Skip to main content

The Immunobiology of Cancer: From Tumor Escape to Cancer Immunoediting Towards Immunotherapy in Gynecologic Oncology

  • Chapter
  • First Online:
Molecular Oncology: Underlying Mechanisms and Translational Advancements

Abstract

The immune system is known to play a pivotal role in cancer pathogenesis. In a dynamic balance between immune system and cancer cells, the first one recognizes the second as non-self and effectively clears them from the system. This phenomenon, called immune surveillance, is based on the interaction between antigen presenting cells and T lymphocytes that get activated eliciting a specific and enduring response. In certain circumstances, tumor cells are able to evade this mechanism allowing the tumor to develop. This mechanism is called tumor escape.

The role of immunotherapy is to restore a balance between immune system and tumor cells by boosting the former. In the past, drugs that work on the immune system in various malignancies have shown striking result, in both response rates and survival, which has led to their FDA approval. The use of these new drugs is currently being investigated with promising results in various other settings, including gynecological malignancies.

The definition of immunotherapy encompasses various treatment strategies that include tumor antigen–targeted monoclonal antibodies, immunological checkpoint inhibitors, cytokines, and therapeutic cancer vaccines. These treatments differ as they use distinct mechanisms of actions. However, they all share the fact that their anti-tumor effect is exerted through a boost or a restoration of the immune system.

Owing to its potential to affect mutating cancer cells through the dynamic interplay between cancer and the immune system, immunotherapy offers the potential for durable clinical effects and synergy with subsequent therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Candeias SM, Gaipl US (2016) The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem 16:101–107

    Article  CAS  PubMed  Google Scholar 

  2. Dunn GP et al (2005a) Interferon-gamma and cancer immunoediting. Immunol Res 32:231–245

    Article  CAS  PubMed  Google Scholar 

  3. Dunn GP et al (2005b) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729

    Article  CAS  PubMed  Google Scholar 

  4. Smyth MJ, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665–2670

    Article  CAS  PubMed  Google Scholar 

  5. Street SE et al (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  CAS  PubMed  Google Scholar 

  7. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  CAS  PubMed  Google Scholar 

  8. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  CAS  PubMed  Google Scholar 

  9. Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704–2715

    Article  CAS  PubMed  Google Scholar 

  10. Dunn GP et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  11. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  12. Page DB et al (2014) Immune modulation in cancer with antibodies. Annu Rev Med 65:185–202

    Article  CAS  PubMed  Google Scholar 

  13. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  CAS  PubMed  Google Scholar 

  14. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  15. Gravitz L (2013) Cancer immunotherapy. Nature 504:S1

    Article  CAS  PubMed  Google Scholar 

  16. Lizee G et al (2013) Harnessing the power of the immune system to target cancer. Annu Rev Med 64:71–90

    Article  CAS  PubMed  Google Scholar 

  17. De Felice F et al (2015) Immunotherapy of ovarian cancer: the role of checkpoint inhibitors. J Immunol Res 191832

    Google Scholar 

  18. De Vries J, Figdor C (2016) Immunotherapy: cancer vaccine triggers antiviral-type defences. Nature 534:329–331

    Article  PubMed  Google Scholar 

  19. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3

    Google Scholar 

  20. Palombo F, Focaccetti C, Barnaba V (2014) Therapeutic implications of immunogenic cell death in human cancer. Front Immunol 4:503

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gross S, Lennerz V, Gallerani E, Mach N, Böhm S, Hess D, von Boehmer L, Knuth A, Ochsenbein A, Gnad-Vogt U, Forssmann U, Woelfel T, Kaempgen E (2016) Short peptide vaccine induces CD4+ T helper cells in patients with different solid cancers cancer. Immunol Res 4:18–25

    CAS  Google Scholar 

  22. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torre LA et al (2015) Global cancer statistics 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  24. Bellati F, Napoletano C, Ruscito I, Visconti V, Antonilli M, Gasparri ML, Zizzari IG, Rahimi H, Palaia I, Rughetti A, Benedetti Panici P, Nuti M (2013) Past, present and future strategies of immunotherapy in gynecological malignancies. Curr Mol Med 13:1–22

    Article  Google Scholar 

  25. Galanis E et al (2010) Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 70:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coosemans A et al (2013) Dendritic cell-based immunotherapy in ovarian cancer. Oncoimmunology. 2:e27059

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zwaveling S et al (2001) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptide. J Immunol 69:350–358

    Google Scholar 

  30. Welters MJ et al (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187

    Article  CAS  PubMed  Google Scholar 

  31. Howitt BE et al (2015) Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol 1:1319–1323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Gasparri M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gasparri, M.L. et al. (2017). The Immunobiology of Cancer: From Tumor Escape to Cancer Immunoediting Towards Immunotherapy in Gynecologic Oncology. In: Farooqi, A., Ismail, M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_9

Download citation

Publish with us

Policies and ethics