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Abstract. Background modeling is a core task of video-based surveil-
lance systems used to facilitate the online analysis of real-world scenes.
Nowadays, GMM-based background modeling approaches are widely
used, and several versions have been proposed to improve the original
one proposed by Stauffer and Grimson. Nonetheless, the cost function
employed to update the GMM weight parameters has not received major
changes and is still set by means of a single binary reference, which
mostly leads to noisy foreground masks when the ownership of a pixel
to the background model is uncertain. To cope with this issue, we pro-
pose a cost function based on Euclidean divergence, providing nonlinear
smoothness to the background modeling process. Achieved results over
well-known datasets show that the proposed cost function supports the
foreground/background discrimination, reducing the number of false pos-
itives, especially, in highly dynamical scenarios.
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1 Introduction

Intelligent video surveillance systems, devoted to detect and track mov-
ing objects, can accomplish unsupervised results using background modeling
methodologies, where a representation of the background is estimated and the
regions that diverge from it are subtracted and labeled as moving objects
named foreground [1]. Afterwards, surveillance systems interpret the activities
and behaviors from the foreground objects to support computer vision analysis
(e.g. object classification, tracking, activity understanding, among others) [2].
To achieve proper results, background modeling approaches focus on the elabo-
ration of a background model, which suitably represents the pixel dynamics from
real-world scenarios [3]. Among developed background modeling approaches, the
most used are the ones derived from the conventional pixel-wise Gaussian Mix-
ture Models (GMM) since they provide a trade-off between robustness to real-
world video conditions and computational burden [4]. To date, several adapted
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versions have been proposed. In fact, Authors in [5] provide a survey and pro-
pose the classification of the most salient GMM-based background modeling
approaches.

Regarding the updating rules of the GMM parameters, improvements have
been mainly reported related to the learning rate parameter, which aims to adapt
the background model by observing the pixel dynamics through time. Origi-
nally, from the derivation of the GMM parameter updating rules, a Gaussian
kernel term is attained, providing smoothness to the updating rules of the mean
and variance parameters, nonetheless, the cost function of the weights is set
using a binary ownership value. This updating rule may lead to noisy fore-
ground masks, especially, when the pixel labels are uncertain like in dynami-
cal scenarios. Zivkovic et al. proposed an improvement for the original GMM,
which uses Dirchilet priors to update the weight parameters. Nonetheless, this
improvement was mainly made to decrease the computational cost and the fore-
ground/background discrimination performance remains similar to the original
GMM.

Here, we propose a new cost function for the GMM weights updating. Using
Euclidean divergence (ED), we compare the instant and cumulative proba-
bilities of each Gaussian GMM model fitting the pixel input samples. Then,
employing Least Mean Squares (LMS), we minimize the ED of obtained prob-
abilities to adjust the weights values through time. By doing so, we provide
non-linear smoothness to the whole GMM parameter updating rules, reduc-
ing the number of false positives in the obtained foreground masks. The pro-
posed cost function is coupled into the traditional GMM approach, producing a
new background modeling approach named ED-GMM, which improves the fore-
ground/background discrimination in the case of real-world scenarios, especially
in dynamical environments.

2 Methods

Background Modeling Based on GMM: The probability that a query input pixel
xt ∈ IRC (C ∈N is the color space dimension), at time t ∈ T , belongs to a given
GMM-based background model is as:

p (xt|µt,Σt) =
M∑

m=1

wm,t N (xt|µm,t,Σm,t) , (1)

where M ∈N is the number of Gaussian models of the GMM, wm,t ∈ IR
the weight related to the m-th Gaussian model, N{·, ·} with mean value,
µm,t ∈ IR1×C , and covariance matrix Σm,t ∈ IRC×C . For computational bur-
den alleviation, all elements of the color representation set are assumed as
independent and having the same variance value [4]: σ2

m,t ∈ IR+, ∀m, that is,
Σm,t =σ2

m,tI, being I ∈ IRC×C the identity matrix. Afterwards, each query pixel,
xt, is evaluated until it matches a Gaussian model of the GMM. Here, the match
occurs whenever a pixel value ranges within 2.5 standard-deviation interval of
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the Gaussian model. However, if xt does not match any Gaussian model, the
least probable model is replaced by a new one having low initial weight, large
initial variance, and mean µm,t =xt [4]. In the positive case that the m-th model
matches a new input pixel, its parameters are updated as follows:

wm,t = wm,t−1 + α(om,t − wm,t−1) (2a)
µm,t = µm,t−1 + ρm,tom,t(xt − µm,t) (2b)

σ2
m,t = σ2

m,t−1 + ρm,tom,t

(
(xt − µm,t)�(xt − µm,t) − σ2

m,t−1

)
(2c)

where α ∈ IR+ is the weight learning rate, ot ∈ {0, 1} is a binary number indi-
cating the membership of a sample to a model, and ρm,t ∈ IR+ is the mean
and variance learning rate set as a version of the α parameter smoothed by
the Gaussian kernel g(xt; ·, ·), i.e.: ρm,t =αg (xt;µm,t, σm,t) . Lastly, the derived
models are ranked according to the ratio w/σ to determine the most likely pro-
duced by the background, making suitable the further foreground/background
discrimination [6].

Enhanced GMM-Based Background Using Euclidean Divergence (ED-GMM):
The updating rules of the GMM parameters, used in Eq. (2), can be derived
within the conventional Least Mean Square (LMS) formulation framework as
follows:

θt = θt−1 − ηθt−1∂θt−1{ε2θt−1
}, (3)

where θt ∈{wt,µt, σt} is each one of the estimated parameters by the correspond-
ing learning rate:

ηθt−1 ∈
⎧
⎨

⎩

ηwt−1 = α/2
ημt−1 = ασ2

t−1/2
ησt−1 =αg (xt;µt, σm,t) /2

(4)

and the following cost functions, respectively:

εθt−1 ∈
⎧
⎨

⎩

εwt−1 = ot − wt−1

εµt−1 = g (xt;µt, σm,t)
εσt−1 = |xt − µt|2 − σ2

t−1

(5)

It is worth noting that the µt and σt updating rules, grounded on kernel simi-
larities g(xt; ·, ·) (Eqs. (4) and (5)), provide smoothness to encode the uncertainty
of a pixel belonging whether to the background or foreground. In contrast, the
cost function of the weights is set using a binary reference (i.e., membership
ot). This updating rule may lead to noisy foreground masks when the ownership
value is uncertain, especially, in environments holding dynamical sources like
trees waving, water flowing, snow falling, etc. To cope with this, we propose to
set the cost function of wt using the ED as follows:

εwt−1 = ḡ (xt;µm,t, σm,t) − wt−1. (6)
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The ED allows measuring the difference between two probabilities [7]. So,
back into the LMS scheme we aim to minimize the ED between an instant prob-
ability determined by the Gaussian kernel ḡ (xt;µm,t, σm,t) and a cumulative
probability encoded by wt−1. This is grounded by the fact that, if a model has a
high cumulative probability wt−1, means that such model has suitably adapted
to the pixel dynamics through time, then, ḡ (xt;µm,t, σm,t) should have a high
value too. Since the difference between both is expected to be low, the following
updating rule is introduced:

wm,t = wm,t−1 + α(ḡ (xt;µm,t, σm,t) − wm,t−1) (7)

where the kernel term, ḡ (xt;µm,t, σm,t)=E
{
g

(
xc

t ;µ
c
m,t, σm,t

)
: ∀c∈ C

}
, mea-

sures the average similarity along color channels. Also, since we aim to incorpo-
rate the information about each new input sample into all the GMM Gaussian
models, we exclude the ownership ot from the weight updating.

3 Experimental Set-Up

Aiming to validate the proposed cost function, the ED-GMM approach is com-
pared against the traditional GMM (GMM1) and the Zivkovic GMM proposed
(ZGMM) in [8], which uses Dirichlet priors into the weight updating rules to
automatically set the number of Gaussians M . The following three experiments
are performed: (i) Visual inspection of the temporal weight evolution to make
clear performance of background model and the foreground/background dis-
crimination through time. (ii) Foreground/background discrimination over a
wide variety of real-world videos that hold ground-truth sets. (iii) Robustness
against variations of the learning rate parameter in foreground/background dis-
crimination tasks. The following datasets are employed for the experiments:

DBa- Change Detection: (at http://www.changedetection.net/) Holds 31 video
sequences of indoor and outdoor environments, where spatial and temporal
regions of interest are provided. Ground-truth labels are background, hard
shadow, outside region of interest, unknown motion, and foreground.

DBb- A-Star-Perception: (at http://perception.i2r.a-star.edu.sg) Recorded in
both indoor and outdoor scenarios, contains nine image sequences with dif-
ferent resolution. The ground-truths are available for random frames in the
sequence and hold two labels: background and foreground.

Measures: The foreground/background discrimination is assessed only for two
ground-truth labels (foreground and background) by supervised pixel-based mea-
sures: Recall, r = tp/(tp + fn), Precision, p = tp/(tp + fp), and F1 = 2pr/(p + r).
Here, tp is the number of true positives, fp is the false positives, and fn is the
false negatives. These values are obtained comparing against the ground-truth.
Measures range within [0,1], where the higher the attained measure – the better
the achieved segmentation.

http://www.changedetection.net/
http://perception.i2r.a-star.edu.sg
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Implementation and Parameter Tuning: The ED-GMM algorithm is developed
using as basis the C++ BGS library [9]. Parameters are left as default for all the
experiments except for task three requiring to vary the learning rate α. We set
three mixing models M = 3 (noted as Model1, Model2, and Model3 ). The GMM1
and ZGMM algorithms are also taken from the BGS library.

4 Results and Discussion

Temporal Analysis: We conduct a visual inspection of the temporal evolution of
estimated parameters to make clear the contribution of the proposed weight cost
function. Testing is carried out on the video DBa-snowFall for which a single pixel
in the red color channel is tracked as seen in Fig. 1, showing temporal evolution
of µt (top row) and wt (bottom row). Also, the inferred foreground/background
labels and the ground-truth are shown in subplots Fig. 1(c) and (d) (‘1’: fore-
ground and ‘0’: background). It can be observed that the estimated µt parameter
by either GMM1 (see subplot 1(a)) or ED-GMM (subplot 1(b)) is similar for the
three considered mixing models. However, the weights estimated by ED-GMM are
updated better along time. Particularly, the ED-GMM weight increases around
the 500th frame, where the Model2 (in green) is generated (see subplot 1(d)).
Then, the model properly reacts to the pixel change occurring close to the 800th
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Fig. 1. Temporal evolution of wt and µt for pixel (150, 250, 1) from DBa-snowFall
video. (a) GMM1 µt, (b) ED-GMM µt, (c) GMM1 wt and label, (d) ED-GMM wt

and label (Color figure online)



ED-GMM 287

frame, obtaining labels corresponding to the ground-truth (background). In con-
trast, the GMM1 updating rule makes the wt weight remain almost zero even if
the Model2 gets very close to the pixel value (see subplot 1(c)). As a consequence,
this strategy infers wrongly foreground labels.

Performance of the Foreground/Background Discrimination Task: Aiming to
check for the generalizing ability of the ED-GMM method, we test 25 videos
embracing a wide variety of dynamics. The videos are grouped into two cate-
gories a and b. The former holds videos where the background is mostly static and
the latter videos where the background exhibit highly dynamical variations. The
total average seen in Table 1 shows that the ED-GMM reaches higher precision

Table 1. Foreground discrimination performance

Video GMM1 ZGMM ED-GMM

r p F1 r p F1 r p F1

Category a DBa-abandonedBox 0.34 0.43 0.38 0.32 0.46 0.37 0.35 0.60 0.44

DBb-bootstrap 0.59 0.56 0.57 0.55 0.60 0.58 0.55 0.61 0.58

DBa-corridor 0.60 0.74 0.66 0.58 0.79 0.67 0.61 0.88 0.72

DBa-diningRoom 0.45 0.88 0.60 0.57 0.94 0.71 0.45 0.93 0.61

DBb-hall 0.51 0.65 0.57 0.54 0.73 0.62 0.51 0.69 0.59

DBa-highway 0.90 0.90 0.90 0.82 0.91 0.86 0.89 0.93 0.91

DBa-library 0.17 0.91 0.29 0.19 0.94 0.32 0.19 0.93 0.32

DBa-office 0.29 0.63 0.40 0.28 0.63 0.38 0.31 0.71 0.43

DBa-park 0.65 0.70 0.67 0.64 0.73 0.68 0.53 0.80 0.64

DBa-parking 0.27 0.78 0.40 0.17 0.69 0.28 0.27 0.84 0.41

DBa-pedestrians 0.94 0.51 0.66 0.93 0.46 0.61 0.90 0.71 0.79

DBa-pets2006 0.69 0.54 0.61 0.67 0.57 0.62 0.63 0.74 0.68

DBb-shoppingMall 0.64 0.53 0.58 0.63 0.48 0.55 0.54 0.58 0.56

DBa-sofa 0.42 0.65 0.51 0.46 0.64 0.54 0.35 0.84 0.49

DBa-streetLight 0.17 0.48 0.25 0.23 0.52 0.32 0.18 0.72 0.29

DBa-tramStop 0.37 0.87 0.52 0.38 0.87 0.53 0.33 0.88 0.48

Average 0.50 0.67 0.53 0.50 0.69 0.54 0.47 0.77 0.56

Category b DBa-boats 0.43 0.24 0.31 0.46 0.18 0.26 0.43 0.27 0.33

DBa-canoe 0.49 0.31 0.38 0.53 0.32 0.40 0.63 0.35 0.45

DBa-fountain02 0.86 0.33 0.48 0.85 0.28 0.42 0.82 0.52 0.64

DBa-overpass 0.73 0.76 0.74 0.80 0.77 0.78 0.78 0.83 0.80

DBa-skating 0.76 0.80 0.78 0.77 0.77 0.77 0.78 0.89 0.83

DBa-snowFall 0.73 0.35 0.47 0.71 0.48 0.58 0.66 0.65 0.65

DBb-waterSurface 0.55 0.74 0.63 0.52 0.71 0.60 0.61 0.79 0.69

DBa-wetSnow 0.64 0.76 0.69 0.58 0.80 0.67 0.59 0.81 0.68

DBa-winterDriveway 0.59 0.40 0.48 0.58 0.43 0.49 0.60 0.52 0.55

Average 0.64 0.52 0.55 0.64 0.53 0.56 0.66 0.63 0.62

Total average 0.55 0.62 0.58 0.55 0.63 0.59 0.54 0.72 0.62
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during the discrimination of the foreground/background labels, decreasing the
amount of false positives. This fact is explicable since the proposed weight updat-
ing rule (see Eq. (7)) allows the ED-GMM models to adapt faster to changes
of the pixel dynamics. The above can be even more remarked for videos with
dynamical background sources as seen in the Category b in which the precision
is improved by 10% comparing against the other two methods. By the other
hand, GMM1 and ZGMM attain very similar results, since the main proposal of
Zivkovic was focused to reduce computational cost. As a result, the foreground
masks attained by ED-GMM have less false positives and are more similar to
the ground truth masks as seen in Fig. 2 showing concrete scenarios with highly
dynamical background sources relating to snow falling (DBa-snowFall, DBa-
winterDriveway) and water flowing (DBa-fountain02, DBb-waterSurface).

(a) (b) (c) (d) (e)

Fig. 2. Foreground masks of interest. (a) Original frame, (b) Ground-truth, (c) GMM1,
(d) ZGMM, (e) ED-GMM.

Robustness Against Variation of the Learning Rate Parameter: The influence
of the learning rate variation on the foreground/background discrimination is
assessed through supervised measures, which are estimated from the videos of
Category a: DBa-highway, DBa-office, DBa-pedestrians and DBa-pets2006 and
Category b: DBa-boats, DBa-canoe, DBa-fountain02 and DBa-overpass.

Figure 3 shows the obtained supervised measures, averaged over the 10 videos,
where the x axis is the logarithm of the employed α rate ranging within: {0.0005,
0.001, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2}. It can be seen that the proposed
ED-GMM (continuous lines) behaves similar as the traditional GMM1 method
(dashed lines) and ZGMM (pointed lines). However, the obtained Precision
and F1 measures are everywhere higher than the ones reached by GMM1 and



ED-GMM 289

ZGMM. An interval of confidence is found within the interval α ∈ 0.005 − 0.01,
where the highest F1 measure is reached.
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Fig. 3. Supervised measures changing the learning rate value for GMM1, Z-GMM and
ED-GMM.

5 Conclusions

We propose a cost function for the GMM weights updating using Euclidean
divergence. The proposed cost function is coupled into the traditional GMM,
producing a new approach named ED-GMM used to support the background
modeling task for videos recorded in highly dynamical scenarios. The Euclid-
ean divergence allows comparing the instant and cumulative probabilities of a
GMM model fitting the pixel input samples. Then, employing LMS, we mini-
mize the Euclidean divergence of such probabilities to adjust the weights values
through time. Carried out experiments show that ED-GMM reduces the amount
of false positives in the obtained foreground masks comparing against traditional
GMM and Zivkovic GMM, especially, for videos holding dynamical background
sources: water flowing, snow falling and trees waving. Additionally, the pro-
posed cost function demonstrated to be robust when varying the learning rate
parameter value, always achieving better results than traditional GMM. Con-
sequently, the proposed cost function can be coupled into more complex GMM
based background modeling approaches to improve the foreground/background
discrimination. As future work, authors plan to test the proposed cost function
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using selective updating strategies to improve the discrimination in scenarios
holding motionless foreground objects.
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