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Abstract. Source reconstruction from EEG data is a well know problem
in the neuroscience field and affine areas. There are a variety of appli-
cations that could be derived form an adequate source reconstruction of
the cerebral activity. In recent years, non-parametric methods have been
proposed in order to improve the reconstruction results obtained from
the original Low Resolution Tomography (LORETA) like approaches.
Nevertheless, there is room for improvement since EEG data could be
processed to enhance the reconstruction process via some temporal and
spatial transformations. In this work we propose the use of a Kernel-
based temporal enhancement (kTE) of the EEG data for a preprocess-
ing stage that improves the results of source reconstruction into the
non-parametric framework. Three metrics of source error localization
named as Dipole Localization Error (DLE), Euclidean Distance (ED)
and Dipole dispersion (DD) are computed for comparing the perfor-
mance of swLORETA in different scenarios. Results shows an evident
improvement in the reconstruction of brain source from the proposed
kTE in comparison to the state of art non-parametric approaches.

Keywords: LORETA · Kernel · EEG data · Temporal enhancement ·
swLORETA

1 Introduction

The correct understanding of brain activity has been attracting significant rele-
vance in the development of systems of assistance in the neuroscience field. In the
last decade several works have been developed in order to improve the mapping
and accurate detection of neural activity inside the brain in different scenarios
[1,4,8]. The brain activity has been modeled by currents, more precisely by cur-
rent dipoles that fit the neuronal potentials being generated within the brain
cortex. Electroencephalography (EEG) has proved to be an effective method for
capturing the electric brain activity. The EEG data has the property of a high
temporal resolution but low spatial resolution [1,4,8].
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Since there are few orders of difference between the number of possible brain
sources with the number of electrodes, the problem of source reconstruction
becomes ill-posed [1]. Due the ill-posed nature of the problem, some spatial and
temporal priors should be included in order to find a unique solution. Methods
that are used to solve the inverse problem are categorized in two approaches
[6]. The first approach known as parametric methods, assume few dipoles inside
the brain with unknown position and orientation, then, a non-linear problem
is solved in order to estimate these parameters. The second approach of non-
parametric methods, assume several dipoles within the brain volume, with fixed
positions and orientations. A linear problem is solved in order to find the ampli-
tudes and orientations of these assumed sources from the EEG data [4]. There is
still a wide open field in which the EEG data could be effectively used for brain
source reconstruction. Since the Minimum norm Estimate (MNE) and Low Res-
olution Tomography (LORETA) were proposed, some variations to these meth-
ods have been used for addressing this problem [5,10]. From the non-parametric
methods, a Bayesian framework could be used to deduce most of the methods
based on regularization approaches of the inverse problem. In [8], a technical
note for solving the source reconstruction problem from M/EEG data within a
Bayesian framework is presented [8].

The objective when source reconstruction from EEG data is addressed is
to reduce the localization error. The original LORETA and MNE approaches
show a considerable high error localization of the sources [1]. Some variations
of LORETA have tried to address the low resolution with some spatial and
temporal transforms of the data and the prior covariance definition. Standard-
ized LORETA (sLORETA) and standardized weighted LORETA (swLORETA)
methods give lower error localization of the sources. Standardized LORETA
(sLORETA) [11] proposes the use of a initialization of the current density esti-
mate, given by MMN solution and then standardized values of the current den-
sity are inferred [11]. The sLORETA algorithm proves to reduce the localization
dipole error results compared to LORETA. The swLORETA proposed in [9], uses
a Single Value Decomposition (SVD) of the leadfield matrix in order to improve
the spatial resolution. Some unsolved issues of this approach are related to the
capability of the SVD linear relationships to modeling the noise adequately.

In this work, we propose the use of kernel functions in order to enhance and
model the temporal relationships in the EEG data. This enhancement could
derive in a considerable improvement in the source reconstruction results within
the LORETA framework. A Gaussian kernel is applied over the EEG data, pro-
jecting it to another dimension in which a selection of the most relevant temporal
modes within the data could be performed. This reduced data then is the input
for the sLORETA and swLORETA methods to obtain the results of the source
reconstruction. Different metrics of source localization are computed to com-
pare the proposed method against the classic LORETA framework. The Dipole
localization error (DLE), the euclidean distance (ED) and the dipole dispersion
(DD) shows a considerable improvement of the proposed method in the source
reconstruction problem.
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2 Materials and Methods

Description of the data used to develop this work is included in this section. A
theoretical background of LORETA as the non-parametric method selected for
source reconstruction is also presented. Finally the description of the metrics
employed and the experimental setup are depicted. The Statistical Parametric
Mapping (SPM) [3] is used in the 12.1 version, and is combined into Matlab
2014a. The data for source reconstruction analysis corresponds to generated
synthetic EEG data. The SPM implementation for LORETA is used in order to
compare and validate the results obtained from the proposed methodology.

2.1 Inverse Problem

The source reconstruction problem from M/EEG data could be formulated as
follows:

Φ = KJ, (1)

where Φ ∈ R
N×s is the set of observations from the N electrodes in s time

samples, Ĵ ∈ R
N×M is known as the current density in M possible sources

inside the brain and K ∈ R
N×M is a gain matrix known as the Leadfield matrix

[10]. For solving the inverse problem, the forward problem should be solved first
in order to establish the relationships between the neural activity and how it
maps into the set of M/EEG sensors [7].

2.2 LORETA

The solution of the inverse problem proposed in [10] sacrifices spatial resolution
by assuming smoothness in the solution space. The functional that has to be
minimized is presented in Eq. (2);

min
j

∥
∥
∥BWĴ

∥
∥
∥

2

, (2)

where W is the diagonal matrix with elements wii = ‖Ki‖ and B3M×3M is the
Laplacian operator that ensures smoothness in the solution [10]. The solution
for the estimated current density is obtained following Eq. (3);

Ĵ = TΦ, (3)

with T = (WBT BW )−1KT (K(WBT BW )−1KT )† and † denotes the Moore-
Penrose inverse operator. Furthermore, swLORETA proposes a variation of the
sLORETA method which includes a initialization of the current density from the
Minimum Norm solution (MN) ĴMN and the use of a regularization parameter α
in the functional to be minimized, see Eq. (4). The swLORETA algorithm incor-
porates a SVD over the leadfield matrix in order to compensate the variations
of the sensor sensitivity to currents at different depths [2,9]. The SVD over K
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is performed on the three columns corresponding to each dipole source location
l in the three primary axes as Kl = UiΣiV

T
i . From these singular values, the

current source density covariance matrix is constructed as Eq. (5).

F = ‖Φ − KJ‖2 + α ‖J‖2 (4)
[

S
1/2

Ĵ

]

= S−1/2 ⊗ I3×3, (5)

with I3×3 is the identity matrix, ⊗ is the Kronecker product and S ∈ R
M×M a

diagonal matrix with Sl elements being the maximum sensitivity at voxel l [2].
Furthermore, works like [1,8] have proposed the use of a pre-processing stage.
This pre-processing is related to the computing of the discrete cosine transform
(DCT) over the EEG data. The DCT allows a filtering in the frequency domain
before computing the SVD over the data. This approach of the DCT computing
is performed within the kTE approach.

2.3 Kernel Temporal Enhancement

In order to improve the swLORETA method, we propose the use of a Gaussian
kernel function to perform a temporal mapping of the data obtained from the
sensors Φ (and after the DCT is computed).

Φ̂ = exp

(

−
∥
∥ΦT − Φ

∥
∥
2

2σ2

)

, (6)

obtaining a transformed input space Φ̂. From this transformed input space the
first Nr eigenvalues with higher magnitude are selected to form the new input
space from the corresponding eigenvectors as V̂ ∈ R

s×Nr . The kernel parameter
σ works as a noise filter, depending on a selected value, the transformation
to the new input space will consider more or less noise. The threshold for the
selection of the number Nr of temporal modes is set as the 95% of the normalized
magnitude of the sum of all the eigenvalues. Then using the mapped input space,
the covariance matrix S ∈ R

s×s is computed as a tensorial product between the
linear and a Gaussian kernel relationships in the projected space, with KΦ̂cc′ =

exp(−
∥
∥
∥Φ̂cV − Φ̂′

cV
∥
∥
∥ /2σ2

Φ̂
).

S = Φ̂V (Φ̂V )T ⊗ KΦ. (7)

2.4 Reconstruction Error Metrics

For the validation of the results, some metrics that measure the correct source
reconstruction are implemented. The Dipole Localization Error (DLE) measures
the difference between the position of the simulated dipole V̂o against the position
of the estimated dipole V̂e, see Eq. (8). Another metric that measures the error in
the source reconstruction is the Euclidean distance (ED) between the simulated
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and estimated dipole locations, see Eq. (9). Finally, The percent relative error is
computed for the variance of the potential in the 1% source points surrounding
the simulated dipole location. This gives us a measure of the dipole dispersion
(DD), see Eq. (10).

DLE = ‖V̂o − V̂e‖ (8)

Ep =
√

(Vox
− Vrx

)2 +
(

Voy
− Vry

)2 + (Voz
− Vrz

)2 (9)

DD =

∣
∣
∣V ar(E(V̂o)0.1) − V ar(E(V̂o)0.1)

∣
∣
∣

V ar(E(V̂o)0.1)
∗ 100% (10)

2.5 Experimental Setup

A set of M = 8196 dipoles correspond to the discretization of the head volume
and the sources that are simulated could take any of this M possible locations.
The input data correspond of synthetic EEG signals with N = 128 electrodes
and s = 250 time samples. The EEG signals are simulated with random locations
of the source at different depths across the head volume. An analysis of different
values of the SNR in the EEG data is performed. Signals with levels of 3dB, 5dB,
7dB, 10dB and 20dB are generated. From the LORETA framework, four scenar-
ios of the method and pre-processing stages are analyzed. First, an swLORETA
with spatial-SVD of the leadfield, temporal-SVD and linear covariance matrix
calculation of the current density, with tag LORLL. Second, swLORETA with
spatial-SVD of the leadfield, temporal-SVD and the Gaussian kernel covariance
computation of the current density with tag LORLG. Finally, third and four sce-
nario corresponde to swLORETA+kTE with spatial-SVD of the leadfield and
kTE enhancement (with the DCT included) with linear covariance of the current
density for LORGL and Gaussian kernel covariance of the current density for
LORGG. For the kTE the kernel parameter σ in Eq. (6) is selected as factors
of 1 times the value of the median of the kernelized input space. Finally, 20
EEG signals are generated for each SNR scenario in order to asses the statistical
significance of each method following the error metrics computation.

3 Results

Figure 1 shows the reconstruction of the brain source for one random dipole. As
can be seen form the figure the different combinations of preprocessing shows
similar graphically results, due to this quantification of the dipole localization
error is needed. Table 1 presents the DLE related to the different experiments
for the three proposed SNR levels.

In Table 1, it can be seen that the methods involving kTE, show less DLE
compared with the other strategies for different SNR, with 7.13 being the lowest



448 C. Torres-Valencia et al.

Table 1. Quantified results of source reconstruction, Dipole Localization Error (DLE),
norm l1 distance error (ED) and Percent relative error/dipole dispersion (DD)

Method Signal to noise ratio

3dB 5dB 7dB 10dB 20dB

Dipole Localization Error (DLE)

LORLL 10.45 ± 7.72 9.01 ± 8.15 8.49 ± 8.35 8.15 ± 8.57 7.15 ± 8.92

LORLG 10.45 ± 7.72 9.01 ± 8.15 8.49 ± 8.35 8.15 ± 8.57 7.15 ± 8.92

LORGL 8.52 ± 9.15 8.52 ± 9.15 8.52 ± 9.15 7.13 ± 9.16 8.26 ± 8.47

LORGG 8.52 ± 9.15 8.52 ± 9.15 8.52 ± 9.15 7.13 ± 9.16 8.26 ± 8.47

Norm l1 distance (ED) error

LORLL 18.10 ± 13.37 15.69 ± 14.11 14.71 ± 14.47 14.11 ± 14.85 12.38 ± 15.44

LORLG 18.10 ± 13.37 15.69 ± 14.11 14.71 ± 14.47 14.11 ± 14.85 12.38 ± 15.44

LORGL 14.76 ± 15.86 14.76 ± 15.86 14.76 ± 15.86 12.35 ± 15.87 14.30 ± 14.68

LORGG 14.76 ± 15.86 14.76 ± 15.86 14.76 ± 15.86 12.35 ± 15.87 14.30 ± 14.68

Percent relative error (DD)

LORLL 292.79 ± 240.44 281.13 ± 233.68 275.72 ± 222.77 259.05 ± 179.14 202.28 ± 134.26

LORLG 292.79 ± 240.44 281.13 ± 233.68 275.72 ± 222.77 259.05 ± 179.14 202.28 ± 134.26

LORGL 104.12 ± 147.27 79.91 ± 94.62 93.96 ± 128.61 85.66 ± 111.35 70.82 ± 68.83

LORGG 104.12 ± 147.27 79.91 ± 94.62 93.96 ± 128.61 85.66 ± 111.35 70.82 ± 68.83

mean value for 10dB SNR. Also, it can be seen how for the lower values of SNR
the strategies of LORGL and LORGG obtained lower mean value of the DLE
in comparison with the other two strategies. From the second metric of error
from Eq. (9), it can be seen a similar behavior compared to the DLE. For the
lower values of SNR the kTE method proves to achieve lower mean errors across
the 10 repetitions of the experiment. The lower mean level is 12.35 obtained
for the 10dB signals. The last metric computed in this analysis is the percent
relative error between the variance of the 1% points (from the whole head model)
surrounding the dipole location in the original data, see Eq. (10).

The results presented in Table 1 for the DD metric, show that in the analy-
sis of this metric, the proposed method of kTE improves the accuracy in the
detection of the brain source. It can be seen that for all the SNR levels, the kTE
method proves to reduce considerably the error in the source dispersion in com-
parison to the methods without kTE. In this particular metric the lower result
is presented for the SNR of 20dB with a mean percent relative error of 70.82%.
Some of the results in Table 1 are presented as box diagrams in Fig. 1(d), (e) and
(f). A graphical analysis of these figures allows to compare the behavior of the
three metrics for different experiments. While the DLE and ED metrics shows
an improved mean value for the kTE methods against the classical methods, the
DD shows an important improvement in the cases were kTE was used.
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(a) Clean Source (b) LORLL, LORLG (c) LORGL, LORGG
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Fig. 1. Source reconstruction from EEG data for a simulated dipole. (a) presents the
original source, (b) presents the results for reconstruction using the methods without
kTE and figure (d) shows the reconstruction when kTE is used as was proposed in the
experimental setup, (d, e and f) are Box diagram for the DLE, ED and DD of some
source reconstruction experiments

4 Discussion and Conclusions

An analysis of the results presented in the Sect. 3, allows us to determine that an
improvement on the source recognition within the LORETA framework could
be performed. In this case, the results when the kTE+LORETA method was
employed shows less error on the localization than the classical LORETA meth-
ods. As higher as the influence of noise is, the kTE proves to model and remove
the noise interference of the signals in the process of source reconstruction. This
shows that the kernel function maps adequately the original data within a space
where there are less influence of noise. The three metrics proposed to compare
the methods shows lower mean levels of DLE, ED and DD when the kTE is
employed. Even there is no statistical difference in DLE and ED metrics, since
the standard deviation of the results is higher in the kTE case, the DD met-
ric shows high difference for all the SNR levels. The results presented by the
DD metric show a considerable improvement of the low resolution exhibited
by LORETA. The results presented in this work allow us to conclude that an
improvement with a pre-processing stage for EEG source reconstruction is possi-
ble. The mapping of the data using a kernel function as the kTE propose, allows
to filter the noise of the data and improves the source localization results. Some
improvements could be studied for this method, as the process of selection of the
kernel parameters and the temporal modes to be included from the kernelized
input space.
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