
Parallel Integer Motion Estimation for High
Efficiency Video Coding (HEVC) Using OpenCL

Augusto Gomez(B), Jhon Perea, and Maria Trujillo

Multimedia and Computer Vision Group, Universidad Del Valle, Cali, Colombia
{augusto.gomez,jhon.edinson.perea,maria.trujillo}@correounivalle.edu.co

Abstract. High Efficiency Video Coding is able to reduce the bit-rate
up to 50% compared to H.264/AVC, using increasingly complex com-
putational processes for motion estimation. In this paper, some motion
estimation operations are parallelised using Open Computing Language
in a Graphics Processing Unit. The parallelisation strategy is three-fold:
calculation of distortion measurement using 4 × 4 blocks, accumulation
of distortion measure values for different block sizes and calculation of
local minima. Moreover, we use 3D-arrays to store the distortion measure
values and the motion vectors. Two 3D-arrays are used for transferring
data from GPU to CPU to continue the encoding process. The proposed
parallelisation is able to reduce the execution time, on average 52.5%,
compared to the HEVC Test Model. Additionally, there is a negligible
impact on the compression efficiency, as an increment in the BD-BR, on
average 2.044%, and a reduction in the BD-PSNR, on average 0.062%.

Keywords: GPU · HEVC · Motion estimation · OpenCL · Parallel
programming

1 Introduction

High Efficiency Video Coding (HEVC) achieves increase coding efficiency, while
preserving video quality with lower bit-rate compared to H.264/AVC. However, it
also increases dramatically the encoding computational complexity [15]. Motion
estimation is the most time consuming task in a video encoder. In HEVC, the
motion estimation requires about 77%–81% of the total encoding time due to
distortion measure calculations and flexibility in block sizes [8]. Moreover, motion
estimation configurations, such as Advanced Motion Vector Prediction (AMVP)
[19], generate data dependency between neighbour blocks that make difficulties
in using hardware with Single Instruction Multiple Data (SIMD) architecture
[9]. The HEVC specifications include the following parallel processing options:
Wavefront Parallel Processing (WPP) [5], Slices [11] and Tiles [3]. Moreover,
there are approaches on parallel motion estimation presented in the literature,
for instance Wang et al. in [17].

Graphics Processor Units (GPUs) have been used for reducing the encoding
time, especially for motion estimation in HEVC − for instance in [12]. Luo et al.
presented in [10] a quaternion of (L, T, R, B) for indexing a look-up table with
c© Springer International Publishing AG 2017
C. Beltrán-Castañón et al. (Eds.): CIARP 2016, LNCS 10125, pp. 68–75, 2017.
DOI: 10.1007/978-3-319-52277-7 9

Parallel Integer Motion Estimation for High Efficiency Video Coding 69

PU sizes from 4× 4 to 32× 32; the performance evaluation was implemented on
HM10.0 [6]. Wang et al. proposed in [16] a two-fold approach: an initial motion
estimation is obtained on GPU and then, it is refined on CPU. The authors
considered 256 symmetric partitions of a Coding Tree Unit (CTU) using an
initial partition of 4 × 4 and accumulating block sizes to reach a 64 × 64 block;
the implementation was done on x265 video encoder [13]. Jiang et al. introduced
in [7] an approach focused on reducing the overhead, which is based on dividing
a CTU into 256 blocks of 4 × 4, and the implementation was done on HM12
[6]. They reported results, using the PeopleOnStreet video sequence, of a time
reduction of 34.64% with QP equal to 32 and 40.83% with QP equal to 42
compared to the HM12.

In this paper, we propose a parallel strategy for integer motion estimation
with negligible impact on the coding efficiency, using OpenCL as programming
framework [4]. The proposed approach has been divided into three main steps:
distortion measure calculations, distortion measure accumulations and rate dis-
tortion minima estimations, as the foundations of estimating motion vectors.
Two 3D-arrays are built for storing distortion measure values and estimated
motion vectors. In this way, data is transferred to CPU. Experimental results
shown an average of 52.5% reduction of the execution time compared to the
HEVC Test Model [6], with a slight increment of the BD-BR, of 2.044% on aver-
age, and a slight reduction of the BD-PSNR, of 0.062% on average, using the
Bjøntegaard Delta [1] as a metric to compare compression efficiency.

2 Parallel Integer Motion Estimation

The goal of the Parallel Integer Motion Estimation (PIME) is to reduce the
computational time required for calculating Motion Vectors (MV)s during the
encoding process. HEVC supports CTU with maximum size of 64× 64. A CTU
is divided into Coding Units (CU) of different sizes. A total of 593 CUs are
obtained from a CTU for inter-frame prediction. Unlike the HEVC standard,
PIME does not create the tree structure top-down for calculating MVs. Instead,
a CTU is divided into 4 × 4 size blocks and distortion measures are calculated
for creating the tree structure bottom-up.

The integer motion estimation is performed in the GPU and MVs are trans-
ferred to the CPU for continuing the encoding process. For each CTU, luma data
and the search area are transferred to the GPU global memory. The workflow
of PIME is presented in Fig. 1. Using a block matching algorithm: Firstly, dis-
tortion measures are calculated. Secondly, distortion measures are accumulated.
Finally, minima of rate distortions are estimated.

2.1 Distortion Measure Calculations

The calculation of the distortion measure is computed using OpenCL, it uses
work-items for running a single instruction. A work-item executes the calculation
of a distortion measure in a 4 × 4 block. Also, work-items are arranged in a

70 A. Gomez et al.

Fig. 1. Workflow of Parallel Integer Motion Estimation (PIME)

work-group for accessing a local memory and taking advantage of transferring
speed. A work-group contains 16 × 16 work-items − a total of 256 work-items.
Obtained values are stored into three temporal buffers: horizontal, vertical and
asymmetric (AMP).

2.2 Distortion Measure Accumulations

Using the temporal buffers, distortion measure values are recursively accumu-
lated horizontally and vertically to estimate the distortion in larger blocks, start-
ing from 4 × 4 blocks to 64 × 64 block, including asymmetric partitions using
parallel reduction [2]. A work-item adds a pair of corresponding horizontal or
vertical distortion measures to obtain the distortion measure for each block. Tem-
poral buffers, in local memory, store recursively accumulations and the buffer, in
global memory, stores distortion measures of 593 blocks, defined in the HEVC
specifications.

Table 1 shows positions in the global memory buffer of each stored CU.

Table 1. Index used for storing distortion measure values in the GPU global buffer
(U = Up, D= Down, L = Left, R = Right)

Index PU Index PU Index PU Index PU Index PU

0–127 8× 4 336–351 4× 16R 516–519 32× 8D 544–559 16× 16 580 16× 64L

128–255 4× 8 352–367 12× 16L 520–523 32× 24U 560–567 32× 16 581 16× 64R

256–271 16× 4U 368–383 12× 16R 524–527 32× 24D 568–575 16× 32 582 48× 64L

272–287 16× 4D 384–447 8× 8 528–531 8× 32L 576 64× 16U 583 48× 64R

288–303 16× 12U 448–479 16× 8 532–535 8× 32R 577 64× 16D 584–587 32× 32

304–319 16× 12D 480–511 8× 16 536–539 24× 32L 578 64× 48U 588–589 64× 32

320–335 4× 16L 512–515 32× 8U 540–543 24× 32R 579 64× 48D 590–591 32× 64

Parallel Integer Motion Estimation for High Efficiency Video Coding 71

2.3 Estimating Minima of Rate-Distortion

A global minima buffer, in the global memory, is used for storing the distortion
measures corresponding to the obtained minima calculated using the rate dis-
tortion measure, over the search area. Rate distortion is a widely used measure,
defined in [14]:

JMV = SAD(MV) + λ R(MV). (1)

where JMV is the cost function, SAD(MV) is a distortion function, λ is the
Lagrangian multiplier and R(MV) symbolised the bits required to code the
MV.

Two additional buffers are created to keep the x– and the y– coordinates
of obtained minima. In this case, the work-items are independent, instead of
being organised in a work-group. A work-item compares the current JMV to the
obtained local minimum at the moment. Once the block matching is completed,
the distortion measure minima are stored in the global minima buffer. Figure 2
show the architecture of PIME.

Fig. 2. Parallel integer motion estimation architecture

2.4 GPU and CPU Communication

The PIME process is performed in the GPU device while the encoding process is
performed in the CPU (not concurrently). We introduce the use of 3D-arrays for

72 A. Gomez et al.

data communication between GPU and CPU. In this way, the OpenCL buffers
are mapped into two 3D-arrays in CPU for storing distortion measures and
MVs. A 3D-array is built as follows: the first dimension corresponds to the
reference frame lists (eRefPicList), the second dimension points to the index for
the reference frame (iRefIdxPred) and the third dimension points to the indexes
for accessing the CU (CUindex) in Table 1. A 3D-array is illustrated in Fig. 3.

Fig. 3. The 3D-array used for storing

3 Experimental Evaluation

3.1 Experimental Setup and Encoder Configuration

Performance evaluation of PIME is conducted using the HEVC Test Model [6]
version 16.4, with the default profile Random Access. The modified source code is
available at https://github.com/gomezpirry/HM-OpenCL. The used parameter
configurations are in Table 2.

Table 2. Parameters configuration of the HM

Encoder setting/parameter

MaxCUSize: 64 HadamardME: True Search: Full

MaxPartitionDepth: 4 Fast decision: True RateControl: false

IntraPeriod: 32 AMP: True GOP size: 2

SearchRange: 64 Bi-SearchRange: 4 QP: 22, 27, 32, 37

The hardware platform used in these experiments is composed of a CPU Intel
Core i7–4500U processor with 1.8 GHz clock base frequency and 8 GB DDR3 of
system memory. The GPU used is a NVidia GeForce 840 M, with 384 cores, 2 GB
DDR3 of memory and running at 1032 MHz. The encoder was compiled using
GCC 4.8.4 and OpenCL 1.2, executed on Ubuntu 14.04 64 bits.

https://github.com/gomezpirry/HM-OpenCL

Parallel Integer Motion Estimation for High Efficiency Video Coding 73

The compression efficiency is judged with the Bjøntegaard Delta Bit-Rate
(BD-BR) and the Bjøntegaard Delta PSNR (BD-PSRN). Also, the speed-up
using the proposed model is measured using the delta of the execution time
(ΔTR %):

ΔTR(%) =
THM − THM−PIME

THM
× 100. (2)

where THM is the execution time required by the HM, and THM−PIME is the
execution time required by the proposed approach.

The selected test video sequences for presenting evaluation results include
one video class A (2560× 1600p) and three videos class B (1920× 1080p) [18].
All video sequences have a bit depth of 8 and 4:2:0 chroma sub-sampling. For
evaluation purposes, 150 frames were encoded from each video sequence.

3.2 Experimental Results

The results in Table 3 show that the proposed parallel strategy is able to reduce
the execution time of 52.5% on average at the cost of less than 2.044% coding
efficiency. Moreover, there is a negligible impact on the frame reconstruction
quality that is reflected in a reduction on the PSNR of 0.062%.

Table 3. Average values over QPs of the BD-BR, the BD-PSRN and the ΔTR

Class Video sequence BD-BR(%) BD-PSNR(%) ΔTR(%)

A PeopleOnStreet 2.483 −0.089 51.2

B PedestrianArea 2.805 −0.084 52.9

B ParkScene 2.096 −0.056 53.0

B Kimono 0.793 −0.020 53.0

Mean values 2.044 −0.062 52.5

Jiang et al. in [7] reported a time reduction on average of 37.74% using
the PeopleOnStreet video sequence. Table 3 shows on average 2.48% BD-BR,
−0.089% BD-PSRN and 51.2% ΔTR, using the proposed approach with the
same video sequence.

Figure 4 contains the Rate-Distortion curves calculated using the four QP
values. Differences between curves are almost imperceptible.

74 A. Gomez et al.

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
S

N
R

-Y
U

V
 (

dB
)

Bit-rate (Kb/s)

HM
HM-OpenCL

(a) PeopleOnStreet

 37

 38

 39

 40

 41

 42

 43

 44

 0 1000 2000 3000 4000 5000 6000 7000

P
S

N
R

-Y
U

V
 (

dB
)

Bit-rate (Kb/s)

HM
HM-OpenCL

(b) PedestrianArea

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 2000 4000 6000 8000 10000 12000 14000

P
S

N
R

-Y
U

V
 (

dB
)

Bit-rate (Kb/s)

HM
HM-OpenCL

(c) ParkScene

 37

 38

 39

 40

 41

 42

 43

 1000 2000 3000 4000 5000 6000 7000 8000

P
S

N
R

-Y
U

V
 (

dB
)

Bit-rate (Kb/s)

HM
HM-OpenCL

(d) Kimono

Fig. 4. Rate-Distortion curves of the PeopleOnStreet (top-left), the PedestrianArea
(top-right), the ParkScene (bottom-left) and the Kimono (bottom-right) sequences
calculated using different QPs

4 Conclusions

In this paper, a parallelisation strategy is presented for reducing the compu-
tational time required for calculating motion vectors. The proposed strategy
is based on OpenCL and achieves higher transfer speed by arranging work-
items into a work-group during distortion measure calculations. Additionally,
we introduced the use of 3D-arrays for data communication between GPU and
CPU. The experimental tests have shown a significant reduction in the execution
time using the proposed strategy whilst the compression efficiency suffers from a
slight reduction. The parallel hardware may break data flow during the parallel
processing and it may be the cause of loss of compression efficiency.

As a future work, the proposed approach will be adjusted for up-scaling in
order to evaluate more CTUs at the same time. In this case, the use of a GPU
with more processing units is required for mapping each 4 × 4 block into one
processing unit (each CTU needs 256 processing units). For the communication,
a dimension in the 3D-array is added in order to store a motion vector per CTU.
Moreover, it will be explored the use of fast search algorithms and embedded
hardware for calculating CTUs in a concurrent way.

Parallel Integer Motion Estimation for High Efficiency Video Coding 75

References

1. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves.
Technical report, ITU-T Video Coding Experts Group (VCEG) (VCEG-M33 2001)
(2001)

2. Catanzaro, B.: OpenCL optimization case study: simple reductions (2010). http://
developer.amd.com/resources/documentation-articles/articles-whitepapers/
opencl-optimization-case-study-simple-reductions/. Accessed Mar 2015

3. Fuldseth, A., Horowitz, M., Xu, S., Segall, A., Zhou, M.: Tiles. Technical report
JCTVC-F335, March 2011

4. Group, K: Open Computing Language (OpenCL). https://www.khronos.org/
opencl/

5. Henry, F., Pateux, S.: Wavefront parallel processing. Technical report JCTVC-
E196, March 2011

6. JCT-VC: HEVC Test Model (HM). https://hevc.hhi.fraunhofer.de/
7. Jiang, X., Song, T., Shimamoto, T.L.W.: High efficiency video coding (HEVC)

motion estimation parallel algorithms on GPU. In: IEEE International Conference
on Consumer Electronics, pp. 115–116, May 2014

8. Kim, S., Park, C., Chun, H., Kim, J.: A novel fast and low-complexity motion
estimation for UHD HEVC. In: Picture Coding Symposium (PCS), pp. 105–108,
December 2013

9. Lawson, H.: Parallel Processing in Industrial Real-Time Applications. Prentice Hall
Series in Innovative Technology. Prentice Hall, New York (1992)

10. Luo, F., Ma, S., Ma, J., Qi, H., Su, L., Gao, W.: Multiple layer parallel motion esti-
mation on GPU for High Efficiency Video Coding (HEVC). In: IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1122–1125, May 2015

11. Misra, K., Zhao, J., Segall, A.: Entropy slices for parallel entropy coding. Technical
report JCTVC-B111, July 2010

12. Monteiro, E., Maule, M., Sampaio, F., Diniz, C., Zatt, B., Bampi, S.: Real-time
block matching motion estimation onto GPGPU. In: IEEE International Confer-
ence on Image Processing (ICIP), pp. 1693–1696, October 2012

13. MulticoreWare: x265 HEVC Encoder. http://x265.org/
14. Sullivan, G., Wiegand, T.: Rate-distortion optimization for video compression.

IEEE Signal Process. Mag. 15, 74–90 (1998)
15. Sullivan, G., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency

video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22,
1649–1668 (2012)

16. Wang, F., Zhou, D., Goto, S.: OpenCL based high-quality HEVC motion estima-
tion on GPU. In: IEEE International Conference on Image Processing (ICIP), pp.
1263–1267, October 2014

17. Wang, X., Song, L., Chen, M., Yang, J.: Paralleling variable block size motion esti-
mation of HEVC on CPU plus GPU Platform. In: IEEE International Conference
on Multimedia and Expo Workshops (ICMEW), pp. 1–5, July 2013

18. xiph.org: Xiph.org Video Test Media [derf’s collection]. https://media.xiph.org/
video/derf/. Accessed Mar 2015

19. Zhao, L., Guo, X., Lei, S., Ma, S., Zhao, D.: Simplified AMVP for high efficiency
video coding. In: IEEE Visual Communications and Image Processing (VCIP), pp.
1–4, November 2012

http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://hevc.hhi.fraunhofer.de/
http://x265.org/
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/

	Parallel Integer Motion Estimation for High Efficiency Video Coding (HEVC) Using OpenCL
	1 Introduction
	2 Parallel Integer Motion Estimation
	2.1 Distortion Measure Calculations
	2.2 Distortion Measure Accumulations
	2.3 Estimating Minima of Rate-Distortion
	2.4 GPU and CPU Communication

	3 Experimental Evaluation
	3.1 Experimental Setup and Encoder Configuration
	3.2 Experimental Results

	4 Conclusions
	References

