
189© The Author(s) 2017, corrected publication 2021
J. Floyd, A. Bokulich (eds.), Philosophical Explorations of the Legacy of Alan
Turing, Boston Studies in the Philosophy and History of Science 324,
https://doi.org/10.1007/978-3-319-53280-6_8

Chapter 8
Turing and the History of Computer Music

B. Jack Copeland and Jason Long

Abstract  The story of Turing’s pioneering work in creating the first computer-
generated musical notes in Manchester in 1948–1949 is told, as well as the story of
Christopher Strachey’s work (later Oxford’s first professor of computing), who extended
Turing’s note-playing routines to create computer-generated melodies. Recordings
were made in Turing’s Computing Machine Laboratory by the British Broadcasting
Corporation (BBC) in 1951: by analyzing Turing’s programming manual for the
Manchester machine—the first ever written for a stored-program computer—and utiliz-
ing retrospective computer analysis of the recordings, a kind of “digital archaeology” is
employed in order to reconstruct the Turing-style routines that were used to play the
music recorded by the BBC. These techniques have also enabled us to restore the
recordings. We establish Turing’s leading role in the history of computer music.

8.1  �Introduction

One of Turing’s contributions to the Digital Age that has largely been overlooked is his
pioneering work on transforming the computer into a musical instrument. It’s an urban
myth of the music world that the first computer-generated musical notes were heard in
1957, at Bell Labs in America.1 In fact, about nine years earlier, computer-generated
notes were heard in Turing’s Computing Machine Laboratory at Manchester University.

This chapter analyzes Turing’s groundbreaking work at Manchester, and also
describes how Christopher Strachey, later Oxford University’s first professor of
computing, used and extended Turing’s note-playing routines to create

1 See, for example, Chadabe (2001).

B.J. Copeland (*)
University of Canterbury, Christchurch, New Zealand
e-mail: jack.copeland@canterbury.ac.nz

J. Long
Victoria University of Wellington, Wellington, New Zealand
e-mail: jason.long@ecs.victoria.ac.nz

The original version of this chapter was revised: This chapter was previously published as non-open
access. It has now been changed to open access under a CC BY 4.0 license. The correction to this
chapter is available at https://doi.org/10.1007/978-3-319-53280-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-53280-6_8&domain=pdf
https://doi.org/10.1007/978-3-319-53280-6_8#DOI
mailto:jack.copeland@canterbury.ac.nz
mailto:jason.long@ecs.victoria.ac.nz
https://doi.org/10.1007/978-3-319-53280-6_16

190

computer-generated melodies. Computer-generated music was recorded in Turing’s
Manchester Laboratory by the British Broadcasting Corporation (BBC) in 1951.2
We outline the techniques of digital archaeology, and the sheer detective work,
which led to our reconstruction of the routines that were used to play the music in
this recording, and led also to our restoration of the recording. To set the scene, we
begin with an overview of the historic Manchester computer and of the characters
involved in our story. Then we turn to Turing’s own programming manual for the
Manchester machine—the first ever written for a stored-program computer. We
clarify his notation for the machine’s instructions, and trace in detail how his lines
of code were actually transformed into computer-generated notes. We describe the
computer-assisted search that helped us to reverse engineer the Turing-type melody-
playing algorithms used to produce the music in the recording—algorithms that
ushered in the field of computer music. Our analyses establish Turing’s pioneering
role in the history of computer music.

8.2  �The Hardware

The world’s first electronic all-purpose stored-program computer—the first elec-
tronic universal3 Turing machine—ran its first program in June 1948 (Copeland
2011a, b). Called simply “Baby”, this historic machine was tiny, rough and ready,
and almost entirely lacking in the facilities needed for serious computing. Programs
were entered bit by painstaking bit, using a panel of hand-operated switches to plant
each bit in memory. Output was in the form of bright dots on a tiny glass screen.
Baby was designed by two brilliant engineers, Freddie Williams and Tom Kilburn,
to test their new groundbreaking high-speed electronic memory, the Williams tube.
Around an array of three Williams tubes they wired together the simplest stored-
program computer they could think of (Fig. 8.1).

In later life Kilburn was at pains to deny that Turing had contributed anything to
the Baby (Copeland 2011b). This was highly misleading. For one thing, Turing
contributed the fundamental concept, the very idea of a universal machine that
stores programs of symbolically-coded instructions in its memory. Summarizing his
pre-war work, Turing wrote in 1947:

Some years ago I was researching on what might now be described as an investigation of
the theoretical possibilities and limitations of digital computing machines. I considered a
type of machine which had a central mechanism, and an infinite memory which was con-
tained on an infinite tape. ... [D]igital computing machines ... are in fact practical versions

2 Part of this recording can be heard at http://www.abc.net.au/classic/content/2014/06/23/4028742.
htm. This edition of Midday with Margaret Throsby (ABC Radio National, 23 June 2014) is a
musical tour through Turing’s life and work, on the 102nd anniversary of his birth.
3 Of course, it was a universal machine with a finite memory, a concept introduced by Turing in his
“Intelligent Machinery” (1948), where he spoke (p. 422) of “a universal machine with a given stor-
age capacity”.

B.J. Copeland and J. Long

http://www.abc.net.au/classic/content/2014/06/23/4028742.htm
http://www.abc.net.au/classic/content/2014/06/23/4028742.htm

191

of the universal machine. There is a certain central pool of electronic equipment, and a large
memory, [and] the appropriate instructions for the computing process involved are stored in
the memory (Turing 1947).

Kilburn had stepped into Turing’s world at the end of 1946, when he entered a
dingy London lecture room and sat down to listen to Turing explaining how to build
a computer.4 Williams had recently succeeded in storing a single binary digit on the
face of a cathode ray tube, proving that his computer memory idea worked in prin-
ciple; and so, as Williams said, “the point now had been reached where we’d got to
find out about computers”.5 They heard that Turing was giving a series of lectures
on computer design in London, and it was decided that Kilburn would attend.6 The
lectures ran from December 1946 through to February 1947, and were held in a
conference room at the Adelphi Hotel in the Strand.7 Kilburn was a good pupil,
quickly progressing during the lectures from not knowing (as Williams put it) the

4 The lecture notes are published as “The Turing-Wilkinson Lecture Series (1946-7)” (Turing
(1946–7). The series of nine lectures (about half of which were given by Turing’s assistant, Jim
Wilkinson, most likely from notes prepared by Turing) covered Versions V, VI, and VII of Turing’s
design for the ACE; see also Copeland (1999).
5 Williams in interview with Christopher Evans in 1976. (“The Pioneers of Computing: An Oral
History of Computing”, London: Science Museum. © Board of Trustees of the Science Museum.
Transcription by Copeland (1997)).
6 Bowker and Giordano (1993), p. 19.
7 See Copeland (2005), pp. 459–464. Womersley’s handwritten notes concerning the arrangements
for the lectures (Woodger Papers, catalogue reference M15) are in The Turing Archive for the
History of Computing <http://www.AlanTuring.net/womersley_notes_22nov46>).

Fig. 8.1  Baby, the first electronic stored-program computer. Baby came to life in June 1948. The
proud parents: Tom Kilburn is on the left, Freddie Williams on the right (Courtesy of the University
of Manchester School of Computer Science)

8  Turing and the History of Computer Music

http://www.alanturing.net/womersley_notes_22nov46%3e

192

“first thing about computers”8 to the point where he could start designing one him-
self. Kilburn’s initial design (later superseded) for what would eventually be the
Manchester computer followed Turing’s principles closely, and Kilburn’s written
reports made extensive use of the terminology Turing had taught him in the Adelphi
lectures.9 When asked where he had got his basic knowledge of the computer from,
Kilburn usually said, rather irritably, that he couldn’t remember.10 In a 1993 inter-
view, he commented vaguely “Between early 1945 and early 1947, in that period,
somehow or other I knew what a digital computer was”, adding “Where I got this
knowledge from I’ve no idea”.11 There is in fact no mystery about where Kilburn got
his basic knowledge of the computer from—Turing taught him.

A few weeks after Baby ran its first program, Turing accepted the offer of a job
at Manchester University. At last he could get his hands on a universal Turing
machine in hardware. Turing improved on the bare-bones facilities, designing an
input-output system based on wartime equipment used at Bletchley Park. Williams
and Kilburn themselves knew nothing of Bletchley Park and its nine gigantic
Colossus computers.12 The ultra-secret Colossus was the world’s first large-scale
electronic computer, although it was not all-purpose and did not incorporate Turing’s
stored-program concept.13 Turing based his input-output system for the Manchester
computer on the same teleprinter tape that ran through Colossus.14 His tape reader
converted the patterns of holes punched across the tape into electrical pulses, and
fed these pulses to the computer. The reader incorporated a row of light-sensitive
cells which read the holes in the moving tape—exactly the same technology
Colossus had used.

As the months passed, a large-scale computer took shape in the Manchester
Computing Machine Laboratory (Fig. 8.2). Turing called it the Manchester
Electronic Computer Mark I.15 A broad division of labor developed that saw Kilburn
and Williams working on the hardware, and Turing on the software. Williams con-
centrated his efforts on developing a new form of supplementary memory, a rotating
magnetic drum, while Kilburn took the leading role in developing the computer
proper. Turing designed the Mark I’s programming system, and went on to write the
world’s first programming manual.16 The Mark I was operational in April 1949,

8 Williams in interview with Evans, 1976 (transcription by Copeland (1997)).
9 For further information see Copeland (2011a, b), and (2012) Chap. 9.
10 Letter from Brian Napper to Copeland, 16 June 2002.
11 Bowker and Giordano (1993), p. 19. Copeland is grateful to Napper for drawing this passage to
his attention, in correspondence during 2002.
12 Kilburn: “I didn’t know anything about the work at Bletchley”. Kilburn in interview with
Christopher Evans in 1976; also Williams in interview with Christopher Evans in 1976. (“The
Pioneers of Computing: An Oral History of Computing”, London: Science Museum. © Board of
Trustees of the Science Museum. Transcription by Copeland.)
13 Copeland et al. (2006), esp. Chap. 9.
14 For additional detail see Copeland (2011b), pp. 31–32.
15 Turing, A. M. (c. 1950), p. 85.
16 Turing (c. 1950).

B.J. Copeland and J. Long

193

although additional development continued as the year progressed.17 Ferranti, a
Manchester engineering firm, contracted to build a marketable version of the com-
puter, and the basic designs for the new machine were handed over to Ferranti in
July 1949.18 The first Ferranti computer was installed in Turing’s Computing
Machine Laboratory in February 1951, a few weeks before the earliest American-
built marketable computer became available, the UNIVAC I (Fig. 8.3).19

Turing referred to the new machine as the Manchester Electronic Computer
Mark II, while others called it the Ferranti Mark I. Turing’s nomenclature will be
followed here. His programming manual was written in anticipation of the Mark II’s
arrival, and is titled Programmers’ Handbook for Manchester Electronic Computer
Mark II (c. 1950), but it was the outcome of his programming design work under-
taken on the Mark I.20

17 Copeland and Sommaruga (2015), pp. 99–100; Williams and Kilburn (1952).
18 Williams and Kilburn (1952), p. 59.
19 The delivery date of the first Ferranti computer is given in a letter from Turing to Woodger,
undated, received 12 February 1951 (in the Woodger Papers). A digital facsimile is in The Turing
Archive for the History of Computing at www.AlanTuring.net/turing_woodger_feb51. For details
of the UNIVAC see Stern (1979), p. 17; and Stern (1981), p. 149.
20 See Turing’s preface to (c. 1950).

Fig. 8.2  Baby grows into the Mark I (Permission: University of Manchester School of Computer
Science)

8  Turing and the History of Computer Music

http://www.alanturing.net/turing_woodger_feb51

194

Turing’s Handbook contains what is, so far as is known, the earliest written tuto-
rial on how to program an electronic computer to play musical notes.

8.3  �Programming Notes

The Manchester computer had a loudspeaker—the “hooter”, it was called—that
served as an alarm to call the operator when the machine needed attention.21 With
some simple programming, the loudspeaker could be made to emit musical notes.

The computer’s “hoot instruction” worked like this. There was an electronic
clock in the computer synchronizing all the operations. This clock beat steadily, like
a silent metronome, at a rate of thousands of noiseless ticks per second. Executing
the hoot instruction a single time caused a sound to be emitted at the loudspeaker,
but the sound lasted no longer than a tick, a tiny fraction of a second. Turing
described this sound as “something between a tap, a click, and a thump”.22 Executing
the hoot instruction over and over again resulted in this brief sound being produced
repeatedly, on every fourth tick: tick tick tick click, tick tick tick click.23

21 There is a circuit diagram of the hooter in Dodd (c. 1953), Diagram 10.
22 Turing (c. 1950), p. 24.
23 Dodd (c. 1953), p. 59.

Fig. 8.3  Turing at the console of the Mark II computer (Permission: University of Manchester
School of Computer Science)

B.J. Copeland and J. Long

195

If the clicks are repeated often enough, the human ear no longer hears discrete
clicks but a steady note. Turing realized that if the hoot instruction is repeated not
simply over and over again, but in different patterns, then the ear hears different
musical notes. For example, if the pattern tick tick tick click, tick tick tick tick, tick
tick tick click, tick tick tick tick is repeated, the note of C5 is heard. (The subscripted
number indicates the octave in which the note occurs. Turing described C5 as middle
C, as musicians sometimes do, especially if playing an instrument with a very high
register; however, it is more usual to call C4, which is an octave below C5, middle
C.24) Repeating the different pattern tick tick tick click, tick tick tick click, tick tick
tick tick, tick tick tick click, tick tick tick click, tick tick tick tick produces the note
of F4—and so on. It was a wonderful discovery.

Turing himself seems not to have been particularly interested in programming
the machine to play conventional pieces of music. The different musical notes were
used as indicators of the computer’s internal state—one note for “job finished”, oth-
ers for “error when transferring data from the magnetic drum”, “digits overflowing
in memory”, and so on.25 Running one of Turing’s programs must have been a noisy
business, with different musical notes and rhythms of clicks enabling the user to
“listen in” (as Turing put it) to what the program was doing. He left it to someone
else, though, to program the first complete piece of music.

8.4  �God Save the King

One day Christopher Strachey turned up at the Computing Machine Laboratory
(Fig. 8.4). Before the war, he had known Turing at King’s College, Cambridge.
Strachey was soon to emerge as one of Britain’s most talented programmers, and he
would eventually direct Oxford University’s Programming Research Group. When
he first strode into the Manchester Computing Machine Laboratory he was a math-
ematics and physics master at Harrow, one of Britain’s foremost schools. Strachey
felt drawn to digital computers as soon as he heard about them, in about January
1951, and taking the bull by the horns he wrote to Turing in April.26 Turing sent a
copy of his Handbook (c. 1950) and Strachey studied it assiduously.27 This was
“famed in those days for its incomprehensibility”, Strachey said.28 An ardent

24 By the time of the third edition of Turing’s Programmers’ Handbook (prepared by Tony Brooker
in 1953), Turing’s “about middle C” had been replaced by “an octave above middle C”.
25 Prinz (1952), section 20. Copeland is grateful to Dani Prinz for supplying a cover sheet that
shows the date of this document.
26 Letter from Strachey to Max Newman, 5 October 1951 (in the Christopher Strachey Papers,
Bodleian Library, Oxford, folder A39); letter from Strachey to Michael Woodger, 13 May 1951 (in
the Woodger Papers).
27 Letter from Strachey to Newman, 5 October 1951. Strachey’s copy of Turing’s Programmers’
Handbook still exists, signed on the cover “With the compliments of A. M. Turing” (in the
Christopher Strachey Papers, folder C40).
28 Foy (1974), p. 10.

8  Turing and the History of Computer Music

196

pianist, he appreciated the potential of Turing’s terse directions on how to program
musical notes. Strachey first visited the Computing Machine Laboratory in July
1951; Turing decided to drop him in at the deep end and suggested he try writing a
program to make the computer check itself.29 When Strachey left the Laboratory,
Turing turned to his friend Robin Gandy and said impishly, “That will keep him
busy!”30

It did keep him busy, during the school summer holidays of 1951.31 Strachey was
a precocious programmer and when he “trotted back to Manchester”, he recollected,
he had with him twenty or so pages covered in lines of programming code—at that
time by far the longest program to be attempted.32 “Turing came in and gave me a
typical high-speed, high-pitched description of how to use the machine”, Strachey
recounted.33 Then he was left alone at the computer’s console until the following
morning.

“I sat in front of this enormous machine”, Strachey said, “with four or five rows
of twenty switches and things, in a room that felt like the control room of a battle-
ship.”34 It was the first of a lifetime of all-night programming sessions. He worked
on debugging his monster program, which he called “Checksheet”.35 The name was
a variation on a term Turing had used, in his Programmers’ Handbook, for a hand
method of checking programs. Turing called his method “Check Sheets”. The

29 Letter from Strachey to Newman, 5 October 1951; Robin Gandy in interview with Copeland,
October 1995.
30 Gandy in interview with Copeland, October 1995.
31 Strachey in Foy (1974), p. 11.
32 Strachey in Foy (1974), p. 11.
33 Strachey in Foy (1974), p. 11.
34 Strachey in Foy (1974), p. 11.
35 Strachey gave the name of the program in his letter to Newman, 5 October 1951. The Checksheet
program itself is in the Christopher Strachey Papers (folder C52).

Fig. 8.4  Christopher
Strachey sunbathing in the
garden of his cottage “The
Mud House”; the photo
was taken in 1973, two
years before his untimely
death (Courtesy of the
Bodleian Library and
Camphill Village Trust)

B.J. Copeland and J. Long

197

method was “done on paper with quarter inch squares on which vertical lines are
ruled in ink”, Turing explained in the Handbook.36

As well as spending the night struggling to debug Checksheet, Strachey prepared
a surprise. He managed to debug and get running another program that he’d brought
with him. To the astonishment of onlookers, the computer raucously hooted out the
British National Anthem.37 A budding programmer could hardly have thought of a
better way to get attention. A few weeks later, Max Newman, Professor of
Mathematics at Manchester and founder of the Computing Machine Laboratory,
heard the computer grinding out “God Save the King”. Newman quickly wrote a
letter to Strachey suggesting he might like a programming job in the Lab.38

Manchester’s musical computer also caught the attention of the popular press,
with headlines like “Electronic brain can sing now”.39 The accompanying article
explained that “the world’s most powerful brain” was “given a coded version of the
score”, from which it “constructed the necessary waveform”. The BBC sent a
recording team together with a radio presenter from Children’s Hour, known as
Auntie, to capture a performance by the computer.40 As well as “God Save the
King”, the BBC recorded a version of Glenn Miller’s “In the Mood”, a reedy and
wooden performance of the famous hit. There was also an endearing, if rather brash,
rendition of the nursery rhyme “Baa Baa Black Sheep”. The Mark II, still full of
glitches, managed to crash in the middle of its Glenn Miller party piece. “The
machine’s obviously not in the mood”, Auntie gushed.

The unedited BBC recording of the session conveys a sense of people interacting
with something entirely new. “The machine resented that”, Auntie observed at one
point. The idea of a thinking machine, an electronic brain, was in the air at
Manchester. Turing merrily fanned the flames. He provocatively told a reporter from
The Times that he saw no reason why the computer should not “enter any one of the
fields normally covered by the human intellect, and eventually compete on equal
terms”.41

Max Newman lectured on the new computer music in 1952, to 250 professional
musicians who were attending the annual conference of the Incorporated Society of

36 Turing (c. 1950), p. 12.
37 Frank Cooper in interview with Chris Burton in 1994; an audio recording of part of the interview
is at http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/media/interview_frank_coo-
per/index-2.html. In the secondary literature it is sometimes said that “God Save the King” was
played at the end of Strachey’s draughts (checkers) program, but this is not correct (see e.g. Link
(2012/2013), p. 23). For further information about Strachey’s draughts program, see Copeland
(2012), Chap. 9.
38 Letter from Newman to Strachey, 2 October 1951 (in the Christopher Strachey Papers, folder
A39).
39 See “Electronic Brain Can Sing Now”. The Courier and Advertiser, 28 February 1952. We are
grateful to Diane Proudfoot for finding this article and supplying us with it.
40 Cooper interviewed by Burton.
41 Turing quoted in “The Mechanical Brain”, The Times, 11 June 1949.

8  Turing and the History of Computer Music

http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/media/interview_frank_cooper/index-2.html
http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/media/interview_frank_cooper/index-2.html

198

Musicians. His lecture was reported in the national press.42 After explaining that, to
make the Manchester computer play melodies, “All you have to do is to send an
instruction to the hooter with the frequency of the note you want it to play”, Newman
described the discovery that the computer could be programmed to compose tunes
for itself. So far these were, he admitted, “very bad tunes”. (Quite possibly the pro-
gram used Turing’s random number generator, a standard hardware component of
the Ferranti computers.) According to the Manchester Guardian:

The next step, said Professor Newman, would be to make a machine which could compose
good tunes, but so far no method of bridging the gap had been devised.43

The article continued:

Professor Newman ended with this note of comfort for the assembled musicians: “All this
appears much more alarming and dangerous than it really is. When you see how it is done
and how far it is from genuine composition, composers will realise they need not start tak-
ing steps to protect themselves against competition from machines.”

8.5  �Turing’s Music Tutorial

Turing’s brief tutorial in his Handbook was typically compressed and demanding;
yet, equally typically, his terse account told readers everything it was necessary to
know in order to start writing note-playing programs. Turing called the hoot instruc-
tion /V, pronounced “slash vee”. The complete tutorial occupied little more than
half a page:

The hooter. When an instruction with function symbol /V is
obeyed an impulse is applied to the diaphragm of a loud-
speaker. By doing this repeatedly and rhythmically a steady
note, rich in harmonics, can be produced. This is used to
enable the operator to be called to attend to the machine in
some way. The simplest case is where the whole of a job is
completed and it is required to clear the electronic stores
and start something different. All that is then required is to
repeat a cycle of instructions including a hoot, e.g.

	

FS NS/V
CS FS/P 	

In this case every second instruction will put a pulse into
the speaker. These pulses will occur at intervals of 8 beats
i.e. 1.92 ms giving a frequency of 521 cycles (about middle
C). Or one could use the loop of three instructions

42 “Very Bad Tunes”, Manchester Guardian, 4 January 1952. We are grateful to Diane Proudfoot
for finding this article and supplying us with it.
43 “Very Bad Tunes”, emphasis added.

B.J. Copeland and J. Long

199

	

O
G
M

@

@ @

@ @

/V
P /V
O /P [see our footnote]44

which gives a slightly louder hoot a fifth lower in frequency.
Single pulses applied to the loudspeaker are distinctly audi-
ble as something between a tap, a click, and a thump. This
fact can be turned to good account. By putting hoot instruc-
tions into programmes at suitable points one is enabled to
“listen in” to the progress of the routine. Some indication
of what is going on is given by the rhythm of the clicks that
are heard.45

In these two loops, one consisting of two instructions and one consisting of three,
Turing has used international teleprinter code to abbreviate the instructions. At the
level of “machine code”, the instructions consist simply of strings of binary digits
(bits). Teleprinter code associates keyboard characters with strings of 5 bits; for
example, A is 11000 and B is 10011. Teleprinter code was well known to engineers
in that era, and was very familiar to Turing from his wartime work at Bletchley Park
on the “Tunny” teleprinter code, used by Hitler and his generals. To Turing, tele-
printer code must have seemed a natural choice for abbreviating the Manchester
computer’s bitcode. This system’s main defect, that the abbreviations give no intui-
tive sense at all of what is being abbreviated, is one reason why his Handbook was
such heavy going.

Let us unpack what Turing wrote down, in order to clarify its importance in the
history of computer music. First, we explain Turing’s notationally formidable sub-
routines, simplifying his notation and spelling out the connection between his
sequences of coded instructions and perceived musical sounds. Then we report the
results of our computer-assisted analyses of the BBC’s 1951 recording of the
Manchester computer’s music. From these results, we extract our account of how
others at Manchester extended Turing’s note-playing subroutines, so enabling the
Mark II to play its first melodies. We also provide a series of tables that allow the

44 For ease of exposition, we have replaced Turing’s G@/P by O@/P, thereby oversimplifying the
behaviour of the /P instruction, but making the loop ostensibly easier to follow. Appearances to the
contrary notwithstanding, Turing’s G@/P does take execution back to the start of the loop, while
our oversimplified version does not do so. For a full explanation of /P, see Prinz (1952), p. 14.
Strachey, who marked corrections by hand on his copy of Turing’s Handbook, altered this loop to:

	

O /V

B Q /V

G B /P

@

@ @

@ @ 	

See also Strachey’s typed sheets of errata to Turing’s Handbook dated 9 July 1951; in the
Christopher Strachey Papers, folder C45.
45 Turing (c. 1950), p. 24. There is a magisterial introduction to programming (what Turing called)
the Mark II in Campbell-Kelly (1980).

8  Turing and the History of Computer Music

200

reader to see not only how these melodies were produced but also, more generally,
how the computer itself can be used in historical detective work about computers.

In teleprinter code, / is 00000 and V is 01111; thus /V is the teleprinter code
abbreviation of the Mark II’s 10-digit hoot instruction, 0000001111. Turing’s /P is
also an instruction; instructions always began with /, or T (00001). The other sym-
bols in Turing’s two sample subroutines, NS, P@, FS, CS, O@, G@ and M@, are
memory addresses: each pair of symbols abbreviates a 10-digit address in the com-
puter’s Williams tube memory.

Instruction /P (unconditional transfer of control) tells the machine to obey next
the instruction stored at a location specified via the address immediately to the left
of the /. In effect the second line of the first loop sends the machine back to the first
line (but see our footnote); and the final line of the second loop again sends the
machine back to the first line.46 The computer will continue to loop until an instruc-
tion from elsewhere in the program terminates the loop after n repetitions.47 The
programmer selects the number n, so determining how long the note is held, as
required by the rhythms of the melodies.

Our analysis of the BBC’s recording of the Mark II playing “God Save the King”,
“Baa Baa Black Sheep”, and “In the Mood”, showed that the durations of the played
notes varied between 80 milliseconds and 1100 milliseconds. The analysis also
revealed that very short pauses were programmed between each consecutive note,
presumably by means of “silent” loops—short loops containing no hoot instruction.
The duration of these inter-note pauses is between 40 and 50 milliseconds (exact
measurement was difficult because the pauses are blurred over by reverberation
from the room housing the computer). The inter-note pauses help to define the
beginning of each note, and are essential if a sequence of several notes of the same
pitch is played. Without a gap between the individual notes, a single long note
would be heard.

The occurrence of NS to the left of /V in Turing’s first subroutine can be ignored
for the present purposes, and so can the P@ to the left of /V in the second subrou-
tine. These terms create special effects to do with the computer’s visual display, and
have no role in the production of musical notes. The effect produced by including
the address NS in line 1 of the first subroutine is that the information stored at NS
momentarily brightens on the monitor display as the machine hoots.48 This provides
a visual prompt to assist the operator. Similarly, the effect of P@ in the second
instruction of the three-line subroutine is to cause the information stored at P@ to
brighten on the display as the hooter sounds. The two note-playing subroutines can
be written more cleanly without these special effects:

46 See note 44.
47 Turing explains loop control (by means of a B-tube) in his Handbook, pp. 66–67; the B-tube was
effectively a register containing n and this number was counted down by repeatedly subtracting 1.
48 Turing (c. 1950), p. 22.

B.J. Copeland and J. Long

201

	

FS /V

CS /PFS 	

	

O /V

G /V

M O /P

@

@

@ @ 	

Taking clarity a step further, we might replace the teleprinter-coded addresses
with simple line-numbers:

	

1

2

/V

1/P 	

	

1 /

/

/

V

2 V

3 1 P 	

As Sect. 8.3 mentioned, the /V instruction takes four ticks to complete—four
beats in the Manchester jargon—with the actual hoot occurring on the fourth beat.49
/P also takes four beats to complete. As Williams and Kilburn put it, the basic
rhythm of the Manchester computer was “four beats to the bar”.50 Thus, running
through Turing’s two-line subroutine once produces: tick tick tick click, tick tick
tick tick; and looping repeatedly through the subroutine produces the first of the two
sequences discussed in Sect. 8.3. Similarly, running through the three-line subrou-
tine once gives: tick tick tick click, tick tick tick click, tick tick tick tick; and looping
repeatedly gives the second sequence in Sect. 8.3.

The precise duration of a single beat was 0.24 milliseconds (ms). The first sub-
routine produces one click every 8 beats, which is to say every 1.92 ms. Thus, the
frequency with which clicks are produced, as the machine loops repeatedly through
the subroutine, is (1 ÷ 1.92) clicks per ms—0.52183 clicks per ms, or 521.83 clicks
per second. In standard units, the frequency of the clicks is said to be 521.83 Hertz
(Hz). This is close to C5, whose assigned frequency in the ‘Equal Tempered’ scale
is 523.25 Hz. The Equal Tempered scale is the standard scale for keyboard instru-
ments, with adjacent keys playing notes heard as equidistant from one another.51

Table 8.1 shows the Equal Tempered frequencies of all the notes occurring in the
fragments of the scores of “God Save the King”, “In the Mood” and “Baa Baa Black
Sheep” that were performed in the BBC recording. Later tables show the actual
frequencies that the computer produced.

49 The Mark II was synchronised by an oscillator with a frequency of 100 kHz. Turing called a
single cycle of the oscillator the “digit period”. The digit period was 10-microseconds and the
duration of a beat was 24 digit periods.
50 Williams and Kilburn (1952), p. 57.
51 We follow the A = 440 Hz tuning standard.

8  Turing and the History of Computer Music

202

By dispensing with any reference to memory addresses, and abstracting from
which particular instructions are employed, Turing’s note-playing subroutines can
be represented very transparently by means of what we call note-loops. The note-
loop corresponding to Turing’s C5 routine is:

	 START H REPEAT– – – – – – – 	

Each “–” represents a single beat, with “H”, the hoot, occurring on the fourth beat
of the first bar. Representing this more economically still, the note-loop is simply:

	 � �3 4H, . 	

8.6  �Exploring the Mark II Notes

Subroutines for playing lower notes require the addition of further instructions,
since this has the effect of adding extra blocks of 4 beats between the hoots, so low-
ering the frequency. Conveniently, one of Turing’s instructions, /L, served to waste
time: its execution took up 4 beats but it did nothing. (Strictly, the instruction did
nothing unless a “dummy stop” switch had been set manually at the control console
before the program started, in which case /L caused the machine to pause. We dis-
cuss dummy stops in Sect. 8.8.) /L is ideal for creating lower-frequency notes.52 For

52 /L’s companion dummy-stop instruction /G serves just as well, as do so-called “dummy” instruc-
tions such as T£, TM, and TX: these have no effect except to cause a delay of 4 beats (Prinz (1952),
p. 20; Turing (c. 1950), p. 58 and Fig. E.).

Table 8.1  The Equal
Tempered frequencies of the
notes from those parts of the
scores of “God Save the
King”, “In the Mood” and
“Baa Baa Black Sheep” that
were performed in the 1951
BBC recording

Note Frequency (in Hertz)

F#2 92.5
G2 98
A2 110
B2 123.47
C3 130.81
C#3 138.59
D3 146.83
E3 164.81
F#3 185
G3 196
A3 220

Later tables show the measured frequen-
cies that the computer produced

B.J. Copeland and J. Long

203

example, the note-loop <3H, 4, 4> produces a frequency of 347.22 Hz, approxi-
mately F4 (349.23 Hz), a fifth lower than C5.

<3H, 4, 4> produces the same note as Turing’s second example of a loop, which
in our notation is <3H, 3H, 4>. Adding the second pulse of sound at the same fre-
quency does not alter the note, but (as Turing said) has the effect of making the note
louder. We call note-loops that play the same frequency equivalent.

Some further examples of note-loops are <3H, 4, 4, 4, 4, 4, 4, 4>, producing a
frequency of 130.21 Hz, fairly close to C3 (130.81 Hz), and <3H, 4, 4, 4, 4, 4, 4>,
producing a frequency of 148.81 Hz, lying between D3 (146.83 Hz) and D3 sharp
(155.56 Hz). Both these note-loops produce a quiet sound. The same notes are
played more loudly if extra hoots are added to form equivalent note-loops, such as
<3H, 3H, 3H, 3H, 4, 4, 4, 4> and <3H, 3H, 3H, 3H, 4, 4, 4> respectively. We call a
note-loop containing only one hoot the primary form, and equivalent note-loops
containing more than one hoot padded forms of the loop. Padded note-loops typi-
cally produce notes with a different timbre or tone-color from the note produced by
the loop’s primary form. Timbre is manifested by differences in the shape of wave-
forms of the same frequency. (If a violin and a flute play exactly the same note at
exactly the same volume, the sounds are nevertheless instantly recognizable as dif-
ferent, because of their different timbres.)

We built a simulator in order to investigate the effects of padding note-loops, and
also to establish that our calculated note-loops really do play the correct notes. Our
simulations of the Mark II playing “God Save the King”, “In the Mood” and “Baa
Baa Black Sheep” can be heard at www.AlanTuring.net/MarkII_music_simulations.
mp3. An Atmel ATmega168 microcontroller was used to create a functional com-
puter simulation of the Mark II as a note-playing device. We connected a small
loudspeaker directly to one of the digital output pins. Microcontroller programs
using pulses and delays reproduced the beat-structure of the Mark II and emulated
the effects of the Mark II’s music routines. We found that primary note-loops pro-
duce relatively thin-sounding notes while their padded equivalents produce some-
what louder, fuller-sounding notes. Over-padding is possible, however. The simulator
revealed that including too many hoots adds a high overtone, especially with lower
notes containing more beats. Because an uninterrupted sequence of hoot instructions
generates the Mark II’s highest achievable note of 1041.67 Hz (somewhere in the
vicinity of C6), the result of over-padding a note-loop is that the ear tends to hear not
only the intended note but also this maximum note as a high overtone.

The BBC recording indicates that the programmer most likely used padding. If
only unpadded loops are used, lower notes are quieter than higher notes, since in a
lower note there are longer gaps between the hoots. This is not observed in the
recording, and in fact some lower notes are louder than some higher notes. However,
because of the poor quality of the recorded material, the analysis described here did
not reveal the number of hoots used in each individual note-loop. Our reconstruc-
tion of the note-loops in Sect. 8.12 retrieves the primary form of the note-loops only.

Although the normal rhythm of the Manchester computer was 4 beats to the bar,
some instructions took 5 beats to execute. Incorporating a suitable 5-beat instruction

8  Turing and the History of Computer Music

http://www.AlanTuring.net/MarkII_music_simulations.mp3
http://www.AlanTuring.net/MarkII_music_simulations.mp3

204

in note-loops (e.g. Turing’s instruction TN53) extends the number of playable notes.
For example, adding 10 extra beats to either the primary or the padded form of the
148.81 Hz note-loop displayed previously results in a loop that plays 109.65 Hz,
very close to A2 (110 Hz); the primary form is <3H, 4, 4, 4, 4, 4, 4, 5, 5>. The fol-
lowing loop plays the low note F2 sharp (F#2): <3H, 4, 4, 4, 4, 5, 5, 5, 5, 5>. This

53 Turing (c. 1950), Fig. E.

Table 8.2  The frequencies
that the Manchester Mark II
was able to play by means of
loops containing 4-beat
instructions or mixtures of
4- and 5-beat instructions
(down to the lowest
frequency in the 1951 BBC
recording)

Beats Frequency (in Hertz)

8 520.83
12 347.22
13 320.51
16 260.42
17 245.10
18 231.48
20 208.33
21 198.41
22 189.39
23 181.16
24 173.61
25 166.67
26 160.26
27 154.32
28 148.81
29 143.68
30 138.89
31 134.41
32 130.21
33 126.26
34 122.55
35 119.05
36 115.74
37 112.61
38 109.65
39 106.84
40 104.17
41 101.63
42 99.20
43 96.90

By increasing the number of beats in a loop still
further, the machine will play ever lower notes,
until at approximately 20 Hz the human ear
begins to perceive a series of individual clicks
rather than a note

B.J. Copeland and J. Long

205

loop produces 92.59 Hz, fractionally higher than the note’s Equal Tempered fre-
quency of 92.5 Hz.

In what follows, note-loops are sometimes written in an abbreviated form. For
example, <3H, 4×7> replaces <3H, 4, 4, 4, 4, 4, 4, 4> and <3H, 4×4, 5×5> replaces
<3H, 4, 4, 4, 4, 5, 5, 5, 5, 5>. Table 8.2 shows the full range of frequencies, down to
96.9 Hz, that the Mark II could produce by means of note-loops containing 4- or
5-beat instructions.

8.7  �Hoot-Stop and Radio Stop

As Turing explained in his tutorial, a fundamental use for <3H, 4> was the so-called
“hoot-stop”. If the two lines of code displayed in the tutorial were placed at the end
of a routine (or program, as we would say today), then once the routine finished
running, the computer would sound C5 continuously until the operator intervened.
The intervention might take the form of pressing the “KEC” key at the control con-
sole—the “clear everything” key—in order to clear out the completed routine, in
preparation for running the next.54 Without the convenient hoot-stop facility, the
operator was obliged to remain at the console, watching the indicators, in order to
tell whether the routine had stopped running.

A very different solution to effectively the same problem was found in the case
of BINAC, an early US computer. Herman Lukoff, one of BINAC’s engineers,
explained that the technician whose job it was to monitor BINAC through the night,
Jack Silver, had to spend all his time “looking at the flashing lights; it was the only
way of knowing that the computer was working”. One night Silver switched on a
radio to alleviate the monotony:

To Jack’s surprise, all kinds of weird noises emanated from the loudspeaker, instead of
soothing music. He soon realized that the churning BINAC generated these noises because
as soon as it halted, the noises stopped. … He put the computer-generated tones to good
use. Jack found that by turning the volume up he was able to walk around the building and
yet be immediately aware of any computer stoppage.55

BINAC, built in Philadelphia by Presper Eckert, John Mauchly, and their engi-
neers at the Eckert-Mauchly Computer Corporation, was the stored-program suc-
cessor to the pioneering Eckert-Mauchly ENIAC. Eckert and Mauchly went on to
build UNIVAC, one of the earliest electronic digital computers to enter the
marketplace.

The first systematic use of the Manchester Mark I’s programmable hooter
appears to have been to provide the hoot-stop facility.

54 Dodd (c. 1953), p. 32.
55 Lukoff (1979), pp. 85–86.

8  Turing and the History of Computer Music

206

8.8  �First Hoots

In a section of his Handbook devoted exclusively to the Mark I machine, Turing
made it clear that the programmable hooter predated the Mark II machine.56 /V was
Mark II notation; in the Mark I era it was the instruction K (11110) that caused the
loudspeaker to sound. The Mark I, which was closed down in the summer of 1950,57
was a slower machine than the Mark II; the duration of a beat was 0.45 ms, com-
pared with the Mark II’s 0.24 ms. This considerably reduced the number of playable
notes. For example, lengthening the beat to 0.45 ms causes the frequency of <3H,
4> (the highest-frequency loop) to drop from 523.25 Hz to 277.78 Hz, approxi-
mately C#4.

It is not known precisely when a programmable hooter was first added to the
computer. Geoff Tootill’s laboratory notebook is one of the few surviving docu-
ments relating to the transition from Baby to Mark I.58 In a notebook entry dated 27
October 1948, Tootill listed the K instruction 11110 among the machine’s 32
instructions, but indicated that it was unassigned at this time. Given Turing’s focus
on the programming side, and the emphasis he placed on the use of the hoot instruc-
tion and pause-instructions, which he called “dummy stops”, for “testing”—i.e.
debugging—new routines, it seems likely that the hooter was incorporated earlier
rather than later.59 The computer was running complex routines by April 1949, in
particular a routine that searched for Mersenne primes (primes of the form 2n−1).60
Most likely Turing’s debugging toolkit of hoots and dummy stops was introduced
earlier than this. It also seems likely that the use of the K instruction, and the use of
loops to increase the volume of the hooter’s native clicks, probably occurred more
or less simultaneously. The loud note produced by the loop would have been more
useful than the quiet click given by a single instruction. As Dietrich Prinz, a regular
user of the Mark I, said, “By programming a simple loop containing this instruction
… an audible ‘hoot’ is emitted”.61

A table in Tootill’s notebook dated 28 November 1948, showing the machine’s
instructions at that time, listed three different dummy stops, N, F, and C. The section
of Turing’s Handbook dealing with the Mark I explained that, during the checking
of a program, the dummy stops N, F, and C would be operated in conjunction with
the hoot instruction K. By the time of the 28 November table, the K instruction had
been assigned: Tootill listed its function as “Stop”. However, his table also contains
another instruction labeled “Stop” (00010). Since the machine had no need of two
ordinary stop-instructions, it seems very likely that K was being used for hoot-stop
at this time. When execution of the program reached the point where the hoot-stop

56 Turing (c. 1950), pp. 87–88.
57 Williams and Kilburn (1952), p. 59.
58 Tootill (1948–9), table of the machine’s instructions dated 27/10/48.
59 Turing (c. 1950), pp. 24, 88.
60 Lavington (1980), p. 37.
61 Prinz (1952), p. 20 (our italics).

B.J. Copeland and J. Long

207

had been inserted, execution would pause and the hooter would play the note of C#4
(middle C sharp) continuously until the operator intervened. We conclude that the
Mark I was playing at least one note in about November 1948.

8.9  �Other Early Music

The Manchester Mark I was not the only zeroth-generation electronic stored-
program computer to play music. Trevor Pearcey’s Sydney-built CSIRAC (pro-
nounced “sigh-rack”) had a repertoire that included “Colonel Bogey”, “Auld Lang
Syne”, and “The Girl with the Flaxen Hair”, as well as brief extracts from Handel
and Chopin. Some of the music routines survived on punched paper tape, but seem-
ingly no audio recordings were preserved. Australian composer Paul Doornbusch
has recreated some of the music, using reconstructed CSIRAC hardware and the
surviving programs.62 CSIRAC, still complete and almost in working order, is in
Melbourne Museum.

Doornbusch’s recordings and the BBC’s Manchester recording show that the
programmers of both computers ran into the problem of “unplayable notes”—notes
that could not be replicated or even closely approximated by means of an available
note-loop. An example is the note of D3, which occurs 5 times in the BBC recording
of “God Save the King”. This note’s Equal Tempered frequency is 146.8 Hz, but the
closest that the Mark II can approach is the significantly different note of 148.81 Hz,
discussed in Sect. 8.6. To judge from the Doornbusch recordings, F#2, G2, C#3, F#3,
D4, E4, F4, G4, and A4 were particularly troublesome for CSIRAC. The Australian
and British solutions to the problem of unplayable notes were distinctively different.
The Manchester programmers opted to use the nearest playable frequency and toler-
ated the melody being less in tune (see Sect. 8.14 for a fuller discussion of this
technique). CSIRAC’s programmers, on the other hand, attempted to mimic the
unplayable frequency by rapidly moving back and forth between two playable fre-
quencies that bracketed the note in question. The result was a melody in which
tuning-related problems were replaced by timbre-related problems, with the
Australian technique producing notes that sound grainy and unnatural.

An embryonic CSIRAC first ran a test program in about November 1949.63 The
computer seems to have been partially operational from late 1950, and in regular
operation from about mid 1951. The date when CSIRAC first played musical notes
is unrecorded; presumably this was in late 1950 or in 1951. The computer is known
to have belted out tunes at the first Australian Conference on Automatic Computing
Machines, held at Sydney University in August 1951.64 A 2008 BBC News article,
based on Australian sources, stated that CSIRAC was the first computer to play

62 Doornbusch (2005). The book includes a CD of recreated music.
63 McCann and Thorne (2000), p. 2.
64 McCann and Thorne (2000), p. 3; Doornbusch (2005), pp. 24–25.

8  Turing and the History of Computer Music

208

music.65 The only evidence offered for this claim was that CSIRAC’s performance
at the Sydney Conference allegedly preceded the date of the BBC recording of the
Manchester computer (the recording described in Sect. 8.4). However, the date of
the BBC recording is in fact unknown; and in any case the Manchester computer’s
first performance of “God Save the King”—whose precise date is also unknown—
would have occurred some days or weeks or even months before the BBC recording
was made. Unfortunately, an Australian contribution to The Oxford Handbook of
Computer Music also states, without evidence, that CSIRAC was “the first com-
puter to play music”.66 CSIRAC, however, was certainly not the first computer to
play music.

There were American hoots too. BINAC was playing music before CSIRAC
even ran its first test program. BINAC was completed in August 1949 (although it
ran a 50-line test program in April of that year).67 As Lukoff explained, a party was
held to celebrate the machine’s completion:

It was held right at the BINAC test area one August evening. In addition to hors d’oeuvres
and cocktails, the BINAC crew arranged a spectacular computer show. Someone had dis-
covered that, by programming the right number of cycles, a predictable tone could be pro-
duced. So BINAC was outfitted with a loudspeaker attached to the high speed data bus and
tunes were played for the first time by program control. The audience was delighted and it
never occurred to anyone that the use of a complex digital computer to generate simple
tones was ridiculous. … The crowning achievement of the evening came after a long, labo-
rious arithmetic computation; the machine laid an egg! The engineers had programmed the
machine to release a hard-boiled egg from its innards.68

As far as can be ascertained, therefore, the first melodies to be played by a com-
puter were heard at the Eckert-Mauchly Computer Corporation in the summer of
1949, and very likely individual musical notes were heard a few months earlier at
Turing’s Computing Machine Laboratory, probably in November 1948. Effectively,
the pioneering developments on either side of the Atlantic were roughly contempo-
raneous, with Australia entering the field a year or two later.

8.10  �The BBC Recording

The BBC’s website offers an edited digitized version of the original BBC recording
of the Manchester Mark II; and there is a full-length version of the same digitaliza-
tion of the recording on the Manchester University website.69 Upon pressing play,
the listener is greeted by a thick wall of noise—a combination of hissing, humming,

65 Fildes (2008).
66 Dean (2009), pp. 558, 584.
67 Lukoff (1979), p. 84.
68 Lukoff (1979), p. 86.
69 Fildes (2008); http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/media/mark_
one_digital_music/index.html.

B.J. Copeland and J. Long

http://digital60.org/media/mark_one_digital_music/index.html
http://digital60.org/media/mark_one_digital_music/index.html

209

and rhythmically repeating crackles from the original acetate disc. Then a tone not
unlike a cello cuts through this cacophony to give a mechanical-sounding rendition
of the first two phrases of the National Anthem. The melody, though familiar
enough, is somewhat out of tune, with some notes more distinctly out than others.
Moreover, some notes are loud relative to their neighbors (most likely the result of
padding). At the end of the second phrase, the performance is suddenly cut short by
a glitch and nervous laughter.

The engineers restart the routine and this time the machine energetically plays its
way through the entire first verse. Then, with scarcely a pause, it follows up with an
unbroken performance of the first line of “Baa Baa Black Sheep”. For its third num-
ber the Mark II attempts “In The Mood”, but once again falls victim to an unknown
error, causing it to sing out a high pitched beep. The recording team give the com-
puter one more chance to make its way through “In The Mood”, and it proceeds
admirably until the final line, when it yet again breaks down. Altogether, the record-
ing lasts about 3 minutes.

The frequencies in the recording are higher than the ideal in-tune frequencies
that would be heard if the same melodies were played on a modern synthesizer.
Because the Mark II offered such a limited palette of notes, deviations such as this
are to be expected. In scoring a melody for the Mark II, the musician had to try to
ensure that the individual notes were as in tune with one another as possible.
Whether or not notes were played at the ideal Equal Tempered frequency would
necessarily have been a secondary consideration.

The waveform of the recording looks and sounds very unlike the square pulse-
wave produced by a modern synthesizer. The early waveform is much rounder, with
a lot less high-frequency energy. Its departure from the ideal square-wave is most
likely a result of the Mark II’s pioneering digital electronics, together with the long
and transformative signal chain between the original sound source and the final
digital file. Obtaining clean pulse waves from early digital electronics was a chal-
lenge in itself; the pulses from the computer would have resembled trapezoids rather
than perfect squares, and so would already be lacking some of the high frequency
audio content of modern pulse waves. The hooter, the next element in the chain,
may itself have transformed the sound somewhat, depending on the characteristics
of the loudspeaker. Then the microphone used to record the performance and the
amplifier used to boost the signal, as well as the room in which the performance
took place, would all have colored the audio. Finally, the cutting mechanism, which
gouged a groove in the rotating acetate disc, was a source of pitch instability and
plenty of crackles and noise. Each of these stages provided generous opportunities
for the introduction of unwanted noise, artifacts, pitch instability, and spectral
alterations.

Two different acetate discs were cut during the recording session. One was taken
away by the BBC and presumably used in a broadcast. It is unlikely that this disc
survives, but a second disc was given to Manchester engineer Frank Cooper as a
souvenir. It contained another recording made at Cooper’s request once the main

8  Turing and the History of Computer Music

210

recording session was over.70 By that time, Cooper recollected, “the computer was
getting a bit sick and didn’t want to play for very long”. Eventually he donated this
12-inch single-sided acetate disc to the Computer Conservation Society; and subse-
quently the National Sound Archive, now part of the British Library, made a digital
preservation copy of the recording.71 This further stage of processing may have
added its own sonic characteristics.

8.11  �The Paradox of the Impossible Notes

Despite the long chain existing between the original music-playing routine and the
available recording, we decided to attempt to reverse-engineer the note-loops that
the programmer had used. A frequency analysis of the digital recording told us the
frequencies of the recorded notes, and where different recorded occurrences of the
same note had different frequencies, we were able to gather information about error
magnitudes. (The principal software used was iZotope RX for removing noise and
artifacts, and Celemony Melodyne for carrying out the frequency analyses and pitch
correction.)

Soon, however, we hit a fundamental problem. There were frequencies in the
recording that could not possibly have been produced by the Mark II’s note-loops—
impossible notes. An example is the recorded note corresponding to E3 (which
occurs only once in the verse from the National Anthem). The measured frequency
of the recorded note is 169.06 Hz, a thumping 4.25 Hz distant from the note’s Equal
Tempered frequency of 164.81 Hz. 169.06 Hz is an impossible note for the Mark
II. It is bracketed by a note-loop of 24 beats, producing a note of 173.61 Hz, and a
loop of 25 beats, producing a note of 166.67 Hz (see Table 8.2). Whatever frequency
it was that the computer had produced, this was certainly not the frequency we
found in the recording on the BBC website.

We decided to move closer to the original recording, assuming that the problem
lay in the transformative chain between the source and the digital file we were ana-
lyzing; and we obtained from the British Library an identical copy of their archived
digital file. The recording we had analysed previously from the BBC website was in
fact a digitized version of an analog recording that had been made by the National
Sound Archive—using a cassette tape and Dolby B noise reduction—at the same
time as the digital preservation copy was created.72 (This cassette recording was
subsequently digitized by a technician at Manchester University and put on the
Internet as part of Manchester’s Digital 60 celebration of Baby’s 60th anniversary.)
The digital file as we received it from the British Library did indeed exhibit differ-
ences from the previously analysed (cassette-based) recording—but not the differ-
ences we had hoped for. The new frequencies we measured were consistently higher

70 Cooper interviewed by Burton.
71 British Library Sound Archive reference number H3942.
72 Information from Chris Burton.

B.J. Copeland and J. Long

211

than our previous measurements (indicating that the recording involving the cas-
sette tape ran slower than the British Library’s preservation copy). However, the
impossible notes were still present, as Table 8.3 shows. E3 is the most troubling case
but the high notes C#3, D3, F#3, and G3 all stand out as being quite far off the play-
able frequencies shown in Table 8.2.

Although the software used for our frequency analyses is very reliable, the mea-
sured frequencies in Table 8.3 nevertheless have a significant margin of error. This
is because of a wobble in the speed of the recording that was most likely introduced
by the disc-cutting process. This wobble caused some notes in the recording to bend
slightly throughout their duration, and the wobble also resulted in the measured
frequency of different occurrences of a note being different from one another. The
maximum difference between two readings of the same note from different parts of
the recording was one fifth of a semitone (20 cents, in the unit of measurement
introduced below). The frequencies shown in Table 8.3 are the midpoints of the
range of frequencies measured for the note’s various occurrences. However, the
margin of error in the measured frequencies created by the wobble (±20 cents) is not
large enough to explain the presence of the impossible notes. A more probing analy-
sis was needed.

8.12  �Searching for the Right Speed

The difference in speed and consequently in pitch between the two analysed record-
ings is in fact the clue to the impossible notes. If the speed of the archived recording
were itself fast or slow, this could account for the presence of impossible frequen-
cies. For example, if the turntable in the BBC recording van were running slightly
too fast as the acetate disc was cut, the frequencies would be shifted systematically

Table 8.3  The measured
frequencies of the notes in
the National Sound Archive
digital copy of the BBC
recording, prior to correction

Note Measured frequency (in Hertz)

F#2 97.07
G2 101.78
A2 113.19
B2 127.42
C3 135.74
C#3 145.90
D3 156.96
E3 169.54
F#3 194.42
G3 203.56
A3 241.16

8  Turing and the History of Computer Music

212

upon playback at the standard speed of 78 rpm.73 (Achieving speed constancy was a
problem with the BBC’s standard mobile recording equipment.74) Only when we
know the true speed S0 at which the recording should be played can we measure the
frequencies actually produced by the computer.

Therefore we set out to determine the true speed of the recording. The basic
question was whether some small increase or decrease in the overall speed of the
recording would result in frequencies that correlated acceptably with the playable
frequencies in Table 8.2. Our initial approach to the question was to nudge the speed
up or down a bit and see what frequencies emerged. The result was always the same:
some frequencies matched well but other frequencies that had matched at a speed
investigated previously now no longer matched. How to get the carpet to fit into all
the corners of the room at once? We wrote a command-line program to conduct a
brute-force search for the optimum global fit. The program (written in C) incre-
mented the speed of the recording in tiny steps and at each increment calculated the
new notes, by appropriately tweaking the notes we had measured. We call the notes
calculated at each increment the calculated notes, the notes that the computer is
actually capable of producing the playable notes (shown in Table 8.2), and the notes
that we measured from the BBC recording the measured notes (shown in Table 8.3).

The exhaustive search commenced at 79.5% of the native speed of the recording,
an arbitrary point well below the native speed, and progressed through 80,000 incre-
ments to 126% of the native speed. At each step, the program computed the ‘dis-
tance’ between each calculated note and its most closely neighboring playable note.
The program averaged these distances to produce ΦS, the closeness-of-fit parameter
for speed S; and then the process repeated, with the program incrementing S by a
small fixed amount δ and calculating ΦS+δ.

Our program expressed the distance between a calculated note and the nearest
playable note in musical units called “cents”. Cents were also the units of ΦS. One
cent is one-hundredth of the distance between any two adjacent keys on the piano
keyboard. To the human ear, the distance between, say, the notes C4 (261.64 Hz) and
C5 (523.28 Hz), which are one octave apart, is musically the same as the distance
between C5 and C6 (1046.56 Hz), which are again one octave apart. Working in
Hertz, however, these distances are far from the same: the distance between C4 and
C5 is 261.64 Hz, whereas the distance between C5 and C6 is 523.28 Hz. Musically,
the distances are the same, but the frequency of the notes is doubling. If these
distances are expressed in cents, on the other hand, they are indeed identical. Since
C4 and C5 are 12 notes apart on the keyboard, as are C5 and C6, the distance is 1200
cents in each case. In fact, not only distances between notes but also the individual
notes themselves can be expressed in cents, e.g. by somewhat arbitrarily taking C0
(16.35 Hz) to be the zero-point, so that C1 is 1200 cents, C2 is 2400 cents, and so on.

The program expressed all values in cents rather than Hertz, a procedure that
yields a simpler algorithm, since each increment in speed has a uniform effect on
the notes if the units are cents, whereas the formula is more complex if the units are

73 BBC (1950), p. 26.
74 BBC (1950), pp. 49, 52.

B.J. Copeland and J. Long

213

Hertz. Moreover, if the notes are expressed in cents, the distance between two notes
can be calculated simply by subtracting the smaller value from the larger, whereas
matters are more complicated if the notes are expressed in Hertz, as our examples
show. A calculated note could be, say, 10 Hz higher than the nearest playable note
(100Hz, say), while at a higher speed, a calculated note could be 20 Hz higher than
its nearest playable note (say 200 Hz), and yet each of the two notes be equally close
to its nearest playable note, since differences in frequency are magnified as the
speed becomes higher.

The object of our search, the smallest ΦS, turned out to be just 37.7 cents, and the
associated speed, the calculated true speed S0, was just 2.2% faster than the native
speed of the recording. If the speed of the recording is increased by this small per-
centage—or, equivalently, if our previous measurements of the notes are corrected
by adding 37.7 cents to each measured note—then all the notes lie within 9.67 cents
of playable notes, well within the margin of error of ±20 cents. In fact, the situation
is even better than this. If A3 is disregarded, all the notes are within 3.52 cents of
playable notes. (There are only four samples of A3 in the entire recording, all in
quick succession at the end of “In the Mood”.)

The “impossible” notes have disappeared. They were artifacts, caused by the
recording becoming slightly slowed down at some point in the transformative
chain—most likely in the cutting of the original acetate disc.

Table 8.4 shows the measured notes after adjustment for the calculated true
speed. Having discovered the true frequencies, with a margin of error of only a few
cents, we were able to conclude that the routines used to play the versions of “God
Save the King”, “Baa Baa Black Sheep” and “In the Mood” recorded by the BBC
must have used note-loops whose primary forms are shown in Tables 8.5 and 8.6. As
Sect. 8.6 explained, the programmer(s) probably used padded forms of the primary
loops, but our analysis as described here retrieved only the primary forms.

Table 8.4  The frequencies
played by the Mark II once
the speed of the 1951 BBC
recording is corrected

Note Frequency (in Hertz)

F#2 99.21
G2 104.02
A2 115.69
B2 130.23
C3 138.73
C#3 149.12
D3 160.43
E3 173.29
F#3 198.71
G3 208.05
A3 246.48

8  Turing and the History of Computer Music

214

8.13  �The Question of Authorship

The question of the authorship of the three routines that played the melodies
recorded by the BBC is open. In the wake of Strachey’s tour de force a number of
people in the computing lab started writing music programs: Cooper related that
“everybody got interested—engineers started writing music programs, program-
mers were writing music programs”.75 Nothing about the BBC recording settles the
question of authorship: even the routine that played the National Anthem in the
recording may have been a retouched version of Strachey’s original.

However, it can at least be said that the programmer(s) of the routines for “Baa
Baa Black Sheep” and “In the Mood” used the same key signature as the programmer
of “God Save the King”; and also used the same primary loops as those selected for
“God Save the King”: new loops were introduced only for notes that do not occur in
the Anthem. This was so even though some alternative primary loops were avail-
able, and in fact it is arguable that some of these choices would have produced fre-
quencies that sounded more in tune (see Sect. 8.14).

We expect that a more refined analysis currently underway will reveal informa-
tion about the use of padding in the recorded melodies: this may help to clarify
aspects of the authorship issue.

75 Cooper in interview with Burton.

Table 8.5  The primary
note-loops used to play the
version of “God Save the
King” recorded by the BBC,
as indicated by our frequency
analysis

Note Beats Primary Note-Loop

F#2 42 <3H, 4×7, 5×2>
G2 40 <3H, 4×9>
A2 36 <3H, 4×3, 5×4>
B2 32 <3H, 4×7>
C3 30 <3H, 4×4, 5×2>
D3 26 <3H, 4×3, 5×2>
E3 24 <3H, 4×5>

The programmer may have used padded
forms of the primary loops, as Sect. 8.6
explained, but the quality of the recorded
material is too poor for the present analysis
to retrieve information about the way the
padding was done

Table 8.6  The primary
note-loops for additional
notes in the melodies “Baa
Baa Black Sheep” and “In the
Mood”

Note Beats Primary Note-Loop

C#3 28 <3H, 4×6>
F#3 21 <3H, 4×3, 5>
G3 20 <3H, 4×4>
A3 17 <3H, 4×2, 5>

B.J. Copeland and J. Long

215

8.14  �Tuning Puzzles

There are puzzles about some of the frequencies selected by the programmer(s) and
so we end with a discussion of tuning.

While there are always differences between the Equal Tempered frequency of a
note and the note actually played by the Mark II, these differences do not produce a
general out-of-tune-ness in the performance. Certainly if the computer were playing
together with some other instrument that was tuned in accordance with the Equal
Tempered scale, the computer would sound conspicuously out of tune. However,
with the computer playing solo, what matters more than the absolute frequencies of
the notes is the extent to which the performed notes are in tune with one another,
and in fact the relative tuning of the notes is quite acceptable, actually closer to the
key of G# major than G major, the usual key of the National Anthem. In program-
ming the National Anthem, the programmer seems to have picked frequencies with
a view to their overall relationships, rather than trying to hit the Equal Tempered
frequencies as closely as possible.

Nevertheless, some notes in the recording are sufficiently out of tune to make
anyone with a musical ear cringe. Examples are the sequence of occurrences of D3
at notes 17 to 20 of “God Save the King” and the final occurrence of D3 at note 36.
These notes would sound more in tune if a 27-beat loop <3H, 4×2, 5×3> had been
used instead of the 26-beat loop selected by the programmer <3H, 4×3, 5×2>—as
Fig. 8.5 indicates: the “difference line” at the foot of the graph would be flatter if the

Fig. 8.5  Comparing the notes in the National Anthem’s score with the notes actually played by the
computer in the BBC recording. The line at the foot of the graph, the difference line, shows the
displacement between the other two lines. The straighter the difference line, the more in tune with
one another the notes sound. Here, the line shows that the performance sounds most out of tune in
the middle and again almost at the end. In both places, the culprit is the computer’s rendition of the
note D3, which the programmer pitched a little too high

8  Turing and the History of Computer Music

216

27-beat loop were used. In fact, the preferable 27-beat loop even produces a fre-
quency closer to the note’s Equal Tempered frequency of 146.83 Hz (154.32 Hz as
opposed to the 26-beat loop’s frequency of 160.26 Hz). Why the programmer chose
the excessively high 26-beat loop is puzzling.

Another puzzling example of poor tuning, this time from “In the Mood” is A3, a
note that does not feature in the other two melodies. Substituting an 18-beat loop in
place of the 17-beat loop used by the programmer brings an improvement in relative
tuning, and again produces a frequency closer to the note’s Equal Tempered fre-
quency of 220 Hz (231.48 Hz as opposed to 245.1 Hz in the case of the 17-beat
loop). Once again, an excessively high frequency has been selected, to the detriment
of the relative in-tune-ness of the notes.

8.15  �Conclusion: Restoring the Recording

To put our findings to some practical archival use, we restored the British Library’s
recording. We increased the speed of the recording to match the original and used
pitch-correction software to remove the effects of the wobble. We also filtered out
extraneous noise from the recording.

Nobody had heard the true sound of the computer since the early Ferrantis were
scrapped more than half a century ago. A German researcher David Link attempted
to recreate the sound, by programming his emulation of the Mark II.76 But an emula-
tion is far from being the real thing, and without the original physical components,
including of course the hooter, an emulation cannot recapture the actual sound. But
now, thanks to an improbable meeting—in New Zealand—of the 1951 recording
and modern analytical techniques, we really can listen to Turing’s Mark II.

Our restoration is now in the British Library (reference number H3942) and can
be heard at www.AlanTuring.net/historic_music_restored.mp3.

Acknowledgments  With thanks to Chris Burton for assistance and advice. Copeland is grateful
to the following institutions for supporting this research: University of Canterbury, New Zealand;
University of Queensland, Australia; Federal Institute of Technology (ETH), Zurich, Switzerland;
and Det Informationsvidenskabelige Akademi, Copenhagen University, Denmark.

References

BBC. 1950. BBC Recording Training Manual. London: British Broadcasting Corporation.
Bowker, G., and R. Giordano. 1993. Interview with Tom Kilburn. IEEE Annals of the History of

Computing 15: 17–32.

76 Link, D. ‘Software Archaeology: On the Resurrection of Programs for the Mark 1, 1948–58’,
2015, vimeo.com/116346967.

B.J. Copeland and J. Long

http://www.AlanTuring.net/historic_music_restored.mp3

217

Campbell-Kelly, M. 1980. Programming the Mark I: Early Programming Activity at the University
of Manchester. IEEE Annals of the History of Computing 2: 130–168.

Chadabe, J. 2001. The Electronic Century, Part III: Computers and Analog Synthesizers. Electronic
Musician. www.emusician.com/tutorials/electronic_century3.

Copeland, B.J. 1999. The Turing-Wilkinson Lecture Series on the Automatic Computing Engine.
In Machine Intelligence, ed. K. Furukawa, D. Michie, and S. Muggleton, vol. 15, 381–444.
Oxford: Oxford University Press.

———. 2005. Introduction to ‘The Turing-Wilkinson Lecture Series (1946–7)’, (Turing (1946–7),
in Copeland et al. (2005).

———. 2011a. The Manchester Computer: A Revised History. Part I: The Memory. IEEE Annals
of the History of Computing 33: 4–21.

———. 2011b. The Manchester Computer: A Revised History. Part II: The Baby Machine. IEEE
Annals of the History of Computing 33: 22–37.

———. 2012. Turing, Pioneer of the Information Age. New York: Oxford University Press.
Copeland, B.J. et al. 2005. Alan Turing’s Automatic Computing Engine. New York: Oxford

University Press.
———. 2006. Colossus: The Secrets of Bletchley Park’s Codebreaking Computers. New York:

Oxford University Press.
Copeland, B.J., and G. Sommaruga 2015. The Stored-Program Universal Computer: Did Zuse

Anticipate Turing and von Neumann?, in Sommaruga and Strahm (eds.) (2015).
Dean, R.T. (ed.). 2009. The Oxford Handbook of Computer Music. New York: Oxford University

Press.
Dodd, K.N. c.1953. The Ferranti Electronic Computer. Armament Research Establishment report

10/53.
Doornbusch, P. 2005. The Music of CSIRAC: Australia’s First Computer Music. Melbourne:

Common Ground, 2005.
Fildes, J. 2008. ‘Oldest’ Computer Music Unveiled, BBC News | Technology, 17 June 2008, http://

news.bbc.co.uk/2/hi/technology/7458479.stm.
Foy, N. 1974. The Word Games of the Night Bird (Interview with Christopher Strachey). Computing

Europe, 15 August 1974, 10–11.
Lavington, S.H. 1980. Early British Computers: The Story of Vintage Computers and the People

Who Built Them. Manchester: Manchester University Press.
Link, D. 2012/2013. Programming ENTER. Christopher Strachey’s Draughts Program.

Resurrection 60: 23–31.
Lukoff, H. 1979. From Dits to Bits: A Personal History of the Electronic Computer. Portland:

Robotics Press.
McCann, D., and P. Thorne. 2000. The Last of the First. CSIRAC: Australia’s First Computer.

Melbourne: Melbourne University Press.
Prinz, D.G. 1952. Introduction to Programming on the Manchester Electronic Digital Computer,

Moston, Manchester: Ferranti Ltd., 28 March 1952. A digital facsimile is in The Turing Archive
for the History of Computing at www.AlanTuring.net/prinz.

Sommaruga, G., and T. Strahm (eds.). 2015. Turing’s Revolution: The Impact of His Ideas About
Computability. Basel: Birkhäuser/Springer.

Stern, N. 1979. The BINAC: A Case Study in the History of Technology. Annals of the History of
Computing 1: 9–20.

———. 1981. From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly Computers. Bedford,
MA: Digital.

Tootill, G.C. 1948–9. Digital Computer—Notes on Design & Operation. National Archive for the
History of Computing, University of Manchester.

Turing, A.M. 1946–7. The Turing-Wilkinson Lecture Series (1946–7), in Copeland et al. (2005),
pp. 464–527.

———. 1947. Lecture on the Automatic Computing Engine, in Turing and Copeland (2004),
pp. 378–394.

8  Turing and the History of Computer Music

http://www.emusician.com/tutorials/electronic_century3
http://news.bbc.co.uk/2/hi/technology/7458479.stm
http://news.bbc.co.uk/2/hi/technology/7458479.stm
http://www.alanturing.net/prinz

218

———. 1948. Intelligent Machinery, in Turing and Copeland (2004), pp. 410–432.
———. c.1950. Turing, A. M. Programmers’ Handbook for Manchester Electronic Computer

Mark II, Computing Machine Laboratory, University of Manchester, no date, circa 1950. A
digital facsimile is in The Turing Archive for the History of Computing at www.AlanTuring.net/
programmers_handbook.

Turing, A.M., and B.J. Copeland. 2004. The Essential Turing: Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence, and Artificial Life. Oxford: Oxford University Press.

Williams, F.C., and T. Kilburn. 1952. The University of Manchester Computing Machine. In
Review of Electronic Digital Computers: Joint AIEE-IRE Computer Conference, 57–61.
New York: American Institute of Electrical Engineers.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

B.J. Copeland and J. Long

http://www.alanturing.net/programmers_handbook
http://www.alanturing.net/programmers_handbook
http://creativecommons.org/licenses/by/4.0/

	Chapter 8: Turing and the History of Computer Music
	8.1 Introduction
	8.2 The Hardware
	8.3 Programming Notes
	8.4 God Save the King
	8.5 Turing’s Music Tutorial
	8.6 Exploring the Mark II Notes
	8.7 Hoot-Stop and Radio Stop
	8.8 First Hoots
	8.9 Other Early Music
	8.10 The BBC Recording
	8.11 The Paradox of the Impossible Notes
	8.12 Searching for the Right Speed
	8.13 The Question of Authorship
	8.14 Tuning Puzzles
	8.15 Conclusion: Restoring the Recording
	References

