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Abstract. Multiscale information provides an opportunity to improve
the outcomes of data analysis processes. However, if the multiscale infor-
mation is not properly summarized in a compact representation, this may
lead to problems related to high dimensional data. In addition, in some
situations, it is convenient to define dissimilarities directly for the multi-
scale data obtaining in this way a multiscale dissimilarity representation.
When these dissimilarities are specifically designed for the problem, it
is even possible that they do not fulfill metric requirements. Therefore,
standard statistical analysis techniques may not be easily applicable. We
propose a new method to combine non-metric multiscale dissimilarities
in a compact representation which is used for classification. The method
is based on the extended multiscale dissimilarity space and prototype
selection, which allows us to handle the potentially non-metric nature
of the dissimilarities and exploit the multiscale information at the same
time. This is achieved in such a way that the most informative examples
per scale are selected. Experimental results show that the approach is
promising since it finds a better trade-off in accuracy and efficiency than
its counterpart approaches.

Keywords: Extended multiscale dissimilarity space · Multiscale data ·
Prototype selection · Genetic algorithms

1 Introduction

The term multiscale refers to data represented at different scales of resolution.
If the multiscale data is provided by an expert in the form of dissimilarities, the
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following question remains open: how to properly use the information contained
in multiscale dissimilarities for classification? In the literature on supervised
pattern recognition for multiscale similarities, we can find two main approaches:
scale selection [2], and scale combining [3,4]. Scale selection has been tackled,
for example, by Multiple Kernel Learning (MKL) [2], which is similar to the
problem of selecting the best kernels for a given problem. For scale combining, all
the different scales may be combined in the form of similarity or kernel matrices
using MKL as well. However, note that, for potentially non-metric data, it is
not possible to use kernel methods in a straightforward manner. One option is
creating kernels from the dissimilarities, and after an eigen-analysis, correcting
eigenvalues of the non-metric matrix by applying a strategy as spectrum clipping
etc [5], which leads to some information loss.

There are other approaches that deal with a dissimilarity matrix which is
potentially non-metric; for instance, the k Nearest Neighbour classifiers (k-NN)
directly applied to the matrix, and the classifiers in the Dissimilarity Space
(DS) [6,7]. In both cases, classifiers can be trained on the individual scales and
combination may be performed by standard classifier combiners. Another possi-
bility to combine the scales is by computing a weighted average of the dissimilar-
ities [4]. The disadvantage of this approach is its high computational cost since,
for an incoming test object, the dissimilarities with all the prototypes that span
the DS for all the scales must be computed. Another approach, to which little
attention has been paid so far, is constructing an Extended Multiscale Dissim-
ilarity Space (EMDS) from the dissimilarity matrices [8]. Despite the fact that
the first results presented in [8] using the EMDS were discouraging, we consider
that a smarter selection of the set of prototypes can lead to better results.

In this paper we propose the use of a selection criterion in the EMDS opti-
mized by a simple Genetic Algorithm [9] to perform such a smart selection. This
criterion preserves the most important information from all the scales using the
most informative prototypes. In our approach, a smart compromise is obtained
between scale selection and scale combination, avoiding also expensive methods
such as classifier combination.

The remaining part of the paper is organized as follows. Section 2 introduces
the EMDS, presents the related work on prototype selection and the descrip-
tion of the proposed strategy to reduce the EMDS. Section 3 presents the data,
experimental setup, results and analysis. Conclusions are drawn in Sect. 4.

2 Proposed Method

The DS was proposed by Pekalska and Duin [6] as an alternative to represent
dissimilarity data. The DS is an adequate option to handle measures that are
non-Euclidean or even non-metric. All the statistical pattern recognition proce-
dures suitable for Euclidean spaces can be applied to the DS. Let X be the space
of objects into consideration which may not be a feature vector space but a non-
standard one such as a graph space. A set of prototypes R = {r1, r2, . . . , rl} ∈ X,
also called representation set, is used for the creation of the DS. A training set



152 Y. Plasencia-Calaña et al.

T = {x1, x2, . . . , xn} ∈ X is represented in the DS by the dissimilarities of
objects in T with objects in R. In general, for a representation set of l proto-
types, and a suitable dissimilarity measure for the problem d : X × X → R

+
0 ,

we obtain a dissimilarity matrix D(T,R); the mapping to a DS is represented
as φd

R : X → R
l. The representation of an object x in the DS is the vector of its

dissimilarities with the prototypes: φd
R(x) = [d(x, r1) d(x, r2) ... d(x, rl)].

The extended space representation is created from the individual represen-
tations in a DS for each scale. For a multiscale problem with M scales, denot-
ing Dm = Dm(T,R) the dissimilarity matrix computed for scale m, we have
D1,D2, . . . , DM , normalized dissimilarity matrices. The representation of train-
ing objects in the EMDS is created by the concatenation of the individual dissim-
ilarity matrices for each scale: [D1 D2 . . . DM ]. The embedding of any object
is obtained by the mapping Θd

R : X → R
lM , which returns the vector of the

dissimilarities with the prototypes from all the scales:

Θd
R(x) = [φd

R1
(x1) φd

R2
(x2) . . . φd

RM
(xM )], (1)

where Rm = {rm1 , rm2 , . . . , rml } ∈ Xm,m = 1...M , is the representation set in
scale m and Xm is the space of objects for scale m; xm ∈ Xm,m = 1...M , are
the representations of x under the different scales.

The main problem with the EMDS is its high dimensionality. It is a cause
of overfitting and the “curse of dimensionality” phenomenon. Another problem
is the increase of the computational costs involved in classification. In order to
be able to use the multiscale information avoiding these problems, a prototype
selection must be performed to create a reduced EMDS. As the EMDS presents
different conditions compared to a standard DS, it is not possible to use most of
the prototype selection procedures such as the KCentres or ModeSeek [7] unless
they are applied on a single scale as in [8]. These methods require a direct com-
parison of the prototypes being analyzed, but for the EMDS these prototypes
are not directly comparable since they belong to different scales. Another good
method, the Forward Selection (FS) [7], is not adequate for the EMDS due to the
high dimensionality of this space and the method being quadratic in complex-
ity with respect to this dimensionality. However, we found that GAs are more
adequate for dealing with the EMDS, therefore we focus on this optimization
strategy to select the prototypes in the EMDS.

We consider that GAs are specially suitable for prototype selection in dis-
similarity representations, since, similar or nearby objects carry a similar infor-
mational value and they can be chosen indistinctively as prototypes. Therefore,
in our prototype selection problem, a thorough search is not needed, and there
may be many suboptimal solutions that are sufficiently good and very close to
the optimal one. Due to this, a GA can find good solutions for the prototype
selection problem very fast, in contrast to other applications where GAs may
converge slowly. The GA for prototype selection in a DS was proposed in [9],
where it showed a good performance in standard DSs of moderate dimension-
ality. However, its performance for very high dimensional spaces such as the
extended ones has not been studied.
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Our criterion focuses on selecting the prototypes in the EMDS taking into
account the information provided by all the scales simultaneously, and not by a
single scale as in previous approaches. The proposed criterion counts the match-
ing labels of the prototypes and their nearest objects in each scale. For a given
cardinality, the winning set of prototypes is the one that maximizes this num-
ber, note that selected prototypes for one scale are not necessarily selected for
other scales. Only the combination (prototypes; scale) with significant contribu-
tion to the maximization is selected. This criterion can be formulated as follows:
j =

∑
xi∈S ML(xi), where:

ML(xi) =

{
1, λS(xi) = λS(xk)
0, λS(xi) �= λS(xk)

, xk = argmin
xj∈S\{xi}

d(xi, xj) (2)

where λS(xi) and λS(xk) are the class labels of xi, xk respectively, and xk is
the object with minimum Euclidean distance to xi in the DS. The criterion
j is therefore the number of matching labels for the candidates set S in the
dissimilarity space.

The GA is an evolutionary method which uses heuristics to converge to better
solutions, resembling biological processes such as crossover and mutation. Each
potential solution (individual, chromosome) is a set of prototypes of fixed cardi-
nality l codified in a l − tuple of prototypes indexes. Note that, by resorting to
this type of solution representation, the parameter that influences the memory
requirements is the desired number of prototypes (usually small l ∈ [10, 100]) and
not the dimensionality of the EMDS. The GA starts the search in an initial pop-
ulation of individuals randomly generated. In each evolution cycle, it evaluates
the population using the fitness function. The population undergoes crossover
(with best fitted individuals) and mutation processes until the criteria are met.
In our approach, we use uniform crossover since each chromosome reproduces
with the best fitted one with a preset probability, usually 0.5, and elitist selec-
tion since the best fitted individual is retained for the next generation without
undergoing mutation. Besides, the population minus the best fitted individual
undergoes mutation with a small preset probability, e.g. 0.05. The probabilities
for mutation and crossover are usually set in a way that a good trade-off between
“exploitation versus exploration” is obtained. The exploitation means the GA
searches in a local region of the space where the last good solution was found
(by setting crossover probability), and by the exploration the GA searches in a
larger and more global region of the space (by setting mutation probability) to
avoid loosing good solutions that may not be in a local neighbourhood of the
last good solution.

3 Experimental Analysis

In this section, the multiscale data sets used in our experiments are described.
The different approaches for prototype selection are presented. The experimental
setup, results and discussion are also provided.
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Data. It is worth noting that it is very difficult to collect real-world multiscale
data sets where the dissimilarities were proposed by experts as suitable for the
problem and where the multiscale information made sense according to them.
Three different multiscale data sets were collected for the experiments. They
are the Colon, Texture and Chicken Pieces data sets. Their descriptions are as
follows. The Colon data set represents colon tissue data; it was provided by
Dr. Marius Nap from the Atrium Medical Center in Heerlen, The Netherlands.
The objects are microscope image patches of size 1024 × 1024 belonging to four
classes: normal, inflamed, adenomatous, and cancer. The Laplacian of different
scales was applied to each image patch, and the city-block (L1) distance between
the histograms of the response images was used as the dissimilarity measure. The
Texture data set (Brodatz) was downloaded from [10]. It has 111 images that
we consider as classes. The 640 × 640 images were partitioned into 9 subimages
that are used as class objects. The Leung-Malik filter set at different scales was
applied to the images, and the Chi square distance between the histograms of
the response images was computed. The Chicken Pieces data set [11] contains
images in binary format representing silhouettes from five different parts of the
chicken. From these images the edges are extracted and approximated by seg-
ments of different pixel length, and string representations of the angles between
the segments are derived. The dissimilarity matrix is composed by edit distances
between these strings. A description of the data sets is presented in Table 1.

Table 1. Properties of the multiscale data sets, the last column (|T |) refers to the
training set cardinality used for the experiments

Data sets # Classes # Obj # scales |T | in EMDS

Colon 4 375 × 4 9 100 × 9

Texture 111 9 × 111 6 222 × 6

Chicken pieces 5 446 11 170 × 11

Experimental Setup. In the experiments our aim is to show that the reduced
EMDS obtained by the prototype selection may provide a more compact and
discriminative representation of multiscale dissimilarities compared to the space
of averaged multiscale dissimilarities, and the DS created by the best individual
scale. Note that in the comparison we always use the same dimensionality of
the spaces and the same length of vectors codifying the data. For consistency,
we compare the same Linear Discriminant classifier (LDC), which is the Bayes
classifier assuming normal densities with identical covariance matrices, and the
1-NN in the different spaces and data sets. All the dissimilarity matrices were
normalized to avoid scaling problems by setting the mean dissimilarity per scale
to 1 using global rescaling.

Since the data sets present a small size, they were 20 times randomly divided
into two sets: a training set, that was used as the candidate set of prototypes to
optimize the selection criterion and to build the final classifiers in the EMDS;
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and a test set, which was only used to compute the final classification error.
The prototype selectors executed are: GA in the EMDS (our proposal), random
selection in the EMDS (as a baseline for the GA) and recent approaches from
the literature on combining non-metric multiscale dissimilarities, also reducing
the set of prototypes to ensure comparability of results: GA in the averaged DS,
random selection in the averaged DS, random selection in the individual DS for
each scale (only for the best performing classifier since for the other one a simi-
lar behaviour was found). Different parameters have been proposed for the GA,
however, they can be problem-dependent. Thereby we decided to use parameters
proposed in previous works on prototype selection [1]: Initial population: 30 indi-
viduals or solutions, Probability of reproduction: 0.5, Probability of mutation:
0.05, Stopping condition: 20 generations reached. We analyzed these parame-
ters for our problem and we found that the GA converged to good solutions
after 10 generations, but setting 20 generations as stopping condition ensured
slightly better results. The results are stable in general for small variations of
the parameters, but not for large variations.

Results and Discussion. Figure 1 present the results obtained for the data
sets used in our study. Classification errors are presented for increasing numbers
of prototypes in multiscale spaces as well as in the individual spaces from the
different scales. Standard deviations were not included to maintain the clarity
of the plots, but they vary between 0.02 and 0.05 for Chicken Pieces, 0.01 and
0.03 for Colon, and between 0.007 and 0.05 for Texture data set.

For the Colon data set, it can be seen that the EMDS outperforms the aver-
aged DS and the individual scales. Results for the Texture data set show a
clear example where the EMDS provides better results than those of the other
approaches. In this data set as well as in the Colon data set, the EMDS sig-
nificantly improves the results of the individual scales. Results for the Chicken
Pieces data set show a different behaviour. The averaged DS outperforms the
EMDS. We believe that this happens because, in this data set, only four scales
present a low classification performance while seven scales perform similarly well.
These large number of good performing scales influence the average dissimilar-
ity computation heavier than the four bad ones. However, for the Colon and
Texture data sets, the individual scales perform significantly different from each
other, and the averaged space suffers from this while the reduced EMDS is able
to capture the complementary information for classification. It can also be seen
that the proposed selection outperforms the random selection, which usually
performs very good for high dimensional DSs.

Note that the proposed approach is less computationally expensive than the
combination of the scales by averaging all the DS representations. In the aver-
aging case, the dissimilarities with the prototypes in all the scales must be com-
puted while in our approach only the dissimilarities with the prototypes in the
specific scale they were selected are computed. Therefore, for N scales and p pro-
totypes and z number of objects, our approach computes z × p dissimilarities,
while the average approach computes z × p × N dissimilarities.
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(a) 1-NN on Colon with 250
training objects per class
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(b) LDC on Colon with 250
training objects per class
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(c) 1-NN on Texture with 6
training objects per class
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(d) LDC on Texture with 6
training objects per class
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(e) 1-NN on Chicken Pieces with
350 training objects per class
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Fig. 1. Classification results on the extended (EMDS), averaged (avg. DS) and indi-
vidual dissimilarity spaces for the different data sets
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4 Conclusions

In this paper, we proposed a new strategy to represent potentially non-metric
multiscale dissimilarity data in a compact and discriminative way. The multiscale
representation is achieved by the extended dissimilarity space while the compact
representation is achieved by means of a selection criterion optimized by a GA
in a way that the most informative examples per scale are selected.

The classification results using the proposed compact multiscale represen-
tation outperform results using the representations in individual scales, despite
having the same computational cost. In addition, the proposed approach is less
computationally expensive than the combination of the scales by averaging all
the DS representations, even improving the classification accuracies when the
individual scales provide complementary information. Future work will focus on
better characterizing the data sets where this approach is useful.
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7. Pekalska, E., Duin, R.P.W., Pacĺık, P.: Prototype selection for dissimilarity-based
classifiers. Pattern Recogn. 39(2), 189–208 (2006)

8. Ibba, A., Duin, R.P.W.: A multiscale approach in combining classifiers in dis-
similarity representations. In: Gevers, T., Bos, H., Wolters, L. (eds.) 15th Annual
Conference of the Advanced School for Computing and Imaging, ASCI 2009 (2009)
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