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Abstract. This paper presents a method for automatic scanning of structural
elements in indoors. Whereas most of the next-best-scan (NBS) based methods
do not separate clutter and useful data, we present a scanning strategy in which
potential structural components (SE) of the building are recognized as a new
scan is carried out. This makes our method more efficient and less time con-
suming compared with the rest. Besides, our approach gives a response to
essential issues in the scanning world, such as the data discrimination, the
hypotheses about the workspace and the complexity of the scanned scene. The
method has been tested in indoors under occlusion and clutter yielding
promising results. Additionally, a comparison with three techniques close to
ours is included in the paper.
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1 Introduction: Key Points and Contributions

Nowadays automatic scanning of buildings is a challenging and very active research in
which there are still underlying questions (scan’s objective, hypothesis and the scene
complexity) that are rarely debated and that determine the validity of the method.

In the majority of the approaches the scanning strategy does not depend on the final
objective [1] (preliminary version of our approach). Thus, the objective is frequently to
scan everything which lies inside [2] or outside [3] the building. Data redundancy and
cluttering are therefore ignored. Those methods are inefficient because a great part of
the gathered 3D data can be irrelevant for the final goal. In contrast with these methods,
our proposal aims to capture the data belonging to structural elements of the scene (i.e.
ground, walls and ceiling) to further generate a realistic 3D CAD model of the building.
Consequently, we can highly reduce the volume of data and simplify the algorithmia of
future processes.

Hypotheses in the scanning process determine the soundness and versatility of a
proposal. Some NBS algorithms a priori assume bounding boxes or convex-hulls that
contain the scene [2]. Others take manually a set of preliminary sparse scans of the
environment and later tackle the NBS algorithm [3].
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An important issue related with this idea, ignored in most of the papers, is the
updating of the workspace with a new scan. This makes the earlier methods less
reliable and credible in real scenarios composed of several irregular adjacent rooms. In
this matter, we define a dynamic workspace that contains the accumulated point cloud
and that it is updated with new scans. Therefore, the boundaries of our workspace are
not hypothesized and fixed but they are updated as a new scan is added.

The complexity of the scene is determined essentially by the shape of the room, the
occlusion properties and the number of rooms to be scanned. Depending on the
complexity of the geometry of the sensed area, we find simple [4] or complex 3D data
processing [3, 5]. As regard interiors, most of the works deal with scenes composed of
a corridor and several rectangular rooms connected to it [5–7]. However, indoors
composed of concave rooms are rarely addressed in the field of 3D reconstruction. An
exception can be found in the work by Jun et al. [8]. Besides, not all the approaches are
able to overcome occlusion and clutter problems. [4, 9] and only a few of them
consider obstacles or clutter in the scene [6, 7].

Our proposal is able to deal with concave rooms connected by doors in a building
story. Due to this type of scenes our approach addresses the occlusion issue from the
beginning. Figure 1 shows a prototype of the scene in which we are testing our
automatic scanning method.

2 A Brief Overview of the Method

Although the NBS procedure is the main objective of the paper, this is just a part of a
more complex system composed of a mobile robot that carries a 3D laser scanner.

We assume that the scenario is composed of several rooms and that the system
carries out the complete scanning of the current room before passing to an adjacent one.
Thus, when the room scanning process ends, the robot places under the doorframe that
separates adjacent rooms and launches the first scan of a new room. To detect openings
(in this case, doors) we follow the algorithm described in [10].

The automatic scanning of the current room is viewed as a cyclic process which
begins with the data acquisition from a 3D laser scanner with a field of view of

Fig. 1. Prototype of the scenario in our work: story with several non-rectangular inhabited
rooms connected by doors.
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360º � 100º, and ends with the output of the NBS algorithm, that is, the coordinates of
the next scan position in the world coordinate system. The main stages of a room
scanning process are shown in Fig. 2. The stages are: (1) raw point cloud preprocessing
and alignment, (2) RoI (Region of Interest) definition, (3) wall identification, (4) space
labeling and NBS decision. The next sections are devoted to briefly explaining these
stages.

3 Structural Elements Recognition

3.1 Finding the Region of Interest

Our automatic scanning approach is a cyclic process in which each single point cloud
coming from a new position of the scanner is registered into the accumulated point
cloud of the scene. First, a coarse registration is carried out through the robot local-
ization sensors. Then, the earlier registration is refined by applying a 6D (x, y, z, roll,
pitch, yaw) ICP (Iterative Closest Point) technique [11]. We will denote S(t) as the
accumulated point cloud at time t.

In this framework, the region of interest (RoI) is defined as the region which
establishes the boundaries of the current space at time t. Thus, the RoI can be imple-
mented as the prism that contains S(t).

In practice, the RoI is obtained through the top projection of S(t). The projection of
the points is quantized over a horizontal grid that finally we convert into a binary
image. See Fig. 3(a) for a better understanding. A polygonal contour is calculated in
this image with the help of Hough and Harris’ algorithms. On one hand, the segments
that compose this contour lead us to obtain, first, the planes that fit to the data points
and, second, the vertical parallelograms nearest the points. Note that, these contours
themselves determine the polygons at the top and bottom of the RoI, which represents
the ceiling and floor of the scene (right column of Fig. 3(a)). Figure 3(b) illustrates the
RoI updating for three consecutive scans. The polygons that represent the ceiling and
the floor are not shown for a better vision.

Fig. 2. Outline of the scanning process.
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3.2 Structural Elements Classification

After having obtained the RoI, we identify which of its faces are structural elements
(SE) and which are not. Note that, apart from all RoI’s sides, we know the data points
which are near to them. Each face and its associated data points generate a binary
image in which we can infer whether the face is considered as SE or not. Of course, top
and bottom polygons (which correspond to ceiling and floor) are a priori assumed
structural elements, so that the SE classification is uniquely accomplished for walls.

The decision function that classifies the faces of the RoI as SE or non-SE has been
implemented by means of a binary Support Vector Machine (SVM) classifier.

Let us assume I be a binary image generated from a polygon of the RoI in which a
white (magenta in Fig. 3(c)) pixel means a data point. Let also assume d1d2 be the size
of I (d1 and d2 are whatever image dimensions in pixels) and n be the number of white
pixels contained in I. We consider a feature vector F a; d; eð Þ that contains the following
information:

– Occupancy percentage (a). This means the occupancy of the hypothetic wall. In
Eq. (1), d1 and d2 are the image dimensions.

a ¼ n
d1d2

ð1Þ

Fig. 3. (a) Steps to obtain the first RoI. The figure shows the data points (in magenta)
superimposed to the faces of the RoI (in blue). (b) RoI evolution for the first three scans.
(c) Structural elements classified in the first RoI. (Color figure online)
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– Clusters’ compactness (b). We cluster the data points in I and calculate the density
per cluster. The cluster’s density is defined as the as the ratio of the number of data
points (ni) to the area of its corresponding bounding box (d1id2i). Equation (2)
provides the mean clusters density or the clusters’ compactness (where k is the
number of clusters).

d ¼ 1
k

Xk

i

ni
d1id2i

ð2Þ

– Data dispersion (e). This is calculated through the area occupied by the bounding
boxes of the clusters.

e ¼
P

i d1id2i
d1d2

ð3Þ

Figure 3(c) shows a set of images I corresponding to the faces of the RoI for the
first scan and the classification result. A deeper discussion and explanation of this
method can be done in a more extended publication.

4 NBS

The NBS is computed in a discretized 3D space, that is, in a voxel-space V, where a
voxel is a small cube. We define five labels in the space V, divided into two classes
(occupied and non-occupied):

– Occupied voxels are: Clutter (the voxel contains points that do not belong to SEs)
and Structure (the voxel contains points belonging to SEs).

– Non-occupied voxels are: Empty (the voxel has been seen from earlier scanner
positions but does not contain data), Occluded-clutter (the voxel has not been
sensed because it lies between an occupied voxel and a SE) and Occluded-structure
(the voxel has not been sensed because it is behind an occupied voxel and lies in
SEs).

To calculate the NBS we estimate the amount of Occluded-structure voxels that
would turn into Structure voxels from a set of next valid positions (NVP) of the
scanner. Since a mobile robot carries the scanner, a NVP is defined under robot
path-planning requirements, that is, there must be at least one secure path from the
current to the next position of the robot. A secure path entails that the robot moves
through Empty voxels and the distance from such voxels to any occupied voxel along
the path is higher than certain security distance (in our case 20 cm). From each NVP
and by means of a ray-tracing algorithm, we calculate the number of conversions from
Occluded-structure to Structure voxels. A ranked list of NVP is then established taking
into account the amount of new Structure voxels. The NBS corresponds to the first
NVP of the list. Figure 4 shows the labeled space V for two consecutive scans.
Structure voxels are in blue, Occluded-structure in green and Clutter (Occluded-clutter
is not shown for a better visualization). Note the increment of Structure voxels from the
next best position of the scanner.

64 B. Quintana et al.



5 Test and Experimental Comparison

In this section we present an experimental comparison of our scanning approach with the
ones of Stachniss andBurgard [12], Blaer andAllen [3] and Potthast Sukhatme [2], which
can be considered related proposals. The comparison has been done in a scene composed
of 5 adjacent concave-shape rooms, with clutter and occlusion (See Fig. 1(a)). This
complex scenario has been created in Blender and its add-on Blensor [13]. This tool
simulates real scanning with commercial 3D laser scanners similar to ours (Riegl
VZ-400).

It is worth mentioning that, in order to make possible the experimental comparison,
we needed to make some adaptations on those methods. Since the original version of
those methods do not detect doors and besides impose a fixed-size occupancy grid for
the scenario, we added our door detection algorithm to their codes and also updated the
size of their voxel spaces with the beginning of a new scan. A brief report of the results
follows.

Despite the adaptations, methods [2, 12] were not able to scan completely rooms #4
and #5. This is mainly owing to the fact that these approaches do not deal with
concave-shape regions. Our method completed the scanning process taking one or two
scan less than the rest per room. A total of 22 scans were taken for the whole scenario.
Apart from ours, approach [3] was also able to complete the scanning process after
taking 25 samples.

The computational cost was measured in terms of processing time. On this point, our
algorithm spent less time than the others. Our total time for scanning and processing was
14868 s. We reduced 78,7%, 83,7% and 33,6% the time spent by [2, 3, 12] respectively.
These reductions would have been much impressive without code adaptations.

Our percentage of the total structural surface sensed is also higher than the rest. We
reached 88,57% compared with 87,26% for [4]. Note that Blaer et al.’s approach does
not recognize structural elements. For rooms #1, #2 and #3, [2, 12] achieved 87,0% and
84,3% respectively. In summary, our method takes less scans and achieves higher
percentages.

With regard to the size of the processed data points, we obtain smaller point clouds
in most of the rooms. Note that we uniquely process SE points, whereas the rest of the

Fig. 4. (a) Current voxel-space V(t) with the current position (1) and the NBS position (2) in
black (b) Next voxel-space V(t + 1). (Color figure online)
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approaches deal with the whole point cloud. We processed a total of 23.576.419 points.
The mean reduction percentages in the number of processed points with respect to the
other approaches were 7,2% [12], 23% [3] and 14% [2].

Concerning the path length, our approach yielded better results in rooms #1, #2,
and #4. For rooms #3 and #5, the results were better than in [2, 12], and similar to the
ones of [3]. We cover 30% less distance than [12] (43, 34 m versus 62, 28 m in rooms
#1, #2 and #3), 25% less than [2] (32.71 m versus 43, 82 m in rooms #1 and #3) and
2,8% more than [3] (88, 26 versus 85, 82 m).

Figure 5 illustrates some details of the scanning process in room #2 and the whole
point cloud of structural elements superimposed to the CAD model generated.

6 Conclusions

The primary goal in our work is to accumulate data belonging to structural elements of
a building to obtain a precise 3D model. The main contributions of our proposal are:

– A new NBS algorithm addressed to capture structural elements that highly reduces
the volume of data and alleviates the algorithmic complexity in further processes.

– A dynamic RoI which allows effectively dealing with more complex scenarios
composed of several non-rectangular spaces with occlusion and clutter.

Many aspects need to be improved in future developments. Our method works very
well for flat structural elements but neither for curve shapes nor for several
ceilings/floors within the same room. Therefore, new approaches for more complex
scenes, including several stories, must be addressed in the future.

Fig. 5. (a) Evolution of RoI and Voxel-space of room #2 for four scans. (b) Data points assigned
to structural elements in five different rooms and the corresponding CAD models superimposed
to them.
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