
Chapter 4
Epidemic Models with Switching

In this chapter, the methods developed thus far are applied to a variety of infectious
disease models with different physiological and epidemiological assumptions. Many
of the previous results are immediately applicable, thanks to the flexibility of the
simple techniques used here. However, some complicating modeling assumptions
lead to a need for different switched systems techniques and results not present
in the previous chapter. First, the so-called SIS model is considered, followed by
incorporation of media coverage, network epidemic models with interconnected
cities (or patches), and diseases spread by vector agents (e.g., mosquitoes) which
are modeled using time delays. Straightforward extensions of eradication results
are given for models with vertical transmission, disease-induced mortality, waning
immunity, passive immunity, and a model with general compartments.

4.1 Absence of Conferred Natural Immunity: The SIS Model

Consider the set-up of a two-compartment disease model where the infected, once
recovered, immediately return to the susceptible class (i.e., only the susceptible, S,
and the infected, I, are considered). Implicitly, the assumption of conferred natural
immunity in the switched SIR model (3.8) is being discarded. Invoking the other
assumptions of Sects. 3.1 and 3.3 yield the switched SIS model:

PS.t/ D � � ˇ� S.t/I.t/ C gI.t/ � �S.t/;

PI.t/ D ˇ� S.t/I.t/ � .g C �/I.t/;

.S.0/; I.0// D .S0; I0/;

(4.1)
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Fig. 4.1 Flow diagram of the
switched SIS system (4.1).
The red line represents
horizontal transmission of the
disease

S I

where � 2 Sdwell designates a switching rule; �.t/ 2 M � f1; : : : ; mg and ˇ�.t/ 2
fˇ1; : : : ; ˇmg for each t. Again, the variables have been normalized by the constant
total population and .S0; I0/ 2 D(4.1) � f.S; I/ 2 R

2C W S C I D 1g, the meaningful
domain which is positively invariant to (4.1);

fPS C PIgjSCID1 D 0; PSjSD0 D � C gI > 0; PIjID0 D 0:

The flow of (4.1) is outlined in Fig. 4.1. Since the domain is positively invariant and
the switched system has continuously differentiable functions on the right-hand side
in each mode, the model is well-posed, biologically and mathematically.

The disease-free solution of (4.1) is Q(4.1)
DFS � .1; 0/. There exist m endemic

equilibria, each associated with a mode of (4.1), given by

Q(4.1);i
ES �

�
� C g

ˇi
; 1 � � C g

ˇi

�
: (4.2)

Since S C I D 1 is an invariant to (4.1), the differential equation for S may be
omitted:

PI.t/ D �ˇ� I2.t/ C .ˇ� � g � �/I.t/;

I.0/ D I0:
(4.3)

For any i 2 M ,

PI.t/ D �ˇiI
2.t/ C .ˇi � g � �/I.t/;

is a Bernoulli switched differential equation. With this in mind for the piecewise
switching case, the SIS model (4.1) admits the following solution (adopted from
[63]):

I.t/ �
8<
:

I.tk�1/ exp.�ik .t�tk�1//

I.tk�1/ˇik .exp.�ik .t�tk�1//�1/=�ik C1
; if �ik ¤ 0;

I.tk�1/

I.tk�1/ˇik .t�tk�1/C1
; if �ik D 0;

for all t 2 Œtk�1; tk/, where �i � ˇi � g � � for each i 2 M . The solution can be
given in a closed-form expression, as a function of parameters (i.e., initial condition
and switching rule) and t: if �i1 ¤ 0, then

I.t1/ D I0 exp.�i1 .t1//

I0ˇi1 .exp.�i1 .t1// � 1/=�i1 C 1
:
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If �i2 ¤ 0, then

I.t2/ D I.t1/ exp.�i2 .t2 � t1//

I.t1/ˇi2 .exp.�i2 .t2 � t1// � 1/=�i2 C 1
;

D I0 exp.�i1 .t1/ C �i2 .t2 � t1//�
I0ˇi2 exp.�i1 .t1//.exp.�i2 .t2�t1//�1/

�i2

�
C
�

I0ˇi1 .exp.�i1 .t1//�1/

�i1

�
C 1

:

Assuming that �ik ¤ 0 for each k, then the solution is given by

I.t/ �
I0 exp

�Pk�1
jD1 �ij.tj � tj�1/ C �ik .t � tk�1/

�

I0

�
ˇik Bik .t/ CPk�1

jD1 ˇij Aij

�
C 1

; 8t 2 Œtk�1; tk/; (4.4)

where

Bik .t/ � exp

0
@k�1X

jD1

�ij.tj � tj�1/ C �ik .t � tk�1/

1
A exp.�ik .t � tk�1// � 1

�ik

;

Aij �bAij exp.�i1 .t1/ C : : : C �ij�1 .tj�1 � tj�2//;

and,

bAij �
8<
:

exp.�ij .tj�tj�1//�1

�ij
; if �ij ¤ 0;

tj � tj�1; if �ij D 0:

Compare this result to the time-constant contact rate SIS model:

PS.t/ D � � ˇS.t/I.t/ � �S.t/ C gI.t/;

PI.t/ D ˇS.t/I.t/ � .g C �/I.t/;
(4.5)

which has basic reproduction number

R(4.5)
0 � ˇ

� C g
; (4.6)

and, after eliminating the equation for S via the invariant S C I D 1, simplifies to
the Bernoulli differential equation

PI.t/ D �ˇI2.t/ C .ˇ � g � �/I.t/;

I.0/ D I0 > 0:
(4.7)
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Equation (4.7) has two equilibria: Q(4.7)
DFS � 0 and Q(4.7)

ES � 1 � 1=R(4.5)
0 , corre-

sponding to the disease-free solution and endemic solution of (4.5), respectively.
Equation (4.7) admits a unique solution [63] which can be found analytically.
The details are explored to draw comparisons with the switched contact rate case
outlined above. Letting � � ˇ � � � g,

PI.t/ � �I.t/ D �ˇI2.t/;

if R(4.5)
0 ¤ 1 (i.e., � ¤ 0). In this case,

PI
I2

� �

I
D �ˇ:

The substitution y � I�1, which is valid for I ¤ 0, yields

Py D �
PI
I2

:

Hence,

Py.t/ D ��y.t/ C ˇ;

y.0/ D I0 > 0;

(where I0 > 0 has been assumed to make the problem interest) which admits a
unique solution given by

y.t/ �
�

I0 � ˇ

�

�
exp.��t/ C ˇ

�
; 8t 2 RC:

Consequently, the unique solution is

I.t/ � 1�
I0 � ˇ

�

�
exp.��t/ C ˇ

�

;

D exp..� C g/.R(4.5)
0 � 1/t/

R(4.5)
0 .exp..� C g/.R(4.5)

0 � 1/t/ � 1/=.R(4.5)
0 � 1/ C 1=I0

; 8t 2 RC:

In the case that R(4.5)
0 D 1, PI.t/ D �ˇI2.t/ which is readily solved to get the unique

solution

I.t/ � 1

ˇt C 1
I0

; 8t 2 RC:
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Combining the cases,

I.t/ �
8<
:

exp..�Cg/.R(4.5)
0 �1/t/

R(4.5)
0 .exp..�Cg/.R(4.5)

0 �1/t/�1/=.R(4.5)
0 �1/C1=I0

; if R(4.5)
0 ¤ 1;

1
ˇtC1=I0

; if R(4.5)
0 D 1:

(4.8)

As � D 0 is equivalent to R(4.5)
0 D 1, notice that (4.4) reduces to (4.8) when ˇ� D ˇ.

By inspection, if R(4.5)
0 � 1, it follows that

lim
t!1 I.t/ D 0;

and Q(4.7)
DFS is asymptotically stable in the meaningful domain. If R(4.5)

0 > 1 then

lim
t!1 I.t/ D 1 � 1=R(4.5)

0 > 0

and Q(4.7)
ES is asymptotically stable in the meaningful domain. The basic reproduction

number completely determines the long-term behavior of (4.7) (and therefore (4.5)).
In light of these findings, let us return to (4.3) in order to study its qualitative

behavior.

Theorem 4.1 If � 2 Speriodic.!/ and

R(4.1)
0 �

Pm
iD1 ˇi�i

!.� C g/
< 1;

then the disease-free solution Q(4.1)
DFS � .1; 0/ of the switched SIS model (4.1) is

globally asymptotically stable in the meaningful domain D(4.1).

Proof Since Ai > 0 for each i 2 M and Bi.t/ > 0 for each i 2 M and t 2 RC,
Eq. (4.4) implies that

I.t/ � I0 exp

0
@k�1X

jD1

�ij.tj � tj�1/ C �ik .t � tk�1/

1
A ; 8t 2 Œtk�1; tk/; (4.9)

and, from � 2 Speriodic,

I.!/ � I0 exp

 
mX

iD1

�i�i

!
;

where
Pm

iD1 �i�i < 0 since R(4.1)
0 < 1. Letting

� � exp

 
mX

iD1

�i�i

!
< 1;
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I.h!/ � I0�h for any h 2 N and the sequence fI.h!/g is monotonically decreasing
and converges to zero, and, similarly to the proof of Theorem 3.1, limt!1 I.t/ D 0.
Moreover, (4.9) gives that I.t/ � I0M � Imax for all t 2 RC where

M � exp

0
@ X

i2MC

�i�i

1
A ;

with MC � fi 2 M W �i > 0g. The result follows from the fact that S D 1 � I.

From the proof of Theorem 4.1, an approximation of the epidemic severity is
given as

Imax � I0 exp

0
@ X

i2MC

�i�i

1
A;

which is greater than I0 but may not be achieved. Importantly, a small amount of
initial infected cases results in a small number of infections in time and the disease
is eventually eradicated. However, in the case that the basic reproduction number
R(4.1)

0 is greater than one, a result on the persistence of the disease can be established
along the lines of the proof of Theorem 3.3 in [83] and Lemma 4.1 and Theorem 4.1
in [68]. If weak uniform persistence does not hold, then for any � > 0,

lim sup
t!1

I.t/ < �:

In this case,

PS.t/ D � � ˇkS.t/I.t/ C gI.t/ � �S.t/ > � � ˇmax� � �S.t/; 8t 2 Œtk�1; tk/;

where ˇmax � maxfˇ1; : : : ; ˇmg. The comparison ODE system

PSm.t/ D � � ˇmax� � �Sm.t/;

Sm.0/ D S0;
(4.10)

has a unique solution converging to S� � 1 � ˇmax�=�. Hence, there exists a time
t� > 0 for which S.t/ � 1 � ˇmax�=� � � for all t � t� and, for any k 2 N satisfying
t� < tk�1 < t � tk,

PI.t/ D ˇkS.t/I.t/ � .g C �/I.t/ � .ˇk � g � � � �.1 C ˇmax=�/ˇk/I.t/:

For t 2 Œt� C .k � 1/!; t� C k!/,
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I.t/ � I.t�/ exp

�Z t

t�
.ˇ�.s/ � g � � � �.1 C ˇmax=�/ˇ�.s//ds

�
;

D I.t�/ exp

 Z t�C.k�1/!

t�
.ˇ�.s/ � g � � � �.1 C ˇmax=�/ˇ�.s//ds

!

� exp

�Z t

t�C.k�1/!

.ˇ�.s/ � g � � � �.1 C ˇmax=�/ˇ�.s//ds

�
;

� M exp

�
.k � 1/

�Z !

0

.ˇ�.s/ � g � �/ds � �!ˇmax.1 C ˇmax=�/

�	
;

where M � I.t�/ exp.�!.g C �/ � �!ˇmax.1 C ˇmax=�//. Choosing � to satisfy

0 < � �
R !

0
.ˇ�.s/ � g � �/ds

2!ˇmax

�
1 C ˇmax

�

� ;

�.�/ �
�Z !

0

.ˇ�.s/ � g � �/ds � �!ˇmax.1 C ˇmax=�/

�
> 0;

and I.t/ � M exp..k � 1/�.�//, which contradicts the boundedness of I; there exists
a time t1 > t� such that I.t1/ � �. Uniform persistence is then shown along the lines
of the proof of Theorem 3.4 to give the following result.

Theorem 4.2 If � 2 Speriodic.!/ and R(4.1)
0 > 1, then the disease persists uniformly

in (4.1).

A permanence result (see [148] for the original definition, also see [49]) can be
derived in terms of the endemic equilibria associated with each mode of (4.1), i.e.,
Q(4.1);i

ES as outlined in (4.2).

Definition 4.1 The disease is said to be permanent in (4.1) if there exists a compact
set ˝ � int.D(4.1)/ such that for every initial condition in D(4.1), I.t/ eventually
enters and remains in ˝.

Note that permanence implies persistence. Periodicity of the switching rule is not
required in this case.

Theorem 4.3 If � 2 Sdwell and minfR(4.1);i
0 W i 2 M g > 1, then the disease is

permanent in (4.1); I.t/ converges to convfQ(4.1);1
ES ; : : : ; Q(4.1);m

ES g.

Proof Note that minfR(4.1);i
0 W i 2 M g > 1 implies that

ˇmin

� C g
> 1;
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where ˇmin � minfˇi W i 2 M g. Let 	 � convfQ(4.1);1
ES ; : : : ; Q(4.1);m

ES g and �i �
ˇi���g for each i 2 M . For each i 2 M , Q(4.1);i

ES D .S�
i ; I�

i ; R�
i / where I�

i � �i=ˇi.
Then

	 D f.S; I/ 2 R
2C W I�

min � I � I�
max; S D 1 � Ig;

where Imin � minfI�
1 ; : : : ; I�

mg and Imax � maxfI�
1 ; : : : ; I�

mg. For any i 2 M ,

PIjIDI�

min
D �ˇi

�
�min

ˇmin

�2

C �i
�min

ˇmin
D �min

ˇmin
ˇi

�
�i

ˇi
� �min

ˇmin

�
� 0;

since minfR(4.1);i
0 W i 2 M g > 1. Similarly, for any i 2 M ,

PIjIDI�

max
D �ˇi

�
�max

ˇmax

�2

C �i
�max

ˇmax
D �max

ˇmax
ˇi

�
�i

ˇi
� �max

ˇmax

�
� 0:

The invariance of S C I D 1 immediately implies that 	 is positively invariant
to (4.1); if I0 2 	, fI.t/ W t 2 RCg � 	. If 0 < I0 < �min=ˇmin, then

PI.t/ D �ˇ� I2.t/ C �� I.t/ D ˇ� I.t/

�
��

ˇ�

� I.t/

�
> 0; 8t 2 RC;

implying that either I.t/ 2 	 in finite time or limt!1 I.t/ D I�
min 2 	. Similar

arguments can be used for the case �max=ˇmax < I0 � 1.

Example 4.1 Consider the switched SIS model (4.1) with switching in all model
parameters:

PS.t/ D �� � ˇ� S.t/I.t/ C g� I.t/ � �� S.t/;

PI.t/ D ˇ� S.t/I.t/ � .g� C �� /I.t/;

.S.0/; I.0// D .S0; I0/;

(4.11)

where M D f1; 2g and � is defined by the seasonal switching rule (3.37) (which is
periodic with �1 D 0:25, �2 D 0:75 and ! D 1). Letting ˇ1 D 1=4, ˇ2 D 1=12,
g1 D 1=10, g2 D 1=8, �1 D 1=70, and �2 D 1=60 (motivated by the parameter
values in [173]), there is an increase in the contact rate and decrease in the recovery
rate in the winter seasons and the birth rate increases during the summer months.
The basic reproduction number is calculated as

R(4.11)
0 D

P2
iD1 ˇi�iP2

iD1.�i C gi/�i

D 0:927

and, by a straightforward extension of Theorem 4.1 (see Theorem 2.1 in [98]), the
disease-free solution is globally asymptotically stable in the meaningful domain.
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Fig. 4.2 Simulation of Example 4.1. (a) R(4.11)
0 D 0:927. (b) minfR(4.11);i

0 W i 2 M g D 1:41; the
black lines are I�

min and I�

max

Fig. 4.3 Simulations of
Example 4.1 with different
initial conditions. The
solution eventually satisfies
I.t/ 2 ŒI�

min; I�

max
 unless
I0 D 0
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If instead ˇ1 D 1=2, ˇ2 D 1=5, g1 D 1=10, g2 D 1=8, �1 D 1=70, and �2 D
1=60, then R(4.11)

0 D 2:04 and the disease persists according to an extension of
Theorem 4.2 (Theorem 2.3 in [98]). In fact, minfR(4.1);1

0 ; R(4.1);2
0 g D 1:41 and the

solution converges to the convex hull of the endemic equilibria according to an
extension of Theorem 4.3 (Theorem 2.4 in [98]). See Fig. 4.2 for an illustration with
.S0; I0/ D .0:8; 0:2/ and Fig. 4.3 for simulations with different initial conditions.

The spread of an infectious disease in a population depends crucially on two
factors: (1) properties of its transmission mechanisms; and (2) the behavior of
the host population. These two items are manifested in the infectious disease
models via incidence rate constructions. In this part, we consider the following two
generalizations of the standard incidence rate studied thus far: first, the standard
incidence rate as
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.S; I/ 7! ˇ.S C I/˛�1SI D ˇN˛ SI

N
;

where ˛ 2 Œ0; 1
 represents the pattern of daily encounters by individuals in the
population N D S C I (˛ D 0 corresponds to the standard incidence rate) and the
variables are non-normalized here. According to studies [171], ˛ � 0:05 ˙ 0:02,
justifying the choice of using the standard incidence rate thus far compared to the
mass-action incidence rate (which corresponds to ˛ D 1). To see the effect of ˛

on the switched SIS model, we proceed in this part with ˛ 2 Œ0; 1
. Second, the
host population’s psychological behavior is taken into account by considering media
coverage of an epidemic. The authors Li and Cui [83] considered the incidence rate

.S; I/ 7!
�

ˇ � �
I

b C I

�
SI;

where the variables are normalized, ˇ � �c1, � � �c2, � > 0 is the transmission
probability if a contact is made between individuals, c1 > 0 is the average number
of contacts, and c2 > 0 is the reduction in average number of contacts due to media
coverage. Knowledge of an impending severe epidemic in a population via increased
media coverage shifts the population behavior. Here ˇ � � > 0 is assumed to
hold (the average number of new cases per unit time cannot become negative). The
term I=.b C I/, b > 0, captures the relationship between the media coverage and
psychological behavior of the susceptible population. This motivates the following
switched incidence rate form:

.t; S; I/ 7!
�

ˇ� � ��

I

b C I

�
.S C I/˛�1SI;

where ˇi � �i > 0 for each i 2 M , and the corresponding switched SIS model:

PS.t/ D A �
�

ˇ� � �� I

b C I

�
.S.t/ C I.t//˛�1S.t/I.t/ C gI.t/ � �S.t/;

PI.t/ D
�

ˇ� � �� I.t/

b C I.t/

�
.S.t/ C I.t//˛�1S.t/I.t/ � .g C �/I.t/;

.S.0/; I.0// D .S0; I0/;
(4.12)

where the emigration rate A > 0 satisfies 0 < S0 C I0 � A=�. Note that

PN.t/ D PS.t/ C PI.t/ D A � �N.t/

and S and I are not fractions here as they have been up to this point; the meaningful
physical domain is given by

D(4.12) � f.S; I/ 2 R
2C W S C I � A=�g;
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whose positive invariance to (4.12) follows from

fPS C PIgjSCID1 D 0; PSjSD0 D A C gI > 0; PIjID0 D 0:

Here the disease-free equilibria is given by Q(4.12)
DFS � .A=�; 0/, whose stability can

be shown by incorporating the comparison theorem into the methods previously
outlined.

Theorem 4.4 If � 2 Speriodic and

R(4.12)
0 �

�
A

�

�˛ �Pm
iD1 ˇi�i

!.� C g/

�
< 1

then the disease is eradicated; the solution of the switched SIS system (4.12)
converges to the disease-free solution Q(4.12)

DFS . If

bR0
(4.12) �

�
A

�

�˛ �
ˇmax

� C g

�
< 1

then the disease-free solution Q(4.12)
DFS is globally asymptotically stable in the

meaningful domain D(4.12).

With the techniques of the previous chapter, combined with the intrinsic one-
dimensionality of the model, global asymptotic stability of Q(4.12)

DFS in the meaningful
domain is shown.

Proof The differential equation for I satisfies

PI.t/ D
�

ˇk � �kI.t/

b C I.t/

�
.S.t/ C I.t//˛�1S.t/I.t/ � .g C �/I.t/;

� ˇk.A=�/˛�1.A=�/I.t/ � .g C �/I.t/;

D ˇk.A=�/˛I.t/ � .g C �/I.t/;

D �kI.t/; 8t 2 Œtk�1; tk/;

where �i � ˇi.A=�/˛ � g � � for all i 2 M . It follows that

I.t/ � I.tk�1/ exp.�k.t � tk�1//; 8t 2 Œtk�1; tk/; (4.13)

which gives that

I.h!/ � I0 exp

 
h

 
mX

iD1

�i�i

!!
; 8h 2 N: (4.14)

Hence, fI.h!/g is a monotonically decreasing sequence that converges to zero and,
by the arguments in the proof of Theorem 3.1, limt!1 I.t/ D 0. The differential
equation for the total population PN.t/ D A � �N.t/ implies that
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S.t/ C I.t/ D .S0 C I0 � A=�/ exp.��t/ C A=�; 8t 2 RC;

so that limt!1 S.t/ D A=�. More than that, the solution can be given an upper
bound in terms of the initial condition and a constant:

I.t/ � I0 exp

0
@ X

i2MC

�i�i

1
A ; 8t � 0;

where MC � fi 2 M W �i � 0g; for any � > 0 choose ı D
0:5� exp


�Pi2MC

�i�i
�
, then

j.S.t/; I.t// � .1; 0/j � jS.t/ � 1j C jI.t/j D 2I.t/ < �:

Using the Generalized Binomial Theorem, a persistence result can be established
for the endemic case.

Theorem 4.5 If � 2 Speriodic.!/ and R(4.12)
0 > 1, then the disease persists

uniformly; there exists � > 0 such that lim inft!1 I.t/ � �.

Proof If I.t/ < � for t 2 Œte; C1/ for some te > 0 then PS.t/ > A �
ˇmax.A=�/˛�1.A=�/� � �S.t/ for all t 2 Œte; C1/. The ODE system

PSm.t/ D
�

A � �ˇmax

�
A

�

�˛�
� �Sm.t/;

Sm.te/ D S0;

(4.15)

has a unique solution Sm on Œte; C1/ which satisfies

lim
t!1 Sm.t/ D A

�
� �ˇmaxA˛

�˛C1
:

The existence of t� � te follows such that

S.t/ � A

�
� �ˇmaxA˛

�˛C1
� �; 8t � t�:

For k 2 N satisfying t� < tk�1 < t � tk,

PI.t/ D
�

ˇk � �kI.t/

b C I.t/

�
.S.t/ C I.t//˛�1S.t/I.t/ � .g C �/I.t/;

�
�

ˇk � �max�

b C �

��
A

�
� �ˇmaxA˛

�˛C1
� �

�˛

I.t/ � .g C �/I.t/;
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where �max � maxf�i W i 2 M g. Defining

B � ˇ�A˛

�˛C1
C 1;

A=� > B� implies that .A=� � B�/˛ can be expanded using the Generalized
Binomial Theorem:

�
A

�
� B�

�˛

D
1X

kD0

�
˛

k

��
A

�

�˛�k

.�B�/k;

D
�

A

�

�˛

� �˛B

�
A

�

�˛�1

C
1X

kD2

�
˛

k

��
A

�

�˛�k

.�B�/k:

Then, if A=� > B� and � < 1,

1X
kD2

�
˛

k

��
A

�

�˛�k

.�B�/k D
�

A

�

�˛ 1X
kD2

�
˛

k

����B�

A

�k

;

� �˛.˛ � 1/

2

�
B�

A

�
:

Thus,

�
A

�
� B�

�˛

�
�

A

�

�˛

� �

�
A

�

�˛ �B�

A
C ˛.˛ � 1/B�

2A

�
;

D
�

A

�

�˛

� �B

�
A

�

�˛�1 �
1 C ˛.˛ � 1/

2

�
;

which yields that

I.t/ � I.t�/ exp

�Z t

t�

��
ˇ�.s/ � �max�

b C �

� �
A

�
� B�

�˛

� .g C �/

	
ds

�
;

� I.t�/ exp

�Z t

t�

��
ˇ�.s/ � �max�

b C �

��
A

�

�˛	
ds

�

� exp

"
�
Z t

t�

(�
ˇ�.s/ � �max�

b C �

�"
�B

�
A

�

�˛�1 �
1 C ˛.˛ � 1/

2

�#)
ds

#

� exp

�
�
Z t

t�
.g C �/ds

�
;

D I.t�/ exp

�Z t

t�

�
ˇ�.s/

�
A

�

�˛

� g � � C G.�/

�
ds

�
;
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for all t 2 Œt� C .k � 1/!; t� C k!/, where

G.�/ � ��max�

a C �

"�
A

�

�˛

C �B

�
A

�

�˛�1 �
1 C ˛.˛ � 1/

2

�#

� �ˇmaxB

�
A

�

�˛�1 �
1 C ˛.˛ � 1/

2

�
:

It follows that

I.t/ � I.t�/ exp

( Z t�C.k�1/!

t�
.ˇ�.s/.A=�/˛ � g � � C G.�//ds

)

� exp

�Z t

t�C.k�1/!

.ˇ�.s/.A=�/˛ � g � � C G.�//ds

	
;

� M exp

�
.k � 1/

�Z !

0

.ˇ�.s/.A=�/˛ � g � �/ds C !G.�/

�	
;

where M � I.t�/ exp.�!.g C �/ C !G.�//. R(4.12)
0 > 1 implies the existence of

�1 > 0 such that

�.�1/ �
 

.A=�/˛

mX
iD1

ˇi�i � !.g C �/ C !G.�1/

!
> 0:

Choosing � � 0:5 minf�1; A=.�B/; 1g yields that I.t/ � M exp..k � 1/�.�//, a
contradiction. There must exist a time t1 > t� for which I.t1/ � �; weak uniform
persistence of I holds. Uniform persistence can then be shown by observing that
PI.t/ � �.g C �/.t/ and using similar arguments as in the proof of Theorem 3.4.

From a practical point of view, it can be difficult to approximate the basic
reproduction number, and even more so when it is changing over time. Moreover,
the switching rule may not always be exactly periodic. Defining the mode basic
reproduction numbers

R(4.12);i
0 �

�
A

�

�˛ �Pm
iD1 ˇi�i

!.� C g/

�
;

the results in Sect. 3.4 are easily mirrored (i.e., Theorems 3.2 and 3.3) via the
bound (4.13). Namely, Q(4.12)

DFS is globally attractive and exponentially I-stable in the
physically meaningful domain D(4.12) if either of the following conditions hold:

(1) � 2 Sdwell and

D
R(4.12)

0

E
� sup

t�h

mX
iD1

R(4.12);i
0 Ti.t/ < 1;

for some h > 0;
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(2) � 2 Sdwell satisfies TC � N0 C qT�.t/ for some q 2 .0; 1/ and N0 � 0 such
that

R(4.12);�
0 � 1 < q.R(4.12);C

0 � 1/;

where R(3.8);�
0 � maxfR(3.8);i

0 W i 2 M�g and R(3.8);C
0 � maxfR(3.8);i

0 W i 2 MCg
and

TC.t/ � jft 2 Œ0; t
 W �.t/ 2 MCgj;
T�.t/ � jft 2 Œ0; t
 W �.t/ 2 M�gj:

Example 4.2 Consider the switched SIS model with media coverage incidence
rate (4.12) and assume that M D f1; 2g follows the switching rule

�.t/ �
(

1; if t 2 Œ2k; 2k C 2/; k D 0; 1; 2; : : : ;

2; if t 2 Œ2k C 2; 2k C 4/;
(4.16)

which is periodic with �1 D 2, �2 D 2 and ! D 4. Motivated by the parameter values
of [171], let A D 3000, ˇ1 D 1=10, ˇ2 D 1=5, �1 D 1=30, �2 D 1=7, g D 1=5,
� D 1=10, b D 0:5, and ˛ D 0:07. The contact rate varies every 2 years and,
accordingly, there is an increase in media coverage (and hence reduction in the real,
media-adjusted contact rate). Let .S0; I0/ D .12; 000; 2000/ (i.e., N0 D 14; 000) and
˛ D 0:07 to reflect the daily contact patterns of individuals. Then R(4.12)

0 D 3:50 and
the disease persists by Theorem 4.5 (see Fig. 4.4a). If instead, A D 300, ˇ1 D 1=10,
ˇ2 D 1=5, �1 D 1=20, �2 D 1=10, g1 D 9=10, g2 D 2=5, (i.e., switching recovery
rates) � D 1=10, b D 0:5, and ˛ D 0:5, then R(4.12)

0 D 11:0 and the disease
persists by an extension of Theorem 4.5 (Theorem 3.2 in [98]). Here ˛ D 0:5 reflects
the influence of the smaller community size on daily encounters. Given the initial
conditions .S0; I0/ D .1800; 15/, see Fig. 4.4b for an illustration.

4.2 Multi-City Epidemics: Modeling Traveling Infections

Travel has created an easy way for many infectious diseases to be transmitted from
one region to another. The SARS outbreak in 2003 is a clear example of the effects
of travel on the spread of a disease as it initially began in only one area of China and
eventually spread to most of the country as well as other cities in the world due to
travel of infected individuals [100]. A second example can be seen in the outbreak
of measles in Iceland due, in part, to infected individuals traveling to the country
[147]. More recently, in April 2009, the H1N1 influenza virus appeared in Mexico,
and soon spread to other countries all over the world [167]. In many developing
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Fig. 4.4 Simulations of Example 4.2. (a) R(4.12)
0 D 3:50. (b) R(4.12)

0 D 11:0

countries, poor traveling conditions in mass transit, such as limited sanitation, leads
to an increase in the spread of diseases due to infected individuals using transit
[146].

Consider complicating the switched SIS system (4.1) by adding geographic
factors. To begin, suppose that there are two cities (or patches) and the susceptible
population is permitted to travel at a per capita rate ˛ > 0 (called the dispersal
rate) between the cities. With the other modeling assumptions of the switched SIS
system (4.1), the multi-city model is given as

PS.1/.t/ D �N.1/.t/ � ˇ�

S.1/.t/I.1/.t/

N.1/.t/
� �S.1/.t/

C gI.1/.t/ � ˛S.1/.t/ C ˛S.2/.t/;

PI.1/.t/ D ˇ�

S.1/.t/I.1/.t/

N.1/.t/
� gI.1/.t/ � �I.1/.t/;

PS.2/.t/ D �N.2/.t/ � S.2/.t/I.2/.t/

N.2/.t/
� �S.2/.t/

C gI.2/.t/ � ˛S.2/.t/ C ˛S.1/.t/;

PI.2/.t/ D ˇ�

S.2/.t/I.2/.t/

N.2/.t/
� gI.2/.t/ � �I.2/.t/;

.S.j/.0/; I.j/.0// D .S.j/
0 ; I.j/

0 /; 8j 2 f1; 2g;

(4.17)

where N.1/ � S.1/ C I.1/ and N.2/ � S.2/ C I.2/. In this way, homogeneity of
the population mixing has been changed; the groups S.1/ and S.2/ interact with the
infected group I.1/ in vastly different ways. The flow of the model can be seen in
Fig. 4.5.



4.2 Multi-City Epidemics: Modeling Traveling Infections 99

Fig. 4.5 Flow diagram of the
Multi-city SIS model (4.17)

S I

S I

City 1

City 2

Next, suppose that infected individuals also travel and, due to dense crowds on
mass transportation (which may have relatively poor sanitary conditions in develop-
ing countries [146]), the disease is transmitted between traveling individuals. More
specifically, assume that the disease is transmitted at a contact rate � > 0 during
travel. The traveling incidence rate therefore takes the form

�
.˛S.j//.˛I.j//

˛N.j/
D �

.˛S.j//.˛I.j//

.˛S.j// C .˛I.j//
D �˛

S.j/I.j/

S.j/ C I.j/
:

This leads to the following model:

PS.1/.t/ D �N.1/.t/ � ˇ�

S.1/.t/I.1/.t/

N.1/.t/
� �S.1/.t/ C gI.1/.t/

� ˛S.1/.t/ C ˛S.2/.t/ � ˛�
S.2/.t/I.2/.t/

N.2/.t/
;

PI.1/.t/ D ˇ�

S.1/.t/I.1/.t/

N.1/.t/
� gI.1/.t/ � �I.1/.t/ � ˛I.1/.t/

C ˛I.2/.t/ C ˛�
S.2/.t/I.2/.t/

N.2/.t/
;

PS.2/.t/ D �N.2/.t/ � S.2/.t/I.2/.t/

N.2/.t/
� �S.2/.t/ C gI.2/.t/

� ˛S.2/.t/ C ˛S.1/.t/ � ˛�
Sc1.t/I.1/.t/

N.1/.t/
;

PI.2/.t/ D ˇ�

S.2/.t/I.2/.t/

N.2/.t/
� gI.2/.t/ � �I.2/.t/ � ˛I.2/.t/

C ˛I.1/.t/ C ˛�
S.1/.t/I.1/.t/

N.1/.t/
;

.S.j/.0/; I.j/.0// D .S.j/
0 ; I.j/

0 /; 8j 2 f1; 2g:

(4.18)
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The total population, N � N.1/ C N.2/, satisfies

PN.t/ D PS.1/.t/ C PI.1/.t/ C PS.2/.t/ C PI.2/.t/ D 0;

though N.1/ and N.2/ need not be constant (the system is closed when considering
both cities together).

The meaningful physical domain of (4.18) is given by

D(4.18) � f.S.1/; S.2/; I.1/; I.2// 2 R
4C W S.1/ C I.1/ C S.2/ C I.2/ D Ng;

which is positively invariant to (4.18). Observe that

˛S.j/ � ˛�
S.j/I.j/

S.j/ C I.j/
� 0; 8j 2 f1; 2g;

as long as .S.j/; I.j// 2 R
2C; the difference between the number of susceptible

individuals traveling from city j and those being infected while traveling from city j
is nonnegative. From this, invariance of D(4.18) to (4.18) is shown as follows:

fPS.1/ C PI.1/ C PS.2/ C PI.2/gjS.1/CI.1/CS.2/CI.2/DN D 0;

PS.1/jS.1/D0 D .� C g/I.1/ C ˛S.2/ � ˛�
S.2/I.2/

N.2/
� 0; PI.1/jI.1/D0 D ˛I.2/ C ˛�

S.2/I.2/

N.2/
� 0;

PS.2/jS.2/D0 D .� C g/I.2/ C ˛S.1/ � ˛�
S.1/I.1/

N.1/
� 0;

PI.2/jI.2/D0 D ˛I.1/ C ˛�
S.1/I.1/

N.1/
� 0:

If � 2 Speriodic.!/ and the basic reproduction number

R(4.18)
0 �


Pm
iD1 ˇi�i

�C !˛�

!.� C g/
< 1

then Q(4.18)
DFS � .N=2; 0; N=2; 0/ is attractive in the meaningful domain D(4.12).

A more precise characterization is that Q(4.18)
DFS is exponentially .I.1/; I.2//-stable in

D(4.12), which can be shown using the techniques detailed thus far:

d.I.1/ C I.2//

dt
.t/ D ˇ�

�
S.1/.t/I.1/.t/

S.1/.t/ C I.1/.t/
C S.2/.t/I.2/.t/

S.2/.t/ C I.2/.t/

�

� .g C �/.I.1/.t/ C I.2/.t//
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C ˛�

�
S.1/.t/I.1/.t/

S.1/.t/ C I.1/.t/
C S.2/.t/I.2/.t/

S.2/.t/ C I.2/.t/

�
;

� .ˇ� C ˛� � g � �/.I.1/.t/ C I.2/.t//;

D �� .I.1/.t/ C I.2/.t//; (4.19)

where �i � ˇi C ˛� � g � � for each i 2 M . It is straightforward to show that the
1-norm satisfies

j.I.1/.t/; I.2/.t//j1 D I.1/.t/ C I.2/.t/ � .I.1/
0 C I.2/

0 / exp.�ct/

for some c > 0. The limiting equations for S.1/ and S.2/ are given by the system

PS.1/.t/ D �˛S.1/.t/ C ˛S.2/.t/;

PS.2/.t/ D �˛S.2/.t/ C ˛S.1/.t/:
(4.20)

S.1/ C S.2/ D N is an invariant of (4.20), from which it follows that

lim
t!1 S.1/.t/ D lim

t!1 S.2/.t/ D N=2:

Note that traveling infected can cause the disease to become endemic in both cities
while eradication would be the outcome in either city if travel were to be restricted
(i.e., ˛ D 0). This can be observed in the basic reproduction number via the ˛� term
and motivates the notion of limiting the spread of a disease by restricting travel and
screening individuals (this idea will be revisited in Chap. 5).

Extending the model to n 2 N cities or patches is natural at this point: let S.j/,
I.j/, R.j/, and N.j/ denote the susceptible, infected, recovered, and total population in
city j 2 N � f1; : : : ; ng, respectively. Motivated by the analysis of (3.29), consider
a general switched incidence rate for its flexibility in modeling a term-time forcing
contact rate or a change in the fundamental structure of the disease spread. Assume
that, in city j 2 N , the birth/death rate is given by �.j/ > 0 and the recovery rate
by g.j/ > 0. Individuals do not die, recover, or give birth while traveling between
cities. The per capita dispersal rate from city l 2 N to city j 2 N n flg is given by
˛.l;j/ � 0. Let �˛.j;j/ � 0 denote the emigration rate from city j to all other cities.
The general switched incidence rate in city j 2 N is denoted by the function

.t; S.j/; I.j// 7! f .j/
� .S.j/; I.j//

(only individuals in city j affect the spread of the disease there), where � 2 Sdwell

is a switching rule, and dependence on N.j/ is not explicitly stated but is understood.
The generalized traveling incidence rate from city l 2 N to city j 2 N n flg is
denoted by the function

.t; S.l/; I.l// 7! h.l;j/
� .S.l/; I.l//:
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Omitting the arguments for the switched incidence rate functions, the model is thus
formulated as the following ODE system:

PS.j/.t/ D �.j/N.j/.t/ � f .j/
� � �.j/S.j/.t/

C
X
l2N

˛.l;j/S.l/.t/ �
X

l2N nfjg
˛.l;j/h.l;j/

� ; 8j 2 N

PI.j/.t/ D f .j/
� � g.j/I.j/.t/ � �.j/I.j/.t/

C
X
l2N

˛.l;j/I.l/.t/ C
X

l2N nfjg
˛.l;j/h.l;j/

� ; 8j 2 N ;

PR.j/.t/ D g.j/I.j/.t/ � �.j/R.j/.t/ C
X
l2N

˛.l;j/R.l/.t/; 8j 2 N ;

.S.j/.0/; I.j/.0/; R.j/.0// D .S.j/
0 ; I.j/

0 ; R.j/
0 /; 8j 2 N :

(4.21)

The following observations are made (some of which are extended from [146,
167]):

1. h.l;j/
i .S.l/; I.l// D h.j;l/

i .S.l/; I.l// for each l; j 2 N ; the transportation method
between cities l and j is identical in either direction.

2. S.j/.t/ C I.j/.t/ C R.j/.t/ D N.j/.t/ for all t and
P

j2N N.j/ � N 2 RC.

3. Most often it is assumed that S.j/
0 > 0 for all j 2 N (all cities begin with some

number of susceptible) and I.j�/
0 > 0 for some j� 2 N (at least one city begins

with some infected).
4. The meaningful domain is positively invariant and given by

D(4.21) �
8<
:.S; I; R/ 2 R

3nC W N D
X
j2N

S.j/ C I.j/ C R.j/

9=
; ;

where the notation

.S; I; R/ � .S.1/; S.2/; : : : ; S.n/; I.1/; I.2/; : : : ; I.n/; R.1/; R.2/; : : : ; R.n//

is adopted for the rest of this section.
5.
P

l2N ˛.l;j/ D 0 for each j 2 N (sum of immigration must equal emigration);
6. The matrix formed with entries .˛.l;j//1�l;j�n in row l and column j is irreducible

(the n cities cannot be separated into two groups of cities such that there is no
immigration from one group of cities to the other).

7. For each l 2 N , j 2 N n flg, i 2 M , the traveling condition

˛.l;j/S.j/ � ˛.l;j/h.l;j/
i .S.l/; I.l// � 0; (4.22)
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holds (the number of susceptible individuals traveling to city j 2 N must enter
city j as either susceptible or infected);

8. The function f .j/
i is assumed to be smooth for each j 2 N and each i 2 M and

satisfies physically reasonable restrictions; i.e.,

f .j/
i .S.j/; I.j// > 0;

and

f .j/
i .S.j/; 0/ D 0;

for physically realizable values of .S.j/; I.j//.
9. The function h.j;l/

i is assumed to be smooth for each l 2 N , j 2 N n flg, and
i 2 M and satisfies similar physically reasonable restrictions.

Figure 4.6 illustrates the flow diagram of (4.21). Observe that D(4.21) is positively
invariant to (4.21) under the above assumptions:

0
@X

j2N
PS.j/ C PI.j/ C PR.j/

1
A jP

j2N S.j/CI.j/CR.j/DN D 0;

PS.j/jS.j/D0 � 0, PI.j/jI.j/D0 � 0, and PR.j/jR.j/D0 � 0. The flow of (4.21) is detailed in
Fig. 4.6.

We detail the basic reproduction number of (4.21) by working from a simplified
version of the model (i.e., restricted travel and time-invariant incidence rates) up to
the full model.

1. Restricted travel and time-invariant incidence rates: When ˛.l;j/ D 0 for all
i; j 2 N and f .j/

� .S.j/; I.j// � f .j/.S.j/; I.j// for all j 2 N , i 2 M , the switched
multi-city system (4.21) models n closed cities which do not interact. The basic
reproduction number of each city is given by the closed-form expression [73]:

R(4.21);.j/
0 D 1

� C g

�
@f .j/

@I.j/
.N.j/; 0/

�
; 8j 2 N ;

Fig. 4.6 Flow of multi-city
SIR model (4.21) for n D 2.
The red lines represent new
infections

S I

S I

City 1

City 2

R

R
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where N.j/ is constant in this case since

PN.j/.t/ D PS.j/.t/ C PI.j/.t/ C PR.j/.t/ D 0; 8t:

As expected, the long-term behavior is dictated by R(4.21);.j/
0 as follows:

R(4.21);.j/
0 < 1 yields global asymptotic stability of .N.j/; 0/ in each city, while

R(4.21);.j/
0 > 1 yields global asymptotic stability of an endemic equilibrium (the

results of [73] are applicable to each city individually).
2. Restricted travel and switching incidence rates: If � 2 Speriodic.!/, then the

basic reproduction number of each city in the switched multi-city model (4.21)
is given by [11]:

R(4.21);.j/
0 D

mX
iD1

@f .j/

@I.j/
.N.j/; 0/�i

1

!.� C g/
; 8j 2 N ;

where N.j/ is constant, as above, and has the usual physical interpretation;
R(4.21);.j/

0 is the average number of secondary infections resulting from the
introduction of an infected individual into city j with a wholly susceptible
population.

3. Unrestricted travel and time-invariant incidence rates: The basic reproduction
number of the multi-city model (4.21) in this case is the spectral radius of its
next-generation matrix [152]:

R(4.21)
0 D �.FV�1/;

where

F �

2
66664

@f .1/

@I.1/ ˛.2;1/ @h.2;1/

@I.2/ : : : ˛.n;1/ @h.n;1/

@I.n/

˛.1;2/ @h.1;2/

@I.2/

@f .2/

@I.2/ : : : ˛.n;2/ @h.n;1/

@I.n/

:::
: : :

:::

˛.1;n/ @h.1;n/

@I.2/ : : : ˛.n�1;n/ @h.n�1;n/

@I.n�1/

@f .n/

@I.n/

3
77775 ;

and

V �

2
6664

�.1/ C g.1/ C ˛.1;1/ �˛.2;1/ : : : �˛.n;1/

�˛.1;2/ �.2/ C g.2/ C ˛.2;2/ : : : �˛.n;2/

:::
: : :

:::

�˛.1;n/ : : : �˛.n�1;n/ �.n/ C g.n/ C ˛.n;n/

3
7775 ;

where the argument of h.l;j/ in the matrix F is .eS.l/; 0/ (the disease-free solution,
whose existence is guaranteed from the irreducibility and cooperativeness of the
matrix A but whose full form is omitted; see [170] for details).
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Here, the .i; j/ entry of F represents the rate of new infections in city j 2
N caused by infected individuals in city i 2 N and the .i; j/ entry of V�1

represents the average period of time spent in city j 2 N during an average
lifetime (assuming the population remains near the disease-free solution) [152].

4. Unrestricted travel and switching incidence rates: The basic reproduction num-
ber is complicated by multiple infected compartments flowing into one another
and can only be implicitly defined as the spectral radius of its next-generation
integral operator, R(4.21)

0 D �.L/. However, the disease is eradicated in each city
under a threshold condition on the model parameters, which may be interpreted
as an approximation of the basic reproduction number.

Theorem 4.6 Assume that � 2 Speriodic.!/ and there exist ˇi; �i > 0 such that

f .j/
i .S.j/; I.j/; N.j// � ˇiS.j/I.j/=N.j/ and h.l;j/

i .S.l/; I.l/; N.l// � �iS.l/I.l/=N.l/ for each
j 2 N , l 2 N , i 2 M . If

bR0
(4.21) �

Pm
iD1.ˇi C .n � 1/˛max�i/�i

!.�min C gmin/
< 1; (4.23)

where ˛max � maxf˛.l;j/ W l 2 N ; j 2 N n flgg, �min � minf�.j/ W j 2 N g,
and gmin � minfg.j/ W j 2 N g, then the solution of the switched multi-city (4.21)
satisfies

lim
t!1 I.t/ D lim

t!1.I.1/.t/; : : : ; I.n/.t// D 0I

the disease is eradicated in each city.

Proof Let I � P
j2N I.j/. Then

PI.t/ D
X
j2N



f .j/
� .S.j/.t/; I.j/.t/; N.j/.t// � .g.j/ C �.j//I.j/.t/

�
(4.24)

C
X

l2N nfjg
˛.l;j/h.l;j/

� .S.l/.t/; I.l/.t/; N.l/.t//;

�
X
j2N

0
@.ˇ� � gmin � �min/I.j/.t/ C

X
l2N nfjg

˛.l;j/�� I.l/.t/

1
A ;

� .ˇ� � gmin � �min C .n � 1/˛max�� /
X
j2N

I.j/.t/;

D �� I.t/; (4.25)

where �i � ˇi C.n�1/˛max�i �gmin ��min for each i 2 M . Successive applications
of Eq. (4.25) on each subinterval Œtk�1; tk/, k 2 N, and noting that (4.23) impliesPm

iD1 �i�i < 0 yield
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I.!/ �
0
@X

j2N
I.j/
0

1
A exp

 
mX

iD1

�i�i

!
: (4.26)

The usual approach can thus be applied (i.e., the proof of Theorem 3.1) to conclude
that fPn

jD1 I.j/.h!/g1
hD0 converges to zero and, moreover,

lim
t!1 I.j/.t/ D 0; 8j 2 N :

Example 4.3 Consider the multi-city SIR system (4.21) with n D 2 cities. Suppose
that the dynamics in city 1 are governed by the following switched system:

PS.1/.t/ D �.1/
�
1 C ı exp

� t

L

��
N.1/.t/ � f .1/

� � �.1/
�
1 C ı exp

� t

L

��
S.1/.t/

C ˛.1;1/S.1/.t/ C ˛.2;1/S.2/.t/ � ˛.2;1/�
S.2/.t/I.2/.t/

N.2/.t/
;

PI.1/.t/ D f .1/
� � g.1/

�
1 �  exp

� t

L

��
I.1/.t/ � �.1/

�
1 C ı exp

� t

L

��
I.1/.t/

C ˛.1;1/I.1/.t/ C ˛.2;1/I.2/.t/ C ˛.2;1/�
S.2/.t/I.2/.t/

N.2/.t/
;

PR.1/.t/ D g.1/
�
1 �  exp

� t

L

��
I.1/.t/ � �.1/

�
1 C ı exp

� t

L

��
R.1/.t/

C ˛.1;1/R.1/.t/ C ˛.2;1/R.2/.t/;
(4.27)

and, in city 2,

PS.2/.t/ D �.2/N.2/.t/ � f .2/
� � �.2/S.2/.t/

C ˛.2;2/S.2/.t/ C ˛.1;2/S.1/.t/ � ˛.1;2/�
S.1/.t/I.1/.t/

N.1/.t/
;

PI.2/.t/ D f .2/
� � g.2/I.2/.t/ � �.2/I.2/.t/

C ˛.1;2/I.1/.t/ C ˛.2;2/I.2/.t/ C ˛.1;2/�
S.1/.t/I.1/.t/

N.1/.t/
;

PR.2/.t/ D g.2/I.2/.t/ � �.2/R.2/.t/

C ˛.2;2/R.2/.t/ C ˛.1;2/R.1/.t/:

(4.28)

Let � be defined as the periodic switching rule,



4.2 Multi-City Epidemics: Modeling Traveling Infections 107

�.t/ �

8̂
ˆ̂̂<
ˆ̂̂̂
:

1; if t 2 Œk; k C 0:25/; k D 0; 1; 2; 3; 4;

2; if t 2 Œk C 0:25; k C 1/; k D 0; 1; 2; 3; 4;

3; if t 2 Œk; k C 0:25/; k D 5; 6; 7; 8; : : : ;

4; if t 2 Œk C 0:25; k C 1/; k D 5; 6; 7; 8; : : : :

Let

f .j/
1 � f .j/

1 .S.j/; I.j/; N.j// � ˇ1

S.j/I.j/

N.j/
; j D 1; 2;

f .j/
2 � f .j/

2 .S.j/; I.j/; N.j// � ˇ2

S.j/I.j/

N.j/
; j D 1; 2;

f .j/
3 � f .j/

3 .S.j/; I.j/; N.j// � ˇ1

S.j/I.j/

N.j/
; j D 1; 2;

f .j/
4 � f .j/

4 .S.j/; I.j/; N.j// � ˇ2

S.j/I.j/.1 � I.j//

N.j/
; j D 1; 2;

with ˇ1 > ˇ2 > 0. Here f .j/
1 ; f .j/

2 ; f .j/
3 are standard incidence rates with term-time

forced contact rates while f .j/
4 takes psychological effects into account. For t 2 Œ0; 5
,

the disease is transmitted by standard incidence rate with seasonal variations in
both cities. After t D 5, city 2 exhibits a shift in population behavior (e.g., due
to media coverage resulting in widespread aversion). The traveling incidence rates
h.l;j/.S.l/; I.l/; N.l/ D � S.l/I.l/

N.l/ satisfy (4.22) if � 2 Œ0; 1
 and it follows from the
derivation in [146]:

�
.˛.l;j/S.l//.˛.l;j/I.l//

˛.l;j/N.l/
D �˛.l;j/ S.l/I.l/

N.l/
:

Let .S.1/
0 ; I.1/

0 ; R.1/
0 / D .0:5; 0; 0/ and .S.2/

0 ; I.2/
0 ; R.2/

0 / D .0:3; 0:2; 0/ (i.e., the
epidemic begins in city 2), and model parameters ˇ1 D 2, ˇ2 D 0:5, g.1/ D 1:5,
g.2/ D 2, � D 0:8, �.1/ D 0:125, �.2/ D 0:1, �˛.1;1/ D ˛.1;2/ D 0:6,
�˛.2;2/ D ˛.2;1/ D 0:3,  D 0:2, ı D 0:5, and L D 10. These model parameters can
be interpreted as follows:

1. In city 2, individuals recover faster from the disease and the death rate is less.
2. The dispersal rate indicates that individuals in the population favor traveling from

city 1 to city 2.
3. The birth rate, death rate, and infectious period decrease over time in city 1 (i.e.,

socioeconomic advancements).

Let ˛ D maxf˛.1;2/; ˛.2;1/g, g D minfinffg1.1 � e�t=L/ W t � 0g; g2g D g2,
� D minfinff�1.1 C ıe�t=L/ W t � 0g; �2g D �2. The value
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Fig. 4.7 Simulations of Example 4.3. (a)
D
R(4.21)

0

E
D 0:955. (b)

D
R(4.21)

0

E
> 3:7

D
R(4.21)

0

E
� sup

t�2:25

R t
0

ˇ� ds C ˛� t

.g C �/t
D 0:955

ensures eradication of the disease across both cities by a straightforward extension
of Theorem 3.2 to the multi-city case (see Theorem 2.1 in [97]). If ˇ1 D 10, ˇ2 D 4,

then
D
R(4.21)

0

E
> 3:7 for any value of h and the disease persists in both cities. The

two cases are illustrated in Fig. 4.7.

4.3 Vector-Borne Diseases with Seasonality

The assumption of horizontal transmission of infections between members of the
population is reconsidered here. More specifically, vector agents which are outside
the host population transmit the disease (e.g., via mosquito–human interactions).
By considering fast and slow timescales of the dynamics involved, and seasonal
variations in transmission, infectious disease dynamics are modeled using switched
delay differential equations. We begin by considering a host population (e.g.,
humans) modeled using an SIR compartmental model (with compartments denoted
by S.H/, I.H/, and R.H/, respectively). Assume that the vector population (e.g.,
mosquitoes) is split into two groups: the susceptible, denoted by S.M/, and the
infected, denoted by I.M/. The following demographic and epidemiological assump-
tions are made [16, 145]:

1. The host population birth rate �.H/ > 0 is equal to the host population natural
death rate.

2. The vector population birth rate �.M/ > 0 is equal to the vector population natural
death rate.
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3. The average number of contacts sufficient for disease transmission between
susceptible host individuals and infected vector agents is given by ˇ.H/ > 0.

4. The average number of contacts sufficient for disease transmission between
susceptible vector agents and infected host individuals is given by ˇ.M/ > 0.

5. Infected individuals in the host population recover at a per unit time rate g.H/ > 0

and, once infected, a vector agent remains infected until death.
6. At the time of infection, a susceptible vector agent exhibits a periodic of

incubation, denoted by u > 0, before becoming infectious.
7. The timescale of the vector agent vital dynamics is much faster than that of the

host population.

Some conclusions can be drawn from these assumptions: the total host and vector
populations, denoted by N.H/ � S.H/ C I.H/ C R.H/ and N.M/ � S.M/ C I.M/,
respectively, are constant in time. The ratio � � N.H/=N.M/ 	 1, implying that
�.M/ 
 �.H/. The corresponding ODE system is written as follows:

PS.H/.t/ D �.H/.N.H/ � S.H/.t// � ˇ.H/S.H/.t/I.M/.t/;

PI.H/.t/ D ˇ.H/S.H/.t/I.M/.t/ � .g.H/ C �.H//I.H/.t/;

PR.H/.t/ D g.H/I.t/ � �.H/R.t/;

PS.M/.t/ D �.M/N.M/ � ˇ.M/ exp.��.M/u/I.H/.t � u/S.M/.t � u/ � �.M/S.M/.t/;

PI.M/.t/ D ˇ.M/ exp.��.M/u/I.H/.t � u/S.M/.t � u/ � �.M/I.M/.t/;

.S.H/.0/; I.H/.0/; R.H/.0/; S.M/.0/; I.M/.0// D .S.H/
0 ; I.H/

0 ; R.H/
0 ; S.M/

0 ; I.M/
0 /:

(4.29)

There exist two dimensionless timescales: a slow timescale, corresponding to the
dynamics of the host population (t.H/.t/ � ˇ.M/N.H/t), and a fast timescale,
corresponding to the dynamics of the vector population (t.M/.t/ � ˇ.M/N.M/t). The
flow diagram is shown in Fig. 4.8.

SH

SM IM

IH H

HUMANS

MOSQUITOES

R

Fig. 4.8 Flow of the vector-borne model (4.29). The red lines represent human–mosquito
interactions leading to new infections; an infected mosquito must interact with a susceptible human
or an infected human with a susceptible mosquito to produce a new infection. The population
dynamics are omitted here
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Consideration of the dynamics on the slower timescale yields an equivalent
DDE system (see [145] for the details): introduce the dimensionless variables
s.H/ � S.H/=N.H/, i.H/ � I.H/=N.H/, r.H/ � R.H/=N.H/, s.M/ � S.M/=N.M/,
i.M/ � I.M/=N.M/. On the fast timescale, the differential equations corresponding
to s.M/ and i.M/ can be rewritten as

ds.M/

dt.M/
.t/ D �di.M/

dt.M/
.t/;

di.M/

dt.M/
.t/ D �

�
exp.��.M/u/i.H/.t � u/s.M/.t � u/ � �.M/

ˇ.M/N.H/
i.M/.t/

�
;

(4.30)

where s.M/.t/ C i.M/.t/ D 1 and s.H/.t/ C i.H/.t/ C r.H/.t/ D 1 hold for all t.
Equation (4.30) yields that

� ��.M/

ˇ.M/N.H/
� di.M/

dt.M/
.t/ � � exp.��.M/u/; 8t: (4.31)

and, as � ! 0,

ds.M/

dt.M/
.t/ D �di.M/

dt.M/
.t/ D 0

so that i.M/ and i.S/ approach their equilibria values:

i.M/.t/ D ˇ.M/N.H/

�.M/
exp.��.M/u/i.H/.t � u/s.M/.t � u/;

s.M/.t/ D 1 � i.M/.t/:

(4.32)

From this it is apparent that the vector agent variables s.H/ and i.H/ approach
their equilibria since i.H/.t � u/ is approximately equal to a constant on the fast
timescale. If

ˇ.M/N.H/

�.M/
exp.��.M/u/ 	 1;

then s.M/.t/ � 1. Hence,

i.M/.t/ � ˇ.M/N.H/

�.M/
exp.��.M/u/i.H/.t � u/

so that S.M/.t/ � N.H/ and

I.M/.t/ � ˇ.M/N.M/ exp.��.M/u/

�.M/
I.H/.t � u/

where I.H/.t � u/ evolves on the slow timescale (and thus constant in this setting).
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Omitting S.M/ and I.M/ (which no longer appear in the equations for the host
population) and normalizing the host population variables by N.H/ (and dropping
their superscripts) leads to the slow timescale reformulation of the epidemic
model (4.29) as the following DDE system:

PS.t/ D �.1 � S.t// � ˇS.t/I.t � u/;

PI.t/ D ˇS.t/I.t � u/ � .g C �/I.t/;

PR.t/ D gI.t/ � �R.t/;

.S.s/; I.s/; R.s// D .S0; I0.s/; R0/; 8s 2 Œ�u; 0
;

(4.33)

where S0 2 RC, R0 2 RC, and the function I0 2 PC.Œ�u; 0
;RC/, and where

ˇ � ˇ.H/N.M/ exp.��.M/u/

�.M/
; g � g.H/

ˇ
.M/
M N

; � D �H

ˇMN
:

A more realistic assumption is that the period of incubation, u, follows a distribution:
u 2 Œ0; d
 for some d > 0 (i.e., the upper bound for the incubation time) [145]. After
u units of time, it is assumed that a fraction f .u/ of the vector population becomes
infectious; the force of infection is given by

ˇS.t/
Z d

0

f .u/I.t � u/du:

Here, f is assumed to satisfy the following conditions:

(a) f is a nonnegative, square integrable function on Œ0; d
 (the force of infection is
positive and the distribution is well-defined);

(b)
R d

0
f .u/du D 1 (the distrubtion is normalized);

(c)
R d

0
uf .u/du < C1 (finite average incubation time until vector agents become

infectious after adequate contact).

The vector-borne disease model is a system of integro-differential equations:

PS.t/ D �.1 � S.t// � ˇS.t/
Z d

0

f .u/I.t � u/du;

PI.t/ D ˇS.t/
Z d

0

f .u/I.t � u/du � .g C �/I.t/;

PR.t/ D gI.t/ � �R.t/;

.S.s/; I.s/; R.s// D .S0; I0.s/; R0/; 8s 2 Œ�d; 0
;

(4.34)
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Considering seasonal variations in the contact rate pattern between host and vector
populations leads to the following dynamic system:

PS.t/ D �.1 � S.t// � ˇ� S.t/
Z d

0

f .u/I.t � u/du;

PI.t/ D ˇ� S.t/
Z d

0

f .u/I.t � u/du � .g C �/I.t/;

PR.t/ D gI.t/ � �R.t/;

.S.s/; I.s/; R.s// D .S0; I0.s/; R0/; 8s 2 Œ�d; 0
:

(4.35)

A detailed stability analysis of (4.35) is presented in Part III under a number of con-
trol strategies (switching control in Sect. 5.5 and impulsive control in Sect. 6.1.7).

4.4 Other Epidemiological Considerations

In this part, other physiological and epidemiological assumptions are considered,
leading to complications in the infectious disease models. Straightforward variations
in the switched systems techniques used thus far overcome the difficulties and lead
to appropriate eradication results. That is, once the assumption is properly incorpo-
rated into the model, the methods of the previous sections become applicable. The
new transmission or population behaviors play a role in the spread of a disease and
manifest themselves in the basic reproduction number of the models. The following
complications are considered here:

1. Vertical transmission of infections, in addition to horizontal transmission.
2. Varying total population sizes (i.e., a model with disease-induced mortality).
3. Waning immunity (i.e., an SIRS model).
4. The introduction of a passively immune class (i.e., an MSIR model).
5. A model with general compartments.

Since the switched systems techniques already established are applied in a straight-
forward way to these model variations, the eradication results are reserved for the
end of this section (see Sect. 4.4.6). In some cases, model parameters yielding
persistence and permanence are also easily found.

4.4.1 Vertical Transmission

One complication to the SIS model (4.1) is to consider both horizontal and vertical
transmission, which is the direct transmission of communicable diseases by an
infected mother to her newborn or unborn child. A typical vertical incidence term
in a deterministic model is the product of the probability of transmission per birth,
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the birth rate and the number of infected women [64]. Assume that 0 � � � 1 is
the probability that a mother with the disease does not transmit it transplacentally,
then .1 � �/ is the probability that a child gains the infection transplacentally.
This vertical transmission is incorporated into the model then by assuming that a
flux �.1 � �/I enters the infected group through birth and the remaining births
from infected mothers which are not infected, ��I, enters the susceptible group as
normal. The switched SIS model with vertical transmission then is

PS.t/ D �.S.t/ C �I.t// � ˇ� S.t/I.t/ � �S.t/ C gI.t/;

PI.t/ D �.1 � �/I.t/ C ˇ� SI � .g C �/I.t/;

.S.0/; I.0/; R.0// D .S0; I0; R0/:

(4.36)

As in the switched SIS model (4.1), the meaningful domain, which is positively
invariant, is given by

D(4.36) � f.S; I/ 2 R
2C W S C I D 1g D D(4.1);

with initial conditions satisfying .S0; I0/ 2 D(4.36). In the limit � ! 1, the
model (4.36) becomes the SIS model (4.1), and in the limit � ! 0, all infected
pass on the infection to offspring. For each mode, the basic reproduction number
(from the time-invariant case, e.g., [102]) is given as

R(4.36);i
0 � ˇi

�� C g
; 8i 2 M ; (4.37)

which biologically represent the average number of secondary infections produced
by a single infected individual. Notice that these reproduction numbers are greater
than when there is only horizontal transmission (i.e., the mode basic reproduction
numbers of (4.1)).

R(4.1);i
0 D ˇi

� C g
� ˇi

�.� C g/
D R(4.36);i

0 ; 8i 2 M :

This makes sense biologically, as there are now infected individuals being recruited
through birth. Figure 4.9 shows the flow diagram of (4.36).

There is a single disease-free equilibrium point Q(4.36)
DFS � .1; 0/ that is common

to all modes and each mode also has endemic equilibrium

Fig. 4.9 Flow of the SIS
model (4.36). The red lines
represent new infections
(some newborns are born
infected)

S I
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Q(4.36);i
ES �

 
1

R(4.36);i
0

; 1 � 1

R(4.36);i
0

!
; 8i 2 M ; (4.38)

which exists in the meaningful domain if R(4.36);i
0 � 1. Again, since S C I D 1, the

system is intrinsically one-dimensional. In the case that

R(4.36);1
0 ; : : : ; R(4.36);m

0 � 1;

then PI.t/ < 0 in the domain D(4.36) for I ¤ 0, and since S C I D 1, the disease-free
equilibrium Q(4.36)

DFS is asymptotically stable in the meaningful domain. From (4.36),

PI.t/ D ˇ� S.t/I.t/ � gI.t/ � ��I.t/ � .ˇ� � �� � g/I.t/ D �� I.t/; (4.39)

where �i � ˇi � �� � g for all i 2 M ; the eradication and persistence results from
Sect. 4.1 are applicable to (4.36) (see Sect. 4.4.6).

Example 4.4 Consider (4.36) with M D f1; 2g, � defined as in (3.37), ˇ1 D 0:8,
ˇ2 D 0:2, � D 0:4, � D 0:07 and g D 0:3 (from [102]). In this case, R(4.36)

0 D 1:067

and the disease persists. If instead � D 0, then the disease is eradicated; the vertical
transmission is driving persistence of the disease. See Fig. 4.10 for a simulation.
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Fig. 4.10 Simulation of Example 4.4
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4.4.2 Disease-Induced Mortality: Varying Population Size

In this section, two different population demographic structures are investigated
here. First, we revisit the assumption that the natural birth and death rates are equal.
Assume a simple birth–death demographic structure for the total population N based
on the differential equation

PN.t/ D .b � d/N.t/; (4.40)

where bN are births and dN are the natural deaths. In the absence of births and
deaths, i.e. b D d D 0, the model is suitable for describing an epidemic in a
short time period, for example less than 1 year [64]. This leads to models without
population dynamics, such as the classical epidemic model (3.4) studied earlier. If
b D d ¤ 0, then there is an inflow of susceptibles from births, but the population
size is a constant because of the corresponding deaths. This is the demographic
structure that is most often assumed in the literature and has been assumed up until
this point. If b � d ¤ 0, then the population is exponentially growing or decaying.
Applied to the switched SIS model (4.1),

PSc.t/ D bN.t/ � ˇ� Sc.t/Ic.t/

N.t/
C gIc.t/ � dSc.t/;

PIc.t/ D ˇ� Sc.t/Ic.t/

N.t/
� gIc.t/ � dIc.t/;

(4.41)

where Sc; Ic are the number of infected and susceptible individuals (i.e., not
fractions), and the total population is N � Sc C Ic, which is not necessarily constant
and satisfies the differential equation (4.40). The flow associated with (4.41) is
shown in Fig. 4.11.

Normalizing the equations using I � Ic=N and S � Sc=N gives S C I D 1,

PS.t/ D
PSc.t/

N.t/
� S.t/

PN.t/

N.t/
;

and

PI.t/ D
PIc.t/

N.t/
� I.t/

PN.t/

N.t/
:

Fig. 4.11 Flow of the SIS
model (4.41). New infections
are represented by the red line S I
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Hence, the switched model is rewritten as

PS.t/ D b � ˇ� S.t/I.t/ C gI.t/ � dS.t/;

PI.t/ D ˇ� S.t/I.t/ � gI.t/ � dI.t/;

.S.0/; I.0// D .S0; I0/;

(4.42)

with initial conditions .S0; I0/ 2 D(4.42) � f.S; I/ 2 R
2C W S C I D 1g, the

positively invariant meaningful domain. The mode basic reproduction numbers are
thus given by

R(4.42);i
0 � ˇi

b C g
; 8i 2 M : (4.43)

Equation (4.42) admits a single disease-free equilibrium point Q(4.42)
DFS � .1; 0/

common to all modes. Each mode also has an endemic equilibrium

Q(4.42);i
ES �

 
1

R(4.42);i
0

; 1 � 1

R(4.42);i
0

!
; 8i 2 M : (4.44)

Again, since S C I D 1 is an invariant to (4.42), the system (4.42) is intrinsically
one-dimensional. In the case that

maxfR(4.42);i
0 W i 2 M g � 1;

then PI.t/ < 0 for all t and .S; I/ 2 D(4.42) n f.S; I/ W I D 0g; the disease-free solution
Q(4.42)

DFS is thus globally asymptotically stable in the meaningful domain. Notice that
system (4.42) is identical to the switched SIS model (4.1) if b is replaced by �.
Therefore, the theorems in Sect. 4.1 apply to this system, with the following caveat:
the fraction I converges to zero, but it does not necessarily mean the total infected
individuals, Ic � I=N, converge to zero since the population is not constant, and
possibly growing without bound. From Ic � IN, Sc � SN, if b D d it follows that
the population N is constant, and the results for the switched SIS model (4.1) are
recovered. If b < d, then the total population N converges to zero exponentially, and
so limt!1 I.t/ D 0 implies that limt!1 Ic.t/ D 0. In the final case when b > d, the
population is growing exponentially but, since S ! 1 as t ! 1, it is apparent that
limt!1 Sc.t/ D limt!1 N.t/ and hence limt!1 Ic.t/ D 0 since N � Sc C Ic.

Next, we consider a population demographic structure which includes a disease-
induced mortality rate, ˛ > 0. In this setting, the population satisfies the differential
equation

PN.t/ D .b � d/N.t/ � ˛Ic.t/: (4.45)

The epidemic model is given as
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PSc.t/ D bN.t/ � ˇ� Sc.t/Ic.t/

N.t/
� dSc.t/ C gIc.t/;

PIc.t/ D ˇ� Sc.t/Ic.t/

N.t/
� gIc.t/ � dIc.t/ � ˛Ic.t/;

(4.46)

where Sc, Ic are the number of infected and susceptible individuals, respectively,
and N � Sc C Ic. Again normalizing the equations using I � Ic=N and S � Sc=N
leads to

PS.t/ D b � ˇ� S.t/I.t/ � bS.t/ C gI.t/ C ˛S.t/I.t/;

PI.t/ D ˇ� S.t/I.t/ � gI.t/ � bI.t/ � ˛I.t/ C ˛I2.t/;

.S.0/; I.0// D .S0; I0/:

(4.47)

The meaningful domain is the same as (4.42). The ˛SI and ˛I2 terms are nonlinear
positive feedbacks induced by the disease-related death rate ˛: At any time that
individuals die from the disease, the population size N decreases resulting in the
fraction of individuals in each group increasing [103]. Define the mode basic
reproduction numbers as

R(4.47);i
0 � ˇi

b C g C ˛
; 8i 2 M ; (4.48)

the disease-free solution Q(4.47)
DFS � .1; 0/ and mode-dependent endemic equilibria:

Q(4.47);i
ES � .S�

i ; I�
i / �

�
b C g

ˇi � ˛
;

b C g C ˛

ˇi � ˛
.R(4.47);i

0 � 1/

�
; 8i 2 M ; (4.49)

which are in the meaningful domain only when R(4.47);i
0 � 1. (Again, since SCI D 1,

the system is intrinsically one-dimensional.)
Linearizing (4.47) about the disease-free solution gives the following system:

PSL.t/ D �ˇ� IL.t/ � bSL.t/ C gIL.t/ C ˛IL.t/;

PIL.t/ D ˇ� IL.t/ � gIL.t/ � bIL.t/ � ˛IL.t/;

.SL.0/; IL.0// D .S0; I0/:

(4.50)

Therefore,

PIL.t/ D .ˇ� � g � b � ˛/IL.t/ D �� IL.t/; (4.51)

where �i � ˇi �g�b�˛ for all i 2 M . Applying the previous switching techniques
implies similar eradication thresholds but are local in nature. For example,
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R(4.47)
0 � 1

!

mX
iD1

R(4.47);i
0 �i < 1

implies local asymptotic stability of Q(4.47)
DFS if � 2 Speriodic.!/. Global results can be

achieved under stronger conditions, i.e., if

Pm
iD1 ˇi�i

!.� C g/
D R(4.1)

0 < R(4.47)
0 < 1:

This follows from the observation that

PIL.t/ D ˇ� S.t/IL.t/ � gIL.t/ � bIL.t/ � ˛IL.t/ C ˛I2.t/ � .ˇ� � b � g/IL.t/:

As before, such eradication results only establish that the fractions of infected
individuals in the population I ! 0 as t ! 1, but not necessarily that the actual
number of infected individuals, Ic, go to zero. Recall that the infected fraction is
I � Ic=N so that Ic � IN, but if I ! 0 and N ! 1, it is not immediately clear
what will happen to the actual infected number of individuals. The different cases
must be investigated: Recalling the equation for the population dynamics (4.45),
b < d implies that the total population is going to zero, and hence I ! 0 implies
Ic ! 0. The case b D d gives PN.t/ D �˛I.t/N.t/ � 0, from which it follows that
the total population approaches a constant value since I ! 0. Hence, Ic ! 0 in this
case. Finally, if b > d, then the total population grows without bound since I ! 0.
In this case, since S ! 1, Sc � SN gives Sc ! N and then N � Sc C Ic implies
Ic ! 0.

Lastly, permanence of the disease can be established once again by simply
adjusting the switching system techniques as in Theorem 4.3: If � 2 Sdwell and

minfR(4.47);i
0 W i 2 M g > 1;

then the solution of the SIS system with disease-induced deaths (4.47) converges to
the convex hull of the set of endemic points fQ(4.47);1

ES ; : : : ; Q(4.47);m
ES g (i.e., the disease

is permanent). The endemic equilibria,

I�
i � .ˇi � g � b � ˛/=.ˇi � ˛/; 8i 2 M ;

imply that

convfQ(4.47);1
ES ; : : : ; Q(4.47);m

ES g D f.S; I/ 2 R
2C W I�

min � I � I�
max; S D 1 � Ig;

where

I�
min � minfI�

i W i 2 M g D ˇmin � g � b � ˛

ˇmin � ˛
;
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and

I�
max � maxfI�

i W i 2 M g D ˇmax � g � b � ˛

ˇmax � ˛
:

Moreover, the differential equation for I can be rewritten as

PI.t/ D .ˇ� � g � b � ˛/I.t/ � .ˇ� � ˛/I2.t/;

so that at I D I�
min,

PIjIDI�

min
D .ˇi � g � b � ˛/I�

min � .ˇi � ˛/.I�
min/2;

D I�
min

�
ˇi � g � b � ˛ � .ˇi � ˛/

ˇmin � g � b � ˛

ˇmin � ˛

�
;

D .ˇi � ˛/I�
min

�
ˇi � g � b � ˛

ˇi � ˛
� ˇmin � g � b � ˛

ˇmin � ˛

�
� 0:

For any i, at I D I�
max:

PIjIDI�

max
D .ˇi � g � b � ˛/I�

max � .ˇi � ˛/.I�
max/2;

D I�
max

�
ˇi � g � b � ˛ � .ˇi � ˛/

ˇmax � g � b � ˛

ˇmax � ˛

�
;

D .ˇi � ˛/I�
max

�
ˇi � g � b � ˛

ˇi � ˛
� ˇmax � g � b � ˛

ˇmax � ˛

�
� 0:

Since S D 1 � I,

I0 2 convfQ(4.47);1
ES ; : : : ; Q(4.47);m

ES g
implies that I remains in the set for all t 2 RC, regardless of the switching rule. If
0 < I0 < I�

min,

PI.t/ D .ˇ� � g � b � ˛/I.t/ � .ˇ� � ˛/I2.t/;

D .ˇ� � ˛/

�
ˇ� � g � b � ˛

ˇ� � ˛
� I.t/

�
I.t/ > 0; 8t 2 RC;

and the rest of the argument follows similarly as in the proof of Theorem 4.3.

Example 4.5 Consider (4.47) with M D f1; 2g, � defined as in (3.37), ˇ1 D 1:5,
ˇ2 D 1, b D 0:07, d D 0:01, ˛ D 1, g D 0:3. From this, R(4.47)

0 D 0:821. If ˛ D 0

and b D d D � D 0:07 then the disease persists; disease-induced mortality helps in
achieving eradication of the disease. See Fig. 4.12 for a simulation.
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Fig. 4.12 Simulation of Example 4.5

4.4.3 Waning Immunity: The Switched SIRS Model

Individuals that recover from infection and lose immunity over time is reconsidered
here. More precisely, assume that individuals lose immunity at rate � > 0 (thus
giving an average period of immunity by 1=� ). Along with the other assumptions of
the switched SIR model (3.8), the model is given as

PS.t/ D � � ˇ� S.t/I.t/ � �S.t/ C �R.t/;

PI.t/ D ˇ� S.t/I.t/ � gI.t/ � �I.t/;

PR.t/ D gI.t/ � �R.t/ � �R.t/;

.S.0/; I.0/; R.0// D .S0; I0; R0/;

(4.52)

The flow of this model is now given by S ! I ! R ! S. The mode
basic reproduction numbers are the same as from the SIR model (i.e., the mode
reproduction numbers R(3.8);i

0 in (3.12)):

R(4.52);i
0 � ˇi

� C g
D R(3.8);i

0 ; 8i 2 M : (4.53)
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Fig. 4.13 Flow of the SIRS
model (4.52). New infections
are represented by the red line

S I R

Fundamentally, the disease spreads at the same rate in the switched SIR and SIRS
models, whether the immunity is temporary or permanent. If there is no immunity
at all (switched SIS model (4.1)), the basic reproduction rate still does not change.
Furthermore, the meaningful domain is the same as the switched SIR model (3.8),
i.e., D(4.52) � f.S; I; R/ 2 R

3C W S C I C R D 1g, and remains positively invariant:
fPS C PI C PRgjSCICRD1 D 0, PSjSD0 D � C �R > 0, PIjID0 D 0 and PRjRD0 D gI � 0.
Note that the SIS model (4.1) can be regarded as the limiting case of the SIRS model
as 1=� ! 0 (i.e., the average immunity period goes to zero). Figure 4.13 shows the
flow diagram of (4.52).

Because of these observations, the eradication conditions for (4.52) are the
same as those outlined for (3.8) (i.e., Theorems 3.1 and 3.4). For example, it is
straightforward to show that if � 2 Speriodic.!/ and

R(4.52)
0 �

Pm
iD1 ˇi�i

!.� C g/
< 1;

then the solution of (4.52) satisfies limt!1.S.t/; I.t/; R.t// D .1; 0; 0/ � Q(4.52)
DFS

(the disease-free solution) and global asymptotic I-stability in the meaningful
domain, while if R(4.52)

0 > 1 then the disease persists uniformly in (4.52).
One important difference between these models arises from the waning immunity

rate � : as the waning immunity is increased (and hence the immunity period 1=�

is reduced), the prevalence of disease at the endemic equilibria increases and the
period of the damped oscillations decreases [69]. Observe that in this case,

Q(4.52);i
ES � .S�

i ; I�
i ; R�

i /;

�
 

1

R(4.52);i
0

;
� C �

� C � C g

 
1 � 1

R(4.52);i
0

!
;

g

� C � C g

 
1 � 1

R(4.52);i
0

!!
;

for all i 2 M . Indeed, when the disease is persistent, the endemic points I�
i are

greater than the corresponding endemic points in the switched SIR model with
permanent immunity (i.e., Q(3.8);i

ES in (3.13)). This is reasonable biologically, because
the loss of immunity should result in more individuals being infected when the
disease is persistent. Moreover, the expected rate of convergence to equilibria are
different in the SIR and SIRS models. This is because the removed class is being
sent back into the susceptible class, because of the temporary immunity. As a result
of this, the infectives have more susceptibles to infect.
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Fig. 4.14 Simulation of Example 4.5

Example 4.6 Consider (4.52) with M D f1; 2g, � defined as in (3.37). Let ˇ1 D 3,
ˇ2 D 0:2, g D 1, � D 0:02, and � D 1 so that R(4.52)

0 D 0:882. See Fig. 4.14
for an illustration with initial conditions S0 D 0:75, I0 D 0:25, R0 D 0. Compared
to the SIR case, it takes longer for the disease to become eradicated (even though
the susceptible population converges to one more quickly). As the recovered class
filters back into the susceptible class from the temporary immunity, the pool of
susceptibles becomes larger for the infected to come into contact with.

4.4.4 Passive Immunity: The Switched MSIR Model

Suppose that all mothers who are infected (infected class) or have been infected
in the past (recovered/removed class) give birth to children with temporary passive
immunity, denoted by the passively immune class M. Assume that individuals born
into the passively immune class lose immunity at a rate ı > 0 (hence an average
passive immunity period of 1=ı). Introducing these assumptions into the switched
SIR model (3.8) gives the following epidemic model:
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Fig. 4.15 Flow of the MSIR
model (4.54). New infections
are represented by the red line S I RM

PM.t/ D �.M.t/ C I.t/ C R.t// � ıM.t/ � �M.t/;

PS.t/ D �S.t/ � ˇ� S.t/I.t/ � �S.t/ C ıM.t/;

PI.t/ D ˇ� S.t/I.t/ � gI.t/ � �I.t/;

PR.t/ D gI.t/ � �R.t/;

.M.0/; S.0/; I.0/; R.0// D .M0; S0; I0; R0/:

(4.54)

Here, the positively invariant meaningful domain is given as

D(4.54) � f.M; S; I; R/ 2 R
4C W M C S C I C R D 1g 3 .M0; S0; I0; R0/;

and the total population is constant (variables have been normalized). Notice that
f PM C PS C PI C PRgjMCSCICRD1 D 0, PSjSD0 D ıM � 0, PIjID0 D 0, PRjRD0 D gI � 0

and PMjMD0 D �I C �R � 0. Illustrated in Fig. 4.15 is the flow of (4.54).
For this model, again define the mode basic reproduction numbers according to

R(4.54);i
0 � ˇi

� C g
; 8i 2 M ;

which are the same as the switched SIS model, switched SIR model, and switched
SIRS model. Hence, the addition of the M class does not alter the spread of the
disease physically but there are differences here. There is a single common disease-
free equilibrium point Q(4.54)

DFS � .0; 1; 0; 0/ and each mode also has an endemic
equilibrium Q(4.54);i

ES � .M�
i ; S�

i ; I�
i ; R�

i / with

M�
i � �

ı C �

�
1 � 1=R(4.54);i

0

�
;

S�
i � 1

R(4.54);i
0

;

I�
i � ı

ı C �

�

� C g

�
1 � 1=R(4.54);i

0

�
;

R�
i � g

ı C �

�

� C g

�
1 � 1=R(4.54);i

0

�
:



124 4 Epidemic Models with Switching

The endemic equilibria points are again different from the SIR and SIRS cases.
From the differential equation for I, it is apparent that if

maxfR(4.54);i
0 W i 2 M g � 1

then PI.t/ < 0 in the physical domain unless I D 0 or S D 1. Hence the disease
will be eradicated. Inspection of the system (4.54) with an absence of infection,
I.t/ � 0, gives that R converges to zero, from which it follows that M converges to
zero. By constant total population then, S converges to one and the reduced system
converges to the disease-free solution. Hence, the eradication results of the switched
SIR model (3.8) may be applied. For example, if � 2 Speriodic.!/ and

R(4.54)
0 �

Pm
iD1 ˇi�i

!.� C g/
< 1;

then the solution of (4.54) satisfies limt!1.M.t/; S.t/; I.t/; R.t// D .0; 1; 0; 0/ D
Q(4.54)

DFS .

4.4.5 Infectious Disease Model with General Compartments

As highlighted in the previous sections, there are a number of compartments and
interactions that can be considered in an epidemic model, based on the population
behavior and the disease dynamics. Here, we consider an epidemic model with
general compartments with the following assumptions:

1. There is a susceptible and infected compartment, labeled by S and I, respectively.
2. Individuals in the susceptible group move to the infected class with switched

incidence rate .t; S; I/ 7! h� .I/S, where fhi W i 2 M g is a family of forces of
infection with appropriate assumptions. Namely, the forces of infection hi are
assumed to be sufficiently smooth functions satisfying hi.t; I/ > 0 for I > 0 and
hi.t; 0/ D 0 for t � 0 and i 2 M from physical considerations.

3. The birth rate is given by the switched constant �� > 0, which is equal to the
death rate.

4. There are nY other epidemiological compartments Y.1/; Y.2/; : : : ; Y.nY /, represent-
ing various other stages in the progression of the disease.

5. It is possible for said nY compartments to filter back into the susceptible class
(e.g., due to waning immunity) at a switched rate �

.j/
� � 0 for each j 2

f1; 2; : : : ; nYg.
6. The infected class moves to the Y.j/ compartments (e.g., due to natural recovery)

via a switched function .t; I; Y/ 7! �� .I; Y/, where Y � .Y.1/; Y.2/; : : : ; Y.nY //.
7. The progression of the disease in compartment Y.j/ is governed by a switched

vector function .t; S; I; Y/ 7! �� .S; I; Y/.
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Fig. 4.16 Flow of the
epidemic model with general
compartments (4.55). The red
line represents horizontal
transmission

S I Y

Putting together these modeling assumptions, the switched system is given by

PS.t/ D �� � h� .I.t//S.t/ � �� S.t/ C
nYX

jD1

�.j/
� Y.j/.t/;

PI.t/ D h� .I.t//S.t/ � �� I C �� .I.t/; Y.t//;

PY.t/ D �� .S.t/; I.t/; Y.t//;

.S.0/; I.0/; Y.0// D .S0; I0; Y0/;

(4.55)

with S0; I0 2 RC and Y0 2 R
nYC . The flow between the general compartments is

shown in Fig. 4.16. The variables have been normalized by the total population
so that

S.t/ C I.t/ C
nYX

jD1

Y.j/.t/ D 1; 8t:

Assume that �i � .�
.1/

i ; �
.2/

i ; : : : ; �
.nY /

i / is a sufficiently smooth vector function

satisfying �
.j/

i .S; I; 0/ � 0 for each i 2 M and j 2 f1; : : : ; nYg and

.�
.1/

i .S; 0; Y/; : : : ; �
.nY /

i .S; 0; Y//

D �.�
.1/
i .S; Y/; : : : ; �

.nY /
i .S; Y//;

D ��i.S; Y/; 8.S; I; Y/ 2 D(4.55); 8i 2 M ; 8j 2 f1; : : : ; nYg; 8t 2 RC;

where

D(4.55) � f.S; I; Y/ 2 R
2CnYC W S C I C

nYX
jD1

Y.j/ D 1g;

�
.j/
i .S; Y/ � 0 are sufficiently smooth functions. Assume that �i W RnY C1 ! RC

is a sufficiently smooth scalar function satisfying �i.0; Y/ D 0 for suitable Y and
all i 2 M . Lastly, assume that �

.j/
i � 0 for each i 2 M and j 2 f1; : : : ; nYg. The

normalization of the variables implies that the functions satisfy
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�i � �i.S.t/ C I.t// C
nYX

jD1

�
.j/

i .t/ C �i.I.t/; Y.t// C
nYX

jD1

�
.j/
i Y.j/.t/ D 0

for all i 2 M , j 2 f1; : : : ; nYg, and t 2 RC. Along with the conditions on
the functions outlined above, this implies the meaningful domain is invariant to
system (4.55), and hence the model is mathematically and physically well-posed.
System (4.55) admits a disease-free equilibrium

Q(4.55)
DFS � .1; 0; 0; : : : ; 0„ ƒ‚ …

nY

/:

Even in this general setting, the previously outlined switching systems methods can
be applied to give eradication results based on the model parameters. One such result
is highlighted in detail.

Theorem 4.7 Suppose that there exist ˇi � 0 and ˛i � 0 such that hi.I/ � ˇiI and
�i.I; Y/ � �˛iI for i 2 M . If either of the following conditions hold:

(i) � 2 Sdwell and

D
R(4.55)

0

E
� sup

t�h

mX
iD1

Ti.t/
ˇi

�i C ˛i
< 1;

(ii) � 2 Speriodic.!/ and

bR0
(4.55) �

mX
iD1

�i
ˇi

�i C ˛i
< 1;

then the solution of (4.55) converges to the disease-free solution Q(4.55)
DFS .

Proof First we prove case (i). From the system (4.55), let ik follow a switching rule
� 2S , then for t2 Œtk�1; tk/,

PI.t/ D h� .I.t//S.t/ � �� I.t/ C �� .I.t/; Y.t//;

� .ˇ� � �� � ˛� /I.t/;

D �� I.t/; (4.56)

where �i � ˇi � �i � ˛i for each i 2 M . Equation (4.56) and the proof of
Theorem 3.2 gives that limt!1 I.t/ D 0. Since �i.S; 0; Y/ D ��i.S; Y/, it is
clear that the variables Y1; : : : ; Yk converge to zero. Finally, S D 1 � I �PnY

jD1 Y.j/

implies that S converges to one. Hence, the solution converges to the disease-free
equilibrium. Case (ii) follows from Eq. (4.56) and the proof of Theorem 3.1.
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4.4.6 Summary of Mode Basic Reproduction Numbers
and Eradication Results

One consistently revisited theme of this chapter is the ease of application of the
switched systems techniques to epidemic models with different epidemiological
and physiological assumptions. The main reason for this flexibility is the focus on
global attractivity and partial I-stability or that the models involved are intrinsically
of dimension one (strengthening the results to global stability). In either case,
establishable differential equation bounds of the form

PI.t/ � �� I.t/;

where �i is defined different for each model, makes the following results possible.

Theorem 4.8 Consider the epidemic models with vertical transmission, vary-
ing population size, and disease-induced mortality ((4.36), (4.42), and (4.47),
respectively) and their corresponding mode basic reproduction numbers R.�/;i

0 and

disease-free solutions Q.�/
DFS. Then the following statements hold:

(i) If � 2 Speriodic.!/ and

R.�/
0 � 1

!

mX
iD1

R.�/;i
0 �i < 1;

then the disease-free solution Q.�/
DFS is globally asymptotically stable in the

meaningful domain D.�/ (locally asymptotically stable if .�/ D (4.47)).
(ii) If � 2 Sdwell and

D
R.�/

0

E
� sup

t�h

1

t

mX
iD1

R.�/;i
0 Ti.t/ < 1; (4.57)

for some h > 0, then the disease-free solution Q.�/
DFS is globally exponentially

stable in the domain D.�/ (locally exponentially stable if .�/ D (4.47)).
(iii) If � 2 Sdwell satisfies TC � N0 C qT�.t/ for some q 2 .0; 1/ and N0 � 0

such that

R.�/;�
0 � 1 < q.R.�/;C

0 � 1/;

where R.�/;�
0 � maxfR.�/;i

0 W i 2 M�g, R.�/;C
0 � maxfR.�/;i

0 W i 2 MCg,

M� � fi 2 M W R.�/;i
0 < 1g, MC � fi 2 M W R.�/;i

0 � 1g, and

TC.t/ � jft 2 Œ0; t
 W �.t/ 2 MCgj;
T�.t/ � jft 2 Œ0; t
 W �.t/ 2 M�gj;
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then the disease-free solution Q.�/
DFS is globally exponentially stable in the

domain D.�/ (locally exponentially stable if .�/ D (4.47)).

(iv) If � 2 Sdwell and minfR.�/;i
0 W i 2 M g > 1, then the disease is permanent in

(*); I.t/ converges to convfQ.�/;1
ES ; : : : ; Q.�/;m

ES g.

Similarly for the epidemic models of intrinsic dimension greater than or equal to
two, the following theorem is given.

Theorem 4.9 Consider the epidemic models with waning immunity, passive immu-
nity, and general compartments ((4.52), (4.54), and (4.55), respectively) and their
corresponding mode basic reproduction numbers R.�/;i

0 and disease-free solutions

Q.�/
DFS. Then the following statements hold:

(i) If � 2 Speriodic.!/ and

R.�/
0 � 1

!

mX
iD1

R.�/;i
0 �i < 1;

then the disease-free solution Q.�/
DFS is globally attractive and asymptotically

I-stable in the meaningful domain D.�/.
(ii) If � 2 Sdwell and

D
R.�/

0

E
� sup

t�h

1

t

mX
iD1

R.�/;i
0 Ti.t/ < 1; (4.58)

for some h > 0, then the disease-free solution Q.�/
DFS is globally attractive and

exponentially I-stable in the meaningful domain D.�/.
(iii) If � 2 Sdwell satisfies TC � N0 C qT�.t/ for some q 2 .0; 1/ and N0 � 0 such

that

R.�/;�
0 � 1 < q.R.�/;C

0 � 1/;

where R.�/;�
0 � maxfR.�/;i

0 W i 2 M�g, R.�/;C
0 � maxfR.�/;i

0 W i 2 MCg, then

the disease-free solution Q.�/
DFS is globally attractive and exponentially I-stable

in the meaningful domain D.�/.

The results are summarized in Table 4.1. It should be noted that although some
epidemic models share the same mode basic reproduction numbers, they may
possess differing qualitative behaviors (i.e., via different mode-dependent endemic
equilibria and therefore different permanence sets in Theorem 4.8 (iv), for example).
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Table 4.1 Mode basic reproduction numbers of the outlined disease models

Epidemiological
assumption Disease model Mode basic reproduction numbers DFS stability

Vertical transmission
(SIS) (4.36) ˇi=.�� C g/ Global

Varying population
size (SIS) (4.42) ˇi=.b C g/ Global

Disease-induced
mortality (SIS) (4.47) ˇi=.b C g C ˛/ Local

Waning immunity
(SIRS) (4.52) ˇi=.� C g/ GA and PS

Passive immunity
(MSIR) (4.54) ˇi=.� C g/ GA and PS

General
compartments (4.55) ˇi=.�i C ˛i/ GA and PS

The stability results obtained for Q.�/
DFS in the meaningful domain are global (i.e., global

asymptotic or exponential stability), local (i.e., local asymptotic stability), or GA and PS (global
attractivity and partial stability)

4.5 Discussions

The SIS model (4.1) with time-constant contact rate has been analyzed extensively
in the literature [63, 67, 69, 73, 116]. In Sect. 4.1, an SIS model with term-time
forced parameters is analyzed and the analytic solution is explicitly provided.
Results on persistence of the disease in the endemic case are given, including
some criteria guaranteeing the convergence of the solution to the convex hull of
the endemic equilibria. A term-time forced SIS model is also studied that considers
an incidence rate which takes media coverage and the pattern of daily encounters
in a local community into account. This investigation contributes to the existing
literature by extending the studies in [83, 171] through the switching incidence
rates and term-time forced seasonal variations, and is based on the work in [98].
The persistence result derived in Theorem 4.2 is established along the lines of the
proof of Theorem 3.3 in [83] and Lemma 4.1 and Theorem 4.1 in [68]. The authors
Li and Cui [83] considered the incidence rate

.S; I/ 7!
�

ˇ � �
I

b C I

�
SI;

and therefore the autonomous (non-switched) version of (4.12).
As mentioned, infectious diseases like influenza (e.g., the subtype H1N1 in 2009)

and SARS are easily transmitted from one geographic region to another due to
population dispersal from individuals traveling; the effect of travel on the spread of
a disease should be considered [156]. The compartmental epidemic model literature
contains formulations and studies of epidemic models with population dispersal;
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for example, Sattenspiel and Dietz [132] studied the transmission of measles in the
Caribbean island of Dominica using a multi-city SIR model with travel between
populations. Arino and van den Driessche [5] developed and studied a multi-city
SIS model to study the spatial spread of a disease. A multi-city SIS model with a
general nonlinear birth-rate term was studied by Wang and Zhao in [157]. Wang and
Mulone explored a two-city SIS model with population dispersal in [156]. Wang and
Zhao studied a multi-city SIS model with age structure and time delay in [158]. A
two-city SIS model with transport-related infection has been studied by Cui et al.
in [146] and some results were extended by Takeuchi et al. in [147]. Wan and Cui
analyzed a two-city SEIS model in [155], and Liu and Zhou studied a two-city SIRS
model in [88], both with transport-related infection.

There are few reports analyzing multi-city models with seasonality in the
literature; Zhang and Zhao studied a multi-city SIS model with general nonlinear
birth-rate and periodic model parameters, including the contact rate, in [170].
The multi-city SIR model, suitable for modeling infections such as hepatitis B,
measles, influenza, and chickenpox [88, 101], is extended to switched seasonal
variations and general incidence rates in (4.21), which is inspired by the work in
[97]. The analysis of multi-city epidemic models in Sect. 4.2 naturally leads to
age group considerations, which are not presently considered but the interested
reader is referred to [65, 82, 107, 129, 130, 137]. The authors Röst and Wu [130]
considered age-dependent mixing and provided global asymptotic stability of the
disease-free equilibrium. In [107], McCluskey resolved the endemic case and
showed global asymptotic stability of the endemic equilibrium, using a Lyapunov
functional, whenever the basic reproduction number is greater than one. In the
paper [129], Röst analyzed an SEI (susceptible-exposed-infected) model with
distributed delays and a death rate for the infected class that depends on the age
of infection. A heterogeneous host population can be divided into homogeneous
groups according to transmission characteristics (modes of transmission, contact
patterns, geographic distributions, etc.) [82]. Motivated by this, a multi-group SEIR
(susceptible-exposed-infected-recovered) model with unbounded delay was studied
in [82] by Li et al. to model within-group and inter-group interactions separately.
The authors found global asymptotic stability results for the disease-free equilibrium
and endemic equilibrium based on the spectral radius of the next-generation matrix
using Lyapunov functionals. These results were extended by Shu et al. in [137] to
model generalized nonlinear transmission rates. Lyapunov functionals were used
to give sufficient conditions for global asymptotic stability of the disease-free
equilibrium and endemic equilibrium based on the basic reproduction number.

In Sect. 4.3, infectious diseases which spread by vector agents are detailed,
motivated by the work in [143]. In particular, those diseases which display a finite
incubation time before vector agents become infectious (see, e.g., [16, 17, 19, 27,
50, 104, 108, 145]). Chikungunya virus is usually transmitted via Aedes aegypti,
however, in recent outbreaks transmission has been observed via Aedes albopictus
(e.g., in Réunion [114]). Capable of transmitting diseases such as dengue (see the
studies [165, 166] for mathematical models of dengue), Aedes aegypti is a tropical
and subtropic species but Aedes albopictus has recently been observed adapting
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to non-tropic regions in Southeast Asia, islands in the Pacific and Indian oceans,
China, Europe, USA, and Australia [41, 113, 114]. Italy experienced an outbreak
in 2007 [127]; globalization of vector-borne disease is of great interest at present,
pronounced by recent outbreaks of Zika virus. The author Cooke [27] first proposed
a version of the vector-borne disease model (4.34) for study. Beretta and Takeuchi
[16, 17] analyzed the stability of the disease-free equilibrium of vector-borne disease
models similar to (4.34). Takeuchi et al. [145] and Beretta et al. [19] extended these
works to the endemic case. Ma et al. [104] analyzed the permanence of (4.34). Gao
et al. [50] investigated a vaccination scheme for an SIR vector-borne disease model
with distributed delays. The work on stability of the endemic equilibrium of (4.34),
with birth rate unequal to death rate, was completed by McCluskey in [108].

The vector agent population, and thus interactions between host and vector
populations, is absent in (4.35); the qualitative behavior of the disease with respect
to the host population is the main focus. This is in contrast with the case study in
Chap. 7, where the full dynamics between host and vector populations are modeled.
The drawback to this omission is the introduction of time delays (leading to
theoretical complications) and the exclusion of the vector population for vector-
focused control measures (e.g., destruction of breeding sites cannot be adequately
modeled in (4.35)). On the other hand, integro-differential equations, as appearing
in Sect. 4.3, arise frequently in modeling physical and biological phenomena.
Examples are found in [24, 78]: biological population models, predator–prey models
with a past hereditary influence, grazing systems, chemical oscillations, nuclear
reactors, and heat flow problems [24, 78].

A number of different epidemic models are presented and examined in Sect. 4.4.
First, vertical transmission was incorporated into the model in Sect. 4.4.1, which
is an important transmission mechanism in a variety of diseases like hepatitis and
AIDS [37]. The switched SIS model (4.1) and switched SIS model with vertical
transmission (4.36) made the common assumption that births and deaths are equal
(leading to a population balance) [73], which is reasonable when considering the
often shorter time scales involved in the epidemics when compared to the population
dynamics. However, infectious diseases like measles, chickenpox, and pertussis
display the characteristic that the susceptible class is mostly composed of younger
individuals whose rate of natural mortality does not necessarily coincide with that
of the rest of the population [73]. Non-constant population size has been displayed
in a number of real-world examples, motivating the analysis of the SIS model with
non-constant population (4.42).

In the case of infectious diseases like AIDS, disease-related deaths should be
taken into account by modifying the constant-population assumption [140]. As
disease-related deaths and persistence of a disease can have the effect of reversing
a naturally growing population into a stable or decaying population [64], the
switched SIS model with disease-induced mortality (4.47) is investigated. When
there is natural recovery from the disease for a non-negligible amount of time yet
the immunity wanes in time, the SIRS model is appropriate (see [69, 73]). The
modeling assumptions of the SIR model (3.9) are taken with the distinction that
individuals recovering from the disease do so temporarily. Examples include the
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herpes simplex virus, which tends to relapse after recovery [140]. This has also
been demonstrated in a number of sexually transmitted diseases (e.g., gonorrhea
and chlamydia) [46]. The switched SIRS model (4.52) is the focus of Sect. 4.4.3
to address these concerns. Diseases in which antibodies are transferred from an
infected mother to unborn child (e.g., chickenpox) [65] are modeled according to
the so-called switched MSIR model (4.54). Lastly, the seasonally varying epidemic
model with generalized compartments in Sect. 4.4.5 was motivated by the time-
invariant epidemic model studied in [36].
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