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Abstract. Remote Sensing Images are one of the main sources of infor-
mation about the earth surface. They are widely used to automatically
generate thematic maps that show the land cover of an area. This process
is traditionally done by using supervised classifiers which learn patterns
extracted from the image pixels annotated by the user and then assign
a label to the remaining pixels. However, due to the increasing spatial
resolution of the images resulting from advances in the acquisition tech-
nology, pixelwise classification is not suitable anymore, even when com-
bined with context. Therefore, we propose a new descriptor for superpix-
els called Star descriptor that creates a representation based on both its
own visual cues and context. Unlike the most methods in the literature,
the new approach does not require any prior classification to aggregate
context. Experiments carried out on urban images showed the effective-
ness of the Star descriptor to generate land cover thematic maps.

Keywords: Remote sensing · Thematic maps · Land cover · Contextual
descriptor

1 Introduction

Since the Remote Sensing Images (RSIs) became available to the non-academic
community, classification has played an essential role to generate new geographic
products like thematic maps [1], which in turn, are fundamental for the decision-
making process in several areas such as urban planning, environmental monitor-
ing and economic activities. In this process, low-level descriptors are extracted
from few image samples, such as pixels, regions, superpixels (a superpixel can
be considered as a perceptually meaningful atomic region [2]), etc., which are
annotated by the user, and used to train a classifier. Thereafter the generated
classifier should be able to annotate the remaining samples in the image. The
precision of the resultant thematic map depends on the quality of the descriptors
and the training samples selected [3].
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From the very beginning, RSI classification was based on pixel statistics
analysis. With the increasing in the spatial resolution of the images, the infor-
mation from neighboring pixels (either texture or context) was used to improve
results. Although this approach has been a dominant paradigm in remote sens-
ing for many years, pixelwise classification does not meet the current increasing
demand for faster and more accurate classification anymore [4]. Region-based
classification, which aims at capturing information from pixel patterns inside
each segmented region of the image, has become more suitable for nowadays’ sce-
nario. Nevertheless, the use of the contextual information among regions began
to be considered only very recently in RSI processing [3].

The main motivation behind using contextual information is that traditional
low-level appearance features, such as color, texture or shape, are limited while
capturing the appearance variability of real world objects represented in images.
In the presence of factors that modify the acquired image of a scene, such as noise
and changes in lighting conditions, the intra-class variance is increased, leading
the classifier to many errors. In these scenarios, the coherent arrangement of the
elements expected to be found in real world scenes can be used to help describing
objects that share similar appearance features, adjusting the confidence of the
classifier predictions or correct the results [5].

Existing approaches for contextual description can be divided into three cat-
egories [5]: semantic, that is regarded as the occurrence and co-occurrence of
objects in scenes; scale, related to the dimension of an object with respect to the
others; and spatial, that refers to the relative localization and position of objects
in a scene. In addition, context can be regarded as being either global or local.
The first available methods were based on fixed and predefined rules [6–8]. More
effective approaches used machine learning techniques to encompass contextual
relationships [9–11]. A recent trend consists on combining different kinds of con-
text to improve the classification [12], which is nevertheless computationally
inefficient and, therefore, little used so far. The main drawback of these meth-
ods is the requirement of previous identification of other elements in the image.
A way to overcome this deficiency is through feature engineering, which consists
in building a representation for image objects/regions that implicitly encodes
their context. This approach must somehow include co-occurrences, scale or spa-
tial relationships between descriptors of image elements without labeling them.
An example can be found in the work of Lim et al. [13] that represents the scene
as a tree of regions where the leaves are described by a combination of features
from their ancestors. This resulting descriptor encodes context in a top-down
fashion. To the best of our knowledge, the only approach of this type in remote
sensing was proposed by Vargas et al. [3] to create thematic maps. In that work,
each superpixel of the image is described through a histogram of visual elements,
using the method of Bag of Visual Words (BoVW). Then, contextual informa-
tion is encoded by concatenating the superpixel description with a combination
of the histograms of its neighbors to generate a new contextual descriptor. One
of the main drawbacks of this method is the lack of explicit encoding of the
relational aspects among the features extracted from adjacent superpixels.
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Thereby, this paper presents a novel contextual descriptor for superpixels of
RSIs, which builds a representation for the target superpixel in terms of its own
visual cues, visual features extracted from its neighbors and pairwise interactions
between them. The resulting representation implicitly encodes spatial relation-
ships and co-occurrences of patterns extracted within a neighborhood and, thus,
does not require any prior classification to aggregate context.

2 Star Descriptor

Unlike the most methods found in the literature, our approach builds a repre-
sentation for image segments that implicitly encodes co-occurrences (semantic
context) and spatial relations (spatial context) without the need of labeling them.
The pipeline to generate the Star descriptor is summarized in Fig. 1. Each step
of the proposed approach is further explained in the following.

Fig. 1. Process to generate the proposed contextual descriptor for a superpixel si.
Given a segmented image, the local neighborhood of si is modeled as a star graph
G(V,E) where si is the central vertex (or the root), the superpixels adjacent to it are
the leaves and edges link the mass centers of them. A feature descriptor is extracted
from si and from each of its n neighbors. Every edge is then taken as the diagonal
of a rectangle (reddish region) from which a texture descriptor is computed. The n
resultant edge descriptors are combined into one of the same dimensionality through
some operation Ope. Likewise, the n neighbor vertex descriptors are used to build
only one through Opv. Lastly, the final contextual descriptor for si is composed by
concatenating its own vertex descriptor, the final neighborhood vertex descriptor and
the final edge descriptor, in this order and after individually normalizing each of them.
(Color figure online)

2.1 Segmentation into Superpixels

Firstly, segmentation is applied to delineate objects or object parts in the image
from which visual feature descriptors will be extracted. Superpixels are used
instead of the traditional regions because some low level descriptors are more
discriminative when extracted from regular regions such that provided by super-
pixel generation methods [2].

Among several methods, Simple Linear Iterative Clustering (SLIC) was cho-
sen for this work because of it found to be more effective according to boundary
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recall [14]. Since the edge descriptors capture borders between adjacent super-
pixels, the ability of SLIC to adhere to the borders of objects in the image can
leverage edge descriptors computed by our descriptor.

2.2 Graph Modeling

Given an image segmented into N superpixels, the local neighborhood of each
superpixel si, i = 1, . . . , N , is regarded as a graph G(V,E) in star topology
(see Fig. 1) where V are the superpixels and the edges in E represent adjacency
relation between si and the other superpixels. Formally, two superpixels sx and
sy are adjacent if and only if at least one pixel of sx is 4-connected to a pixel of
sy. In addition, the target superpixel si is the central vertex (or root), each of its
n neighbor superpixels nsj , j = 1, . . . , n, are the leaves and there is an edge ek,
k = 1, . . . , n linking the mass centers of si and every nsj . Such a graph modeling
provides a clear understanding of the proposed descriptor in terms of the level of
context taken into account and the types of context exploited (spatial relations
and co-occurrences between the si and a pattern of neighborhood).

2.3 Vertex Descriptors

A visual feature descriptor is computed within every superpixel in a given local
neighborhood modeled as a star graph G(V,E). More formally, a feature vector -
referred to as target vertex descriptor (TV D) - is extracted from the target
superpixel si. Likewise, a neighbor vertex descriptor (NV Dj) is built for nsj ,
j = 1, . . . , n, as can be seen in Fig. 1. Notice that the same algorithm is used for
both TV D and every NV Dj .

Although the only restriction for the vertex descriptor chosen is that it must
represent every superpixel by a fixed-size numerical vector, we propose to use
two types: low level global color/texture descriptors and BoVW for mid level
representation. In the former approach, a global descriptor is extracted from
each superpixel taking it as it were a whole image. To account for size differ-
ences among them, the resultant feature vector is normalized. The second way
was proposed by Vargas et al. [3]: dense grid sampling is applied and low level
color/texture descriptors are computed from each 5 × 5 local patch around the
selected pixels; the extracted feature vectors are used to conform the codebook
using the k-means clustering algorithm; hard assignment is used to assign the
closest visual word to each pixel of the grid; a histogram is then computed for
every superpixel by taking into account the grid pixels within it; finally, a nor-
malization is applied to each histogram, which is divided by the number of grid
pixels inside its respective superpixel.

2.4 Edge Descriptors

The edge descriptor proposed by Silva et al. [15] was used to better capture
the patterns found in the borders of neighbors, since it directly represents the
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transition across the frontiers of two adjacent superpixels by extracting texture
descriptors around the edge. More precisely, given a local neighborhood repre-
sented as a star graph G(V,E), the k -th edge descriptor (EDk) is computed by
extracting a low level texture descriptor within the rectangle formed by taking
ek as its diagonal (as exemplified by the reddish area nearby the edge in Fig. 1).
This process is repeated for each of the n edges in E.

2.5 Final Descriptor Composition

Since the vertex and edge descriptors were extracted, they are combined into
only one vertex descriptor and one edge descriptor through some operation.
This step is applied to tackle with two issues: due to the large number of feature
vectors extracted from each star graph, the computational cost to train a classi-
fier with them would be prohibitively high and the variability in the number of
leaves of the graphs would result in a feature vector of non-fixed size if a simple
concatenation would be done.

More specifically, an operation Opv is applied to summarize the n NV Ds,
resulting in one final neighbor vertex descriptor (FNV D). Similarly, the n EDs
are combined into just one final edge descriptor (FED) through an operation
Ope. The final target vertex descriptor (FTV D) is the TV D itself. Because ver-
tex and edge descriptors lie in different feature spaces, FTV D, FNV D and
FED are individually normalized using L2 norm and then concatenated to
compose the final descriptor which has 2 ∗ |vertexdescriptor| + |edgedescriptor|
dimensions.

The only constraint imposed to Opv and Ope is that they must summarize p
m-dimensional vectors into one of same dimensionality. Concretely, we propose
to use three operations commonly found in BoVW pooling step: sum pooling,
average pooling and max pooling. These operations are formally defined as fol-
lows: let Dj be the j -th m-dimensional feature vector in a sequence 〈D1, . . . , Dp〉,
whose components are di, i ∈ {1, . . . , m} as stated in Eq. 1; the i -th component
of Dj can be summarized through either sum, average or max pooling, which
are respectively showed in Eq. 2.

Dj = {di}i∈{1,...,m} (1)

di =
∑p

j=1 di,j di = 1
p

∑p
j=1 di,j di = maxj∈{1,...,p} di,j (2)

3 Experimental Protocol

Datasets. The experiments were carried out on an imbalanced multi-class
dataset: the grss dfc 2014 [16]. The dataset consists of a Very High Resolu-
tion (VHR) image, spatial resolution of 20 cm, taken in 2013 over an urban area
near Thetford Mines in Québec, Canada. This dataset was annotated into seven
classes: road, trees, red roof, grey roof, concrete roof, vegetation and bare soil.
The grss dfc 2014 dataset provides a specific subset of the entire image for train-
ing a classifier which should be used to generate a thematic map for the whole
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image. Setup. The superpixel segmentation was performed using SLIC with
25,000 regions and 25 of compactness for the training image and 37,000 regions
and 25 of compactness for the whole image. The number of regions for the whole
image was chosen to be 37,000 because the image is about 50% bigger than
the training image. Since color descriptors usually achieve better results in RSI
classification [17], the vertices were described by using just one texture - Unser
(USR) [17]- and three color descriptors - Border/Interior pixel Classification
(BIC), Color Coherence Vector (CCV) and Global Color Histogram (GCH) [17]
- as either global descriptor or BoVW with 256 words in the codebook. His-
tograms of Local Binary Patterns (LBP) were used initially for the edges because
it is the original proposal of Silva et al. [15]. However, LBP is not one of the
best options for RSI classification [17]. For this reason, USR (which is a good
trade-off between accuracy and number of dimensions) was also tested. All three
operations - sum, average and max pooling - were used to summarize the final
vertices and edge descriptor. The extracted contextual descriptors were used to
train a Support Vector Machine (SVM) classifier with Radial Basis Function
(RBF) kernel and the parameters were determined through grid searching 5-
fold Cross-validation in the training set. In order to assess the robustness of Star
descriptor to changes in the segmentation scale, a second experiment was carried
out varying the number of regions of SLIC for the best configurations of the first
experiment. Baselines. The first baseline used for comparison is the low/mid
level representation for the superpixels without any context, which is referred to
as NO-CTXT in Sect. 4. The second baseline is the contextual descriptor pro-
posed by Vargas et al. [3] which is the only approach that implicitly encodes
context with the purpose of generating thematic maps. Its results are shown
under the name VARGAS in the next section. It is worth to mention that the
results reported for NO-CTXT used BIC with BoVW and the configuration for
VARGAS consists of BIC as global descriptor, which achieved the best accuracy
for each of them. Evaluation metrics. All results are reported in Sect. 4 in
terms of overall accuracy (Ovr.), average accuracy (Avg.) and Kappa index (κ).
It is worth to mention that although a single label is assigned to each superpixel,
the metrics are calculated in terms of pixels. This is done by assigning the label
of the superpixel to every pixel within it.

4 Results

The best results achieved by Star descriptor for each vertex descriptor are
reported in Table 1 for LBP and USR as edge descriptors. As can be seen from
the table, BIC was the most prominent vertex descriptor when combined with
max pooling. In general, the average pooling operation was better to summarize
the edge descriptor and the USR descriptor obtained the best results for the
proposed descriptor, shown in boldface in Table 1. Notice that although using
BoVW usually produces slightly more accurate maps, the highest kappa index
was achieved using BIC as a global descriptor.

A comparison between the best configuration of Star found in Table 1 and the
baselines is presented in Table 2. The proposed contextual descriptor achieved



306 T.M.H.C. Santana et al.

Table 1. Best results of Star descriptor on grss dfc 2014

Edge descriptor: LBP USR

Global/BoVW Descriptors Opv Ope κ Ovr. Avg. Opv Ope κ Ovr. Avg.

BoVW STAR-BIC Max Avg 0.681 0.772 0.812 Max Avg 0.707 0.795 0.805

STAR-CCV Max Avg 0.638 0.740 0.769 Max Max 0.679 0.779 0.756

STAR-GCH Max Sum 0.642 0.746 0.757 Max Avg 0.680 0.780 0.753

STAR-USR Max Avg 0.559 0.684 0.648 Max Avg 0.522 0.655 0.623

Global STAR-BIC Max Avg 0.522 0.664 0.592 Max Avg 0.735 0.822 0.775

STAR-CCV Max Avg 0.636 0.742 0.753 Avg Sum 0.676 0.782 0.737

STAR-GCH Max Avg 0.630 0.738 0.743 Max Avg 0.677 0.779 0.745

STAR-USR Sum Max 0.555 0.684 0.629 Sum Sum 0.510 0.648 0.595

better results than all baselines for all metrics used to assess them. Another key
observation is that encoding context to describe superpixels improved the accu-
racy of the automatic generated thematic maps. It is worthwhile to mention that
in the experiments carried out, Star descriptor usually performed better than
baselines when combined with the most low/mid level descriptors and operations
that summarize them.

Results of the second experiment are presented in Fig. 2. As can be seen from
the graphic, Star descriptor is more robust to changes in segmentation scale than
Vargas’ descriptor, whose Kappa index drastically drops for more than 36,997
regions, becoming worse than the baseline without context.

Fig. 2. Comparison of robustness of
descriptors to changes in the segmentation
scale

Table 2. Comparison between STAR
descriptor and baselines

Descriptors κ Ovr. Avg.

NO-CTXT 0.619 0.724 0.767

VARGAS 0.651 0.751 0.766

STAR 0.735 0.822 0.775

5 Conclusion

A new approach for superpixel description which encodes context was proposed
in this paper. The Star descriptor builds a representation for each superpixel in
terms of its own visual cues and in terms of its context, by taking into account
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the spatial relations and co-occurrences of visual patterns within the local neigh-
borhood, modeled as a star graph. A classifier is then trained with the resultant
feature vectors of the training set and used to generate a thematic map by paint-
ing the remaining superpixels according to the labels assigned to them. From the
experiments carried out on the grss dfc 2014 dataset, we found that the use of
context improved the quality of the resultant maps and the proposed descriptor
achieved better results over the baselines. We believe that it is possible to gen-
erate even more representative contextual descriptors by using combinations of
low-level descriptors or other operations which preserves the information about
the relative positions of the superpixels. In future, we plan to investigate these
improvements and assess the Star descriptor using learned features as vertex
descriptors.
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