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Abstract. Yellow fever, zika, and dengue are some examples of
arboviruses transmitted to the humans by the Aedes aegypti mosquitoes.
The efforts to curb the transmission of these viral diseases are focused on
the vector control. However, without the knowledge of the exact location
of the insects with a reduced time delay, the use of techniques as chem-
ical control becomes costly and inefficient. Recently, an optical sensor
was proposed to gather real-time information about the spatio-temporal
distributions of insects, supporting different vector control techniques. In
field conditions, the assumption of knowledge of all classes of the prob-
lem, it is hard to be fulfilled. For this reason, we address the problem
of insect classification by one-class classifiers, where the learning is per-
formed only with positive examples (target class). In our experiments,
we identify Aedes aegypti mosquitos with an AUC = 0.87.
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1 Introduction

The Aedes aegypti mosquito is one of the most important vectors of arboviruses
that affect human health, including yellow fever, chikungunya, zika, Japanese
encephalitis, and dengue. The viruses are passed on to humans through the
bites of an infective female Aedes mosquito, which mainly acquires the virus
while feeding on the blood of an infected person.

In May 2015, the Pan American Health Organization issued an alert regard-
ing the first confirmed Zika virus infections in Brazil. Since this identification,
the virus has spread rapidly throughout the America. The illness is usually mild
with symptoms lasting for several days to a week after being bitten by an infected
mosquito. However, Zika virus infection during pregnancy can cause a serious
birth defect called microcephaly, as well as other severe fetal brain defects [1].

Dengue is the most important vector-borne viral disease of humans and likely
more important than malaria globally in terms of morbidity and economic impact
[2]. Studies estimate that 3.6 billion people living in areas of risk, with 390 million
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dengue infections per year globally, of which 96 million manifests clinically [3,4].
According to the World Health Organization, only 9 countries had experienced
severe dengue epidemics before 1970. The disease is now endemic in more than
100 countries. In Latin America, the incidence and severity of this disease have
increased rapidly in recent years. In 2015, 2.35 million cases of dengue were
reported in the Americas alone, of which 10,200 cases were diagnosed as severe
dengue causing 1,181 deaths [5].

Currently, no licensed vaccine against dengue infection is available, and the
most advanced vaccine candidate did not meet expectations in a large trial [6].
Thus, the efforts to curb the transmission of these viral diseases are focused on
the vector control in order to reduce the population of Aedes aegypti. There are
many methods to insect control, as biological, genetic technology, environmental
management and chemical control. However, without the knowledge of the exact
location of the insects with a reduced time delay, the use of these techniques
becomes costly and inefficient.

Recently, a new optical sensor was proposed as a tool to gather information
about the spatio-temporal distributions of insects and to control disease vectors
by the use of this sensor combined with an electronic trap [7]. The sensor cap-
tures insect flight information using a source light and automatically classifies
the insects according to their species using machine learning algorithms. This
sensor can provide real-time population estimates of insect species, supporting
the effective use of traditional strategies to vector control.

The previous efforts related to insect classification by optical sensors have
focused on multiclass classifiers, such as Support Vector Machines, k-Nearest
Neighbors, Random Forest, Deep Neural Network, among others [7–10]. In mul-
ticlass classification, we have n predefined classes composed by the set of class
labels Y = {y1, y2, . . . , yn}, where the main goal of a classifier is to assign the
most probable class label yi ⊂ Y for an unknown example −→x , where −→x ∈ R

d

is a feature vector with d dimensions. This procedure can be problematic when
the example does not belong to any of predefined classes.

For the effective use of the sensor in field conditions, we note that the assump-
tion of knowledge of all classes made by multiclass classifiers, it is hard to be
fulfilled. For example, it is estimated that only the insects of the order Diptera,
has more than 240,000 different species, where about 120,000 are cataloged [11].
Thus, it is impossible to conduct a comprehensive data collection that covers
all possible species to build a classification model with all possible species. In
practice, this means that there is a high probability of the sensor to deal with
unknown species. In this case, a multiclass classifier will assign an incorrect class
label to this insect, due the lack of data from other possible species.

Given the need of identification of Aedes aegypti mosquitoes by sensors to
support methods of vector control and the challenge to cope with unknown
species, in this paper we address this classification problem using one-class clas-
sifiers [12]. In one-class classification, the learning is performed only with positive
examples (target class) and none or few unlabeled examples from negative class.
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We evaluated eight algorithms learned with only data from Aedes aegypti
mosquitoes. The test was conducted with a dataset with five insect species col-
lected by optical sensors. In our experimental evaluation, we conclude that the
Parzen and SVDD are the most accurate algorithms for this application to the
identification of Aedes aegypti mosquitoes.

The rest of the paper is organized as follows. Section 2 presents the optical
sensor for insect classification. Section 3 describes the main concepts of one-class
classification. Section 4 shows the results of our experimental evaluation. Finally,
our conclusions are presented in Sect. 5.

2 Optical Sensor and Insect Data

The data evaluated in this paper was obtained from an optical sensor built with
low-cost components to remotely capture information about flying insects. The
sensor uses a light source, as a low-powered planar laser, that is pointed at an
array of phototransistors as illustrated in Fig. 1-a). When a flying insect crosses
the laser, its wings partially occlude the light, causing small variations in the
light captured by the phototransistors. These variations are recorded as an audio
signal, as the example presented in Fig. 1-b), given an Aedes aegypti crossing.

Fig. 1. Illustration of the optical sensor to capture information about insects and an
example of audio signal collected given the crossing of an Aedes aegypoti mosquito.

In general, the data consist of background noise with occasional “events”,
resulting in the brief moment that an insect flies across the sensor. Note that the
signal generated by the passage of the insect has an amplitude that is significantly
higher than the amplitude of the background noise. In this way, using a simple
threshold it is a trivial task to identify signal sections in which there is an insect
passage. In contrast, the correct classification of each passage according to the
insect species that generated the event is a more elaborate task. Basically, this
task consists in extracting discriminant features from the signals for each species
and using these features with machine learning algorithms.

2.1 Data Collection

In our study, we use the stream insect dataset previously evaluated in [10]. In this
dataset, the collection was performed during six consecutive days in laboratory
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Table 1. Insect dataset distribution.

Species of insect Examples Distribution (%)

Musca domestica 917 17.22

Culex quinquefasciatus 1, 285 24.13

Culex tarsalis 1, 265 23.76

Drosophila melanogaster 954 17.91

Aedes aegypti 904 16.98

conditions in which the temperature varied slightly between 20◦C and 22◦C and
humidity varied between 20% and 35%. This dataset has insect passage signals
from two species of flies and three species of mosquitoes. The flies species are
the Drosophila melanogasler and the Musca domestica. The mosquito species are
the Culex quinquefascialus, Culex tarsalis and the Aedes aegypti. It is interesting
to note that Culex are species visually similar to Aedes and predominant in the
Latin America houses. Table 1 presents a general description of the dataset.

2.2 Feature Extraction

In this work, we use the Mel-Frequency Cepstral Coefficients (MFCC) as rec-
ommended in a previous evaluation with a wide variety of signal processing
techniques for feature extraction [7]. MFCCs are popular features in various
application domains, particularly speech and speaker recognition [13].

MFCCs are calculated by taking the magnitudes of frequency components
using an acoustically-defined scale called mel [14]. This scale relates physical fre-
quencies to the frequencies perceived by the human auditory system. Equation 1
shows the conversion from frequency (f) to mel-frequency (m). Next, we apply
a Discrete Cosine Transform. The MFCC are the cepstrum coefficients obtained
from this operation. Specifically, we consider the 40 first coefficients as features.

m = 2595 × log10(1 +
f

700
) (1)

3 One-Class Classification

Conventional multiclass classification algorithms aim to classify an unknown
object into one of the several predefined categories. A problem arises when the
unknown object does not belong to any of those categories. In one-class classifi-
cation (OCC) [12,15], one of the classes (referred as target class) is well charac-
terized by instances in the training data. For the other class (non-target), it has
either no instances at all, very few of them, or they do not form a statistically
representative sample of the negative concept.

In general, the problem of one-class classification is harder than the prob-
lem of conventional two-class or multiclass classification. For example, in binary
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classification problems, the decision boundary is supported from both sides by
examples of both classes. Because in the case of one-class classification only one
set of data is available, only one side of the boundary is supported. It is therefore
hard to decide, on the basis of just one class, how strictly the boundary should
fit around the data in each of the feature directions [15]. This task is often called
data domain description.

This OCC problem is often solved by estimating the target density or by
fitting a model to the data support vector classifier. Instead of using a hyper-
plane, to distinguish between two classes, a hypersphere around the target set
is used. The volume of the hypersphere is minimized directly. This method is
called support vector data description (svdd) [16]. In svdd, a spherically shaped
decision boundary around a set of objects is constructed by a set of support
vectors describing the sphere boundary.

Different methods for data domain description have been developed. In this
work, we evaluated eight different algorithms from the Data Description toolbox
(DDtools) [12,17]. Specifically, the following algorithms: gausdd (Gaussian tar-
get distribution), svdd (support vector data description), parzendd (Parzen den-
sity estimator data description), kmeansdd (k-means data description), knndd
(k-nearest neighbor data description), lpdd (linear programming data descrip-
tion), mstdd (minimum spanning tree data description), and mogdd (mixture of
Gaussians data description). Unfortunately, due to space constraints, it is not
possible to describe the algorithms. We direct the interested readers to [12] and
[17] for a detailed explanation. However, an intuition of the decision boundary
considered for each algorithm is shown in Fig. 2, given an artificial data example.

4 Experimental Evaluation

In our experimental evaluation, the classifiers were learned only with data of
Aedes aegypti (target class). More specifically, we have considered the data from
the first 48 h of the data collection, which represents 347 examples. To test the
classifiers, we consider the remaining 557 examples from the class Aedes aegypti
that was not used to train the classifiers and the 4,421 examples from the other
four species of insects, totalizing 4,978 test examples.

Due to the imbalanced proportion of examples of target class compared to
the non-target, a classifier that predicts the non-target class for all test examples
achieves an accuracy around 90%. For this reason, we evaluate our results by
the analysis of different performance measures, as Precision, Recall, F1-Score.
Thus, given the rates of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) observed in a confusion matrix builded from the
errors of a classifier, these measures are defined as follow:

Precision = TP
TP+FP , Recall = TP

TP+FN , F1 −Score = 2×(Precision×Recall)
Precision+Recall

In addition, we also consider the measure Area Under Curve (AUC). This
measure is related to the observed area on the Receiver Operating Characteristic
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Fig. 2. Example of artificial bidimensional data and the decision boundary considered
by each OCC algorithm evaluated.

curve (ROC curve). The ROC curve is a two-dimensional graphical representa-
tion which corresponds to false positive rate on the horizontal axis and the true
positive rate on the vertical axis. Thus, in an ideal scenario, is expected a min-
imum value of false positives and a maximum value of true positives, which
consequently leads to a value for AUC = 1.

The general results of the algorithms considering the five performance mea-
sures discussed are shown in Table 2. For each measure, the best result is high-
lighted. In this table, we also show the results achieved by a baseline which
corresponds to a classifier that predicts the target class for all test examples.

We can see in Table 2 that the algorithm parzendd showed the best results for
the measures Recall and AUC. On the other hand, the algorithm svdd showed
the best results for the measures F1-Score and Accuracy. To better compare the
results, the ROC curves achieved by the algorithms are shown in Fig. 3.

From the results showed in Table 2 and Fig. 3, we can note that both parzendd
and svdd are very competitive, but the svdd showed results better balanced in
terms of false positive and true positive rates. Although the parzend algorithm
correctly identifies a higher number of Aedes aegypti mosquitoes, it also incor-
rectly identifies a higher number of insects from other species as Aedes. In Table 3
we shown more details about the errors of both algorithms.
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Table 2. Results of one-class classifiers.

Algorithm Precision Recall F1-Score Accuracy AUC

gausdd 0.45 0.76 0.57 86.96 0.82

mogdd 0.64 0.64 0.64 91.98 0.80

parzendd 0.41 0.91 0.56 84.35 0.87

knndd 0.43 0.87 0.57 85.42 0.86

kmeansdd 0.41 0.78 0.54 85.05 0.82

svdd 0.78 0.73 0.75 94.62 0.85

lpdd 0.32 0.85 0.46 77.90 0.81

mstdd 0.32 0.89 0.48 78.04 0.83

Baseline 0.10 1,00 0.18 10.98 0.50

Fig. 3. The ROC curves of the OCC algorithms evaluated.

Table 3. Confusion matrices showed by the algorithms parzendd and svdd.

5 Conclusion

In this paper, we showed an evaluation of one-class classifiers for the recogni-
tion of Aedes aegypti mosquitoes by optical sensors. Aedes aegypti is one of the
most important vector of arboviruses as yellow fever, chikungunya, zika, and
dengue. Thus, the recognition task is essential to support the efficient use of tra-
ditional methods to reduce the mosquitoes population, given the spatio-temporal
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informations provided by the sensors. From the results, we conclude that even
with a reduced number of target examples for training the classifiers (347 exam-
ples) and the absence of non-target examples, we can learn accurate classifiers.
Among the evaluated algorithms, svdd and parzendd showed the best results,
with AUC = 0.85 and AUC = 0.87, respectively. In future works, we want to
explore the combination of different OCC algorithms and feature sets, and in
conditions with concept drifts and extreme latency to update the classification
model [18,19].
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