ek_bk[isp] = NULL;
Sk_fw[isp] = NULL; Sk_bk[isp] = NULL;
eb_fw[isp] = NULL; eb_bk[isp] = NULL;

}

return;}

void SpctDist::add_k_channel(int i_Leh, int N_fw_in, double *
A_fw_in, double *E_fw_in,

int N_bk_in, double *A_bk_in,
double *E_bk_in,

double in_Sig_inf /*=0.0*/,
double *B_fw_in/*=NULL*/, double *

B_bk_in/*=NULL*/){
//
// This function is to load and store the spectral

representation of a s.p. propagator
// or a self-energy, if the additional array for the

subdiagonal elements the self-energy
// are not provided, they are set automatically to zero.

// Allocate memory for the basis' state i_Leh; only one array
is allocate for both hole

// and particle poles, the xx_fw[] arrays will just point to
where the particles begin

N_PLS_ALLOC[i_Leh] = N_bk_in + N_fw_in;
ek_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; ek_fw[i_Leh] =

ek_bk[i_Leh] + N_bk_in;
eb_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; eb_fw[i_Leh] =

eb_bk[i_Leh] + N_bk_in;
Sk_bk[i_Leh] = new double[N_PLS_ALLOC[i_Leh]]; Sk_fw[i_Leh] =

Sk_bk[i_Leh] + N_bk_in;

// store hole poles
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N_bk_pls[i_Leh] = N_bk_in;
for (int ibk=0; ibk<N_bk_in; ++ibk) {
ek_bk[i_Leh][ibk] = E_bk_in[ibk];
Sk_bk[i_Leh][ibk] = A_bk_in[ibk];
eb_bk[i_Leh][ibk] = 0.0;
if (NULL != B_bk_in) eb_bk[i_Leh][ibk] = B_bk_in[ibk];

}

// store particle pole
N_fw_pls[i_Leh] = N_fw_in;
for (int ifw=0; ifw<N_fw_in; ++ifw) {
ek_fw[i_Leh][ifw] = E_fw_in[ifw];
Sk_fw[i_Leh][ifw] = A_fw_in[ifw];
eb_fw[i_Leh][ifw] = 0.0;
if (NULL != B_fw_in) eb_fw[i_Leh][ifw] = B_fw_in[ifw];

}

Sig_inf[i_Leh] = in_Sig_inf; // stores the static self-energy;
== 0.0 if default

return;}

The above classes simplify the calculation of quantities related to SCGF.
For example, let us assume a function, Vpotential(ia,ib,ic,id), that
returns the matrix elements of the two-body interaction. The ADC(2) coupling
matrix (11.28a) could be calculated using the following code:

// Configurations for s.p. state iL:
ADC3BasisK ISC2p1h(); ISC2p1h.Build_2p1h_basis(SpBasis, iL);

// Array to store the coupling matrix M:
double M_rp = new double[ISC2p1h.Nbas_2p1h];

for (int ir = 0; ir<ISC2p1h.Nbas_2p1h; ++ir) {
// no need to loop over s.p. states since we are diagonal in

the channel ia

// Single particle states for the ir-th 2p1h configuration:
im = Bas_2p1h[3*ir ];
iv = Bas_2p1h[3*ir + 1 ];
iL = Bas_2p1h[3*ir + 2 ];

// Apply Eq. (11.28a) [a HF ref. state is assumed here... X=Y
=1]

M_rp[ir] = V_potential(im,iv,ia,iL);
}

Likewise, the correlated HF diagram that contributes to ˙.1/ [second term on
the right hand side of Eq. (11.17a)] could be obtained as follows:

// To calculate the HF potential (V_HF) between states ia and ib
we do:
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double Sh, Vhf_ab;
int nHoles;
SpBasisK *Bas = ; // point to some object containing the model

space
SpctDist SpProp(Bas); // sp propagator, contains spectral

distribution of every (p_i,s_z)

Vhf_ab = 0.0;
for (ic = 0; ic<Bas->SpNmax; ++ic) {
nHoles = SpProp.N_bk_poles[ic];
Sh = 0.0;
for (int k=0; k<nHoles; ++k) Sh += SpProp[ic].Sh[k];
Vhf_ab += V_potential(ia,ic,ib,ic) * Sh;
}

Reducing the Computational Load Practical applications often require rather
large model spaces to achieve convergence. This poses a major hindrance since
the number of ISCs can grow very fast with the size of the space. The strongest
constraint comes from 2p1h configurations (that is, the dimension of the C matrix),
which increases quadratically with the number of unoccupied states and linearly
with the number of occupied ones. As a consequence, it is almost never possible
to attempt a fully self-consistent calculations of the dynamic self-energy because
these would be based on the huge number of poles in Eqs. (11.2) or (11.57). In
fact, the dimensionality wall not only prohibits going beyond a sc0 calculation but
the dimensions of the Dyson matrix can become prohibitive even for a mean-field
reference state and models spaces of moderate size.

As already mentioned in Sect. 11.3.2, the way out from this situation is to sub-
stitute the denominators in the Lehmann representation of the self-energy (11.58)
with a much smaller numbers of effective poles. This is done by projecting the sub-
matrices E> C C and E< C D onto Krylov spaces of much smaller dimensions by
using a Lanczos algorithm (or Block Lanczos, in the general case when the self-
energy is not diagonal in pi) [48]. This approach is usually more efficient if the
vectors corresponding to the columns of M and N� are taken as the pivots. For
example, if L is the Nred � N2p1h matrix that projects from the full space of 2p1h
configurations to the Krylov space of dimension Nred (<< N2p1h), then the third
term on the right hand side of Eq. (11.27) is modified as follows:

M� 1

! � ŒE> C C
C i�
M �! M�L� 1

! � LŒE> C C
L� C i�
LM

(11.59)

and similarly for the 2h1p sector. In most cases, a number of Lanczos vectors
between Nred D 50 and 300 is sufficient, depending on model space size and
the accuracy required. The reason for choosing a Krylov type of projection to
reduce the dimensionality of the Dyson eigenvalue problem is that this allows to
preserve two crucial properties of the spectral distribution of ˙?.!/. First, the
lowest 2Nred moments of the spectral distribution are conserved, which guarantees to
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reproduce well the average spectral function at medium and large energies. Second,
the eigenvectors at the extremes of the (2p1h or the 2h1p) spectrum converge first in
the Lanczos algorithm. This implies that the self-energy and the particle attachment
or removal distributions converge fast to the exact one near the Fermi energy. For
this reason it is crucial that both the E>CC and E<CD matrices are projected and
that they are handled separately. See [19] for details of the implementation in the
SCGF approach.

In addition to the dimensions problem, one also needs to diagonalize Eq. (11.48)
for each separate channel (pi; si

z) in the basis. On the other hand, some single
particle states are equivalent. For example, the momentum states with nx=3, ny=2
and nz=1 is the same as nx=2, ny=-3 and nz=1 except for a rotation around the
z-axis. Likewise, nx=3, ny=2 and nz=-1 differs only by a parity inversion. The
diagonalization of each of these channel would yield exactly the same results and
needs to be performed only once. The obvious procedure is that of grouping the
model space states according to the same symmetries of the Hamiltonian. In this
way, Eq. (11.48) is typically solved a few tens of times even when the model space is
two orders of magnitude larger. For an Hamiltonian that is invariant under rotation,
parity inversion and spin flipping, the algorithm to separate the basis in groups of
the same symmetry is as follows:

int SpBasisK::Build_groups_table(void ) {

int AbsN_mx = ... // Maximum absolute value of n_x, n_y or n_z

int N_ALLOC_GRPS = ... //Max number of different groups
expected

gr_rep = new int[N_ALLOC_GRPS]; // for each group, keep track
of a representative state

gr_mlt = new int[N_ALLOC_GRPS]; // number of basis states
belonging to a group

int i_mult, i_rep, n1, n2, n3, itmp;

int count=0;
for (int i1=0; i1<=AbsN_mx; ++i1)
for (int i2=i1; i2<=AbsN_mx; ++i2)
for (int i3=i2; i3<=AbsN_mx; ++i3) {

i_mult = 0;
i_rep = -100;
for (int isp=0; isp<this->SpNmax; ++isp) {

n1 = abs(nx[isp]); n2 = abs(ny[isp]); n3 = abs(nz[isp]);

if (n1 > n2) {itmp=n1; n1=n2; n2=itmp;} // order the q.#
s of the orbit isp in

if (n1 > n3) {itmp=n1; n1=n3; n3=itmp;} // increasing
values, according
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if (n2 > n3) {itmp=n2; n2=n3; n3=itmp;} // to i1 < i2 <
i3

if ((n1==i1) && (n2==i2) && (n3==i3)) {
++i_mult;
if (i_rep < 0) i_rep = isp;

}

} // end loop over isp

if (i_rep >= 0) {
gr_mlt[count] = i_mult;
gr_rep[count] = i_rep;
++count;

}

}

this->N_grps = count;

cout << "\n\n A total of " << N_grps << " independent groups
of single particle basis \n";

cout << "states has been found. All states within one group
are equivalent \n";

cout << "under rotation, spin and/or parity inversion.\n";

return N_grps;}

11.4.2 Spectral Function in Pure Neutron and Symmetric
Nuclear Matter

We test the ADC approach for pure neutron matter (PNM) and symmetric nuclear
matter (SNM) using the Minnesota nuclear force [47]. This is a simple semi-realistic
potential that contains only central terms, for different spin and isospin, but no
tensor force. It has often been used in structure studies of light neutron-rich nuclei,
although it fails to predict any saturation of infinite nuclear matter up to very high
densities. Nevertheless, it is a good toy model for describing certain salient features
of nucleonic matter and of quantum liquids in general. In pure neutron matter,
we computed A=N=66 neutrons in a model space truncated at Nmax

sq =36, which is
enough to converge the total energy per particle. For symmetric nuclear matter, we
fill the same unperturbed orbits with Z=66 protons and N=66 neutron. Thus, we
have a total of A=132 nucleons and truncate the model space at Nmax

sq =26. This
requires up to 30 Gb of memory but it is still small enough to be computed on a
high-end desktop. In both cases, the Dyson equation is solved for each value of the
momentum pi as discussed above. We retained Nred=300 Lanczos vectors in every
channel, which is even more than necessary for converging the binding energies and
spectral functions with respect to the Krylov projection.
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Fig. 11.9 Equation of state for PNM (left) and SNM (right) as predicted by the Minnesota two-
nucleon interaction. Different curves show results for different ADC approximations. The ADC(2)
(filled squares), 2p1h-TDA (dot-dashed line) and full ADC(3) (full lines) are calculated using a
Hartree-Fock reference state and unperturbed single particle energies

Total energies per particle are shown in Fig. 11.9, for the reference state (which
is HF) and for different approximations that show the convergence with respect
to the many-body truncation: in order ADC(2), 2p1h-TDA and ADC(3). These
plots already demonstrate one general feature of infinite nucleonic matter: PNM
is relatively weakly correlated and may allow for solutions in MBPT, while
SNM is more correlated and requires more sophisticated all-orders methods. The
correlations energy with respect to the HF reference, Ecorr: D Eg:s: � EHF,
varies between 0.5 and 2 MeV for neutrons but it is twice as much (�4 MeV) for
symmetric matter and independent of the density (note the different scales in the
two panels). Furthermore, the ADC(2) energies for PNM are already very close to
the full ADC(3) results, showing that the calculation is extremely well converged. In
SNM, the situation is different and truncations beyond the second order contribute
to the calculated correlation energy. The difference between 2p1h-TDA and the
ADC(3) is always about 300 keV/A and the trend shows convergence with respect
to the many-body truncation.

The resulting spectral functions from ADC(3) are shown in Fig. 11.10 and
compared to the unperturbed (HF) reference state. Since we are working in a
discrete basis, the results are given for the cartesian momenta pi and only discrete
quasiparticle energies are obtained from Eq. (11.48) [also compare Eqs. (11.4)
and (11.57)]. In order to give a clearer visualization of the spectral distribution,
we fold each state along the energy axis with Lorentzians of width � =1.2 MeV near
the Fermi energy and � =7 MeV otherwise. The corresponding expression of the
spectral function in the HF approximation has no fragmentation and displays only
isolated ı-peaks for each momenta:

SHF.p; szI !/ D Sh;HF.p; szI !/C Sp;HF.p; szI !/ D ı
�
! � "HF.p/

�
; (11.60)
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Fig. 11.10 Spectral function of PNM (top) and SNM (bottom) at nominal saturation density
(� D 0:16 fm�3) from ADC(3). The correlated strength distribution is folded with Lorentzians
along the energy axis. The isolated vertical lines mark the unperturbed HF spectrum and are
normalized to the same height assumed for the Lorentzians, so that a visual comparison with the
correlated distribution is meaningful. The thick line at constant ! marks the Fermi energy, EF , for
the correlated ADC(3) results, which separates the quasihole from the quasiparticle spectrum

where "HF.p/ D p2

2m C vHF.p/ are the HF single particle energies. Equation (11.60)
is plotted as separate spikes in Fig. 11.10, with their height taken to be the same
as for the (normalized) Lorentzians near the Fermi surface. Thus, the unperturbed
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spectral function can be visually compared to the fragmented distribution plotted for
the ADC(3).

Figure 11.10 shows all the general characteristics of the spectral distribution for
infinite systems. At the HF level, each nucleon has an energy spectrum "HF.p/ that
follows the parabolic trend of its kinetic energy but it is otherwise shifted in energy
due to the mean-field HF potential. The density � determines the momentum pF

of the last occupied state according to Eq. (11.54), which in turn sets the Fermi
energy, E.HF/

F D "HF. pF/. When correlations are included the spectrum becomes
fragmented. Again, it is seen that PNM (top panel) is only weakly correlated and
the quasiparticle peaks are almost unchanged near the Fermi surface. Only deeply
bound neutrons, at the smallest momenta, are sensibly fragmented. On the other
hand, the correlated spectral function of SNM is much more fragmented, some
particle strength is visible for small momenta p < pF and likewise there is a
small occupation of states with p > pF. Integrating S.p; szI !/ over the energy
interval 
�1;EF
 yields the momentum distribution (per unit volume), while further
integrating over momenta gives the total nucleon density � [see Eq. (11.10)].

The real and imaginary parts of the self-energy, ˙?.p; szI !/, are shown in
Figs. 11.11 and 11.12 for values of the momentum pi both below and above pF.
Also in these plots, the discrete energy poles are folded by taking a finite value
of � in Eq. (11.58), which corresponds to using finite width Lorentzians for the
imaginary part. In Fig. 11.11, both PNM and SNM have a similar dependence on
momentum that comes form the kinetic energy term in ˙.1/.p/ but there is more
attraction in the second case. This is due to the additional attractive force between
protons and neutrons, which makes SNM bound. Superimposed to this trend is
the energy dependence coming form the coupling to ISCs, which fragments and
spreads the single particle strength over different energies. The imaginary part of
the self-energy encodes the strength of the absorption effects that mix single particle
degrees of freedom to ISCs ones. Thus, it is also directly connected to the mean free
path of nucleons in the system [49]. This term is always positive (negative) for
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Fig. 11.11 Real part of the nuclear self-energy, Re ˙. p; !/, of PNM (left) and SNM (right) at
nominal saturation density (� D 0:16 fm�3), obtained from ADC(3). The Fermi momentum is
kF=1.68 fm�1 for PNM and kF=1.33 fm�1 for SNM. The plots are shown for fixed momenta at
p D 0 fm�1 , at p � 0:87pF (just below pF) and at p � 1:42pF (above pF)
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Fig. 11.12 Imaginary part of the nuclear self-energy, Im˙. p; !/, of PNM (left) and SNM (right)
at nominal saturation density (� D 0:16 fm�3), as calculated from ADC(3). The Fermi momentum
is kF=1.68 fm�1 for PNM and kF=1.33 fm�1 for SNM. Fixed momenta of p D 0 fm�1, at p �
0:87pF and p � 1:42pF are shown

energies below (above) the fermi surface. For pi � 0 the absorption is strongest
at low energies. As one increases p, this becomes weak in the energy region of
hole states and much more stronger correlations are seen for quasiparticle energies
and momenta outside the Fermi sea. Once again the PNM panel shows weak and
more isolated peaks, while SNM is characterized by stronger fragmentation and
absorption (hence, a more collective behavior).

Most of the qualitative features of these self-energies and of the spectral functions
just shown are general for extended correlated fermion systems and are also seen,
for example, in the electron gas or liquid 3He. It is interesting to compare the plots
of Fig. 11.10 to the analogous distribution of a finite system, like the one shown
in Fig. 11.2. In the latter case, the spectral function displays orbits form the shell
structure rather than peaks distributed according to kinetic energy. In all cases,
correlations alter the simple mean-field view. However, the strength near the Fermi
energy tends to remain dominated by single particle structures because of the low
density of ISCs (2p1h, 2h1p and beyond) in that region.

Figure 11.13 compares the results for PNM with the coupled cluster and Monte
Carlo methods introduced in previous chapters. Note that we show correlation
energies, rather than the total energy per particle, to amplify differences among
many-body methods. The largest discrepancy is at the lowest density and amounts
to �50 keV/A. This is 10% of the correlation energy but less than 0.5% of the total
energy. At larger densities, all methods agree to higher accuracy. It is interesting
to see that ADC(3) initially follows configuration interaction Monte Carlo (CIMC)
and then shifts to being closer to CCD as the density increases.
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Fig. 11.13 Total correlation energy for pure neutron matter obtained from the CCD, the config-
uration interaction Monte Carlo (CIMC) and the ADC(3)-sc0 methods that are presented in this
book. See also Sect. 10.3.7 for results based on the IMSRG(2) approach

11.5 Self-Consistent Green’s Functions at Finite
Temperature in the Thermodynamic Limit

We now concentrate on the study of infinite systems at finite temperature and
will set ourselves in the thermodynamic limit, that is number of particles N and
volume V going to infinity with density � D N=V kept constant. The many-body
SCGF approach at finite temperature is particularly suited for this kind of study
because, for appropriate approximations of the self-energy, it is thermodynamically
consistent: a quantity calculated from the microscopic point of view yields the
same result as the thermodynamical macroscopic quantity [30]. This consistency
is strictly related to the fact that a fully dressed propagator, obtained via iterative
solution of the Dyson equation, Eqs. (11.3), is used in the calculation of the
partition function in the Luttinger-Ward formalism [50], from which one extracts
the thermodynamical properties of the system. Furthermore, it can be demonstrated
that this method fulfills the Hugenholtz van-Hove theorem [51], and this once again
relates to the fact that the conservation laws of particle number, momentum and
energy are preserved in this kind of approximation [29, 30].

We will show in this section how to calculate the self-consistent propagator in the
ladder approximation, a specific approximation for the self-energy ˙?.!/ where
particle-particle and hole-hole intermediate scattering states are resummed to all
orders in the so called in-medium T-matrix. We will be working with the effective
Hamiltonian of Eq. (11.16), considering the two-body averaged three-body force
that enters eU as given in Eq. (11.23), and disregarding all irreducible three-body
terms. The Koltun sum rule of Eq. (11.11) is then used to obtain the total energy of
the many-body system. The great advantage of working at finite temperature is that
the appearance of pairing when considering hole-hole intermediate states is washed
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out by thermal effects [52]. Note that a different possibility is to account for pairing
by implementing analogous calculations but in a formalism with both normal and
anomalous propagators (as done in Gorkov theory) [53, 54]. Recently, an improved
treatment of pairing in the SCGF method when going to zero temperature has been
presented in [55]. Within the Luttinger-Ward formalism at finite temperatures, the
entropy can then be calculated via the knowledge of the self-consistent propagator,
and from the entropy all other thermodynamical quantities are accessible. We will
not treat here the calculation of the entropy, for a detailed description we refer the
reader to Chap. 3 of [14].

In the next section, we will give a few hints on the theoretical formalism
and then sketch in the following section the working equations necessary to
perform the numerical implementation. The full self-consistent numerical calcu-
lation considering the complete off-shell properties of the system and considering
fully microscopic potentials was performed by the Gent [56], the Tübingen and
Barcelona [4, 13, 14, 57–60] and the Cracow groups [61–64].

11.5.1 Finite-Temperature Green’s Function Formalism

In a similar way to Sect. 11.2, we start by defining the one-body Green’s function,
however this time as a statistical average in the grand-canonical ensemble:

ig.xt; x0t0/ D Trfb�T Œb .xt/b �.x0t0/
g I (11.61)

here T describes the Wick time-ordered product of the quantum field operators
for the creation, b �.x0t0/, and destruction, b .xt/, of a single-particle state in the
Heisenberg picture. The field operators are related to the operators of creation and
destruction, i.e. a�˛ and a˛, via b �.x0/ D P

˛  
�
˛.x/a

�
˛ and b . x/ D P

˛  ˛.x/a˛,
where the coefficients are the single-particle wave functions of state ˛ and the sum
is over the complete basis set of single-particle quantum numbers. The statistical
factorb� is defined by:

b� D 1

Z
e�ˇ.bH��bN/ ; (11.62)

where ˇ=1/T is the inverse temperature, � is the chemical potential and Z is the
grand-partition function

Z D Tr e�ˇ.bH��bN/ ; (11.63)

with bH the Hamiltonian given in Eq. (11.13), and bN the particle number operator.
The trace in Eq. (11.63) is to be taken over a full set of energy and particle number
eigenstates of the system. The two possible time-ordering products in Eq. (11.61)
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are given by:

T Œb .xt/b �.x0t0/
 D
n b .xt/b �.x0t0/; t > t0
�b �.x0t0/b .xt/; t0 > t :

(11.64)

The first time-ordered product in Eq. (11.64) describes the creation of a particle
state at time t0 with position x0, and the destruction of the propagated particle state
at time t with position x. Analogously, the second time-ordered product describes
the destruction of a particle state, or creation of a hole state, at time t with position
x, and the destruction of the propagated hole state at time t0 with position x0. Using
Eq. (11.64) one can define the correlation functions:

ig>.xt; x0t0/ D Trfb�Œb .xt/b �.x0t0/
g (11.65)

ig<.xt; x0t0/ D �Trfb�Œb �.x0t0/b .xt/
g : (11.66)

Depending on the specific time ordering, the Green’s function defined in Eq. (11.61)
corresponds to one correlation function or the other, i.e. either to Eq. (11.65) or to
Eq. (11.66). It is also useful to define the retarded propagator; this is that part of the
one-body Green’s function which is related only to the causal propagation of events,
i.e. forward in time:

gR.xt; x0t0/ D �.t � t0/Œg>.xt; x0t0/� g<.xt; x0t0/
 : (11.67)

In the following we will be dealing with the imaginary time domain, also known
as Matsubara formalism to solve for the Green’s function. One could equivalently
well work in the real-time domain and reach the same result [64]. The quantum field
operators of creation and destruction in Heisenberg picture

b .�/.xt/ D eibHtb .�/.x0/e�ibHt (11.68)

carry a resemblance between the thermal weight factor eˇbH and the time evolution

operator eibHt when considering the imaginary time domain t D �iˇ. If one includes
the expression (11.68) in the definition of the correlation functions, Eqs. (11.65)
and (11.66), it can be proved that for a certain imaginary time domain there is
absolute convergence of the two expressions, specifically in the intervals �iˇ <

t � t0 < 0 for g> and 0 < t � t0 < iˇ for g<. Furthermore, it can be shown that the
two correlation functions are related to one another at one of their imaginary time
boundaries, providing the important relation:

g<.x; t D 0I x0; t0/ D eˇ�g>.x; t D �iˇI x0; t0/ : (11.69)

Thanks to the invariance under space translation of an infinite system and to
time translational invariance, the Green’s function only depends on the differences
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r D x � x0 and � D t � t0. Consequently, by exploiting the quasi-periodicity relation
of the Green’s function along the imaginary time axis given in Eq. (11.69), one
can write a discrete Fourier representation for the one-body Green’s function in
the frequency domain:

g.r; �/ D
Z

d3p

.2�/3
eipr 1

�iˇ

X
�

e�iz��g.p; z�/ ; (11.70)

where z� D ��
�iˇ C � are the Matsubara frequencies for odd integers � D

˙1;˙3;˙5; : : : The Fourier coefficients are then given by the inverse transforma-
tion:

g.p; z�/ D
Z

d3r
Z �iˇ

0

d� e�iprCiz��g. r; �/ : (11.71)

These coefficients are evaluated for an infinite set of complex frequencies z� ,
corresponding to the imaginary time domain, however one would like to understand
the properties of the physical propagator, i.e. in the real time and frequencies
domain. To do so let’s go back to the expressions of the correlation functions,
Eqs. (11.65) and (11.66), and write down their Fourier transform:

g>.p; !/ D i
Z

d3r
Z C1

�1
d� e�iprCi!�g>.r; �/ ; (11.72)

g<.p; !/ D �i
Z

d3r
Z C1

�1
d� e�iprCi!�g<.r; �/ : (11.73)

These two quantities now define the spectral probability to attach or remove a
particle with an energy ! and momentum p to or from the many-body system (we
omit for simplicity the spin and isospin quantum numbers). The sum of these two
functions is a positive quantity and yields the spectral function at finite temperatures:

A.p; !/ D g>.p; !/C g<.p; !/ : (11.74)

An important feature of the spectral function is that it fulfills the sum rule

Z C1

�1
d!

2�
A.p; !/ D 1 ; (11.75)

which is consistent with the interpretation of A.p; !/ as a probability of leaving the
system in a state of energy ! by either adding or removing a nucleon of momentum
p. Below, we show how A.p; !/ relates to its zero temperature counterpart,
Eqs. (11.4).
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Using Eq. (11.69) in Eqs. (11.72) and (11.73), we can write the Fourier transform
of the periodicity condition

g>.p; !/ D eˇ.!��/g<.p; !/ ; (11.76)

and considering the definition of the spectral function, we can write the correlation
functions in momentum and frequency as:

g<.p; !/ D f .!/A.p; !/ ; (11.77)

g>.p; !/ D Œ1 � f .!/
A.p; !/ ; (11.78)

where f .!/ D 1

eˇ.!��/C1 is the Fermi-Dirac distribution function. These expressions
show that, once the spectral function is known, it is easy to access the correlation
functions. A similar relation can be found between the spectral function and the
Fourier coefficients of Eq. (11.71):

g.p; z�/ D
Z C1

�1
d!0

2�

A. p; !0/
z� � !0 : (11.79)

The previous expression is performed for a given infinite set of Matsubara frequen-
cies in the complex plane. However we would like to extend this to the entire
complex plane, especially close to the real axis, which corresponds to physical
frequencies. It can be demonstrated that this analytical continuation is possible and
one can safely replace z� ! z, where z is a continuous energy variable in the
complex plane [29]. Equation (11.79) then relates the Green’s function g.p; z/ in
the complex plane to the spectral function A.p; !/ and is referred to as the spectral
decomposition of the single-particle propagator. Similarly, one could write the real-
time Fourier transform for the retarded propagator defined in Eq. (11.67):

gR.p; !/ D
Z C1

�1
d!0

2�

A. p; !0/
!C � !0 ; (11.80)

with !C D !C i�. This quantity is equal to evaluating the Green’s function slightly
above the real axis, i.e. gR.p; !/ D g.p; !C/. This equality is of fundamental
importance. In fact, it tells us that, by knowledge of the spectral function, there exists
a Green’s function g.p; z/ which corresponds both to the Green’s function at the
Matsubara frequencies, z D z� , and also to the retarded propagator for frequencies
slightly above the real axis, z D ! C i�. This means that the information carried by
the coefficients in Eq. (11.79) can be analytically continued to the real axis, and so
to a physical propagator. Furthermore, exploiting the Plemelj identity,

1

! ˙ i�
D P
!
� i�ı.!/ ; (11.81)

one can separate the real and imaginary part of the propagator in Eq. (11.80), and it
can be checked that the imaginary part of the retarded propagator is proportional to
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the spectral function:

A.p; !/ D �2 Im g.p; !C/ : (11.82)

Furthermore, the Dyson equation given in Eq. (11.3) can be rewritten in an algebraic
form as follows:

g.p; !C/ D 1

Œg.0/.p; !C/
�1 �˙?.p; !C/
; (11.83)

and combining Eq. (11.83) with Eq. (11.82), one can express the spectral function
as:

A.p; !/ D �2 Im˙?.p; !C/
Œ! � p2

2m � Re˙?.p; !/
2 C ŒIm˙?. p; !C/
2
: (11.84)

The numerical calculation that one has to perform requires self-consistency between
Eq. (11.84) and an appropriate approximation for ˙?.p; !/. Self-consistency is
achieved once the spectral function inserted in the calculation of the irreducible
self-energy is equal to the one obtained by solving Eq. (11.84).

Before going on, it is interesting to point out that in the limit of zero temperature,
the spectral decomposition of the one-body propagator given in Eq. (11.79) can be
separated into two pieces:

g.p; !/ D
Z 1

"F

d!0 Sp.p; !0/
! � !0 C i�

C
Z "F

�1
d!0 Sh.p; !0/

! � !0 � i�
; (11.85)

The Sp.p; !/ and Sh.p; !/ correspond to the particle and hole spectral functions,
which were already introduced in Eqs. (11.4). Notice however that, unlike in
Eqs. (11.4), we have one single Fermi energy "F ("F = "C

0 = "�
0 ) in the integrals

domain because the gap disappears in an infinite gas or a normal Fermi liquid. In an
uncorrelated system, this energy defines the last filled level and hence corresponds
to the energy needed to remove a particle from the many-body ground state. In
the case of an interacting system, not in the superfluid nor in the superconducting
phase, "F equals the chemical potential �, and corresponds to the minimum energy
necessary to add or remove a particle to/from the many-body system. Consequently,
the expression for the spectral function given in Eq. (11.84) can be divided into two
parts:

Sp.p; !/ D� 1

�

Im˙?.p; !/

.! � p2

2m � Re˙?.p; !//2 C .Im˙?.p; !//2
! > "F ;

(11.86a)

Sh.p; !/ D 1
�

Im˙?.p; !/

.! � p2

2m � Re˙?.p; !//2 C .Im˙?.p; !//2
! < "F ;

(11.86b)
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resembling the structure of Eqs. (11.4).
With all the basic formalism in place, we still need to devise a proper conserving

approximation to the self-energy ˙?.p; !/. For applications to infinite nucleonic
matter this is done by summing infinite ladders of two-particle and two-hole
configurations inside the medium. Hence, the first two diagrams of this expansion
are those of Figs. 11.4a and 11.5a. This approximation is analogous to the series
generated in Eq. (11.35) and Exercise 11.3 except that it is resummed in the RPA
way.2 In the next subsection we will sketch the main steps that have to be taken to
perform the numerical implementation of SCGF calculations at finite temperature
and introduce the working equations of the ladder expansion of the self-energy along
the way.

11.5.2 Numerical Implementation of the Ladder
Approximation

Figure 11.14 shows the iterative scheme that needs to be implemented numerically
for self-consistent calculations. This is for the case of both two-body and three-
body forces, when working with the HamiltonianeH1 of Eq. (11.16) and disregarding
irreducible three-body terms. The fundamental quantities that one has to compute
are the non-interacting two-body Green’s function, the in-medium T-matrix and
the irreducible self-energy, which are depicted in the three light blue boxes with
their respective Feynman diagrams. The diagrams are a direct way to write down
the complicated mathematical expressions that one has to solve numerically (see
Appendix 1 for the T=0 case). The one-body and two-body effective nuclear
potentials are depicted in the central orange boxes. These are similar to the
contributions given in Fig. 11.3, except for the one-body effective potential in which
the first term is zero for infinite matter and the last term where we approximate the
contribution of the three-nucleon force by averaging only with two independent
correlated density matrices. Figure 11.14 shows the correct multiplying factor, as
in Eq. (11.23) [6, 65]. As can be seen from this scheme, all quantities in blue or
orange boxes are fed with the spectral function, the left red box, which is then
computed iteratively by solving the Dyson equation, in the form of Eq. (11.84), until
convergence. The criteria for reaching self-consistency is usually to compare the
chemical potentials of two consecutive iterations, which is computed using A.p; !/.

2Note that particle-hole summations, corresponding to the ring diagram of Fig. 11.5b, represent a
formidable task in nucleonic matter and have been almost always disregarded in SCGF studies of
infinite matter. This is in contrast to Green’s function studies of the electron gas and solid state
materials, where rings are necessary to screen the Coulomb interaction while ladders can often be
neglected.
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Fig. 11.14 The structure of a ladder SCGF calculation including both two-body and three-body
forces through the definition of effective interactions (see text for details). Each quantity is also
represented via the corresponding Feynman diagram

For clarity, we will distinguish between the wording calculation and iteration:
we will refer to calculation as the whole set of several iterations necessary to get to
a converged result for the spectral function, in this sense Fig. 11.14 depicts exactly
one iteration. For a more in depth explanation of the numerical details the reader
can refer to [13, 14].

Each calculation is performed at a specific density � and temperature T of the
system. One starts the first iteration with a guess of the spectral function, which is
given in terms of the imaginary, Im˙?.p; !/, and real, Re˙?.p; !/, parts of the
irreducible self-energy. When possible, it is convenient to start with a converged
solution for these quantities at different values of � and T.

• Numerical tips for the .p; !/ meshes: The mesh of the single-particle momen-
tum p for the self-energy is adjusted during the first iteration to be more dense
around the Fermi momentum pF corresponding to the specific density considered:
Np D 70 mesh points are enough, considering linear meshes at low momentum
and around the Fermi momentum, and a logarithmic mesh for the tail all the way
up to a value � 10pF. The mesh in the single-particle energy ! has to be very
dense because of the complicated features of the spectral function, especially
near the quasiparticle peak. Storing a dense mesh at each iteration is demanding
in terms of memory; for this reason one saves separately the imaginary and
real part in a dilute linear mesh, typically of N! � 6000 points in the interval
[�2000:15000]MeV. This is interpolated during the iterations to denser meshes
of N! � 30000 points, in order to have a good description of the spectral function
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in the energy domain. However, the mesh in energy is adjusted in different ways
during the iteration according to the specific quantities that one has to calculate
(two-body propagator, T-matrix, etc.) as it will be explained later on.

We will now enumerate the steps to perform a complete iteration.

1. Given a previously computed self-energy, the first step is to extract the cor-
responding single particle spectrum, which describes the centroid position of
quasiparticle peaks for each momentum:

".p/ D p2

2m
C Re˙.p; ".p// ; (11.87)

which will be used throughout the new iteration.
2. The density �, temperature T and spectral function A.p; !/ are the inputs

to calculate the next fundamental quantity: the chemical potential �. This is
obtained from the sum rule for the density:

� D �d

Z
dp
2�3

Z C1

�1
d!

2�
A. p; !/f .!; �/ ; (11.88)

where �d is the degeneracy of the system (�d=2 for pure neutron and �d=4
for isospin symmetric matter), the temperature enters through the Fermi-Dirac
function, f .!; �/, and we have also made explicit its dependence on �.

• Numerical tips for the � mesh: One chooses a sample mesh of chemical
potentials � to insert in f .!; �/ and then solves Eq. (11.88). For each point �
one gets a value of density �. Parametrizing � as a function of �, one can then
find the value of � which corresponds to the correct density of the system.
The mesh of � can be initially distributed around the value of the single-
particle spectrum calculated at pF (in the case of a zero temperature calculation
the relation ". pF/ D � holds), and then adjust the mesh testing if the limits
include the value of the external density.

It must be noted that both the single-particle spectrum ".p/ and the spectral
function A.p; !/ that enter Eq. (11.88) come from a previous iteration that was
based on a different value of �. In this sense, the old value of the chemical
potential is implicitly carried over throughout the new iteration. However, these
will end up coinciding when self-consistency is reached at the end of the
calculation.

3. At this point the imaginary part of the non-interacting two-body Green’s function
can be computed. The lowest order approximation of the two-body propagator
corresponds to the independent propagation of two fully dressed particles and
was discussed in Example 11.1 for the case of zero temperature. This includes
two terms, a direct and an exchange one, as depicted diagrammatically in
Fig. 11.14. Since we are working with dressed propagators we should refer to
Eqs. (11.21) and (11.22), however both the direct and exchange terms must be
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included in our GII;f
pphh. The imaginary part of this quantity extended to finite

temperatures reads:

Im GII;f
pphh.˝CIp;p0/ D �1

2

Z C1

�1
d!

2�
A.p; !/A.p0;˝�!/Œ1�f .!/�f .˝�!/
 :

(11.89)

where ˝C is the sum of the energies of the two particles close to the real axis.
This expression is derived from a sum over Matsubara frequencies of a function
with a double pole on the real-energy axis via use of the Cauchy theorem [14].

• Numerical tips for the ! mesh: The integrand of Eq. (11.89) will be
particularly hard to resolve in regions where the two spectral functions are
peaked, at energies where ! � ".p/ and ! � ˝ � ".p0/. It can be shown
that a convenient variable change makes these energies independent of the
momenta p and p0, so that one is safe with defining an energy mesh accurately
distributed around only two specific points (see [14] for details). To obtain the
spectral function in this specific mesh one interpolates the imaginary and real
self-energies to this mesh and then uses Eq. (11.84).

4. From the imaginary part it is then possible to obtain the real-part of the non-
interacting two-body Green’s function via a dispersion relation:

Re GII;f
pphh.˝Ip;p0/ D �P

Z C1

�1
d˝ 0

�

Im GII;f
pphh.˝

0CIp;p0/
˝ �˝ 0 : (11.90)

5. In practice, GII;f
pphh has to be averaged over angles. This is necessary to circumvent

the coupling of partial waves with different total angular momentum J which
appear in GII;f

pphh. The average is performed over the angle formed by the center
of mass momentum P D pC p0 and the relative momentum of the two nucleons
k D .p � p0/=2. This strategy will facilitate solving the in-medium T-matrix
equations to evaluate the effective interaction in the medium. The average reads:

GII;f
pp;hh.˝CIP; k/ D 1

2

Z C1

�1
d cos� GII;f

pp;hh.˝CI jP=2Ckj; jP=2�kj/ : (11.91)

6. The two-body propagator together with the nuclear potential are then used to
obtain the in-medium T-matrix. The exact equation for this is of Lippmann-
Schwinger type:

hk0jT.˝C;P/jki D hk0jeVj kiC
Z

dk1hk0jeVjk1iGII;f
pp;hh.˝CIP;k1/hk1jT.˝CIP/jki :

(11.92)

As explained previously, this is a ladder resummation of particle-particle and
hole-hole diagrams, this differs with respect to the Brueckner G-matrix presented
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in Chap. 8 because it includes hole-hole diagrams and considers the full off-
shell description of the spectral function (that is, the dressed propagator). As
seen from Fig. 11.14, the potential to be included is the sum of a bare two-body
potential and an averaged three-body one. Details on the numerical solution
for the averaged three-body force are given in the next section, while working
equations for three-nucleon chiral forces are reported in Appendix 2.

Here, we make an approximation and substitute the two-body propagator
with its angle-averaged version (11.91). Since the latter depends only on the
magnitudes of momenta P and k, our Eq. (11.92) reduces to a one dimensional
integral and decouples in total angular momentum, spin and isospin:

hk0jTJ S T .˝C;P/jki

D hk0jeVJ S T jki C
Z

1

0

dk1 k1
2 hk0jeVJ S T jk1iGII;f

pp;hh.˝CIP; k1/hk1jTJ S T .˝CIP/jki :
(11.93)

Going beyond Eq. (11.91) with fully dressed (off shell) propagators is extremely
difficult and, to our knowledge, there is no available implementation of SCGF
that can treat Eq. (11.92) exactly. However, estimates in Brueckner-type calcula-
tions suggests that the error introduced by the angle averaging is small [66, 67].
Equation (11.93) is a one dimensional integral equation for each allowed
combination of J; S; T and has at most two coupled values of L, due to the
tensor component of the nuclear interaction. It must be noted that the nuclear
interaction eV considered in Eq. (11.92) is the effective two-body operator given
in Eq. (11.17b). By means of a discretization procedure, the equation for the
T-matrix is converted into a complex matrix equation which can be solved via
standard numerical techniques [14]. A matrix inversion has to be performed to
solve this equation. This can be quite demanding if the dimension of the matrix
is large.

• Numerical tips for the k1 and˝ mesh: It is important to sample in a correct
manner the number of integration mesh points without loosing physical
information. This is achieved by sampling conveniently the region where
GII;f

pp;hh is maximum in the relative momentum k1 (for ˝ > 0 this is close

to the pole k1 D
p

m˝) and the high relative momentum region, where GII;f
pp;hh

might not be negligible due to correlations. Furthermore the T-matrix has a
node for ˝ D 2�, so an accurate mesh for the bosonic energies around this
value is needed for the computation of the self-energy in the next steps.

At low temperatures, the appearance of bound states signals the onset of the
pairing instability. This would directly appear as a pole in the matrix which has
to be inverted to solve the Lippmann-Schwinger equation, for P D 0 and ˝ D
2� [68]. However, this should be seen only below a critical temperature which
is around Tc � 4MeV. For this reason, calculations should not go below this
border line in temperature. Especially in the case of symmetric nuclear matter,
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convergence starts to become slow and difficult to control when approaching
this temperature and for increasing densities. This is due to the neutron-proton
pairing in the coupled 3S1 �3 D1 channel. In pure neutron matter, where this
channel is not available, convergence is good for higher densities, and even for
lower temperatures.

7. The remaining step in the SCGF method is the computation of the self-energy
from the T-matrix. The first quantity to be obtained is the imaginary part of the
self-energy:

Im˙?.p; !C/D
Z

dp0

.2�/3

Z
C1

�1

d!0

2�
hpp0jIm T.!CC!0;P/jpp0iA.p0; !0/Œf .!0/Cb.!C!0/
;

(11.94)

where b.˝/ D 1

eˇ.˝�2�/�1 is the Bose function. We recall that the expres-
sion (11.94) is also obtained from a summation over Matsubara frequencies of a
function with two poles on the real energy axis [14].

• Numerical tips for the p0 and !0 meshes: A momenta and energy integrals
have to be performed, taking special care for the pole in energy of the Bose
function b.˝/. This pole is canceled by the node we had previously mentioned
in the T-matrix, for this reason it comes in hand that we had already defined a
convenient mesh for˝ around the node.

8. The real part of the self-energy is then obtained from its imaginary part by means
of the dispersion relation:

Re˙?.p; !/ D ˙.1/.p/� P
Z C1

�1
d!0

�

Im˙?. p; !0C/
! � !0 : (11.95)

The ˙.1/ is the correlated Hartree-Fock part of the single-particle self-energy
that is defined by Eqs. (11.17a) and (11.19). We now approximate this according
to Eq. (11.23), where the three-body interaction is averaged over two non
interacting particles. This can be explicitly written as:

˙.1/.p/ D
Z

dp0

.2�/3
n.p0/

h
hpp0jV2NFjpp0i C 1

2
hpp0jeV3NFjpp0i

i
; (11.96)

where V2NF and eV3NF correspond respectively to the first and second terms in
Eq. (11.17b).eV3NF is a one-body averaged three-nucleon force, detailed descrip-
tion on how to calculate this quantity and the momentum distribution n.p/,
together with an additional numerical sample code, are given in Sect. 11.5.3.

Finally, the spectral function can be obtained via Eq. (11.84) and the procedure
starts again from step 1. until a consistent result is achieved for the chemical
potential. It must be kept in mind that, according to the mesh points in which the
spectral function is needed, the interpolation is done on the imaginary and real part
of the self-energy, and not directly on the spectral function. This is done in order
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to avoid incorrect samplings of the structure of the spectral function which could
induce numerical inaccuracies. We must point out that the energy mesh for the
evaluation of the spectral function must be accurate enough to reproduce not only
the quasiparticle peak region but also the low and high-energy tails that characterize
the spectral function (especially for large momenta in the case of hard interactions).

To calculate the total energy of the system, we make use of the modified
Koltun sum rule given in Eq. (11.11). Consequently we need to evaluate the
expectation value of the three-body operator hbWi. As already stated in Sect. 11.2.1,
we approximate this expectation value to its first-order term, which in infinite matter
corresponds to the integral over three independent but fully correlated momentum
distributions n.p/. The integral to be evaluated is given by the expression:

hbWi ' �d

�

1

6

Z
d p
.2�/3

Z
dp0

.2�/3
n.p/n.p0/hpp0jeV3NFjpp0i ; (11.97)

with �d the degeneracy of the system and the averaged three-body force, eV3NF, is
discussed in the next section. Once eV3NF is known, the total energy per nucleon of
the system can be calculated via the modified Koltun sum rule:

E

A
D �d

�

Z
dp
.2�/3

Z
d!

2�

1

2

n p2

2m
C !

o
A.p; !/f .!/ � 1

2
hbWi ; (11.98)

which is equivalent to Eq. (11.11).

11.5.3 Averaged Three-Body Forces: Numerical Details

The inclusion of one-body averaged three-nucleon forces eV3NF enters the calcula-
tions presented in the previous section through Eqs. (11.92), (11.96) and (11.97).
Its computation requires traces over the spin and isospin quantum numbers of
the averaged particle, in this case the third particle, and an integration over its
momentum p3:

hp0

1p
0

2jeV3NFjp1p2iA D Tr�3Tr�3

Z
dp3
.2�/3

n.p3/hp0

1p
0

2p3jW3NF.1�P13�P23/jp1p2p3iA12 ;
(11.99)

where pi are single-particle momenta of particles i D 1; 2; 3 and W3NF is the third
term on the right hand side of Eq. (11.13); we have omitted the spin/isospin indices
in the potential matrix elements for simplicity. The ket on the right hand side of
Eq. (11.99) is antisymmetrized only with respect to particles 1 and 2, i.e. A12 D .1�
P12/=2; this part is not affected by the averaging procedure over the third particle.
Pij D .1 C � i � � j/.1 C �i � �j/=4 is the permutation operator of momentum and
spin/isospin quantum numbers of particles i and j. The momentum distribution that
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appears in Eq. (11.99) can be obtained directly from the spectral function, via the
relation:

n.p/ D
Z C1

�1
d!

2�
A.p; !/f .!/ (11.100)

Let us give some details on the numerical implementation of Eq. (11.99) with
regards to the mesh for the internal momentum p3 and the calculation of the
distribution n.p3/ via Eq. (11.100):

• We start with the definition of the mesh necessary to calculate the integral over
the internal momenta p3. Considering that in the integral we deal with a dressed
distribution function n.p3/, which may have populated states at high momentum,
we need to cover momenta up to a certain high value in which it is sure that the
n.p3/ has reached zero. One may choose to compose this of an arbitrary number
imesh-1 of Gauss-Legendre meshes (in the example shown below, imesh=4),
with each mesh spanning a region of width 2=3pF. This width is chosen to cover
accurately the behavior of the distribution function below, across and above the
Fermi momentum pF. Finally, high-momentum points are included through an
additional tangential mesh. We have 100 points in the Gauss-Legendre meshes,
and 50 in the tangential one.

• One then needs to calculate the momentum distribution function by means of
Eq. (11.100). To do so, we extract the spectral function on the fly, from the self-
energy of the previous iterative step. The values of the imaginary and real part of
the self-energy are stored at each iteration for different points in the momentum
and energy space: for the momentum we typically have Np D 70 mesh points
with values ranging from 0 to 3000 MeV/c; for the energy, it is sufficient to cover
a smaller range of values than the one actually stored, but a much finer mesh is
useful to simplify the integrations. We perform a spline interpolation of the stored
energy values of the imaginary and real parts of the self-energy to a fine linear
energy mesh of N!;spline D 30000 in the interval of�[�2000:5000]MeV. These
values are used to calculate the spectral function [see Eq. (11.84)] necessary
to evaluate Eq. (11.100) correctly: with the fine energy mesh this integration is
easily performed across the quasiparticle peak via the trapezoidal rule. Finally,
one can linearly interpolate the values obtained for n.p/ to the mesh of p3 in
order to perform the integration of the averaged force, Eq. (11.99). In doing this,
the values of n.p3/ outside the range of the original Np D 70 mesh are set to
zero.

Here we show a simple Fortran code to perform the previous two steps (gauss() is
a standard routine to generate a Gauss-Legendre mesh; splin() and splin2()
are used to perform spline interpolations; linint() performs linear interpola-
tions):
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! ... MOMENTA MESH FOR INTEGRALS OVER MOMENTUM DISTRIBUTION

write(*,*) "Correlated distribution function for averaged 3BF
integration"

! choose number of mesh regions for momenta p3, (imesh-1)
gauss set + 1 tangent set for farther points

imesh = 4

! choose number of points for gauss and tangent sets
Np1=100 ! gauss
Np2=50 !tangent
Np3=(imesh-1)*Np1+Np2 ! total number of mesh points

itmp = MAX(Np1,Np2) ! for the auxiliary arrays always allocate
the largest between Np1 and Np2

ALLOCATE(xp3(Np3),wp3(Np3))
ALLOCATE(xaux( itmp ),waux( itmp ))

! initialize variables
xp3=0d0
wp3=0d0

! first mesh point
pin = 0d0

do im = 1, imesh-1 ! loop over linear regions

! reset auxiliary variables at each region
xaux=0d0
waux=0d0

pfin = im*(2d0/3d0)*pF ! set final point of mesh region
according to Fermi momentum pF

! ... gaussian set of points for momenta p3 from pin to
pfin

call gauss(pin,pfin,Np1,xaux,waux)

! copy points to final vector for mesh p3
do ip3=1,Np1

xp3(ip3+(im-1)*Np1)= xaux(ip3)
wp3(ip3+(im-1)*Np1)= waux(ip3)

enddo

pin = pfin ! set last point of previous region to first
point of next region

enddo

! ... create the tangent set for higher momenta
call gauss(0d0,1d0,Np2,xaux,waux) ! gauss set [0,1] to be

mapped to the interval [pin,+infinity]
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c=10d0*pF/tan(pi/2.d0*xaux(Np2))
do ip3=1,Np2

xp3(ip3+(im-1)*Np1)=c*tan(pi/2.d0*xaux(ip3))+pin
xxw=cos(pi/2.d0*xaux(ip3))
xxw=xxw*xxw
wp3(ip3+(im-1)*Np1)=pi/2.d0*c/xxw*waux(ip3)

enddo

! ... obtaining correlated momentum distribution

! ... FINE ENERGY MESH WHERE CALCULATIONS ARE DONE
! ... allocate energy mesh for calculation of momentum

distribution
N_fine=30000
ALLOCATE(xmom(N_fine))
ALLOCATE(xmp(Np))

wi=-2000.d0 !MeV initial energy for spectral function
wf=5000.d0 !MeV final energy for spectral function
dw=(wf-wi)/dble(N_fine-1)

! ... LOOP OVER PMESH
do ip=1,Np ! this is the mesh of stored momenta (usually Np ~

70)

edp=xpmesh(ip)**2/(2.d0*xmass) ! kinetic spectrum

do iw=1,Nwac
auxre(iw)=xreal_sigma(ip,iw) ! real part of self-energy
auxim(iw)=ximag_sigma(ip,iw) !imaginary part of self-

energy
enddo

! obtain derivatives of the self-energy for later splines
call spline(w_actual,auxim,Nwac,yspl,yspl,d2im)
call spline(w_actual,auxre,Nwac,yspl,yspl,d2re)

! ... LOOP OVER WFINE
do iif=1,N_fine

w_fine = wi + dble(iif-1)*dw
wfine(iif)=w_fine
fdfine=fermi(t,xmu,w_fine) !Fermi-Dirac distribution

! .. Spline interpolation in fine energy mesh
call splin2(w_actual,auxim,d2im,Nwac,w_fine,ximsig)
call splin2(w_actual,auxre,d2re,Nwac,w_fine,xresig)

! ... Spectral function
sf=-ximsig/( (w_fine - edp - xresig)**2 + ximsig**2 )/pi

! ... momentum distribution
xmom(iif)=sf*fdfine
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enddo ! END LOOP OVER WFINE

! performs the integration over energy (trapezoidal rule)
call trapz(w_fine,xmom,N_fine,mom)
xmp(ip)=mom

enddo ! END LOOP OVER MOMENTA

! ... interpolation of momentum distribution to mesh xp3 for
integrals

call linint(xpmesh,xmp,Np,xp3,xnp3,Np3)

! ... set the extrapolated values of n(p) to zero, mesh points
xp3 beyond initial mesh xpmesh

do ip3=1,Np3
xnp0=xp3(ip3)
if(xnp0.gt.xpmesh(Np)) xnp3(ip3)=0d0
if(xnp0.lt.0d0) xnp3(ip3)=0d0

enddo

DEALLOCATE(xaux,waux,xmom,xmp)

Note that the chemical potential � enters the calculation of the averaged
three-body force, via the Fermi-Dirac function in the expression for momentum
distribution, Eq. (11.100). For this reason it is best to compute Eq. (11.99) after step
2 of the iterative procedure presented in the previous section. For further details on
including three-body forces in a SCGF infinite matter calculation we refer the reader
to [69].

11.6 Concluding Remarks

This chapter concludes an overview of the major methods based on Fock space,
which are covered in Chaps. 8, 10 and 11 of this book. All these approaches have
the common feature that their computing requirements scale only polynomially with
the increase of particle number. This feature has permitted to push ab initio studies
of atomic nuclei up to medium-mass isotopes: a progress that would have seemed
unthinkable until just a decade ago.

Here, we have focused on many-body Green’s function theory, which is arguably
the most complex of these formalisms but it has the advantage of providing a unique
and global view of the many-particle structure and dynamics. The spectral function
is extracted directly from the physics information contained in the one-body Green’s
function and gives an intuitive understanding of correlations (that is, features that
go beyond a simple mean-field description) of the system. Besides, expectation
values of observables can be calculated easily, including binding energies. The
formalism of SCGF is so vast that even a dedicated monograph would not be able
to cover it in full. In this chapter, we have focused on presenting the two most
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important techniques that are currently used in modern ab initio nuclear theory.
In the first case, the Algebraic Diagrammatic Construction method proves to be
particularly suited for the study of finite nuclei, but can as well be applied to
infinite matter, as was demonstrated in this chapter. In the second case, we looked
at how one can solve the Dyson equation directly in momentum space for extended
systems. The latter is an important aspect since the formalism allows to construct
a fully-dressed propagator at finite temperature, which grants the method to be
thermodynamically consistent, preserving all the fundamental laws of conservation.
For these cases we also discussed the most relevant steps and knowhow necessary
for implementing SCGF calculations. Furthermore, we provided working numerical
codes that can solve the same toy models used as examples throughout this book:
a four-level pairing Hamiltonian and neutron matter with a Minnesota force. While
these applications are simple, the codes we provide already contain the most crucial
elements and could be easily extended to real applications (in nuclear physics and
other fields too!). We hope this chapter can be the starting point for readers interested
in working with many-body Green’s functions, starting from the sample codes
presented and making use of numerous tips provided for the numerical solutions.

What we did not touch upon, due to lack of space, are the most advanced
techniques that have been introduced in recent years or that are still under
development. Improving accuracy in calculating open shell isotopes, describing
excited spectra, accessing deformed nuclei and describing pairing and superfluidity
at finite temperatures are some among the compelling challenges that are to be
addressed and that will be crucial to the study of exotic nuclei at future radioactive
beam facilities. Likewise, the methods described in this chapter can be extended
to novel applications in nuclear physics, besides the structure and reactions with
unstable nuclei. Examples are: understanding the response to electroweak probes
and the interaction of high energy neutrinos with matter; the spectral function (and
hence the individual behavior) of hyperons in finite nuclei and neutron star matter;
how thermodynamic properties of nuclear matter impact stellar evolution. With still
much room for further development, Fock space methods, and the SCGF approach
in particular, are possibly the most promising frontier for advancing first principle
computations on large and complex nuclei. All in all, this is an exciting time not
only for computational nuclear physics itself but also for the quest of an accurate
understanding of nuclear structure and related topics.
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Appendix 1: Feynman Rules for the One-Body Propagator
and the Self-Energy

We present the Feynman rules associated with the diagrams arising in the pertur-
bative expansion of Eq. (11.14) at zero temperature. The rules are given both in
time and energy formulation and a specific example is given at the end. We provide
the general rules for p-body propagators. These arise from a trivial generalization
of the perturbative expansion of the one-body propagator in Eq. (11.14) [33]. At
kth order in perturbation theory, any contribution from the time-ordered product in
Eq. (11.14), or its generalization, is represented by a diagram with 2p external lines
and k interaction lines (called vertices), all connected by means of oriented fermion
lines. These fermion lines arise from contractions between annihilation and creation
operators. In the following we will explicitly include the „ factors. Applying the
Wick theorem to the terms at each order of the above expansion results in the
following Feynman rules. At order k in the perturbation series:

Rule 1: Draw all, topologically distinct and connected diagrams with k vertices,
p incoming and p outgoing external lines, using directed arrows. Each vertex
representing a n-body interaction must have n incoming and n outgoing lines.
For diagrams describing interaction kernels the external lines are not present.

Rule 2: Each oriented fermion line represents a Wick contraction, leading to the
unperturbed propagator i„g.0/˛ˇ .t˛ � tˇ/ [or i„g.0/˛ˇ .!i/]. In time formulation, the t˛
and tˇ label the times of the vertices respectively at the end and at the beginning
of the line. In energy formulation,!i denotes the energy carried by the propagator
along its oriented line.

Rule 3: Each fermion line starting from and ending at the same vertex is an equal-
time propagator and contributes: �i„g.0/˛ˇ .0�/ D �.0/˛ˇ .

Rule 4: For each one-body, two-body or three-body vertex, write down a
factor i

„ U˛ˇ , � i
„ V˛	;ˇı or � i

„ W˛	�;ˇı� , respectively. For effective interactions,
the factors are � i

„eU˛ˇ , � i
„eV˛	;ˇı .

When propagator renormalization is considered, only skeleton diagrams are used in
the expansion. In that case, the previous rules apply with the substitution i„g.0/˛ˇ !
i„g˛ˇ. Furthermore, note that Rule 3 generates interaction-reducible diagrams and
therefore it is not encountered when working with the effective Hamiltonian (11.16).
However, the correlated density matrix �˛ˇ enters the calculations of eU and eV
through Eqs. (11.17).

Rule 5: Include a factor .�1/L where L is the number of closed fermion loops.
This sign comes from the odd permutation of operators needed to create a loop.
The loops of a single propagator are already accounted for by Rule 3 and must
not be included in the count for L.

Rule 6: For a diagram representing a 2p-point Green’s function, add a factor
.�i=„/, whereas for a 2p-point interaction kernel without external lines (such
as ˙?.!/) add a factor i„.
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The next two rules require a distinction between the time and the energy represen-
tations. In the time representation:

Rule 7: Assign a time to each interaction vertex. All the fermion lines connected
to the same vertex i share the same time, ti.

Rule 8: Sum over all the internal quantum numbers and integrate over all internal
times from �1 toC1.

Alternatively, in energy representation:

Rule 7’: Label each fermion line with an energy !i, under the constraint that the
total incoming energy equals the total outgoing energy at each interaction vertex,P

i !
in
i D

P
i !

out
i .

Rule 8’: Sum over all the internal quantum numbers and integrate over each
independent internal energy, with an extra factor 1

2�
, i.e.

R C1
�1

d!i
2�

.

Each diagram is then multiplied by a combinatorial factor S that originates from
the number of equivalent Wick contractions that lead to it. This symmetry factor
represents the order of the symmetry group for one specific diagram or, in other
words, the order of the permutation group of both open and closed lines, once the
vertices are fixed. Its structure, assuming only 2BFs and 3BFs, is the following:

S D 1

kŠ

1

Œ.2Š/2
qŒ.3Š/2
k�q

 
k

q

!
C D

Y
i

Si : (11.101)

Here, k represents the order of expansion. q (k � q) denotes the number of two-
body (three-body) vertices in the diagram. The binomial factor counts the number
of terms in the expansion .bV C bW/k that have q factors ofbV and k � q factors of bW.
Finally, C is the overall number of distinct contractions and reflects the symmetries
of the diagram. Stating general rules to find C is not simple. For example, explicit
simple rules valid for the well-known �4 scalar theory are still an object of
debate [70]. An explicit calculation for C has to be carried out diagram by diagram
[70]. Equation (11.101) can normally be factorized in a product factors Si, each due
to a particular symmetry of the diagram. In the following, we list a series of specific
examples which is, by all means, not exhaustive.

Rule 9: For each group of n symmetric lines, or symmetric groups-of-lines as
defined below, multiply by a symmetry factor Si= 1

nŠ . The overall symmetry factor
of the diagram will be S DQi Si. Possible cases include:

(i) Equivalent lines. n equally-oriented fermion lines are said to be equivalent if
they start from the same initial vertex and end on the same final vertex.

(ii) Symmetric and interacting lines. n equally-oriented fermion lines that start
from the same initial vertex and end on the same final vertex, but are linked
via an interaction vertex to one or more close fermion line blocks. The factor
arises as long as the diagram is invariant under the permutation of the two
blocks.
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(iii) Equivalent groups of lines. These are blocks of interacting lines (e.g. series of
bubbles) that are equal to each other: they all start from the same initial vertex
and end on the same final vertex.

Rule 9(i) is the most well-known case and applies, for instance, to the two
second-order diagrams of Fig. 11.4. Diagram (a) in Fig. 11.4 has 2 upward-going
equivalent lines and requires a symmetry factor Se= 1

2Š
. In contrast, diagram (b) in

Fig. 11.4 has 3 upward-going equivalent lines and 2 downward-going equivalent
lines, that give a factor Se= 1

2Š 3Š
= 1
12

. For an extended explanation on how to calculate
this combinatorial factor and examples for rules 9(ii) and 9(iii) we refer to [33].

As an example of the application of the above Feynman rules, we give here the
formulae for diagram (c) in Fig. 11.5. There are two sets of upward-going equivalent
lines, which contribute to a symmetry factor Se D 1

22
. Considering the overall factor

of Eq. (11.101) and the presence of one closed fermion loop, one finds:

˙
.c/
˛ˇ .!/ D � .i„/

4

4

Z
d!1
2�

� � �
Z

d!4
2�

X
	ı����
������

eV˛	;ı� gı�.!1/ g��.!2/ W���;��� g�� .!3/ g�� .!4/

	 g�	 .!1 C !2 � !/eV��;ˇ� g��.!3 C !4 � !/ : (11.102)

Appendix 2: Chiral Next-to-Next-to-Leading Order
Three-Nucleon Forces

We report the working equations that result from performing analytically the
average of Eq. (11.99) in the specific case of leading order three-nucleon forces,
i.e. next-to-next-to-leading order (NNLO), in the chiral effective filed theory
expansion [71, 72]. At NNLO we have a two-pion exchange (TPE), one-pion
exchange (OPE) and a contact three-nucleon forces (3NF), given respectively by
the following expressions:

W3NF
TPE D

X
i¤j¤k

g2A
8F4�

.� i � qi/.� j � qj/

.q2i CM2
� /.q

2
j CM2

� /
F˛ˇijk �

˛
i �

ˇ
j ; (11.103)

W3NF
OPE D �

X
i¤j¤k

cDgA

8F4���

� j � qj

q2j CM2
�

.� i � �j/.� i � qj/ ; (11.104)

W3NF
cont D

X
j¤k

cE

2F4���

�j � �k ; (11.105)

where the pi are the initial and p0
i are the final single-particle momenta of the ith

nucleon (i D 1; 2; 3), the qi D p0
i�pi are the transferred momenta and � i and �i are

the spin and isospin matrices. The physical constants appearing in these expressions
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are the axial-vector coupling constant gA, the average pion mass M� , the weak pion
decay constant F� and the chiral symmetry breaking constant �� �700 MeV. The

quantity F˛ˇijk in the TPE contribution (11.103) is

F˛ˇijk D ı˛ˇŒ�4M2
�c1 C 2c3qi � qj
C

X
	

c4�
˛ˇ	 �

	
k � k � Œqi � qj
 : (11.106)

The force is regularized with a function that in Jacobi momenta reads:

f .p1;p2; p3/ D f . p; q/ D exp

�
� . p2 C 3q2=4/

�2
3NF

n

; (11.107)

where p D .p1 � p2/=2 and q D 2=3.p3 � .p1 C p2/=2/ are identified only in
this expression as the Jacobi momenta. �3NF defines the cutoff value applied to
the 3NF in order to obtain a three-body contribution which dies down similarly
to the two-body part one. The regulator function is applied both on incoming
.p;q/ and outgoing .p0;q0/ Jacobi momenta. In present numerical calculations,
the approximation of P � p1 C p2 D 0 is used to facilitate the solution of
equations. The averaged terms presented in the following are calculated only for
equal relative incoming and outgoing momentum, i.e. k D k0 with k D jp1 � p2j=2
and k0 D jp0

1 � p0
2j=2; an extrapolation is then applied to obtain the off-diagonal

potential matrix elements [6]. Given these conditions, the regulator on incoming
and outgoing momenta can be defined as a function of f .k; p3/.

Symmetric Nuclear Matter Let’s start with the isospin-symmetric case of nuclear
matter. Evaluating Eq. (11.99) for the TPE term of Eq. (11.103) leads to three
contracted in-medium two-body interactions.

TPE-1 The first term is an isovector tensor term, this corresponds to a 1� exchange
contribution with an in-medium pion propagator:

eV3NF
TPE�1 D

gA �f

2F4�

.� 1 � q/.� 2 � q/
Œq2 CM2

� 

2

�1 � �2Œ2c1M
2
� C c3 q2
 : (11.108)

�f defines the integral of the correlated momentum distribution function weighed by
the regulator function f .k; p3/

�f

�d
D
Z

dp3
.2�/3

n.p3/f .k; p3/ ; (11.109)

where �d is the degeneracy of the system, �d D 2 for pure neutron matter and �d D 4
in the isospin symmetric case. If the regulator function included in Eq. (11.109) were
not dependent on the internal integrated momentum p3, the integral would reduce
to the value of the total density of the system, �, divided by the degeneracy and
multiplied by an external regulator function.
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TPE-2 The second term is also a tensor contribution to the in-medium nucleon-
nucleon interaction. It adds up to the previous term. This term includes vertex
corrections to the 1� exchange due to the presence of the nuclear medium:

eV3NF
TPE�2 D

g2A
8�2F4�

.� 1 � q/.� 2 � q/
q2 CM2

�

�1 � �2

�
n
� 4c1M

2
� Œ�1.k/C �0.k/
 � .c3 C c4/

�
q2.�0.k/C 2�1.k/C �3.k//

C4�2.k/
C 4c4I.k/
o
: (11.110)

We have introduced the functions �i.k/ (i D 0 � 3) and I.k/, which are integrals
over a single pion propagator:

�0.k/ D
Z

dp3
2�

n.p3/
1

ŒkC p3
2 CM2
�

f .k; p3/ ; (11.111)

�1.k/ D 1

k2

Z
dp3
2�

n.p3/
k � p3

ŒkC p3
2 CM2
�

f .k; p3/ ; (11.112)

�2.k/ D 1

2k2

Z
dp3
2�

n.p3/
p23k

2 � .k � p3/2
ŒkC p3
2 CM2

�

f .k; p3/ ; (11.113)

�3.k/ D 1

2k4

Z
dp3
2�

n.p3/
3.k � p3/2 � p23k

2

ŒkC p3
2 CM2
�

f .k; p3/ ; (11.114)

I.k/ D
Z

dp3
2�

n.p3/
Œp3 ˙ k
2

Œp3 C k
2 CM2
�

f .k; p3/ : (11.115)

TPE-3 The last TPE contracted term includes in-medium effects for a 2� exchange
two-body term:

eV3NF
TPE�3 D

g2A
16�2F4�

n
� 12c1M

2
�

�
2�0.k/ �G0.k; q/.2M2

� C q2/
	

� c3
�
12�2�f � 12.2M2

� C q2/�0.k/ � 6q2�1.k/C 3.2M2
� C q2/2G0.k; q/

	
C 4c4�1 � �2

�
.� 1 � � 2/ q2 � .� 1 � q/.� 2 � q/

	
G2.k; q/

� .3c3 C c4�1 � �2/ i.� 1 C � 2/ � . q � k/

��2�0.k/C 2�1.k/ � .2M2
� C q2/G0.k; q/C 2G1.k; q/

	
� 12c1M

2
� i.� 1 C � 2/ � .q � k/

�
G0.k; q/C 2G1.k; q/

	

C 4c4�1 � �2� 1 � .q � k/� 2 � .q � k/
�
G0.k; q/C 4G1.k; q/C 4G3.k; q/

	o
:

(11.116)
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Here we have introduced the function G0.k; q/, which is an integral over the product
of two different pion propagators and defined as follows:

G0;?;??.k; q/ D
Z

dp3
2�

n.p3/
fp03; p23; p43g�

ŒkC qC p3
2 CM2
�

	�
Œp3 C k
2 CM2

�

	 f .k; p3/ ;

(11.117)

where the subscripts 0, ? and ?? refer respectively to the powers p03, p23 and p43 in
the numerator. The functions G?.k; q/ and G??.k; q/ have been introduced to define
the remaining functions, G1.k; q/, G2.k; q/ and G3.k; q/:

G1.k; q/ D �0.k/ � .M2
� C k2/G0.k; q/ �G?.k; q/

4k2 � q2
; (11.118)

G1?.k; q/ D 3�2.k/C k2�3.k/ � .M2
� C k2/G?.k; q/ �G??.k; q/

4k2 � q2
; (11.119)

G2.k; q/ D .M2
� C k2/G1.k; q/C G?.k; q/CG1?.k; q/ ; (11.120)

G3.k; q/ D �1.k/=2� 2.M2
� C k2/G1.k; q/� 2G1?.k; q/�G?.k; q/

4k2 � q2
:

(11.121)

Note that G1?.k; q/ is needed only to define G2.k; q/ and G3.k; q/.
Integrating Eq. (11.99) for the OPE 3NF term, given in Eq. (11.104), leads to two

contributions.

OPE-1 The first one is a tensor contribution which defines a vertex correction to a
1� exchange nucleon-nucleon term. It is proportional to the quantity �f , similar to
what was obtained for the TPE 3NF contracted termeV3NF

TPE�1 [see Eq. (11.108)]:

eV3NF
OPE�1 D �

cD gA �f

8F4� ��

.� 1 � q/.� 2 � q/
q2 CM2

�

.�1 � �2/ : (11.122)

As for theeV3NF
TPE�1 term,eV3NF

OPE�1 is an isovector tensor term.

OPE-2 The second term derived from the 3NF OPE defines a vertex correction to
the short-range contact nucleon-nucleon interaction. It reads:

eV3NF
OPE�2 D

cDgA

16�2F4���

n

�0.k/C 2�1.k/C �3.k/

� �
� 1 � � 2

�
2k2 � q2

2

�

C .� 1 � q � 2 � q/
�
1 � 2k2

q2

�
� 2

q2
� 1 � .q � k/� 2 � . q � k/

1

q2


.�1 � �2/

C 2�2.k/.� 1 � � 2/ .�1 � �2/ C 6I.k/
o
: (11.123)
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11.8 Exercise: Compute Eq. (11.99) for the contact term given in Eq. (11.105).
Demonstrate that it yields a scalar central contribution to the in-medium nucleon-
nucleon interaction proportional to �f with formal expression:

eV3NF
cont D �

3cE�f

2F4���

: (11.124)

Pure Neutron Matter In the case of pure neutron matter, the evaluation of
Eq. (11.99) is simplified. In fact, the trace over isospin is trivial because pairs of
neutrons can only be in total isospin T D 1, thus �1 � �2 D 1. Consequently the
exchange operators reduces only to the momentum and spin part. In operator form
it reads:

Pij D 1C � i � � j

2
: (11.125)

Furthermore it can also be proved that for a non-local regulator, such as Eq. (11.107),
the 3NF terms proportional to c4, cD and cE vanish [73, 74]. Therefore the only non
zero density-dependent contributions in neutron matter are those containing the low-
energy constants c1 and c3 in Eq. (11.103). All of their expressions seen from above
remain valid except for the change in the trace over isospin indices. It follows that
the density-dependent interacting terms obtained in neutron matter will only differ
with respect to the symmetric case ones by different prefactors.

In order to obtain the correct degeneracy for neutron matter, i.e. �d D 2, we need
to replace �f ! 2�f in the eV3NF

TPE�1 contribution of Eq. (11.108) and the eV3NF
TPE�3

contribution of Eq. (11.116), [see also Eq. (11.109)]. The isovector tensor termseV3NF
TPE�1 andeV3NF

TPE�2, given in Eqs. (11.108) and (11.110) must then change prefactor
according to:

eV3NF
TPE�1 W �1 � �2 !

1

2
�1 � �2 ; (11.126)

eV3NF
TPE�2 W �1 � �2 !

1

4
.�1 � �2 � 2/ : (11.127)

The isoscalar part of the density-dependent potential appearing in eV3NF
TPE�3, which

contributes to both a central and spin-orbit terms, must change prefactor according
to:

eV3NF
TPE�3 W 1!

1

3
: (11.128)
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