
Extended LBP Operator to Characterize
Event-Address Representation Connectivity

Pablo Negri1,2(B)

1 CONICET, Dorrego 2290, Buenos Aires, Argentine
pnegri@uade.edu.ar

2 Universidad Argentina de la Empresa (UADE), Lima 717, Buenos Aires, Argentine

Abstract. Address-Event Representation is a flowering technology that
can change the visual perception of the computer vision world. This
paper proposes a methodology to associate the input data from this kind
of sensors. A new descriptor computed using an extended LBP opera-
tor seeks to characterize the connectivity of the asynchronous incoming
events in a two dimensional space. Those features can be organized on
histograms and combined with others descriptors, as histograms of ori-
ented events. They can be the input of traditional classifiers to detect or
recognize objects from the scene.

1 Introduction

A new paradigm for visual sensing was introduced in 2006 as the first Event-
Driven Dynamic Vision Sensor (DVS) [7]. This sensor is inspired by the asyn-
chronous Address Event Representation (AER), first introduced by Mahowald
[9], and by the Kramer’s transient detector concept [6]. It consists of a grid of
pixels (also called “silicon retinae”), capturing changes of illumination at the
focal plane. When a such event occurs, it is transmitted as an information tuple,
indicating the pixel position on the grid, the time stamp and the polarity of the
event. Thus, this sensor transmits a continuous flow of new events, instead of a
2D frame. This kind of vision sensor is then considered as “frameless”.

The DVS visual data representation launch a new branch on the computer
vision field. Traditional methodologies have to be modified in order to exploit
the new information, and a new theoretical model must be developed to adapt
this paradigm. Recent works tackle Visual Flow [1], Corner Detection [3] and
Object Recognition [14,15] using the asynchronous temporal flow.

If the DVS camera is fixed, the images have the particularity that only mov-
ing objects are captured. In fact, the generated events correspond to the edges
of this object. Static objects do not generate events. In some way, the results
are similar to the Movement Feature Space [11,12] which constructs a dynamic
background model using the boundaries of objects. If the temporal window for
learning the background modes is fixed to some milliseconds: a moving object
that stops, enters automatically to the background model. This paper seeks to
generate a family of features using a histogram representation of the AER data
to characterize objects shape.
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The proposed descriptors are inspired on Histograms of Oriented Gradient
(HOG) [4] and Local Binary Patterns (LBP) [13]. They are two of the most
useful features employed nowadays on Computer Vision. The HOGs organize the
gradient information in the image using histograms. The LBP operator performs
a simple analysis (binary) about the relationship between the gray scale values of
neighbor pixels. In detection problems, these features obtain good performances
attributable to their tolerance to monotone illumination changes [10] and their
simple computation. Also, they are considered as complementary features [2].

In this article, the HOG features would be arranged in a similar way as the
Histogram of Oriented Level Lines (HO2L) proposed in [11]. The descriptors
are organized as histograms using the orientation of the events. These orienta-
tions would be computed using the plane fitting methodology of [3]. The second
contribution consists in an extended LBP operator. It seeks to characterize the
connectivity of the AER data generated by the edges of the moving objects.

Next section details the steps to adapt the data provided by the DVS, followed
by Sect. 3 where the histogram of oriented events and the extended LBP operator
will be presented. Section 4 discusses the results and concludes the paper.

2 Features Generation

2.1 Dynamic Vision Sensor Data

A DVS reproduces the behavior of biological retinas by capturing asynchro-
nous light changes on a 128× 128 pixel grid [8]. Each change generates an event
e = (p, t, pol), p being the spatial location on the grid, t the event time stamp,
and pol defines the polarity. Polarity is a binary ON/OFF output. ON polarity
captures an increase on the illumination, and OFF polarity is obtained when
illumination decreases. Figure 1(a) shows the operational principle diagram of
the DVS Address-Event Representation from [8].

Generally, descriptors transform visual information evaluating relationships
between neighbors pixels. These associations are organized on mathematical rep-
resentations as: filters, histograms, etc. Because the DVS datasets [5] available

ON
Event

OFF
Event

Fig. 1. (a) DVS principle of ON and OFF polarity events generation from [8], (b-d)
“Street scene with cars and people walking” sample dataset from [5].
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online do not provide pixels intensities or colors (new versions of DVS devices
will supply this information), special methodologies should be implemented to
study the pixels/event relationships.

Figures 1(b), (c) and (d), show a surveillance sample dataset downloaded
from [5]. For visualization purposes the event flow composed of N events is
mapped to a 2D matrix EN which has the same size asf the retina. EN (p) = 1
if the pixel p corresponds to an incoming event with ON polarity (white color).
EN (p) = −1 when the polarity of the event at pixel p is OFF (black color). The
others pixels of EN are set to zero (gray color). On Fig. 1(b) is represented a set
(window) of N = 100 events. The set also corresponds to a temporal delay of
13.24 milliseconds (ms). As can be seen, the available information is not enough
to recognize the person. On Fig. 1(c) and (d) N = 300 and N = 500 events,
we respectively have a temporal windows of 40.7 and 67.7 ms. The number of
events is now sufficient to identify a person using appropriate features.

Thus, to generate a descriptor using the DVS information, each activated
pixel will evaluate its activated neighbors, within the N events on the window,
and analyze their orientations and connectivity.

2.2 Events Orientation

Benosman et al. propose in [1] a regularization method to fit a plane, which
considers a small spatio-temporal neighborhood Ω(e) around an incoming event
e. The normal component of the resulting plane is considered as a velocity vec-
tor. The direction of the normal vector defines the orientation of the event. In
[3] event corners consist of those event positions where at least two valid fitting
planes intersect. Clady’s work uses a maximum number of events within the
vicinity of the event e. It is an interesting approach, because opening a temporal
window forces to choose a fixed threshold. This threshold would not be appro-
priate to the dynamic of different objects in the scene. Then, events belonging
to different objects/edges could be considered in the vicinity of e when fitting
the plane to obtain the event orientation.

The orientations returned by Benosman’s algorithm have values in a range
of [0, 2π]. These values are converted from orientations to directions in a range
between [0, π], and discretized to integer value between [1, V ]. This methodology
maps the events from EN to a matrix DN .

2.3 Events Connectivity

The LBP operator was initially designed for texture recognition [13]. Let I be
a gray-scale image, and the pixel p ∈ I. Thus, LBP (p) assigns a label to p
analyzing the gray values of their 8-connectivity neighborhood. To do this, and
considering the pixels qi a 8-connectivity neighbors of p, LBP uses an interme-
diate function s(p, qi) defined as:

s(p, q) =
{

1, if I(p) − I(qi) ≥ 0
0, if I(p) − I(qi) < 0 (1)
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Fig. 2. LBP original operator computed on a p image pixel.

where I(x) refers to the gray-scale value at position x. The label returned for
the operator is obtained as: LBP (p) =

∑8
i=0 s(p, qi) · 2i. Figure 2 is an example

of the LBP computation of the s(p, q) function and the output decimal label:
LBP (p) = 13. The LBP operator is applied to I, giving a label to each pixel.

The patterns ‘0000000’ (0 transition), ‘00110000’ (2 transit.), and ‘11000111’
(2 transit.) are considered as uniform. Others binary labels, ‘11011001’ (4 tran-
sit.), and ‘01010001’ (6 transit.) are not uniform. Another particularity of the
LBP operator, is that the patterns are circular: ‘00110000’ is the same as
‘11000000’. Thus, in [13] they find 9 uniform unique patterns.

To extend the LBP operator and characterize events connectivity, the Eq. 1
is modified to be adapted to the new data. The neighborhood around the central
point p would be evaluated using the equality condition:

s(p, q) =
{

1, ifM(p) = M(qi)
0, otherwise (2)

The matrix M(p) can be EN (p) when the polarity of the event is considered to
analyze the connectivity, or DN (p) when the direction of the events is considered.

Figure 3 presents the patterns chosen to identify connectivity on DVS events
and defines the operator eLBP (p) around an activated pixel. Two transition
patterns capture information of the extrema of a segment (patterns ‘18’ and ‘21’)
or possible edges with more than one-pixel width (‘1’, ‘2’, ‘3’, ‘5’, ‘8’, ‘13’). Four

Fig. 3. Extended LBP patterns to characterize events connectivity. It shows the binary
code of each pattern and the corresponding label ‘x’ to identify the pattern.
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Fig. 4. Connectivity analysis using the extended LBP approach on the events generated
by a rotating bar.

transition patterns characterize different configurations of possible connected
edges. In total were defined 21 canonical patterns.

There are two possible analysis to study events neighborhood. Figure 4 shows
an example of the AER data generated by the rotation of a bar [3]. The 2D
representation was obtained histogramming events using a temporal window of
DT = 90 ms. On the left of the figure, the extended LBP operator was applied
on the events associated by their polarity. The connectivity is analyzed over the
events with ON or OFF polarities. On the right side of the figure, the connectivity
analysis characterizes the connectivity of the pixels with the same direction value.
Each LBP label gets a specific color on the figure.

Algorithm 1 examples the computation of the extended LBP operator on the
directions of the AER data. The inputs of the algorithm are the 2D matrix D

Algorithm 1. Extended LBP Computation on Events
Require: D Events Directions, C extended pattern list, V directions, L = �
Ensure: Extended LBP matrix L.
1: for i = 1 to V do
2: ∀ p / D(p) = i
3: a) e = eLBP (p)
4: b) c ← C[e]
5: c) L(p) = c
6: return L
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with the direction values at each event. The directions are quantified in V values,
and the list C gives the corresponding label to each LBP pattern. The output
of the algorithm is the matrix L which gives to each event the eLBP label.

3 Grouping Features as Histograms

To characterize the shape of a moving object in the scene using the two dimen-
sional features (directions and eLBP patterns), the histograms give a measure
of the relationship between neighbor pixels.

Using the directions of the events, the construction of the histograms is simi-
lar to the HO2L proposed on [11]. Each bin of the histogram corresponds to one
direction and accumulates the number of pixels having this value inside a region
of the image. The histogram is normalized using the total number of pixels.

The histogram of the eLBP operator is computed in a similar way, and each
bin corresponds to one pattern. The position of the pattern on the histogram
follows the labels’ numbers given on Fig. 3. The other labels which do not belong
to one of the 21 canonical patterns get the label 22, and are only considered for
histogram normalization by using the total number of pixels of the region.

Figure 5 shows both families of histograms computed on the Poker sequence,
which was kindly provided by Dr. Bernabé Linares-Barranco [15]. The events of
the sequence were collected inside a window of N = 150 events. Using the fitting
plane algorithm, a orientation is associated to each event on EN . Those orienta-
tions are then switched to directions (0 − π) and quantified in 4 integer values.
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Fig. 5. HOE and histograms of extended LBP patterns obtained on the Poker Dataset.
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Fig. 6. Histograms analysis of the vehicle on the “Street scene with cars and people
walking” dataset.

Figure 5 discriminates events directions with different colors. The image region
with the card suits is divided in four patches. Inside each patch, a histogram hi

with V bins, where each bin counts the number of events with the associated
direction. The total histogram characterizing the shape is found by concatenat-
ing them: h = {h1,h2,h3,h4}. This representation is denominated Histograms
of Oriented Events (HOE). A similar analysis is performed on the Extended LBP
matrix L inside each patch obtaining the histogram l = {l1, l2, l3, l4}. Figure 5
presents both features families.

It is also shown on Fig. 6 the same analysis inside an event window on the
“Street scene with cars and people walking” dataset. Here, the analysis was
performed on the vehicle dividing its region of interest on a grid of 6× 6 patches.

4 Discussions and Conclusions

This paper proposes a histogram based feature family that shows promising
discriminant properties, and can be employed later on shapes recognition.

As can be seen on Fig. 5, each HOE corresponding to a different poker sign,
hheart, hspade, hdiamant and hclug, defines the shape in a discriminant way. An
analysis of the eLBP histograms, will give a measure of how well the shape is
defined within the events window. Uniform eLBP histograms will describe shapes
with connected events. On the other hand, when the histogram has highest values
at bin 21, as the club sign shows, the shape is not completely defined and the
event window EN has numerous isolated events.

Once the histograms h and l are obtained on a event window, they can be the
input of classifiers (Boost, SVM, MLP, etc.) in order to perform the detection or
recognition of a given class of object. Future research will be conducted on the
implementation of shape recognition systems using both Histograms of Oriented
Events (HOE) and the Extended LBP operator.
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